Jet Production at Low Momentum Transfer at HERA

Daniel Britzger for the H1 Collaboration

DIS 2016 – Workshop on DIS and Related Subjects DESY, Hamburg-Bahrenfeld, Germany 12.04.2016

Deep-inelastic scattering

Neutral current deep-inelastic scattering

Process: $ep \rightarrow e'X$ Electron or positron

Kinematic variables

Virtuality of exchanged boson Q²

$$Q^2 = -q^2 = -(k-k')^2$$

Inelasticity

$$y = \frac{p \cdot q}{p \cdot k}$$

Factorisation in ep collisions

Hard scattering coefficients and parton distribution functions (PDFs)

$$\sigma_{ep \to eX} = f_{p \to i} \otimes \hat{\sigma}_{ei \to eX}$$

Predictions in perturbative QCD

Hard scattering is calculated perturbatively PDFs have to be determined from experimental data (usage of DGLAP)

e'(k')

e(*k*)

p(p)

Jet production in ep scattering

Jet measurements are performed in Breit reference frame

• Exchanged virtual boson collides 'head-on' with parton from proton

Jet measurement sensitive to α_s already at leading-order

- Boson-gluon fusion
- QCD compton

Trijet measurement

- More than three jets with significant transverse momenta
- Leading-order already at $O(\alpha_{s^2})$

The HERA ep collider

HERA ep collider

HERA ep collider in Hamburg

- Data taking periods
 - HERAI: 1994 2000
 - HERA II: 2003 2007
 - Special runs with reduced E_p in 2007
- Delivered integrated luminosity ~ 0.5 fb⁻¹

HERA-II period

- Electron and positron runs
- √s = 319 GeV
 - E_e = 27.6 GeV
 - E_p = 920 GeV
- Analysed int. Luminosity: L = 184 pb⁻¹

The H1 experiment

H1 multi-purpose detector

Asymmetric design Trackers

- Silicon tracker
- Jet chambers
- Proportional chambers

Calorimeters

- Liquid Argon sampling calorimeter
- SpaCal: scintillating fiber calorimeter Superconducting solenoid
- 1.15T magnetic field Muon detectors

Drawing of the H1 experiment

Excellent control over experimental uncertainties

- Overconstrained system in NC DIS
- Electron measurement: 0.5 1% scale uncertainty
- Jet energy scale: 1%
- Luminosity: 2.5%

Analysis strategy and kinematic range

Data must be corrected for detector effects

- Kinematic migrations
- Acceptance and efficiency effects

Regularised unfolding

- Matrix based unfolding method
- Consider an '*extended phase space*' for accurate description of migrations into and out of 'measurement phase space'

Extended phase space for unfolding			Phase space of cross sections	
NC DIS	$Q^2 > 3 \text{ GeV}^2$		NC DIS	$5 < Q^2 < 100 \text{ GeV}^2$
	y > 0.08			0.2 < y < 0.65
(inclusive) Jets	$P_T^{jet} > 3 \text{ GeV}$		(inclusive) Jets	$P_{T}^{jet} > 5 \text{ GeV}$
	$-1.5 < \eta^{lab} < 2.75$			$-1.0 < \eta^{lab} < 2.5$
Dijet and Trijet			Dijet and Trijet	M _{jj} > 18 GeV
	$P_T^{jet} > 3 \text{ GeV}$			$< P_T^{jet} > 5 \text{ GeV}$

Control distributions

Acceptance of NC DIS events

- Scattered lepton is found in SpaCal
- Lepton energy $E_e > 11 \text{ GeV}$
- Selection based on un-prescaled SpaCal electron trigger

Monte Carlo generators

- Rapgap: LO matrix elements + PS
- Djangoh: Color-dipole model
- String fragmentation for hadronisation

Background

- Photoproduction simulation using Pythia
- Normalised to data using dedicated event selection
- Background for jet quantities almost negligible

Detector-level distributions for jets

Jet reconstruction

- k_{τ} jet algorithm with R=1
- · Jets built from tracks and clusters
- Jet energy calibration using neural networks

Monte Carlo predictions

- MC simulations used for unfolding procedure
- Jet multiplicities and spectra not well modelled
 - Djangoh: $p_{\mathsf{T}^{jet}}$ spectra too hard
 - Rapgap: Jet multiplicity underestimated
 - Both generators tend to have too few jets in forward direction
 - -> MC generators are weighted to describe data
- Weighted MC predictions

Dijet and Trijet

- Distributions raise steeply due to p_T^{jet} > 5 GeV requirement
- -> Extended phase space important for migrations

Regularised unfolding

Regularised unfolding using ROOT::TUnfold

• Calculate unfolded distribution *x* by minimising

$$\chi^{2}(x,\tau) = (y - Ax)^{T} V_{y}^{-1} (y - Ax) + \tau L^{2}$$

- Linear analytic solution
- Linear propagation of all uncertainties
- Statistical correlations are considered in V_y

Simultaneous unfolding of Inclusive jet, Dijet, Trijet, NC DIS

- Similar to EPJ C75 (2015) 2
 -> One measurement of multiple observables
- Matrix constituted from O(10⁶) entries
- Migrations in up to 6 variables considered for a single measurement
- 'detector-level-only' jets/events are contrained with NC DIS data
- System of linear equation becomes overconstrained when using more bins on detector than on generator level

x Hadron level y Detector level V_v Covariance matrix

А

- Migration matrix
- τL² Regularisation term

Migration Matrix

Data to theory comparisons

Data is compared to predictions based on next-to-leading order QCD calculations

NLO calculations

nlojet++ (Z. Nagy et al.) with NNPDF 3.0 $ep \rightarrow 2$ jets for inclusive jet and dijet $ep \rightarrow 3$ jets for trijets Scale choices

$$\mu_r^2 = \mu_f^2 = \frac{1}{2} (P_T^2 + Q^2)$$

Estimated uncertainty

6-point asymmetric scale variations k-factors: 0.9 < NLO/LO < 3.8

Corrections to data

Bin-wise correction factors for QED radiative effects

Hadronisation corrections to NLO predictions

Lund string model

- Average of correction factors from the two MC models
 Multiplicative factors
- typically 0.88 0.95
- up to 0.75 for trijets at low $\langle P_T \rangle$

Dijet cross sections

Double-differential Dijet cross sections

$$\langle P_T \rangle = \frac{P_{T,1} + P_{T,2}}{2}$$

High precision

• Exp. uncertainty dominated by jet energy scale and model uncertainty

Compared with NLO

- NLO gives reasonable description over full kinematic range
- Large k-factors may indicate relevant contributions beyond NLO
- Large uncertainties from scale variation

Data precision overshoots significantly theory precision

Inclusive jet cross sections

Double-differential inclusive jet cross sections

Inclusive jets

- Count each jet in an NC DIS event
- Stat. uncertainty and correlations are measured
- Well described by NLO

Compared to H1 HERA-I

- Largely independent measurement
- HERA-II data with comparable precision
- Benefit from refined experimental methods
- Statistical uncertainty reduced for high $P_{\scriptscriptstyle T}$ and high Q^2

Trijet cross sections

Double-differential Trijet cross sections

- Precision limited by systematic uncertainties over whole kinematic range
- · dominated by: Jet energy scale and model uncertainty
- At low values of Q²: Data precision significantly overshoots NLO precision

Correlation matrix of multijets

Covariance matrix

- Correlations beteween all data points are measured
- Obtained through linear error
 propagation of statistical uncertainties

Correlations

- Resulting from unfolding
- Physical correlations
 - Between measurements
 - Within inclusive jet

Useful for

- Cross section ratios
- Combined fits
- Normalised cross sections

History and Outlook

Last missing piece of H1 jet legacy

Process		HERA-I	HERA-II
Low Q ²	Inclusive jet Dijet Trijet	EPJ C 67 (2010) 1	This analysis H1prelim 16-061
High Q ²	Inclusive jet Dijet Trijet	EPJ C 65 (2010) 363	EPJ C 75 (2015) 2

Probe running of α_s over one order of magnitude with all H1 jet data

- Very high experimental precision on $\alpha_s(M_z)$ Expect experimental precision of ~5.5%
- Looking forward for theory developments
 - aNNLO for low-Q² regime (Biekötter, Klasen, Kramer, Phys.Rev. D92 (2015) 7, 074037)
 - full NNLO predictions

(Currie, Niehues, Gehrmann et al., see plenary on monday)

Summary

New double-differential inclusive jet, dijet and trijet cross sections

- New measurements of multijet cross sections at low Q² presented
- Large HERA-II dataset analysed
- High statistical and experimental precision
- Analysis uses final H1 data re-processing and precise calibration of the H1 detector
- Sophisticated unfolding allows simultaneous usage of all data in future fits
- Data well described by NLO predictions within large theoretical uncertainties

Outlook

- Data will be valuable input for α_s extractions
 - -> Use HERA-I and HERA-II, low- and high-Q² jet data
- Looking forward for confrontation with aNNLO and NNLO predictions