

Combined QCD and EW analysis of **HERA** data **DESY-16-039**

arXiv:1603.09628

Accepted by PRD

Volodymyr Myronenko DESY

on behalf of the ZEUS collaboration

Deep-Inelastic Scattering Hamburg, Germany 2016

Deep Inelastic Scattering at HERA

 $E_{P} = 920(820, 460, 575)GeV$ $E_{e} = 27.5 GeV$

 $\sqrt{s} = 318(300, 225, 252)GeV$

- Lepton beams were polarised at HERAII
 - Crucial for the EW measuremets

$$Q^{2} = -q^{2} = -(k - k')^{2}$$

$$x_{Bj} = \frac{Q^{2}}{2 pq} \qquad y = \frac{pq}{pk}$$

$$s = (p + k)^{2} \qquad Q^{2} = xys$$

Experimental achievements (H1 & ZEUS):

~ 0.5fb⁻¹ DIS data from each experiment

Data considered

Data used in the analysis (uncombined data sets, correlations as in HERAPDF2.0):

ĩЮ

• HERAI: H1 + ZEUS P_e = 0;

• Reduced E_{P} runs: H1 + ZEUS, $P_{P} = 0$;

• HERAII:

• H1 data with $P_e = 0$;

• ZEUS data with $P_e \neq 0$;

Global QCD analysis

 $Q_{min}^{2} = 3.5 \text{ GeV}^{2}.$

HF scheme: GM VFNS NLO (RT OPT).

PDFs parametrised with 13p (HERAPDF2.0 - \overline{DU}) at $Q_0^2 = 1.9 \text{ GeV}^2$

$$xf(x) = Ax^{B}(1-x)^{C}(1+Dx+Ex^{2})$$

xg(x), xu_v(x), xd_v(x), x\overline{U}(x), x\overline{D}(x)

Free parameters: PDF parameters + couplings of Z^0 to quarks (a_u , a_d , v_u , v_d), or M_w , or $sin^2\theta_w$ (On-shell scheme).

Model and parameterisation uncertainty estimation \rightarrow HERAPDF2.0 strategy.

Correction calculated using EPRC code: Δr. No ISR/FSR corrections.
<u>desy.de/~hspiesb/eprc.html</u>

Data description (ZEUS-EW-Z)

Fitted predictions describe data well.

Effect of coupling determination on PDFs

HERAPDF2.0 and ZEUS-13p PDFs with couplings set to SM agree with ZEUS-EW-Z PDFs.

Releasing couplings has little effect on PDFs.

Couplings of quarks to Z boson

Couplings were determined simultaneously with PDFs (ZEUS-EW-Z)

Couplings of quarks to Z boson

Vector and axial-vector couplings in the fit show high correlation

Couplings of quarks to Z boson

HERA data show remarkable sensitivity to the **u-type** quark couplings.

Couplings of quarks to Z boson ZEUS

PDG average values do not yet include current ZEUS-EW-Z results.

Results presented here have a potential to decrease uncertainties of average values (u-quark in particular)

Mass of W boson

Mass of W boson was determined simultaneously with PDFs (ZEUS-EW-W)

$$M_{W} = 80.68 \pm 0.28_{(exp/fit)} + 0.12_{-0.01(mod)} + 0.23_{-0.01(par)} GeV = 80.68^{+0.38}_{-0.28(tot)} GeV$$

 $M_{W}^{PDG \, 14} = 80.385 \pm 0.015 \, GeV$

 G_{F} in CC was re-expressed with:

$$G_F = \frac{\pi \alpha}{\sqrt{2} \, \sin^2 \theta_W M_W^2} \frac{1}{1 - \Delta R}$$

 $M_{\rm w}$ form ZEUS-EW-W is consistent with current world average.

$sin^2\theta_w$ from HERA data

sin² θ_w was determined simultaneously with PDFs (ZEUS-EW-S)

$sin^2\theta_w$ and mass of W boson

 \Rightarrow sin² θ_{w} and M_w were determined simultaneously with PDFs (ZEUS-EW-S-W)

All extracted quantities agree with World average values.

Summary

The simultaneous QCD and EW analysis of HERA data was performed.

Couplings of u- and d-type quarks to Z boson were determined:

- Fitted couplings are consistent with SM predictions;
- Results are compatible with those from other measurements;
- Couplings of u-quarks are constrained significantly better than those of d-quarks.

 \rightarrow sin² θ_{w} at on-shell scheme was determined:

- Fitted value is competitive with measurements from other experiments;
- Result is consistent with current world average.
- Mass of W boson was determined:
 - Fitted value of M_w is consistent with current world average.

Volodymyr Myronenko | 13.04.2016 | DIS16 | Combined QCD and EW analysis of HERA data

Accepted by PRD

DESY-16-039 arXiv:1603.09628

Backup not necessarily useful...

Full HERA data collection

HERAPDF1.0 HERAPDF1.5 HERAPDF2.0

Data Set		x _{Bj} Grid		Q^2 [GeV ²] Grid		$\mathcal{L} = e^+/e^-$		\sqrt{s}	
		from	to	from	to	pb-1		GeV	
HERA I $E_p = 820$ GeV and $E_p = 920$ GeV data sets									
H1 svx-mb	95-00	0.000005	0.02	0.2	12	2.1	e ⁺ p	301, 319	
H1 low Q^2	96-00	0.0002	0.1	12	150	22	e^+p	301, 319	
H1 NC	94-97	0.0032	0.65	150	30000	35.6	e^+p	301	
H1 CC	94-97	0.013	0.40	300	15000	35.6	e^+p	301	
H1 NC	98-99	0.0032	0.65	150	30000	16.4	e ⁻ p	319	
H1 CC	98-99	0.013	0.40	300	15000	16.4	e ⁻ p	319	
H1 NC HY	98-99	0.0013	0.01	100	800	16.4	e ⁻ p	319	
H1 NC	99-0 0	0.0013	0.65	100	30000	65.2	e^+p	319	
H1 CC	99-0 0	0.013	0.40	300	15000	65.2	e^+p	319	
ZEUS BPC	95	0.000002	0.00006	0.11	0.65	1.65	e ⁺ p	300	
ZEUS BPT	97	0.0000006	0.001	0.045	0.65	3.9	e^+p	300	
ZEUS SVX	95	0.000012	0.0019	0.6	17	0.2	e^+p	300	
ZEUS NC	96-97	0.00006	0.65	2.7	30000	30.0	e+ p	300	
ZEUS CC	94-97	0.015	0.42	280	17000	47.7	e ⁺ p	300	
ZEUS NC	98-99	0.005	0.65	200	30000	15.9	e ⁻ p	318	
ZEUS CC	98-99	0.015	0.42	280	30000	16.4	e ⁻ p	318	
ZEUS NC	99-00	0.005	0.65	200	30000	63.2	e ⁺ p	318	
ZEUS CC	99-00	0.008	0.42	280	17000	60.9	e+ p	318	
HERA II $E_p = 920 \text{Ge}$	V data sets								
H1 NC 1.5p	03-07	0.0008	0.65	60	30000	182	e ⁺ p	319	
H1 CC ^{1.5p}	03-07	0.008	0.40	300	15000	182	e^+p	319	
H1 NC ^{1.5} <i>p</i>	03-07	0.0008	0.65	60	50000	151.7	e ⁻ p	319	
H1 CC ^{1.5} <i>p</i>	03-07	0.008	0.40	300	30000	151.7	e ⁻ p	319	
H1 NC med $Q^2 * y.5$	03-07	0.0000986	0.005	8.5	90	97.6	e^+p	319	
H1 NC low $Q^2 * y.5$	03-07	0.000029	0.00032	2.5	12	5.9	e ⁺ p	319	
ZEUS NC	06-07	0.005	0.65	200	30000	135.5	e ⁺ p	318	
ZEUS CC ^{-1.5p}	06-07	0.0078	0.42	280	30000	132	e+ p	318	
ZEUS NC ^{-1.5}	05-06	0.005	0.65	200	30000	169.9	e ⁻ p	318	
ZEUS CC ^{-1.5}	04-06	0.015	0.65	280	30000	175	e ⁻ p	318	
ZEUS NC nominal *9	06-07	0.000092	0.008343	7	110	44.5	e ⁺ p	318	
ZEUS NC satellite *9	06-07	0.000071	0.008343	5	110	44.5	e ⁺ p	318	
HERA II $E_p = 575 \text{GeV}$	V data sets								
H1 NC high Q^2	07	0.00065	0.65	35	800	5.4	e ⁺ p	252	
H1 NC low Q^2	07	0.0000279	0.0148	1.5	90	5.9	e ⁺ p	252	
ZEUS NC nominal	07	0.000147	0.013349	7	110	7.1	e ⁺ p	251	
ZEUS NC satellite	07	0.000125	0.013349	5	110	7.1	e+ p	251	
HERA II $E_p = 460 \text{ GeV}$ data sets									
H1 NC high Q^2	07	0.00081	0.65	35	800	11.8	e ⁺ p	225	
H1 NC low Q^2	07	0.0000348	0.0148	1.5	90	12.2	e ⁺ p	225	
ZEUS NC nominal	07	0.000184	0.016686	7	110	13.9	e+ p	225	
ZEUS NC satellite	07	0.000143	0.016686	5	110	13.9	e ⁺ p	225	

All inclusive DIS results are final and published!

Full HERA I

data

HERA II data HER

HERA II data LE

J

Correlation matrix for the fit parameters

Aprig Bprig Buv Cuv Euv Bdv Cdv CUbar ADbar BDbar CDbar auEW adEW vuEW vdEW NO. Bq Cq 1.000-0.014-0.449 0.824-0.216 0.172 0.250-0.084-0.085-0.098-0.107-0.136 0.046 0.025 0.003 0.015 0.018 Ba -0.014 1.000 0.831 0.457 0.341-0.373-0.550 0.010 0.296-0.018-0.082-0.103 -0.434 0.105 0.095 -0.098 -0.111 Cg -0.449 0.831 1.000 0.120 0.548-0.404-0.629 0.233 0.274 0.159 0.081 0.072 -0.148 -0.052 0.000 -0.043 -0.054 Apria 0.824 0.457 0.120 1.000 0.106-0.037-0.082 0.075 0.047 0.043 0.011-0.014 0.012 -0.029 -0.011 -0.001 -0.002 Bprig -0.216 0.341 0.548 0.106 1.000-0.409-0.774 0.465-0.086 0.690 0.476 0.395 0.439 -0.360 -0.178 0.079 0.070 Buv 0.172-0.373-0.404-0.037-0.409 1.000 0.828-0.297-0.235-0.188-0.095-0.069 -0.040 0.110 0.029 0.040 0.028 Cuv 0.250-0.550-0.629-0.082-0.774 0.828 1.000-0.296-0.066-0.363-0.170-0.117 -0.092 0.192 0.087 -0.023 -0.017 Euv -0.084 0.010 0.233 0.075 0.465-0.297-0.296 1.000 0.518 0.405 0.350 0.291 0.673 -0.335 -0.134 0.038 0.021 Bdv -0.085 0.296 0.274 0.047-0.086-0.235-0.066 0.518 1.000-0.137-0.186-0.193 -0.139 0.110 0.128 -0.101 -0.128 Cdv CUbar -0.098-0.018 0.159 0.043 0.690-0.188-0.363 0.405-0.137 1.000 0.673 0.635 0.329 -0.320 -0.137 0.055 0.052 ADbar -0.107-0.082 0.081 0.011 0.476-0.095-0.170 0.350-0.186 0.673 1.000 0.959 0.477 -0.272 -0.137 0.056 0.059 BDbar -0.136-0.103 0.072-0.014 0.395-0.069-0.117 0.291-0.193 0.635 0.959 1.000 0.415 -0.239 -0.120 0.047 0.053 CDbar 0.046-0.434-0.148 0.012 0.439-0.040-0.092 0.673-0.139 0.329 0.477 0.415 1.000 -0.449 -0.271 0.148 0.153 auEW 0.025 0.105-0.052-0.029-0.360 0.110 0.192-0.335 0.110-0.320-0.272-0.239 -0.449 1.000 0.861 -0.555 -0.729 adEW 0.003 0.095 0.000-0.011-0.178 0.029 0.087-0.134 0.128-0.137-0.137-0.120 -0.271 0.861 1.000 -0.636 -0.880 vuEW 0.015-0.098-0.043-0.001 0.079 0.040-0.023 0.038-0.101 0.055 0.056 0.047 0.148 -0.555 -0.636 1.000 0.851 vdEW 0.018-0.111-0.054-0.002 0.070 0.028-0.017 0.021-0.128 0.052 0.059 0.053 0.153 -0.729 -0.880 0.851 1.000

World results (full uncertainties)

	a _u	a _b	V _u	V _d
LEP	$0.47 \begin{array}{c} +0.05 \\ -0.33 \end{array}$	-0.52 ^{+0.05} -0.03	0.24 +0.28 -0.11	-0.33 +0.05 -0.07
D0	0.50±0.11	-0.50±0.17	0.20±0.11	0.35±0.25
CDF	$0.44 \stackrel{+0.22}{-0.19}$	$-0.02 \cdot +0.36 \\ -0.54$	$0.40 \begin{array}{c} +0.17 \\ -0.20 \end{array}$	-0.23. ^{+0.64} -0.30
H1: HERA1 (publ.)	0.56±0.10	-0.77±-0.37	0.05±0.19	-0.50±0.37
ZEUS: HERA1+2 (prel.)	0.51±0.20	-0.54±0.37	0.05±0.10	-0.64±0.24
ZEUS-EW-Z	$0.500 \cdot -0.050$	-0.555 - 0.152	$0.143_{-0.088}^{+0.085}$	-0.411 •+0.246
PDG14	$0.50_{-0.06}^{+0.04}$	$-0.523_{-0.029}^{+0.050}$	$0.25_{-0.06}^{+0.07}$	-0.33. ^{+0.05}
SM	0.5	-0.5	0.202	-0.351

Effect of PDFs determination on couplings

• Couplings, fitted at fixed PDFs are well compatible with those from ZEUS-EW-Z fit.

	a_u	\exp	tot	a_d	\exp	tot	v_u	\exp	tot	v_d	\exp	tot
EW-Z	+.500	$^{+.086}_{047}$	$^{+.122}_{050}$	555	$^{+.337}_{144}$	$^{+.407}_{152}$	+.143	$^{+.084}_{081}$	$^{+.085}_{088}$	411	$^{+.243}_{164}$	$^{+.246}_{195}$
13p	+.485	$^{+.073}_{038}$		567	$^{+.295}_{130}$		+.145	$^{+.079}_{076}$		402	$^{+.216}_{171}$	
HPDF1*	+.474	$^{+.059}_{033}$		619	$^{+.233}_{107}$		+.156	$^{+.076}_{076}$		353	$^{+.215}_{190}$	
HPDF2*	+.486	$^{+.061}_{034}$		634	$^{+.239}_{110}$		+.149	$^{+.078}_{078}$		357	$^{+.220}_{194}$	
SM	+.500			500			+.202			351		

Differences in the experimental uncertainties can give a rough estimate of PDF uncertainties in the measurement.

* HERAPDF2.0 used $\sin^2\theta_w @ \overline{MS}$ - HPDF2, this analysis uses $\sin^2\theta_w @ On-schell - HPDF1$. The influence of $\sin^2\theta_w$ for PDF extraction only is minimal (checked).

On $sin^2\theta_w$ (+X) fits to DIS data

 \Rightarrow DIS inclusive cross sections depend on sin² θ_w through:

- Z propagator in NC cross sections;
- Vector couplings of Z to quarks;

$$\begin{split} \tilde{F}_{2}^{\pm} &= F_{2}^{\gamma} - (v_{e} \pm P_{e}a_{e})\chi_{Z}F_{2}^{\gamma Z} + (v_{e}^{2} + a_{e}^{2} \pm 2P_{e}v_{e}a_{e})\chi_{Z}^{2}F_{2}^{Z} \\ x\tilde{F}_{3}^{\pm} &= -(a_{e} \pm P_{e}v_{e})\chi_{Z}xF_{3}^{\gamma Z} + (2v_{e}a_{e} \pm P_{e}(v_{e}^{2} + a_{e}^{2}))\chi_{Z}^{2}xF_{3}^{Z} \\ \bullet \text{W propagator } (\mathbf{G}_{\mathsf{F}}); \\ \frac{d^{2}\sigma_{\mathrm{CC}}(e^{+}p)}{dx_{\mathrm{Bj}}dQ^{2}} &= (1 + P_{e})\frac{G_{F}^{2}M_{W}^{4}}{2\pi x_{\mathrm{Bj}}(Q^{2} + M_{W}^{2})^{2}}x[(\bar{u} + \bar{c}) + (1 - y)^{2}(d + s + b)] \\ \frac{d^{2}\sigma_{\mathrm{CC}}(e^{-}p)}{dx_{\mathrm{Bj}}dQ^{2}} &= (1 - P_{e})\frac{G_{F}^{2}M_{W}^{4}}{2\pi x_{\mathrm{Bj}}(Q^{2} + M_{W}^{2})^{2}}x[(u + c) + (1 - y)^{2}(\bar{d} + \bar{s} + \bar{b})] \end{split} \qquad G_{F} = \frac{\pi\alpha}{\sqrt{2}\sin^{2}\theta_{W}}M_{W}^{2}}\frac{1}{1 - \Delta R}$$

 ΔR is an EW correction.

arXiv:hep-ph/9902277

Re-expressing G_{F} through sin² θ_{w} and M_{w} allows to use both CC and NC for sin² θ_{w} determination.

- Current analysis exploits all three dependences for $\sin^2\theta_w$ extraction.
- $\sin^2\theta_w$ values extracted in current analysis correspond to On-shell scheme.

Data description (ZEUS-EW-S)

Fitted predictions describe data reasonably well.

ZEUS-EW-Z vs ZEUS-EW-S

PDFs from ZEUS-EW-Z and ZEUS-EW-S agree very well.

G_{F} and mass of W boson

 $\mathbf{G}_{\mathbf{F}}$ and $\mathbf{M}_{\mathbf{W}}$ were also determined simultaneously with PDFs as a <u>consistency check</u>.

Fitter G_{F} and M_{W} are consistent with current world average values.

Quark couplings to Z

Now consider fits to electroweak NC couplings as well as PDF parameters

The total cross-section : $\sigma = \sigma^0 + P \sigma^P$

The unpolarised cross-section is given by $\sigma^0 = Y_+ F_2^0 + Y_- xF_3^0$

$$F_{2}^{0} = \Sigma_{i} A_{i}^{0}(Q^{2}) [xq_{i}(x,Q^{2}) + xq_{i}(\overline{x},Q^{2})]$$

$$xF_{3}^{0} = \Sigma_{i} B_{i}^{0}(Q^{2}) [xq_{i}(x,Q^{2}) - xq_{i}(\overline{x},Q^{2})]$$

$$A_{i}^{0}(Q^{2}) = e_{i}^{2} - 2 e_{i} v_{i} v_{e} P_{Z} + (v_{e}^{2} + a_{e}^{2})(v_{i}^{2} + a_{i}^{2}) P_{Z}^{2}$$

$$B_{i}^{0}(Q^{2}) = -2 e_{i} a_{i} a_{e} P_{Z} + 4a_{i} a_{e} v_{i} v_{e} P_{Z}^{2}$$

$$P_{Z}^{2} = \frac{1}{\sin^{2} 2\theta} \frac{Q^{2}}{(M_{Z}^{2} + Q^{2})}$$

The polarised cross-section is given by $\sigma^{P} = Y_{+} F_{2}^{P} + Y_{-} xF_{3}^{P}$ $F_{2}^{P} = \Sigma_{i} A_{i}^{P}(Q^{2}) [xq_{i}(x,Q^{2}) + xq_{i}(x,Q^{2})]$ $xF_{3}^{P} = \Sigma_{i} B_{i}^{P}(Q^{2}) [xq_{i}(x,Q^{2}) - xq_{i}(x,Q^{2})]$

 $A_i^P(Q2) = 2 e_i v_i a_e P_Z - 2 v_e a_e (v_i^2 + a_i^2) P_Z^2$

$$B_i^P(Q2) = 2 e_i a_i v_e P_Z - 2 a_i v_i (v_e^2 + a_e^2) P_Z^2$$

 $P_Z >> P_Z^2$ (γZ interference is dominant) v_e is very small (~0.04).

unpolarized $xF_3 \rightarrow a_i$, polarized $F_2 \rightarrow v_i$

From slides by Amanda Cooper-Sarkar

On $sin^2\theta_w$ running with a scale

Both of the variants more-or-less follow the same approach:

$$1 - 4\kappa(Q^2)\sin^2\theta_W(M_Z) = 1 - 4(Q^2)\sin^2\theta_W(Q^2)$$

$$\kappa = \kappa_f(Q^2, \alpha, T_{3f}, Q_f, m_f, M_Z) + \kappa_b(Q^2, \alpha, M_W) - Fermion and boson loop.$$