Hard diffraction and factorization breaking

Karel Černý

Charles University in Prague

on behalf of the H1 and ZEUS Collaborations

Diffraction 2016, Acireale, Catania, Sicily

HERA

HERA, ep collider (DESY, Hamburg, 1993-2007)

 $E_{p} = 920 \text{ GeV}$ $E_{e\pm} = 27.5 \text{ GeV}$ 0.5 fb⁻¹... per experiment

Diffraction with hard scale in ep

ep interactions proceed mainly via γ^* exchange

ep → eX

 $s = (k+P)^2$... CMS energy of collision

 $Q^2 = -q^2 = -(k-k')^2$... four-momentum transfer at e vertex

$$W = \sqrt{(q+P)^2}$$
 ... hadronic c.m.s. energy

 $x = \frac{Q^2}{2q \cdot P}$... Bjorken x

Diffractive dissociation

HERA domain → continuum of masses of X

Diffractive exchange (IP)

- → quantum numbers of vacuum
- $\rightarrow \beta = x / x_{IP} \dots$ mom. fraction of IP participating

$$t = (P - P_y)^2$$
 ... four-momentum transfer at p vertex

 $x_{IP} = \frac{q.(P-P_Y)}{q.P}$... fractional long. mom. loss of proton

Diffractive dissociation in DIS

- virtual photon dissociates into system X (M² << W²)
- small momentum transfer to proton, $|t| \ll W^2$
- proton stays intact or dissociates into system Y ($M_v^2 \ll W^2$)
- large rapidity gap (non-exponentially suppressed) between Y and X
- hard scale present (Q², p_T^2 , m_O^2)
 - inclusive
 - jet data
 - open charm / beauty
 - γ
- represents ~10% of low x DIS σ

Diffractive dissociation in DIS

- virtual photon dissociates into system X ($M_y^2 \ll W^2$)
- small momentum transfer to proton, |t| << W²
- proton stays intact or dissociates into system Y ($M_y^2 \ll W^2$)
- large rapidity gap (non-exponentially suppressed) between Y and X
- hard scale present (Q², p_T^2 , m_O^2)
 - inclusive
 - jet data
 - open charm / beauty
 - γ
- represents ~10% of low x DIS σ

Diffractive dissociation in DIS

- virtual photon dissociates into system X ($M_y^2 \ll W^2$)
- small momentum transfer to proton, $|t| \ll W^2$
- proton stays intact or dissociates into system Y (M² << W²)
- large rapidity gap (non-exponentially suppressed) between Y and X
- hard scale present (Q², p_T^2 , m_O^2)
 - inclusive
 - jet data
 - open charm / beauty
 - γ
- represents ~10% of low x DIS σ

Diffractive dissociation in DIS

- virtual photon dissociates into system X ($M_y^2 \ll W^2$)
- small momentum transfer to proton, $|t| \ll W^2$
- proton stays intact or dissociates into system Y ($M_v^2 \ll W^2$)
- large rapidity gap (non-exponentially suppressed) between Y and X
- hard scale present (Q², p_T^2 , m_Q^2)
 - inclusive
 - jet data
 - open charm / beauty
 - γ
- represents ~10% of low x DIS σ

Diffractive dissociation in DIS

- virtual photon dissociates into system X ($M_y^2 \ll W^2$)
- small momentum transfer to proton, $|t| \ll W^2$
- proton stays intact or dissociates into system Y ($M_v^2 \ll W^2$)
- large rapidity gap (non-exponentially suppressed) between Y and X
- hard scale present (Q^2 , p_T^2 , m_o^2)
 - inclusive
 - jet data
 - open charm / beauty
 - γ
- represents ~10% of low x DIS σ

Due to vacuum quantum number exchange

- \rightarrow leading particle at relatively small t
- → rapidity distributions of final state (VM, X) separated from leading particle by non-exponentially suppressed gaps – Large Rapidity Gap (LRG)

Both leading proton tagging or LRG detection used in H1 and ZEUS

Due to vacuum quantum number exchange

- \rightarrow leading particle at relatively small t
- → rapidity distributions of final state (VM, X) separated from leading particle by non-exponentially suppressed gaps – Large Rapidity Gap (LRG)

Both leading proton tagging or LRG detection used in H1 and ZEUS

LRG method

Due to vacuum quantum number exchange

- \rightarrow leading particle at relatively small t
- → rapidity distributions of final state (VM, X) separated from leading particle by non-exponentially suppressed gaps – Large Rapidity Gap (LRG)

Both leading proton tagging or LRG detection used in H1 and ZEUS proton tagging method

Due to vacuum quantum number exchange

- \rightarrow leading particle at relatively small t
- → rapidity distributions of final state (VM, X) separated from leading particle by non-exponentially suppressed gaps – Large Rapidity Gap (LRG)

Both leading proton tagging or LRG detection used in H1 and ZEUS proton tagging method

Collinear factorization

Most used approach to model various features of diffractive DIS.

Central assumption: Collinear factorization valid for diffractive DIS, Collins

 \rightarrow diffractive parton distribution functions (DPDFs) factorized from predictions of hard X states cross sections

$$d\sigma^{ep \rightarrow eXp}(x,Q^2,x_{IP},t) = \sum_i f_i^D(x,Q^2,x_{IP},t) \otimes d\hat{\sigma}(x,Q^2)$$

Optionally: Resolved Pomeron approach Ingelman and Schlein

- $\rightarrow\,$ virtual photon inteacts with partonic diffractive exchange
- \rightarrow leading proton (t, x_{IP}) treated separately ^{aka Proton vertex factorization}

 $f_{i}^{D}(x,Q^{2},x_{IP},t)=f_{IP/p}(x_{IP},t).f_{i}(\beta,Q^{2})$

Dijets in diffractive DIS

z_{IP} variable

→ fraction of IP momentum participating in the hard process giving rise to jets

DIS	2-jets	diffraction
$4 < Q^2 < 100 \text{ GeV}^2$ 0.1 < y < 0.7	$\begin{array}{l} p_{\mathrm{T},1}^{*} > 5.5 \; \mathrm{GeV} \\ p_{\mathrm{T},2}^{*} > 4.0 \; \mathrm{GeV} \\ -1 < \eta_{1,2}^{\mathrm{lab}} < 2 \end{array}$	$x_P < 0.03$ $ t < 1 \text{ GeV}^2$ $M_Y < 1.6 \text{ GeV}$

Most precise DDIS dijet measurement from HERA

- \rightarrow based on ~ 290 pb⁻¹ of HERA-2 H1 data
- → LRG selection used
- → proton dissociation contribution up to M_{y} < 1.6 GeV
- \rightarrow detector effects controlled very well by simulation
- \rightarrow data corrected with regularized unfolding (TUnfold)
- \rightarrow single and double-differential x-sections measured

Compared with theory

- → in NLO QCD (nlojet++)
- \rightarrow hadronization corrections from MC
- → using H1 2006 DPDF Fit B

DIS variables

Diffractive variables

Jet variables

Data more precise than theory
DPDF uncertainties
DPDF & scale uncertainties
Data well described by theory

 $\sigma_{meas}^{dijet}(ep \rightarrow eXY) = 73 \pm 2 \text{ (stat.) } \pm 7 \text{ (syst.) pb}$

 $\sigma_{theo}^{dijet}(ep \rightarrow eXY) = 77 {}^{+25}_{-20} \text{ (scale)} {}^{+4}_{-14} \text{ (DPDF) } \pm 3 \text{ (had) pb}$

Double-differential cross sections

- \rightarrow agreement with QCD at NLO
- \rightarrow precision of the data allows the extraction of $\alpha_{_{\! S}}$... in agreement with world average
 - \ldots not a competitive means for $\alpha_{\sc s}$ extraction
 - ... supports readiness of the data for DPDF fits

 $\alpha_s(M_Z) = 0.119 \pm 0.004 \,(\text{exp}) \pm 0.012 \,(\text{DPDF}, \text{theo})$

Dijets in diffractive photoproduction and DIS with leading proton

Independent of previous analyses from HERA

 \rightarrow leading proton detected in VFPS

Photoproduction regime

$$\rightarrow Q^2 < 2 \,\mathrm{GeV}^2$$

- → direct γ DIS-like
- \rightarrow resolved γ pp-like
- $\rightarrow \mathbf{x}_{\gamma} \operatorname{fraction}_{X_{\gamma}} = \frac{P \cdot u}{P \cdot q} \quad \dots \text{ dir/res classification}$

19

Performed also in DIS regime

 $\rightarrow 4 \text{ GeV}^2 < Q^2 < 80 \text{ GeV}^2$

$$\begin{array}{ll} 0.010 < x_{I\!\!P} < 0.024 & E_T^{* {\rm jet1}} > 5.5 \, {\rm GeV} \\ |t| < 0.6 \, {\rm GeV}^2 & E_T^{* {\rm jet2}} > 4.0 \, {\rm GeV} \\ z_{I\!\!P} < 0.8 & -1 < \eta^{{\rm jet1},2} < 2.5 \end{array}$$

Dijets in diffractive photoproduction and DIS with leading proton

Independent of previous analyses from HERA

JHEP 1505 (2015) 056 \rightarrow leading proton detected in VFPS ! DPDFs are not portable to diffractive hadron-hadron (pp) processes ! \rightarrow order of magnitude overestimation of predicted pp dijet rates first e+(k) observed by CDF -> Factorization breaking γ* (Phys. Rev. Lett. 84 5043 (2000) Absorptive effects occur ම ---- H1 fit-2 + CDF data ΩŖ $E_{T}^{\text{Jet1,2}} > 7 \text{ GeV}$ ----- H1 fit-3 \rightarrow change of event kinematics Z 100 $(Q^2 = 75 \text{ GeV}^2)$ $0.035 < \xi < 0.095$ |t|<1.0 GeV² \rightarrow rescattering or unitarity corrections ABBREREARARAR 10 \rightarrow several approaches exist to calculate so p(P)called Survival probability <S²> ... i.e. probability of diffractive event to retain the diffractive signature 0.1 0.1 β

Tested in diffractive dijet photoproduction at HERA due to γ 's partonic fluctuations (hadron-like object)

 $z_{I\!\!P} < 0.8$ $-1 < \eta^{
m jet1,2} < 2.5$

DN

Dijets in diffractive photoproduction and DIS with leading proton

Independent of previous analyses from HERA

 $z_{I\!\!P} < 0.8$ $-1 < \eta^{
m jet1,2} < 2.5$

H1 VFPS data NLO H12006 Fit-B imes 0.83 imes (1+ δ_{hadr})

DIS results

Single differential x-sections

- → based on ~ 50 pb⁻¹ of HERA-2 H1 data
- \rightarrow detector effects (H1 and VFPS) well simulated
- \rightarrow data corrected with regularized unfolding

Compared with theory

- → in NLO QCD (nlojet++)
- \rightarrow hadronization corrections from MC
- → using H1 2006 DPDF Fit B (corrected to $M_y = m_p$)

Well described in shape and normalization

Photoproduction

Single differential x-sections

- → based on ~ 30 pb⁻¹ of HERA 2-H1 data
- \rightarrow data corrected with regularized unfolding

Compared with theory

- \rightarrow in NLO QCD (Frixione et al.)
- → hadronization corrections from MC
- \rightarrow using H1 2006 DPDF Fit B (corrected to M_y = m_p)
- \rightarrow GRV, AFG γ -PDF

Within errors well described in shape Global overestimation of normalization

 $\rightarrow x_{y}$ independent (again)

Ratios of yp / DIS

Profits from cancellations of scale uncertainties

 \rightarrow theory / theory, if varied simultaneously

No significant dependence on kinematics

 \rightarrow only global ratios are shown

 $1.08 \pm 0.11 \text{ (data)}_{-0.29}^{+0.45} \text{ (theory)}$

 $0.551 \pm 0.078 \text{ (data)}^{+0.230}_{-0.149} \text{ (theory)}$

 0.511 ± 0.085 (data) $^{+0.022}_{-0.021}$ (theory)

Open charm production in diffractive deep inelastic scattering at HERA

Open charm from $c \rightarrow$ with D* fragmentation

- → based on 280 pb⁻¹ HERA-2 data (previous H1 publ. at 50 pb⁻¹ H1 HERA 1)
- \rightarrow gluon initiated process at LO
- \rightarrow open charm tagged with D*

 $D^{*+} \rightarrow D^0 \pi^+_{slow} \rightarrow (K^- \pi^+) \pi^+_{slow} + C.C.$

→ fits of $\Delta m = m(D^*_{cand}) - m(D^0_{cand})$ → large rapidity gap selection

$$\begin{array}{ll} 5 < Q^2 < 100 \; GeV^2 & 0.02 < y < 0.65 \\ p_{t,D^*} > 1.5 \; GeV & |\eta_{D^*}| < 1.5 \; \dots \; \text{in lab} \\ x_{IP} < 0.03 \end{array}$$

D* in diffractive DIS

Detector level distributions

- \rightarrow satisfactory description with simulation
- $\rightarrow\,$ inv. mass fits performed in each bin
- \rightarrow proton dissociation contr. simulated
- \rightarrow non-diffractive background negligible
- \rightarrow corrected for detector effects

Measurement compared with theory

- → NLO QCD (HVQDIS in FFNS)
- \rightarrow using H1 2006 DPDF Fit B
- \rightarrow H1 tune of fragmentation ^{Eur.Phys.J.C71 (2011) 1769}
- \rightarrow theoretical uncertainties (scale, m_c)

... $\mu = \mu_r = \mu_f$ varied by 0.5 and 2 ... 1.3 < m_c < 1.7 GeV

New preliminary measurement with a larger statistics

NLO QCD prediction agree well within errors with measured cross sections

 \rightarrow new test of factorization

Final measurement might serve as an input to DPDF fits

Studies of the diffractive photoproduction of isolated photons at HERA.

First diffractive analysis of isolated (prompt) photon production

- \rightarrow based on 91 pb⁻¹ and 374 pb⁻¹ HERA-1 and HERA-2 data, respectively
- → photons directly from hard process
- \rightarrow sensitive to quark content of IP

ZEUS

- \rightarrow photoproduction \rightarrow resolved / direct component
- \rightarrow photon isolation selection to suppress background
- → data corrected to hadron level and compared with theory provided by Rapgap MC 28
- → inclusive photon and photon+jet measurements performed

inclusive γ

 γ + jet events

Production of exclusive dijets in diffractive deep inelastic scattering at HERA

Resolved pomeron models in DDIS for dijet analyses describes well various event observables

→ in limit of large z_{IP} all energy exclusively in jets ... no IP remnant

Two-gluon exchange well suited for exclusive dijets

Distribution of lepton-dijet angle plane differs for both theoretical approaches

 $\phi \sim 1 + A \cos 2\phi$

A > 0 ... resolved IP A < 0 ... two-gluon exchange

Measurement performed corrected to hadron level

- → control distributions well described
- → unfolding with TSVDUnfold

 $Q^2 > 25 \text{ GeV}^2$ 90 < W < 250 GeV $x_{IP} < 0.01$ $M_X > 5 \text{ GeV}$ $N_{jets} = 2$ $p_{T;jet} > 2 \text{ GeV}.$

 ϕ distribution obey 1 + A cos2 ϕ in bins of β = x / x_{μ}

→ fitted A parameters β dependence extracted

None of the models does particularly well as to the normalization of d σ / d β

 \rightarrow NLO ?

→ qq̄g final state included in two-gluon exchange model

Study of A indicates two-gluon exchange may be relevant for $\beta > 0.3$

Resolved IP does not reproduce $A(\beta)$

Discussion

Collinear factorization tested by H1 and ZEUS in diffractive DIS

- 1) Factorization approach with QCD NLO predictions successfully describes diffractive DIS dijet data
 - → most recent dijet measurement precise enough to contribute in DPDF fits
- 2) Recent preliminary result on D* production (together with previous ZEUS and H1 results) results supports validity of collinear factorization
- 3) Prompt photons in diffractive photoproduction measured for the first time indicating reasonable description of x-section shapes with LO prediction

Collinear factorization breaking repeatedly tested in diffractive photoproduction of dijets at HERA

- \rightarrow inconsistency remains in the size of the survival probablity between H1 and ZEUS
- \rightarrow H1 and ZEUS consistently observe lack of dependence of the s.p. on kinematics
- → most recent H1 result experimentally "orthogonal" to previous H1 results

Recent result of ZEUS on exclusive dijet production in diffractive DIS provide indication of applicability of two gluon exchange

Thank you for your attention!

Double ratios php/DIS diffractive dijets