Hard QCD and Hadronic Final State at HERA

Alice Valkárová, on behalf of H1 and ZEUS Collaborations

Diffraction 2016, Acireale, Sicily

4.9.2016

HERA collider experiments

- 27.5 GeV electrons/positrons on 920 GeV protons $\rightarrow \sqrt{s}=318$ GeV
- data taken in 1992-2007
- HERA I,II: ~ 500 pb⁻¹ per experiment
- H 1 & ZEUS 4π detectors

Virtuality of exchanged boson $Q^2 = -q^2 = -(k-k')^2$ Inelasticity y = Pq/PkBjorken scaling variable $x = Q^2/2qP$ $Q^2 < 1$ GeV² photoproduction (γp) $Q^2 \gg 1$ GeV² Deep Inelastic Scattering (*DIS*)

Jets in DIS ep collisions

Jet measurements in Breit reference frame →

exchanged virtual boson collides head on with parton from proton

Dijet measurement: boson-gluon fusion & QCD Compton sensitive to $O(\alpha_s)$ already at LO

Trijet measurement: calculations in pQCD in LO already at $O(\alpha_s^2)$

Process		H1		ZEUS	
		HERA I	HERAII	HERA I	HERA II
	inclusive		This analysis		
Low Q ²	dijets	EPJC 67	H1prelim 16-061	Nucl.Ph.B 765	
	trijets	(2010) 1	H1prelim 16-062	(2007) 1	
	inclusive	EPJC 65	EPJC 75 (2015) 2	PL B 691	EPJC 70
High Q ²	dijets	(2010) 363	This analysis	(2010) 127	(2010) 945
Q ² >150 GeV ²	trijets		H1prelim 16-062		

Jets in DIS ep collisions

Data: HERA II period 2006-2007 Integrated luminosity $L=184 \text{ pb}^{-1}$ **Regularised unfolding procedure** S.Schmitt,JINST 7(2012)T10003 Takes into account kinematic migration by considering an 'extended phase space' \rightarrow describes accurately migrations into and out of final 'measurement phase space' jet p p p p p p p p p p z

		- 1. 5<η	$-1.5 < \eta_{jet} < 2.5$	
H1prelim-16-061,H1prelim-16-062 included also high Q ² data from Eur.Phys.J.C75 (2015) 2, 65		Phase space low Q ²	Phase space high Q ²	
 Inclusive k_t algorithm with R=1 	NC DIS phase space	5.5 <q<sup>2<80 GeV² 0.2<y<0.6< td=""><td>150<q²<15000 gev²<br="">0.2<y<0.7< td=""></y<0.7<></q²<15000></td></y<0.6<></q<sup>	150 <q²<15000 gev²<br="">0.2<y<0.7< td=""></y<0.7<></q²<15000>	
 Jet energy calibration using neural networks 	Inclusive jets	4.5 <p<sub>T^{jet}<50 GeV</p<sub>	5 <p<sub>T^{jet}<50 GeV</p<sub>	
neural networks	Dijets Njet ≥ 2	5 < <p<sub>T>₂ < 50 GeV</p<sub>		
	Trijets Njet \ge 3	5.5 < <p<sub>T>₃ < 40 GeV</p<sub>		

MC models and NLO QCD

Monte Carlo generators:

RAPGAP: LO matrix elements +PS DJANGOH:Color-dipole model -Ariadne Lund string fragmentation for hadronisation

NLO calculations:

- nlojet++ (Z.Nagy et al.), 5 quarks
- with NNPDF 3.0

(includes full H1&ZEUS HERAII DIS data)

- α_s = 0.118 (as in PDF)
- renormalisation and factorisation scales: $\mu_r = \mu_f = \sqrt{((P_T^2 + Q^2)/2)}$

aNNLO and NNLO calculations: Normalised with NC DIS NNLO predictions (APFEL)

- aNNLO JetViP, approximate NNLO using threshold resummation, PR D 92 (2015) 074037
- NNLO NNLOJET

J.Currie at al, PRL, 117 (2016) 042001

MCs weighted to achieve a better description of data

Hadronisation corrections to NLO,NNLO:

- the average of corrections from RAPGAP and DJANGOH
- multiplicative factors, typically 0.86-0.97
 for trijet at low <P_T> up to 0.73
- uncertainty defined as difference between (RAPGAP DJANGOH)/2

Correction applied to data: Data are corrected for QED radiative effects

Inclusive x-sections & NLO and NNLO

Inclusive jets:

-count each jet with $P_T^{jet} > 4.5 \text{ GeV}$ in NC DIS event

Systematic uncertainties dominated by jet and cluster energy, scale and model uncertainty

NNLO predictions:

-the description of the data improved in comparison with NLO predictions (mainly for low P_T^{jet} and low Q^2)

aNNLO predictions:

-the description of the data improved at higher values of P_T^{jet} as compared to NLO predictions

Dijets - NLO and NNLO

Dijets - normalised to NC DIS x-sections Ratio $\sigma/\sigma_{\text{NLO}}$

NNLO predictions:

- -the description of the data improved in comparison with NLO predictions (mainly for low P_T^{jet} and low Q^2)
- -significant improvement of the shape description
- -slightly higher in normalisation (partially due to the normalisation to NC DIS cross sections)

Diffraction, Sicily

Trijet cross sections & NLO

Trijets - normalised to NC DIS x-sections Ratio $\sigma/\sigma_{\text{NLO}}$

-Data well described by NLO within large experimental and theoretical uncertainties

$\alpha_{s}(m_{Z})$ from normalised low-Q² multijets & NLO

- probe running of $\alpha_{s}(\mu)$ in range $\ 6{<}\mu{<}30 \ GeV$
- Normalised low-Q² and high-Q² multijets experimental precision about 0.4%

The deviation in low μ_r in accordance with observed enhancement of NNLO vs NLO and data jets!

Search for Instantons

Confirmation of non-perturbative QCD of SM?

Signature:

- Hard current jet
- Instanton band high multiplicity
- Isotropy in I rest frame
- Parton (u,d,s) democracy

Theory: for HERA σ ~ 10-100 pb A.Ringwald,F.Schrempp a.o.

HERA I data - not observed by H1 and ZEUS, upper limits compatible with theory

HERA II : data sample ~ 351 pb⁻¹

Predicted x-section in studied phase space:

$$\begin{array}{l} 150 < Q^2 < 15000 \ \text{GeV}^2, \ 0.2 < y < 0.7 \\ Q^{\,'2} = -q^{\,'2} > 109 \ \text{GeV}^2, \ x^{\,'} = Q^{\,'2} / (2g \cdot q^{\,'}) > 0.35 \\ \sigma(\mathbf{I}) = 10 \pm 3 \ \text{pb} \end{array}$$

Search for Instantons

Background needs to be reduced by at least 2 orders of magnitude **MultiVariate analysis**

- \rightarrow 5 variables as input to MVA (number of particles, transverse energy of the band, sphericity, Fox-Wolfram moments) PDERS method (ROOT TMVA package)
- training with RAPGAP/DJANGOH as background and QCDINS as signal MC
- good signal/background separation
- reasonable background description

Good description by DJANGOH in signal-background region

NO SIGNAL OBSERVED IN DATA!

Search for Instantons

- CLs method
- Using full range discriminator
- Background is DJANGOH

Observed Upper Limit:

2pb at 95 % CL

Published in Eur.Phys.J.C76 (2016) 7

Pentaquarks

In 2015 LHCb -: possible discovery of two pentaquark states at 4.38 and 4.45 GeV corresponding to uudcc. Pentaquarks are topical again!

Early 2000's reported exotic objects consisting with 5 quarks.

ZEUS: evidence for a peak in pK⁰_s (p̄K⁰_s) corresponding to uudds state at 1.52 GeV (HERA I), Θ state ? Phys.Lett.B 591 (2004) 7

H1 - No such a signal seen, Phys.Lett B 639 (2006) 202

Pentaquarks

The dashed line represents the signal corresponding to the ZEUS HERA I result

EUS

based on HERA I data, is not confirmed. Published in Phys.Lett. B759 (2016), 446

Prompt photons in DIS

LL-photons are emitted from incoming or outgoing lepton

QQ- photons are emitted from a quark as a part of hard process

Test of QCD, unaffected by hadronisation

- Free of hadronisation corr. for photon -> direct link to parton level
- Sensitivity to parton and photon PDFs
- Important SM background to possible New physics
- Low statistics as compared to jets
- Difficult background from π/η / decays -> systematics ~5-10%

HERA II publications on isolated photons in DIS

Models used for comparison

Signal: QQ photons - MC PYTHIA, DIS events with additional radiation from the quark line LL photons - MC HERACLES & DJANGOH, higher QCD effects included using color-dipole model as implemented in ARIADNE

Background: Photonic decays of neutral mesons produced in DIS - DJANGOH

Theoretical calculations (BLZ):

k_t - factorization QCD approach

Baranov, Lipatov and Zotov, Phys. Rev. D 81 (2010) 094034 Photon radiation from the quarks as well as from the lepton is taken into account

Extraction of the photon signal

Method to distinguish the signal from hadronic background based on MC fit of δZ distribution

Energy-weighted mean width of the electromagnetic shower(cluster) in calorimeter relative to its centroid:

$$\langle \delta Z \rangle = \frac{\sum_{i} |z_{i} - z_{cluster}| \cdot E_{i}}{l_{cell} \sum E_{i}}$$

 $Z_{i,}$ ($Z_{cluster}$) Z position of the *i-th* cell (centroid of the electromag. cluster), I_{cell} - width of the cell , E_{i} - energy recorded in the cell

In each bin of each measured physical quantity, photon signal + hadronic background is fitted

This fit allows to **separate statisticaly prompt photon signal** (left peak) from **background** dominated by photons from π^0 decay (right peak)

Cross sections compared to weigthed LO MC

•
$$x_{\gamma} = \frac{\sum_{jet,\gamma}(E-p_z)}{2y_{JB}E_e}$$

• $x_p = \frac{\sum_{jet,\gamma}(E+p_z)}{2E_p}$
• $\Delta \eta = \eta_{jet} - \eta_{\gamma}$
 $\Delta \Phi = \varphi_{jet} - \varphi_{\gamma}$
 $\Delta \Phi_{e\gamma} = \varphi_e - \varphi_{\gamma}$
• $\Delta \eta_{e,\gamma} = \eta_e - \eta_{\gamma}$

Cross sections compared to LL(DJANGOHH) + QQ(PYTHIA) ***1.6**

Shapes are fairly decribed

ZEUS preliminary 15-001

Diffraction, Sicily

Cross sections compared to k_T factorisation model

ZEUS preliminary 15-001

Photon radiation from the quarks as well as from the lepton is taken into account

BLZ calculations describe shapes of data distributions not so well (mainly x_v and η)

Diffraction, Sicily

Conclusions

New double-differential inclusive jet, dijet and trijet cross sections in DIS obtained,
 inclusive and dijet data compared for the first time with NNLO predictions.
 NNLO predictions improve the description of the normalised inclusive and dijet experimental double-differential x-sections compared to NLO.

Instantos at HERA not found, upper limit 2pb at 95% CL, predicted cross section
 10 pb excluded. Exclusion limits improved by an order of magnitude.

A resonance in the pK⁰_s (pK⁰_s) (pentaquark) at 1.52 GeV from previous ZEUS
 measurement not confirmed, limits for production cross section established.

Prompt photons in DIS measured. The predictions for the sum of the expected
 LL contributions (DJANGOH) and QQ contributions (PYTHIA) rescaled by factor 1.6

 → good description of the shapes of the kinematic variables. The calculations of BLZ based on *k_r*-factorisation method describe the data not so well.