Latest results on jets and the hadronic final state at HERA

XLVI International Symposium on Multiparticle Dynamics (ISMD2016) Seogwipo KAL Hotel, Jeju Island (30-Aug-2016)

Katsuo Tokushuku (KEK) On behalf of the H1 and ZEUS collaborations

HERA 1992-2007

HERA: (27.5GeV electron 920GeV proton) the world largest electron microscope

HERA

Resolution \sim (Wavelength)⁻¹ $\sim \frac{\hbar}{\Omega}$

$$\mathbf{Q}^2 \equiv (\mathbf{q}_i - \mathbf{q}_f)^2$$

Progress in accelerator enables us to investigate the smaller structure.

HERA: (27.5GeV electron(positron) vs. 920 GeV proton)

 $Q_{max}^{2}=s=4E_{e}E_{p}\sim1000GeV^{2}$

cf. in the rest frame $s=2E_eM_p$

In order to obtain the same CMS energy as HERA in a fixed target experiment, it requires 54TeV electron beam.

30 August 2016

Particle Production in *ep* collisions

In this talk, I will present recent results on particle production at HERA.

- Perturbative topics at small a_s
 - Jet cross section at DIS (H1)
 - Prompt photon at DIS (ZEUS)
- Non-perturbative topics at small a_s
 - Search for instanton process (H1)
- Non-perturbative topics at large a_s
 - Pentaquark searches (ZEUS)

Dijet update :H1

Inclusive-/di-/tri-jet production at low Q² (5-100 GeV²) with HERA-II data (high-Q² results (150-15000 GeV² were published as EPJ C75 (2015) 2)

Normalized cross section to the inclusive DIS cross section. -> less correlation with the inclusive cross section -> suitable for the global fit.

- Jets in the Breit frame. Pt_{jet}: 4.5 - 50 GeV Pt_{jet2}: 5 - 50 GeV (for di-jet) Pt_{jet3}: 5.5-50 GeV (for tri-jet) • η^{lab}_{jet} : -1 - 2.5
- y :0.2-0.6

Comparison with NLO/NNLO predictions

H1prelim-16-061 and H1prelim-16-062

30 August 2016

Dijet update :H1

H1prelim-16-062

Inclusive-jet:H1

H1prelim-16-062

Comparison with NLO/aNNLO/NLO

aNNLO: Biekoetter, Klasen, Kramer, PRD92. (2015) 074037

NNLO: Currie, Gehrmann, Niehues, PRL 117 (2016) 042001

- Good agreement with Data
- NNLO~NLO within uncertainty: Converging!
- Better Pt description with NNLO !

$$\mu_{r}^{2} = \mu_{f}^{2} = (1/2)(Q^{2} + P_{T}^{2})$$

($\mu_{f}^{2} = Q^{2}$, for Q^{2} >150)

Prompt Photon : ZEUS

In the previous publications, inclusive distributions of photons and jets (PLB 715 (2012) 88) and those with x_{γ} (separation at 0.8) (JHEP 1408 (2014) 023) were shown and were compared with theories of NLO and K_{T} factorization.

Further tests with various jet-photon variables.

Prompt Photon : ZEUS

Q²: 10 - 350 GeV² Jet: Et>2.5 GeV, η_{jet} : -1.5 - +1.8 Photon: Et: 4-15 GeV, η : -0.7 - +0.9 (with isolation cuts)

ZEUSprelim-16-01

ZEUS preliminary

Comparison with Pythia : Good agreement once LL and QQ contribution is normalized.

30 August 2016

Prompt Photon : ZEUS

Q²: 10 - 350 GeV² Jet: Et>2.5 GeV, η_{jet} : -1.5 - +1.8 Photon: Et: 4-15 GeV, η : -0.7 - +0.9 (with isolation cuts)

ZEUSprelim-16-01

ZEUS preliminary

Comparison with Baranov-Lipatov-Zotov (BLZ) theory with KT factorisation: (PRD 81 (2010) 09434). A fair agreement except x_v and $\Delta \eta$.

 $q + g \xrightarrow{\overline{I}} \sum (q_L + \overline{q}_L) + ng$

In QCD, certain processes violate the conservation of chirality. - Instantons.

--> Non-perturbative fluctuation of the gluon field. Tunnelling between 2 vacuum states.

Ringwald and Schrempp pointed out that instanton-induced events can be seen in DIS. The cross section is calculable in a certain kinematical region (defined by q' and g (Q'^2,x') --> instanton size (r) and distance Rµ).

σ=10 ~ 100 pb.

Events are simulated by the QCDINS. Events are expected to have distinct signature.

fireball like

Instanton HERA-I Results : ZEUS

t: combination of several separation variables

EPJ C 34(2004) 255

IntL = 38pb⁻¹ Q²>120GeV²

Assuming all data with t>t0 is the instanton events, very conservative limit was set as

σ<26pb (95%CL), while the prediction is 8.9pb

Instanton: HERA-II Results: H1 EPJ C76 (2016) 7, 1

Instanton: HERA-II Results

EPJ C76 (2016) 7, 1

Instanton: HERA-II Results

II-Distance in the Vacuum

EPJ C76 (2016) 7, 1

100

PLB 759 (2016) 446

DeDx from micro vertex detector (MVD) (Si-strip) : Better PID Larger L_{int} (121 -> 358 pb⁻¹)

Pentaquark in pK system

PLB 759 (2016) 446

The dashed line represents the Θ⁺ signal as would be observed if it had the same strength as reported in the ZEUS HERA I analysis (expected 286 events). <-> 25.8 event (as the upper limit with 95%CL)

The structure in the HERAI data is assumed to be a background fluctuation.

ZEUS

Summary

- With the recent results from H1/ZEUS, I am trying to demonstrate that HERA covers the diverse area of the QCD.
- Jet production: NLO->NNLO better description of data. Extraction of a_s is on-going
- Prompt photon: In progress on the comparison with the theories

• Instanton:

Stringent limit: Challenge to the theory?

 Strange penta-quark (pK⁰_S, pR⁰_S) at 1.52GeV Not confirmed with HERA-II data

More plots

Di-jet:H1

H1prelim-16-062

tri-jet:H1

Instanton: HERA-II Results

$K_S^0 \to \pi^+ \pi^-$ selection

- Track selections
 - not used as π of K_S^0
 - 0.2 < p(p) < 1.5 GeV
 - CTD innermost layer = 1
 - CTD outermost layer >= 3
 - PID by both of CTD and MVD dE/d
- CTD dE/dx
 - Maximum ~70 hits with full length track.
 - Truncated mean method.
 - (the lowest 10% and the highest 30% hits are excluded from the mean.)
 - Resolution for protons ~9.4%.
- MVD dE/dx
 - Nominal 6 hits with full length track.
 - Calculation with probability density function of hit.
 - Resolution for protons ~11.7%.

- Q² requirement
 - $20 < Q^2 < 100 \text{ GeV}^2$
- *pK*⁰_S requirements
 - $0.5 < p_T < 3.0 \, \text{GeV}$
 - |η| < 1.5

