

Hard diffraction at HERA

Arthur Bolz for the H1 and ZEUS collaborations

38th International Conference on High Energy Physics Chicago August 3-10, 2016 Physikalisches Institut Universität Heidelberg Germany

HERA $e^{\pm}p$ Collider at DESY

 $\begin{array}{l} \rightarrow \ E_e \ = \ 27.6 \ {\rm GeV} \\ \rightarrow \ E_p \ = \ 920 \ (460) \ {\rm GeV} \\ \rightarrow \ \sqrt{s} \ = \ 319 \ {\rm GeV} \\ \rightarrow \ L_{int} \ \sim \ 0.5 \ {\rm fb}^{-1} \ {\rm per} \ {\rm experiment} \end{array}$

[H1 Collaboration]

Diffractive *ep* Scattering at HERA

deep-inelastic scattering (DIS): $ep \rightarrow e'X$

"forward" particle flow

- \rightarrow proton remnant
- \rightarrow colour flow

2 / 17

⇒ probe proton structure

diffractive scattering (DDIS): $ep \rightarrow e' Xp' \sim 10\%$ of DIS events

deep-inelastic scattering (DIS): $ep \rightarrow e'X$

- Q^2 virtuality of the exchanged photon: $Q^2 = -q^2$
 - $Q^2 \lesssim 2 \,\, {
 m GeV^2}$ photoproduction, $Q^2 > 4 \,\, {
 m GeV^2}$ DIS
- $V = \gamma^*$ -p system energy
- xBjorken-x: proton momentum fraction carried by the struck quarky γ^* inelasticity: $y = \frac{Q^2}{s_X}$

diffractive scattering (DDIS): $ep \rightarrow e' X p'$

 $\begin{array}{ll}t & \mbox{squared momentum transfer at the proton vertex: } t = (p - p')^2 \\ x_{\rm IP} & \mbox{proton momentum fraction of the color singlet exchange: } x_{\rm IP} \simeq \frac{Q^2 + M_{\rm X}^2}{Q^2 + W^2} \\ z_{\rm IP} & \mbox{IP momentum fraction carried by the quark "seen" by the } \gamma^*: z_{\rm IP} = \frac{x}{x_{\rm IP}} \end{array}$

Factorisation in Diffractive DIS

perturbative QCD: only if "hard scale" is present

 \rightarrow diffractive factorisation theorem in analogy with proton PDFs

collinear factorisation: (proven for DDIS by J. Collins)

$$\sigma^{D}(\gamma^{*} \boldsymbol{p} \to \boldsymbol{X} \boldsymbol{p}) = \sum_{i}^{\text{partons}} \hat{\sigma}(\boldsymbol{z}_{\mathbb{I}^{\text{c}}}, \boldsymbol{Q}^{2}) \otimes \underline{f_{i}^{D}(\boldsymbol{z}_{\mathbb{I}^{\text{c}}}, \boldsymbol{Q}^{2}, \boldsymbol{x}_{\mathbb{I}^{\text{c}}}, t)}$$

 \rightarrow hard subprocess matrix element, calculable in pQCD

 \rightarrow universal diffractive parton distribution functions (DPDFs)

proton-vertex factorisation assumption: (supported by H1 and ZEUS data)

$$\underline{f_i^D(z_{\rm I\!P}, Q^2, x_{\rm I\!P}, t)} = \underline{f_{\rm I\!P/\rm I\!R}(x_{\rm I\!P}, t)} \, \underline{f_i^{\rm I\!P/\rm I\!R}(z_{\rm I\!P}, Q^2)}$$

 \rightarrow flux parametrisation, Pomeron/Reggeon PDFs

DPDFs:

- ightarrow have no firm basis in QCD, but can be extracted from inclusive DDIS data
- \rightarrow test universality in semi-inclusive states

Diffractive PDFs

Dijets in Diffractive DIS (LRG) [JHEP 1503, 092 (2015)]

inclusive dijet production in diffractive DIS:

- \rightarrow HERA-II data: $L = 290 \text{ pb}^{-1}$
- \rightarrow 6 times more data than previous analysis
- \rightarrow diffractive events identified by "large rapidity gap" (LRG) $(\eta_{max} < 3.2)$
- \rightarrow using $R = 1 k_T$ -jets
- $\rightarrow\,$ hadron level cross sections via regularised unfolding in extended phase space

	Extended Analysis Phase Space	Measurement Cross Section Phase Space
DIS	$3 < Q^2 < 100 { m ~GeV^2}$	$4 < Q^2 < 100 \text{ GeV}^2$
	<i>y</i> < 0.7	0.1 < y < 0.7
Diffraction	$x_{I\!\!P} < 0.04$	$x_P < 0.03$
	LRG requirements	$ t < 1 \text{ GeV}^2$
		$M_Y < 1.6 \text{ GeV}$
Dijets	$p_{\rm T,1}^* > 3.0 {\rm ~GeV}$	$p_{\rm T,1}^* > 5.5 { m ~GeV}$
	$p_{\rm T,2}^* > 3.0~{\rm GeV}$	$p_{\rm T,2}^* > 4.0~{\rm GeV}$
	$-2 < \eta_{1,2}^{\text{lab}} < 2$	$-1 < \eta_{1,2}^{\text{lab}} < 2$

measurement of single differential cross sections:

NLO predictions

- \rightarrow using NLOJet++ (adapted to DDIS) and H1 2006 Fit-B DPDFs
- \rightarrow data well described
- \rightarrow large uncertainty from PDF and theory

data precision

- $\rightarrow\,$ better than theory
- \rightarrow mostly limited by systematic effects
- \rightarrow 7% normalisation uncertainty (LRG selection)

Dijets in Diffractive DIS (LRG) [JHEP 1503, 092 (2015)]

measurement of double differential cross sections: e.g. $d\sigma/d(Q^2, p_{T,1}^*)$

first measurement of $\alpha_{\rm s}$ in hard diffraction at HERA:

$$\alpha_s(M_Z) = 0.119 \pm 0.004(exp) \pm 0.012(DPDF, theo)$$

- \rightarrow agreement with world average
- \rightarrow not competitive with other α_s measurements
- \rightarrow but supports concept of DDIS dijet calculations in pQCD

Factorisation Breaking

factorisation properties of diffractive dijets:

- \rightarrow factorisation holds for dijets in DDIS
- \rightarrow factorisation is broken in hadron-hadron scattering:

 $\sigma(\textit{data})/\sigma(\textit{NLO}) \sim 0.1$

at Tevatron and LHC with HERA DPDFs

9 / 17

dijets in diffractive photoproduction γp :

real photon has hadronic structure

Diffractive Dijets with a Leading Proton (VFPS) [JHEP 1505, 056 (2015)]

\Rightarrow could *p*-dissociative contribution be the reason?

H1 Very Forward Proton Spectrometer (VFPS):

- \rightarrow VFPS is 220m from interaction point:
 - \Rightarrow 2 stations at 218 and 220m
 - \Rightarrow high acceptance (90%) and efficiency (95%)
 - \Rightarrow low background (< 1%)
- \rightarrow directly measure scattered proton:
 - \Rightarrow exclude *p* dissociation
 - \Rightarrow directly reconstruct $x_{\mathbb{IP}}$ and t

new cross section measurement:

- \rightarrow tag scattered proton in VFPS
- \rightarrow simultaneously performed in
 - \Rightarrow photoproduction and \Rightarrow DIS
- → regularised unfolding to hadron level in extended phasespace

	Photoproduction	DIS	
	$Q^2 < 2 {\rm GeV}^2$	$4\mathrm{GeV}^2 < Q^2 < 80\mathrm{GeV}^2$	
Event kinematics	0.2 < y < 0.7		
	$0.010 < x_{\mathbb{P}} < 0.024$		
Diffractive phase space	$ t < 0.6 \mathrm{GeV^2}$		
	$z_{\mathbb{P}} < 0.8$		
	$E_T^{*jet1} > 5.5 \mathrm{GeV}$		
Jet phase space	$E_T^{*jet2} > 4.0 \mathrm{GeV}$		
	$-1 < \eta^{\rm jet1,2} < 2.5$		

Diffractive Dijets with a Leading Proton (VFPS) $_{[JHEP 1505, 056 (2015)]}$

dijets in **DDIS**:

 \Rightarrow shape and normalisation well described by NLO

dijets in diffractive γp :

- $\Rightarrow\,$ shape well described by NLO
- $\Rightarrow\,$ normalisation overestimated $\sim\times2$

- \rightarrow luminosity: $L \sim 30 \ {\rm pb}^{-1}$
- \rightarrow NLO by FKS (Frixione et al.)
- → H1 2006 Fit-B DPDFs
- \rightarrow GRV and AFG γ -PDFs

Diffractive Dijets with a Leading Proton (VFPS) [JHEP 1505, 056 (2015)]

double ratios of cross section $\gamma p/\text{DIS}$: \rightarrow much reduced theory uncertainties

 \rightarrow no hint for suppression dependence on $z_{\rm IP}$, E_{T}^{*jet1} , ...

 \rightarrow suppression factor:

 $0.511\pm0.085(\mathsf{data})\pm0.022(\mathsf{theo})$

- \rightarrow confirms previous results
 - w/ complimentary experimental method

Arthur Bolz

Prompt Photons in Diffractive Photoproduction (LRG) [ZEUS-PREL-15-001]

- \rightarrow HERA I+II data: luminosity L = 374 pb⁻¹
- \rightarrow LRG selection
- \rightarrow measure prompt photon with and without accompanying jet
- $\rightarrow\,$ photon must couple to charged particle $\Rightarrow\,$ explore quark structure of the Pomeron
- \rightarrow channel sensitive to factorisation breaking

analysis phasespace:						
		Q^2 [GeV ²]	<	1		
		$x_{\rm IP}$	<	0.03		
5	<	$E_{T,\gamma}$ [GeV]				
-0.7	<	η_{γ}	<	0.9		
4	<	$E_{T,jet}$ [GeV]				
-1.5	<	η_{jet}	<	1.8		

- $\rightarrow\,$ bin by bin detector corrections
- \rightarrow data compared to RAPGAP with H1 2006 Fit-B DPDFs
- \rightarrow normalized to data

Prompt Photons in Diffractive Photoproduction (LRG) [ZEUS-PREL-15-001]

- \rightarrow RAPGAP normalized to data gives reasonable description of most variables within uncertainties
- ightarrow not at $z_{
 m I\!P}\sim$ 1, where H1 2006 Fit-B was not fitted
- \rightarrow most photons are accompanied by a hard jet
- \rightarrow further studies ongoing

Open Charm Production in DDIS (LRG) [H1-PREL-16-011]

- \rightarrow charm mass \rightarrow "natural" hard scale
- \rightarrow NLO by HVQDIS in FFNS
- \rightarrow H1 2006 Fit-B DPDFs

- \rightarrow HERA II data: luminosity: $L \sim 280 \text{ pb}^{-1}$
- \rightarrow LRG selection
- $\rightarrow\,$ open charm tagged with D^* in

 $D^{*+}
ightarrow D^0 \pi^+_{
m slow}
ightarrow (K^- \pi^+) \pi^+_{
m slow} + c.c.$

- $\rightarrow\,$ signal extraction via mass fit
- $\rightarrow\,$ binwise efficiency/acceptance correction

Open Charm Production in DDIS (LRG) [H1-PREL-16-011]

 \Rightarrow shape and normalisation well described by NLO + DPDFs

 \rightarrow exp. uncertainties dominated by gap selection and proton dissociative contribution

Summary

inclusive dijets in diffractive DIS:

inclusive dijets in γp (and DIS):

prompt photons in diffractive γp :

open charm production in diffractive DIS:

data well described by NLO+H1 DPDFs, data precision overshoots theory precision, first α_s extraction in diffraction,

measurement using VFPS proton spectrometer DIS: VFPS data well described by NLO + H1 DPDFs γp : cross sections overestimated by NLO + H1 DPDFs confirms previous H1 observations of factorisation breaking ZEUS: no suppression observed

another hard process sensitive to factorisation breaking, data compared to RAPGAP, agreement in most cross section shapes,

well suited for factorisation tests due to hard charm mass scale, data well described by NLO in normalisation and shape, may be used to further constrain DPDFs, H1 analysis ongoing

see also talk on exclusive production at HERA by Mariusz Przybycien

BACKUP

The H1 and ZEUS Multi Purpose Experiments

ightarrow recorded integrated luminosity: \sim 0.5 fb $^{-1}$ per experiment

 \rightarrow excellent control over experimental uncertainties:

- \Rightarrow over-constrained system in deep inelastic scattering
- \Rightarrow electron measurement scale uncertainty: 0.5 1%
- \Rightarrow jet energy scale uncertainty: 1%
- \Rightarrow trigger and normalisation uncertainty: 1-2%
- \Rightarrow luminosity uncertainty: 1.8 2.5%

Diffractive ep Scattering at HERA

ep scattering mainly via γ^{\ast} exchange:

- $\rightarrow \gamma^*$ virtual photon: Deep Inelastic Scattering (DIS)
 - \Rightarrow reconstruct e': $Q^2 = -q^2 \gtrsim 4 \text{ GeV}^2$
- $\rightarrow \gamma$ real photon: photoproduction
 - \Rightarrow don't reconstruct e': $Q^2 \lesssim 2 \text{ GeV}^2$

diffractive scattering:

- \rightarrow a kind of strong interaction with "vacuum quantum number" exchange
- $\rightarrow\,$ outside the reach of perturbative QCD
- \rightarrow phenomenological model: Regge theory
- \rightarrow illustration: Pomeron ${\rm I\!P}$ exchange
- \rightarrow also affects γp interactions

ii) hard diffraction:

- \rightarrow ${\rm I\!P}$ is composite object
- \rightarrow hard scattering with ${\rm I\!P}$ "parton"
- $\rightarrow\,$ only "part" of ${\rm I\!P}$ participates
- \rightarrow this talk: recent HERA results

- [1] H1 Collaboration, "Measurement of Dijet Production in Diffractive Deep-Inelastic ep Scattering at HERA," JHEP 1503, 092 (2015) [arXiv:1412.0928 [hep-ex]].
- [2] H1 Collaboration, "Diffractive Dijet Production with a Leading Proton in ep Collisions at HERA," JHEP 1505, 056 (2015) [arXiv:1502.01683 [hep-ex]].
- 3] ZEUS Collaboration, "Studies of the diffractive photoproduction of isolated photons at HERA," ZEUS-prel-15-001.
- [4] H1 Collaboration, "D* Meson Production in diffractive DIS," H1-prel-16-011.
- [5] R. Zlebcik, K. Cerny and A. Valkarova, "Factorisation breaking in diffractive dijet photoproduction at HERA?," Eur. Phys. J. C 71, 1741 (2011) [arXiv:1102.3806 [hep-ph]].
- [6] H1 Collaboration, "Tests of QCD factorisation in the diffractive production of dijets in deep-inelastic scattering and photoproduction at HERA," Eur. Phys. J. C 51, 549 (2007) [arXiv:hep-ex/0703022].
- [7] H1 Collaboration, "Diffractive Dijet Photoproduction in ep Collisions at HERA," Eur. Phys. J. C 70, 15 (2010) [arXiv:1006.0946 [hep-ex]].
- [8] ZEUS Collaboration, "A QCD analysis of ZEUS diffractive data," Nucl. Phys. B 831, 1 (2010) [arXiv:0911.4119 [hep-ex]].
- H1 Collaboration, "Measurement and QCD analysis of the diffractive deep-inelastic scattering cross-section at HERA," Eur. Phys. J. C 48, 715 (2006) doi:10.1140/epjc/s10052-006-0035-3 [arXiv:hep-ex/0606004].
- [10] CDF Collaboration, "Diffractive dijets with a leading antiproton in $\bar{p}p$ collisions at $\sqrt{s} = 1800$ GeV," Phys. Rev. Lett. 84, 5043 (2000). doi:10.1103/PhysRevLett.84.5043