5th International Conference on New Frontiers in Physics

Electroweak and new physics filts 10 HERA DJS data

O. Turkot

On behalf of H1 and ZEUS Collaborations

\Rightarrow Inclusive data combination and HERAPDF2.0
\Rightarrow Electroweak physics at HERA
\Rightarrow Beyond Standard Model analysis using the simultaneous fit of BSM parameter and PDFs

HERA - world only $\mathbb{e}^{ \pm p}$ collidep

HERA data provides unique opportunity to study the structure of the proton. operated during 1992-2007, 2003-2007 - polarised lepton beams
\rightarrow important for the EW measurements
$e^{ \pm}$energy 27.5 GeV ; p energies 920, 820, 575 and 460 GeV .

Kinematics of the $\mathrm{e}^{ \pm} \mathrm{p}$ collisions:

$$
\begin{aligned}
Q^{2} & =-\left(k-k^{\prime}\right)^{2} \\
x_{B j} & =\frac{Q^{2}}{2 P \cdot q} \\
y & =\frac{P \cdot q}{P \cdot k}
\end{aligned}
$$

H1 and ZEUS - two collider experiments at HERA :
$\sim 0.5 \mathrm{fb}^{-1}$ of luminosity recorded by each experiment.

Combined Inclusive DJS

H1 and ZEUS have presented the combination of inclusive DIS measurements, but for zero beams polarisation.

H1 and ZEUS

- 2927 data points combined to 1307

- up to 8 data points combined to 1
- data consistent between two experiments and data taking periods:
$\chi^{2} / n d f=1685 / 1620$

Combined Inclusive DIS

H1 and ZEUS

Effects of electroweak unification clearly seen.

QCD analysis of combined DJS data

Neutral Current:

$$
\begin{aligned}
& \frac{\mathrm{d}^{2} \sigma_{\mathrm{NC}}^{\mathrm{e} \mp \mathrm{p}}}{\mathrm{dx}_{\mathrm{Bj}} \mathrm{dQ}^{2}}=\frac{2 \pi \alpha^{2}}{\mathrm{x}_{\mathrm{Bj}} \mathrm{Q}^{4}} \cdot\left(\mathrm{Y}_{+} \cdot \mathrm{F}_{2} \pm \mathrm{Y}_{-} \cdot \mathrm{x} \cdot \mathrm{~F}_{3}-\mathrm{y}^{2} \cdot \mathrm{~F}_{\mathrm{L}}\right) \\
& F_{2}=\frac{4}{9}(x U+x \bar{U})+\frac{1}{9}(x D+x \bar{D}) \quad \mathrm{Y}_{ \pm}=1 \pm(1-\mathrm{y})^{2} \\
& \quad x \cdot F_{3} \sim x u_{v}+x d_{v}
\end{aligned}
$$

Parton Density Functions parametrization at starting scale $\mathrm{Q}^{2}=1.9 \mathrm{GeV}^{2}$:

$$
\begin{aligned}
& x g(x)=A_{g} x^{B_{g}}(1-x)^{C_{g}}-A^{\prime}{ }_{g} x^{B_{g}^{\prime}}(1-x)^{C^{\prime}}{ }_{g} \\
& x u_{v}(x)=A_{u_{v}} x^{B_{u_{v}}}(1-x)^{C_{u_{u}}}\left(1+D_{u_{v}} x+E_{u_{v}} x^{2}\right) \\
& x d_{v}(x)=A_{d_{v}} x^{B_{d_{i}}}(1-x)^{C_{d_{v}}} \\
& x \bar{U}(x)=A_{\bar{U}} x^{B_{v}}(1-x)^{C_{0}}\left(1+D_{\bar{U}} x\right) \\
& x \bar{D}(x)=A_{D} x^{B_{D}}(1-x)^{C_{D}}
\end{aligned}
$$

\square fixed or calculated by sum-rules

- set equal
- Evolve to any O2 with DGLAP at NLO.
- Use Thorne-Roberts GMVFN scheme for Heavy quarks.

QCD analysis of combined DJS data

PDFs set HERAPDF2.0:

Combination of measurements of inclusive deep inelastic $e^{ \pm} p$ scattering cross sections and QCD analysis of HERA data

This paper is dedicated to the memory of Professor Guido Altarelli who sadly passed away as it went to press. The results which it presents are founded on the principles and the formalism which he developed in his pioneering theoretical work on Quantum Chromodynamics in deep-inelastic lepton-nucleon scattering nearly four decades ago

H1 and ZEUS Collaborations

Polarised DJS

In NC DIS polarisation affects $\gamma \mathrm{Z}^{\circ}$ interference and Z^{0} exchange:

$$
\begin{aligned}
& P_{e}=\frac{N_{R}-N_{L}}{N_{R}+N_{L}} \\
& F_{2}^{\mp}= F_{2}^{\gamma}-\left(v_{e} \mp P_{e} a_{e}\right) \chi_{Z} F_{2}^{\gamma Z}+ \\
&+\left(v_{e}^{2}+a_{e}^{2} \mp 2 P_{e} v_{e} a_{e}\right) \chi_{Z}^{2} F_{2}^{Z} \\
& x F_{3}^{\mp}=-\left(a_{e} \mp P_{e} v_{e}\right) \chi_{Z} x F_{3}^{\gamma Z}+ \\
&+\left(2 v_{e} a_{e} \mp P_{e}\left(v_{e}^{2}+a_{e}^{2}\right)\right) \chi_{Z}^{2} x F_{3}^{Z} \\
& v_{e}=-\frac{1}{2}+2 \sin ^{2}\left(\Theta_{W}\right) \quad a_{e}=-\frac{1}{2}
\end{aligned}
$$

In the on-shell scheme:

$$
\begin{aligned}
& \sin ^{2}\left(\Theta_{W}\right)=1-\frac{M_{W}^{2}}{M_{Z}^{2}} \\
& \chi_{Z}=\frac{1}{\sin ^{2}\left(2 \Theta_{W}\right)} \frac{Q^{2}}{M_{Z}^{2}+Q^{2}} \frac{1}{1-\Delta R}
\end{aligned}
$$

ZEUS

Polarised DJS

In CC DIS polarisation scales the whole cross section:

$$
\begin{gathered}
\frac{d^{2} \sigma_{C C}^{e-p}}{d x_{B j} d Q^{2}}=\left(1-P_{e}\right) \frac{G_{F}^{2} M_{W}^{4}}{2 \pi x_{B j}\left(Q^{2}+M_{W}^{2}\right)^{2}} \times \\
\times x\left[(u+c)+(1-y)^{2}(\bar{d}+\bar{s}+\bar{b})\right] \\
\frac{d^{2} \sigma_{C C}^{e+p}}{d x_{B j} d Q^{2}}=\left(1+P_{e}\right) \frac{G_{F}^{2} M_{W}^{4}}{2 \pi x_{B j}\left(Q^{2}+M_{W}^{2}\right)^{2}} \times \\
\times x\left[(\bar{u}+\bar{c})+(1-y)^{2}(d+s+b)\right]
\end{gathered}
$$

In the on-shell scheme:

$$
\begin{aligned}
M_{W} & =\frac{A_{0}}{\sin ^{2}\left(\Theta_{W}\right) \sqrt{1-\Delta R}} \\
G_{F} & =\frac{\pi \alpha_{0}}{\sqrt{2} \sin ^{2}\left(\Theta_{W}\right) M_{W}^{2}} \frac{1}{1-\Delta R}
\end{aligned}
$$

$\Delta \mathrm{R}$ — radiative corrections.

ZEUS QCD + EW Pits

Used uncombined datasets:

\Rightarrow Same as in the data combination:

- All HERA I data from H 1 and ZEUS, unpolarised
- Reduced E_{p} data from H 1 and ZEUS
- HERA II data from H1, unpolarised

ZEUS

PDFs fits:

\rightarrow Closely follow HERAPDF2.0
\rightarrow One parameter less for better fit stability:

$$
x \bar{U}(x)=A_{\bar{U}} x^{B_{U}}(1-x)^{C_{0}}
$$

$\Rightarrow \Delta \mathrm{R}$ calculated with EPRC code:
desy.de/~hspiesb/eprc.html
\rightarrow Simultaneous PDFs fits with 4 couplings of Z^{0} to quarks, or $\sin ^{2}\left(\Theta_{w}\right)$ and M_{w}

ZEUS light quark couplinges

In quark parton model: $\quad\left[F_{2}^{\gamma}, F_{2}^{\gamma Z}, F_{2}^{Z}\right]=\sum_{q}\left[e_{q}^{2}, 2 e_{q} v_{q}, v_{q}^{2}+a_{q}^{2}\right] x(q+\bar{q})$

$$
\left[x F_{3}^{\gamma Z}, x F_{3}^{Z}\right]=\sum_{q}\left[e_{q} a_{q}, v_{q} a_{q}\right] 2 x(q-\bar{q})
$$

ZEUS

ZEUS

Comparison to other measmpements
 ZEUS

$V_{d}=-0.41_{-0.16(\exp / \text { fit })}^{+0.24} \stackrel{+0.04(\text { mod })}{-0.008(\text { param })} \underset{-0.351}{ }$

Comparison to other measurements
 ZEUS

Remarkable sensitivity to u-type quark couplings

Corpelations

Fit shows high correlation of axial-vector and vector couplings between quark types:

ZEUS

ZEUS

Their corelations to PDF parameters are small.

M_{w} and $\sin ^{2}\left(\Theta_{w}\right)$

Simultaneous extraction of M_{w} and $\sin ^{2}\left(\Theta_{w}\right)$:

ZEUS

$$
\begin{gathered}
\sigma_{\mathrm{NC}}\left(\alpha, \sin ^{2}\left(\Theta_{\mathrm{W}}\right), \mathrm{M}_{\mathrm{Z}}\right) \\
\sigma_{\mathrm{CC}}\left(\mathrm{G}_{\mathrm{F}}\left(\alpha, \sin ^{2}\left(\Theta_{\mathrm{W}}\right), \mathrm{M}_{\mathrm{W}}\right), \mathrm{M}_{\mathrm{W}}\right) \\
M_{W}=79.30 \pm 0.76_{(\exp / f i t)^{+0.08(\text { mod })-0.10(\text { param })}}^{+0.38}{ }^{+0.48} \\
\sin ^{2}\left(\Theta_{W}\right)=0.2293^{+0.0031_{(\exp / \text { fit })-0.001(\text { mod })-0.001(\text { param })}^{+0.005}}{ }^{+0.003}
\end{gathered}
$$

Good agreement with world average:

$$
\begin{aligned}
& M_{W}^{D P G 14}=80.385 \pm 0.015 \\
& \sin ^{2}\left(\Theta_{W}\right)^{P D G 14 \text { on }- \text { shell }}=0.22333 \pm 0.00011
\end{aligned}
$$

EPPective $\sin ^{2}\left(\Theta_{w}\right)$

On-shell measurements for the whole data and for three bins in Q^{2} translated to effective $\sin ^{2}\left(\Theta_{w}\right)$:

ZEUS

First observation of $\sin ^{2}\left(\Theta_{w}\right)^{\text {eff }}$ running from one experiment.

H1 QCD + EW Pits

Used uncombined datasets:

\rightarrow Same as in the data combination:

- All HERA I data from H1, unpolarised
- Reduced E_{p} data from H 1
\rightarrow Different from the data combination:
- HERA II data from H1, polarised

$$
\text { Data from } \mathrm{Q}^{2}=12 \mathrm{GeV}^{2}
$$

PDFs fits:

\rightarrow Basics similar to ZEUS approach
\rightarrow DGLAP evolution at NNLO
\rightarrow Calculations strictly in on-shell scheme
\rightarrow Polarisation values fitted within uncertainties as 4 additional parameters
\rightarrow New C++ fitter and Alpos code used
\rightarrow Different (log-normal) χ^{2} definition, but

Comparison to other measurements

Comparable precision for u-type quark couplings

Comparison to ZEUS result

M_{w} and $\sin ^{2}\left(\Theta_{w}\right), G_{r v} M_{Z}$

Simultaneous extraction of pairs of parameters:

Determined mass of W boson using external mass of Z^{0} :

$$
\begin{gathered}
\sigma_{\mathrm{NC}}\left(\alpha, \sin ^{2}\left(\Theta_{\mathrm{W}}\right)\left[\mathrm{M}_{\mathrm{Z}}, \mathrm{M}_{\mathrm{W}}\right], \mathrm{M}_{\mathrm{Z}}\right) \\
\sigma_{\mathrm{CC}}\left(\mathrm{G}_{\mathrm{F}}\left[\alpha, \mathrm{M}_{\mathrm{Z}}, \mathrm{M}_{\mathrm{W}}\right], \mathrm{M}_{\mathrm{W}}\right)
\end{gathered} \quad m_{W}=80.407 \pm 0.118_{(\exp , p d f)} \pm 0.005_{\left(m_{Z}, m_{t}, m_{H}\right)}
$$

Result consistent with PDG2014: $\quad M_{W}^{\text {DPG } 14}=80.385 \pm 0.015$

(Dn-shell $\sin ^{2}\left(\Theta_{w}\right)$

On-shell measurement for seven bins in Q^{2} :

Unique measurement of $\sin ^{2}\left(\Theta_{w}\right)$ at different scales.

BSM physics = quarle form factor

One of the possible parameterisations of deviations from SM - spatial distribution or substructure of electrons and/or quarks:

$$
\frac{d \sigma}{d Q^{2}}=\frac{d \sigma^{S M}}{d Q^{2}}\left(1-\frac{R_{e}^{2}}{6} Q^{2}\right)^{2}\left(1-\frac{R_{q}^{2}}{6} Q^{2}\right)^{2}
$$

$R_{e^{\prime}} R_{q}$ - root mean square radii of the electroweak charge distributions in the electron and quark.

Same dependence expected for NC and CC $\mathrm{e}^{+} \mathrm{p}$ and $\mathrm{e}^{-} \mathrm{p}$.
We assume $R^{2}=0$ and consider both, positive and negative values of $R^{2}{ }_{q}$
HERA data is a core of any PDF extraction, and thus simultaneous fit, PDF + BSM, is necessary for any BSM analysis. For $\boldsymbol{R}^{2}{ }_{q}$ such fit provide:

$$
R_{q}^{2} \text { Data }=-\left[0.14 \cdot 10^{-16} \mathrm{~cm}\right]^{2}
$$

in agreement with $S M$ expectation of $R_{q}^{\text {Data }}=0$.

Frequentist approach

Monte Carlo replicas of the whole data set were generated as:

$$
\begin{aligned}
& \mu^{i}=\left[m_{0}^{i}+\delta_{\text {tot. uncor. } . ~}^{i} \cdot r_{\text {tot. uncor. }}^{i} \cdot \mu_{0}^{i}\right] \cdot\left(1+\sum_{j} \gamma^{j} \cdot r_{\text {sys.sh. }}^{j}\right) \\
& r^{i}, r^{\text {r }}-\text { Gaussian random numbers. }
\end{aligned}
$$

Previous method R_{q}-only
$R^{2}{ }_{q}$ parameter fited with PDFs fixed to SM PDFs.

New
PDF $+\mathrm{R}_{\mathrm{q}}$ method $\mathrm{R}^{2}{ }_{q}$ parameter fited simultaneously with PDFs.

For example, for $R_{q}^{\text {true }}=0.48 \cdot 10^{-16} \mathrm{~cm}$:

Analysis Plowchart

QCD $+R_{\text {q }} \quad$ ZEUS

Fractions close to 5% fitted with:

$$
f(x)=5 \cdot \exp ((x-A) \cdot B)
$$

ZEUS

$$
\mathrm{R}_{\mathrm{q}}^{\text {Limit }}=0.43 \cdot 10^{-16} \mathrm{~cm}
$$

Negative $R^{2}{ }_{q}$ limit:
$Q C D+R_{q}$

ZEUS

Fractions close to 5\% fitted with:

$$
f(x)=5 \cdot \exp ((x-A) \cdot B)
$$

ZEUS

$$
\mathrm{R}_{\mathrm{q}}^{2} \text { Limit }=-\left[0.47 \cdot 10^{-16} \mathrm{~cm}\right]^{2}
$$

ZEUS

Comparison of $R^{2}{ }_{q}$ exclusion limits to HERA NC ep DIS data.

Summary

\Rightarrow HERA polarised inclusive data allows to determine electroweak parameters simultaneously with PDFs
\Rightarrow Couplings of u-type quarks among the most accurate in the world
\Rightarrow Unique observations of $\sin ^{2}\left(\Theta_{w}\right)$ and $\sin ^{2}\left(\Theta_{w}\right)^{\text {eff }}$ running from one experiment
\Rightarrow First BSM limits based on the new approach: simultaneous fit of PDF and BSM contribution; it shows that limits obtained with "previous" method ~10-20\% too strong.

Backup
 QCD analysis of combined DJS data

Charged Current :

$$
\begin{array}{ll}
\frac{\mathrm{d}^{2} \sigma_{\mathrm{CC}}^{\mathrm{e} \mp \mathrm{p}}}{\mathrm{dxdQ}}=\frac{\mathrm{G}_{\mathrm{F}}^{2}}{4 \pi \mathrm{x}} \cdot \mathrm{k}^{2} \cdot\left(\mathrm{Y}_{+} \cdot \mathrm{W}_{2}^{\mp} \pm \mathrm{Y}_{-} \cdot \mathrm{x} \cdot \mathrm{~W}_{3}^{\mp}-\mathrm{y}^{2} \cdot \mathrm{~W}_{\mathrm{L}}^{\mp}\right) \\
W_{2}^{-}=x(U+\bar{D}) \quad W_{2}^{+}=x(D+\bar{U}) \\
x W_{3}^{-}=x(U-\bar{D}) \quad x W_{3}^{+}=x(D-\bar{U})
\end{array}
$$

BSM QCD analysis of combined DJS data

ZRqPDF set compared to HERAPDF2.0:

Quarle form factor and CC DJS data

Comparison of R^{2} exclusion limits to HERA CC ep DIS data.

