

Simultaneous QCD & Electroweak fits to HERA inclusive DIS data

K. Wichmann on behalf of H1 & ZEUS collaborations

Deep Inelastic Scattering at HERA

Lepton beams polarised for HERAII

 crucial for the EW measurements

 $E_{P} = 920(820, 460, 575) GeV$ $E_{e} = 27.5 GeV$

$$\sqrt{s} = 318(300, 225, 252) GeV$$

$$Q^{2} = -q^{2} = -(k - k')^{2}$$

$$x_{Bj} = \frac{Q^{2}}{2 pq} \qquad y = \frac{pq}{pk}$$

$$s = (p + k)^{2} \qquad Q^{2} = xys$$

Experimental luminosity (H1 & ZEUS):

~ 0.5fb⁻¹ data from each experiment

DESY

$$\frac{d\,\sigma_{NC}^{\pm}}{dQ^2\,dx} = \frac{2\,\pi\,\alpha^2}{x} \left[\frac{1}{Q^2}\right]^2 (Y_+ F_2 + Y_- x\,F_3 + y^2\,F_L) \qquad \frac{d\,\sigma_{CC}^{\pm}}{dQ^2\,dx} = \frac{1\pm H}{2}$$

$$\frac{d \sigma_{CC}^{\pm}}{dQ^2 dx} = \frac{1 \pm P}{2} \frac{G_F^2}{4 \pi x} \left[\frac{m_W^2}{m_W^2 + Q^2} \right]^2 (Y_+ W_2^{\pm} \pm Y_- x W_3^{\pm} - y^2 W_L^{\pm})$$

QCD+EW fit:

Global QCD fits

- Data: NC & CC, e⁺p and e⁻p scattering
- Global PDF fits closely follow HERAPDF2.0 approach
- DGLAP evolution using QCDNUM
- 13 parameter fit (HERAPDF2.0 DUbar)

$$xf(x) = Ax^{B}(1-x)^{C}(1+Dx+Ex^{2})$$

$$xg(x), xu_{v}(x), xd_{v}(x), x\overline{U}(x)$$

- Starting scale Q²₀ = 1.9 GeV²
- Model and parameterisation uncertainties \rightarrow HERAPDF2.0
- Corrections calculated using EPRC code: ΔR

desy.de/~hspiesb/eprc.html

No ISR/FSR corrections

H1 and ZEUS

 $\mu_{e}^{2} = 10 \text{ GeV}^{2}$

xf

0.8

0.4

0.2

DESY

Vector and axial-vector couplings

Data used

 $Q^2 = 200 \text{ GeV}^2$

 $Q^2 = 650 \text{ GeV}^2$

ZEUS

 $O^2 = 350 \text{ GeV}^2$

 $Q^2 = 1200 \text{ GeV}^2$

 $O^2 = 450 \text{ GeV}^2$

 $Q^2 = 1500 \text{ GeV}$

20²

0.5

 $O^2 = 280 \text{ GeV}^2$

 $O^2 = 250 \text{ GeV}$

 $Q^2 = 800 \text{ GeV}^2$

Phys. Rev. D 93 (2016) 092002

ZEUS

 $O^2 = 530 \text{ GeV}^2$

 $O^2 = 950 \text{ GeV}^2$

DESY

- Wichmann
- 2016

HERA

8 H1 unpolarised data 10-2 10-1 10-2 10.1 10^{-2} ZEUS polarised data $O^2 = 300 \text{ GeV}^2$ $O^2 = 400 \, GeV^2$ Data from $Q^2 = 3.5 \text{ GeV}^2$ $O^2 = 800 \text{ GeV}^2$ $O^2 = 1000 \text{ GeV}^2$

ĩр

0.5

DGLAP evolution @ NLO

Uncombined data sets

unpolarised

HERAII

All HERAI data (H1 & ZEUS)

Reduced E_b data (H1 & ZEUS).

HF scheme - GN VFNS NLO (RT OPT)

Fit results

- Simultaneous QCD and EW fit: •
 - 13 QCD parameters + 4 EW couplings •

DESY

~

Wichmann

QCD & EW parameters uncorrelated

Reference fit ZEUS-13p: QCD parameters fixed to 13p fit

- Only 4 EW couplings fitted
- Very similar results
- Correlation between QCD and EW parameters small

X

DESY

Diffraction 2016

QCD & EW parameters uncorrelated

- Detailed studies performed to check stability of EW couplings with respect to various QCD parameters
 - HPDF1: QCD parameters and all constants fixed to HERAPDF2.0
 - HPDF2: QCD parameters fixed to HERAPDF2.0 + on-shell value of $sin^2\theta_w$
 - 13p reference fit described before

 \rightarrow Results for couplings very similar

	a_u	\exp	tot	a_d	\exp	tot	v_u	\exp	tot	v_d	\exp	tot
EW-Z	+0.50	$^{+0.09}_{-0.05}$	$^{+0.12}_{-0.05}$	-0.56	$^{+0.34}_{-0.14}$	$^{+0.41}_{-0.15}$	+0.14	$^{+0.08}_{-0.08}$	$^{+0.09}_{-0.09}$	-0.41	$^{+0.24}_{-0.16}$	$^{+0.25}_{-0.20}$
13p	+0.49	$^{+0.07}_{-0.04}$		-0.57	$^{+0.30}_{-0.13}$		+0.15	$^{+0.08}_{-0.08}$		-0.40	$^{+0.22}_{-0.17}$	
HPDF1	+0.47	$^{+0.06}_{-0.03}$		-0.62	$^{+0.23}_{-0.11}$		+0.16	$^{+0.08}_{-0.08}$		-0.35	$^{+0.22}_{-0.19}$	
HPDF2	+0.49	$^{+0.06}_{-0.03}$		-0.63	$^{+0.24}_{-0.11}$		+0.15	$^{+0.08}_{-0.08}$		-0.36	$^{+0.22}_{-0.19}$	
SM	+0.50			-0.50			+0.20			-0.35		

11

QCD+EW fits

K. Wichmann

Diffraction 2016

Correlations

• Vector and axial-vector couplings in the fit show high correlation

DESY

HERA data remarkably sensitive to u-type quark couplings

13

QCD+EW fits

 \mathbf{x} Wichmann

DESY

H1 fit methodology

- Lots of basics same as in ZEUS measurement
 - Differences/different approaches pointed out
- Calculations performed strictly in on-shell scheme
 - Parameters are: α , m_w , m_z , $(m_t, m_H, ...)$

- Polarisation measurements considered as independent measurements in fits
- New C++ code for PDF and more general fits developed: Alpos
- DGLAP evolution @ NNLO

χ² Definition

- Uncertainties on cross sections are assumed to be 'log-normal' distributed (relative uncertainties)
- Uncertainties on polarisation measurements are assumed to be 'normal' distributed
- Correlations of syst. uncertainties between different datasets are considered

$$\chi^{2} = (\log(d) - \log(t))^{T} V_{R}^{-1} (\log(d) - \log(t)) + (d - t)^{T} V_{A}^{-1} (d - t)$$

Fit parameters

- 13 PDF parameters
- 4 polarisation values
- 4 Light-quark couplings (or other SM parameters)
- More general also 'nuisance parameters' of syst. uncertainties

 $\mathbf{\overline{\mathbf{x}}}$

Wichmann

Data used

15

0.6

0.4

Wichmann

Diffraction 2016

- H1 HERAI data
 - unpolarised
- Reduced E_{p} H1 data
- HERAII
 - H1 polarised data •

Data from $Q^2 = 12 \text{ GeV}^2$

• HF scheme: ZM-VFNS as implemented in QCDNUM

Light quark couplings @ H1

>°

<u>Fit: PDF + 4 couplings</u>

- χ^2 / ndf = 1370.5 / (1388 21)
- u-type couplings constrained better then d-type
 - \rightarrow sensitivity from valence quarks
- Results compatible with SM
- PDF uncertainties small
- Considerably improved sensitivity using final H1 HERA-II data
- Polarisation in HERA-II important for vector couplings

Fit: PDF + 2 couplings

- Reduced correlations and uncertainties
- Correlations between a_u-a_d and v_u-v_d
 large

Comparison with other measurements

• Comparable precision of complementary processes

Diffraction 2016

DESY

H1 and ZEUS Results Combined

DESY

K. Wichmann

K. Wichmann

DESY

Diffraction 2016

QCD+EW fits

High sensitivity of HERA data to u-type quark couplings

19

DESY

Diffraction 2016

QCD+EW fits

Probing Standard Model

Standard Model is now overconstrained

- Important to study consistency in many complementary processes
- HERA: Space-like momentum transfers
- Only purely virtual exchange of bosons

Boson masses

81

 $(m_w - m_z) + PDF$ fits

- Assume α is known
- on-shell masses $\rm m_w$ and $\rm m_z$ are only free EW parameters
- Agreement with SM
- Large correlation between m_w and m_z

Mass of W boson

 Take other masses (m_z) as external input to calculations

QCD+EW fits

84

m_w [GeV]

 $m_W = 80.407 \pm 0.118$ (exp,pdf-fit) ± 0.005 ($m_{z'}m_{t'}m_{H}$) GeV

80

 $M_W^{PDG\,14} = 80.385 \pm 0.015 \, GeV$

82

83

Diffraction 2016

Study of Standard Model Parameters

12

QCD+EW fits

Simultaneous extraction of $\sin^2\theta_w$ and M_w

Ι

• Similar measurement by ZEUS

All extracted quantities agree with world average values

$$M_W^{PDG\,14} = 80.385 \pm 0.015 \, GeV$$

$$\sin^2 \theta_W^{PDG\,14\,On-\,shell} = 0.22333 \pm 0.00011$$

$$corr(M_W, \sin^2\theta_W) = -0.930$$

DESY

On-shell $sin^2\theta_w$

• $sin^2\theta_w$ determined simultaneously with PDF parameters (ZEUS-EW-S)

Effective $\sin^2\theta_w$

- On-shell measurements were translated to $\sin^2\theta_w^{eff}$
- First observation of effective $sin^2\theta_w$ running from single machine

DESY

K. Wichmann

Summary

- HERA polarised inclusive data sensitive to electroweak parameters \rightarrow Simultaneous PDF and EW fits
- Axial and vector-axial couplings to quarks agree with world average
- Measurements of u-type quark couplings among the most accurate

- Standard Model tests performed
 - Good consistency for M_Z , M_W , G_F and weak mixing angle
 - value of $\sin^2\theta_w$ competitive with measurements from neutrino sector
- $sin^2\theta_w$ on-shell and effective determined for different scales
- Mass of W boson was determined at space-like momentum transfer

QCD+EW fits

Wichmann

DISY

Back-up slides

DESY-16-063, accepted by PRD

DESY

 $\mathbf{\overline{\mathbf{x}}}$

DESY-16-063, accepted by PRD

QCD+EW fits

DESY

DESY-16-063, accepted by PRD

DESY

 $\mathbf{\overline{\mathbf{x}}}$

DESY

On $sin^2\theta_w$ (+X) fits to DIS data

DIS inclusive cross sections depend on sin²θ_w through:

- Z propagator in NC cross sections;
- Vector couplings of Z to quarks;

 $\tilde{F}_{2}^{\pm} = F_{2}^{\gamma} - (v_{e} \pm P_{e}a_{e})\chi_{Z}F_{2}^{\gamma Z} + (v_{e}^{2} + a_{e}^{2} \pm 2P_{e}v_{e}a_{e})\chi_{Z}^{2}F_{2}^{Z}$ $x\tilde{F}_{3}^{\pm} = -(a_{e} \pm P_{e}v_{e})\chi_{Z}xF_{3}^{\gamma Z} + (2v_{e}a_{e} \pm P_{e}(v_{e}^{2} + a_{e}^{2}))\chi_{Z}^{2}xF_{3}^{Z}$ $\bullet \text{ W propagator (G}_{F});$

$$\frac{d^2 \sigma_{\rm CC}(e^+ p)}{dx_{\rm Bj} dQ^2} = (1 + P_e) \frac{G_F^2 M_W^4}{2\pi x_{\rm Bj} (Q^2 + M_W^2)^2} x[(\bar{u} + \bar{c}) + (1 - y)^2 (d + s + b)] \qquad G_F = \frac{\pi \alpha}{\sqrt{2} \sin^2 \theta_W} \frac{1}{1 - \Delta R}$$

$$\frac{d^2 \sigma_{\rm CC}(e^- p)}{dx_{\rm Bj} dQ^2} = (1 - P_e) \frac{G_F^2 M_W^4}{2\pi x_{\rm Bj} (Q^2 + M_W^2)^2} x[(u + c) + (1 - y)^2 (\bar{d} + \bar{s} + \bar{b})] \qquad G_F = \frac{\pi \alpha}{\sqrt{2} \sin^2 \theta_W} \frac{1}{1 - \Delta R}$$

ΔR is an EW correction.

arXiv:hep-ph/9902277

 $\chi_Z = \frac{1}{\sin^2 2\theta_W} \frac{Q^2}{M_Z^2 + Q^2} \frac{1}{1 - \Delta R}$

Re-expressing G_{F} through sin² θ_{W} and M_{W} allows to use both CC and NC for sin² θ_{W} determination.

• Current analysis exploits all three dependences for $\sin^2\theta_w$ extraction.

 \circ sin² θ_{w} values extracted in current analysis correspond to On-shell scheme.

Quark couplings to Z

Now consider fits to electroweak NC couplings as well as PDF parameters

The total cross-section : $\sigma = \sigma^0 + P \sigma^P$

The unpolarised cross-section is given by $\sigma^0 = Y_+ F_2^0 + Y_- xF_3^0$

$$F_{2}^{0} = \Sigma_{i} A_{i}^{0}(Q^{2}) [xq_{i}(x,Q^{2}) + xq_{i}(\overline{x},Q^{2})]$$

$$xF_{3}^{0} = \Sigma_{i} B_{i}^{0}(Q^{2}) [xq_{i}(x,Q^{2}) - xq_{i}(\overline{x},Q^{2})]$$

$$A_{i}^{0}(Q^{2}) = e_{i}^{2} - 2 e_{i} v_{i} v_{e} P_{Z} + (v_{e}^{2} + a_{e}^{2})(v_{i}^{2} + a_{i}^{2}) P_{Z}^{2}$$

$$B_{i}^{0}(Q^{2}) = -2 e_{i} a_{i} a_{e} P_{Z} + 4a_{i} a_{e} v_{i} v_{e} P_{Z}^{2}$$

$$P_{Z}^{2} = \frac{1}{\sin^{2} 2\theta} \frac{Q^{2}}{(M_{Z}^{2} + Q^{2})}$$

The polarised cross-section is given by $\sigma^P = Y_+ F_2^P + Y_- xF_3^P F_2^P = \Sigma_i A_i^P (Q^2) [xq_i(x,Q^2) + xq_i(x,Q^2)]$

 $xF_{3}^{P} = \Sigma_{i} B_{i}^{P}(Q^{2}) [xq_{i}(x,Q^{2}) - xq_{i}(x,Q^{2})]$

 $A_i^P(Q2) = 2 e_i v_i a_e P_Z - 2 v_e a_e (v_i^2 + a_i^2) P_Z^2$

 $B_i^P(Q2) = 2 e_i a_i v_e P_Z - 2 a_i v_i (v_e^2 + a_e^2) P_Z^2$

 $P_Z >> P_Z^2$ (γZ interference is dominant) _____ v_e is very small (~0.04).

unpolarized $xF_3 \rightarrow a_i$, polarized $F_2 \rightarrow v_i$

From slides by Amanda Cooper-Sarkar

K. Wichmann

Color decomposition of uncertainties

Parametrisation uncertainties
 largest deviation

Model uncertainties

- all variations added in quadrature

Experimental uncertainties:

- Hessian method
- Conventional $\Delta \chi^2$ = 1 => 68% CL

Variation	Standard Value	Lower Limit	Upper Limit					
$Q_{\rm min}^2$ [GeV ²]	3.5	2.5	5.0					
$Q_{\rm min}^2$ [GeV ²] HiQ2	10.0	7.5	12.5					
$M_c(\text{NLO})$ [GeV]	1.47	1.41	1.53					
M_c (NNLO) [GeV]	1.43	1.37	1.49					
M_b [GeV]	4.5	4.25	4.75					
f_s	0.4	0.3	0.5					
μ_{f_0} [GeV]	1.9	1.6	2.2					
Adding D and E parameters to each PDF								

Fit methology I

Determine light-quark couplings

• Use iterative minimisation procedure ('fit') of cross section predictions to data

Unfortunate correlation

- PDFs have considerable uncertainties
- These PDFs are essentially determined from H1 structure function data -> Large correlations
- Consider PDF uncertainty by simultaneous fit of PDFs and light quark couplings

Consistency of fit-parameters in SM formalism

 Perform calculations strictly in on-shell scheme Parameters are: α, m_z, m_w, (m_t, m_H, ...)

Polarisation measurement

- Measurements of the beam polarisations are measurements on their own
- -> Consider these measurements as independent measurements in fit

1-loop EW corrections

- May be considered in terms of 'EW form factors'
- Are ignored in the present analysis, but will be included in the future

Fit methology II

New C++-based fitting code for PDF and more general fits developed (Alpos)

- DGLAP evolution of PDFs in NNLO QCD (QCDNUM with ZMVFNS)
- PDFs are parameterised at starting scale $Q_0^2 = 1.9 \text{GeV}^2$ (similar to HERAPDF2.0)

• Use only data with $Q^2 \ge 12 \text{ GeV}^2$

χ² Definition

- Uncertainties on cross sections are assumed to be 'log-normal' distributed (relative uncertainties)
- Uncertainties on polarisation measurements are assumed to be 'normal' distributed
- · Correlations of syst. uncertainties between different datasets are considered

$$\chi^{2} = (\log(d) - \log(t))^{T} V_{R}^{-1} (\log(d) - \log(t)) + (d - t)^{T} V_{A}^{-1} (d - t)$$

Fit parameters

- 13 PDF parameters
- 4 polarisation values
- 4 Light-quark couplings (or other SM parameters)
- · More general also 'nuisance parameters' of syst. uncertainties

Polarised deep-inelastic ep scattering

Neutral and charged current at tree level

$$\frac{d \sigma_{NC}^{\pm}}{dQ^{2} dx} = \frac{2\pi \alpha^{2}}{x} \left[\frac{1}{Q^{2}} \right]^{2} (Y_{+}F_{2} + Y_{-}x F_{3} + y^{2}F_{L})$$

$$\frac{d \sigma_{CC}^{\pm}}{dQ^{2} dx} = \frac{1 \pm P}{2} \frac{G_{F}^{2}}{4\pi x} \left[\frac{m_{W}^{2}}{m_{W}^{2} + Q^{2}} \right]^{2} (Y_{+}W_{2}^{\pm} \pm Y_{-}x W_{3}^{\pm} - y^{2}W_{L}^{\pm})$$

$$Y_{+} = 1 \pm (1 - y)^{2}$$

Calculations in on-shell scheme

$$G_{F} = \frac{2\pi\alpha}{2\sqrt{2}m_{W}^{2}} \left(1 - \frac{m_{W}^{2}}{m_{Z}^{2}}\right)^{-1} (1 + \Delta r)$$

Corrections to G_F

 $\Delta r = \Delta r (\alpha, m_w, m_z, m_t, m_H, \dots)$

Parameters to calculations

Parameters to cross section calculation: α , $m_{Z'}$, $m_{W'}$ (m_t , $m_{H'}$, ...) More general, also couplings: v_e, a_e , v_u, a_u and v_d, a_d

DIS 2016 Workshop

Daniel Britzger – H1 Electroweak Fit

Generalised structure functions

$$F_{2} = F_{2}^{\gamma} + \kappa_{z} (-v_{e} \mp Pa_{e}) F_{2}^{\gamma z} + \kappa_{z}^{2} (v_{e}^{2} + a_{e}^{2} \pm Pv_{e}a_{e}) F_{2}^{z}$$

$$x F_{3} = +\kappa_{z} (\pm a_{e} + Pv_{e}) F_{3}^{\gamma z} + \kappa_{z}^{2} (\mp 2v_{e}a_{e} - P(v_{e}^{2} + a_{e}^{2})) x F_{3}^{z}$$

Z^o-exchange

$$\kappa_z(Q^2) = \frac{Q^2}{Q^2 + m_z^2} \frac{G_F m_z}{2\sqrt{2}\pi\alpha}$$

Structure functions in QPM

 $[F_2, F_2^{\gamma Z}, F_2^{Z}] = x \sum_q [e_q^2, 2e_q v_q, v_q^2 + a_q^2] \{q + \bar{q}\}$

$$\left[xF_{3}^{\gamma Z}, xF_{3}^{Z}\right] = x\sum_{q}\left[2e_{q}a_{q}, 2v_{q}a_{q}\right]\left\{q-\bar{q}\right\}$$

Weak couplings to Z-boson

$$v_{f} = I_{f,L}^{(3)} - 2e_{f}\sin^{2}\theta_{W} \qquad (f = e, u, d, ...)$$
$$a_{f} = I_{f,L}^{(3)}$$

QCD+EW fits

K. Wichmanr

Deep Inelastic Scattering @ HERA

DESY

 $\mathbf{\overline{\mathbf{x}}}$