

New Results on Diffraction at HERA

S. Levonian, DESY

HERA: The World's Only ep Collider

Diffraction at HERA. Factorisation properties

QCD factorisation

(rigorously proven for DDIS by Collins et al.):

Regge factorisation

(conjecture, e.g. RPM by Ingelman, Schlein):

 $\sigma_r^{D(4)} \propto \sum_i \hat{\sigma}^{\gamma^*i}(x,Q^2) \otimes f_i^D(x,Q^2;x_{I\!\!P},t)$

- $\hat{\sigma}^{\gamma^* i}$ hard scattering part, same as in inclusive DIS
- f_i^D diffractive PDF's, valid at fixed $x_{I\!\!P}, t$ which obey (NLO) DGLAP

$$F_2^{D(4)}(x_{I\!\!P},t,eta,Q^2)=\Phi(x_{I\!\!P},t)\cdot F_2^{I\!\!P}(eta,Q^2)$$

• In this case shape of diffractive PDF's is independent of $x_{I\!\!P}, t$ while normalization is controlled by Regge flux $\Phi(x_{I\!\!P}, t)$

Selection of Diffractive Events

- x_{IP} and t measurements
- Less statistics
- p-tagging systematics

Measure a Large Rapidity Gap

- Data integrated over |t| < 1 GeV²
- High statistics
- Contamination from proton dissociation events
 - ➔ Needs to be controlled
- Different systematics
 Different kinematic coverage

Diffraction at HERA: Some old Results

Inclusive Diffraction and DPDFs: gluon dominated IP

Diffraction at HERA: Some old Results

Inclusive Diffraction and DPDFs: gluon dominated *IP*

VM: soft vs hard IP

Selected new Results

Diffractive Photoproduction of Isolated Photons

[ZEUS-prel-2015]

D* Meson Production in Diffractive DIS at HERA [H1-prel-2016]

Cross-section Ratio
$$\frac{\sigma_{\psi(2S)}}{\sigma_{J/\psi(1S)}}$$
 in Exclusive DIS [ZEUS-pub-2016]

Exclusive ρ^0 Meson Photoproduction with a Leading Neutron [H1-pub-2016]

Isolated Photons in Diffractive Photoproduction

Isolated Photons in Diffractive PHP

ZEUS

ZEUS prelim. (670)

Rapgap sg (dir+res)

Pythia bg dijet (dir+res)

Signal+Background

 $\chi^2 = 23.45$

Ndf = 13

 $\frac{\chi^2}{N} = 1.80$

120

100

80

- Use energy-weighted e.m. cluster width $\langle \delta Z \rangle$ to distinguish γ from π^0, η background
- Diffraction: LRG signature, and $x_{I\!\!P} < 0.03$

Isolated Photon + Jet: Data vs MC model

D* in Diffractive DIS at HERA

Based on 280 pb^{-1} HERA-2 data

Open charm tagged with D^* $D^{*+} \rightarrow D^0 \pi^+_{slow} \rightarrow (K^- \pi^+) \pi^+_{slow} + C.C.$

LRG selection of diffraction ($\sim 1100D^*$)

D^* Production in Diffractive DIS: Data vs NLO

D* in diffractive DIS do/dlog₁₀(x_{lp}) [hb] do/dy [nb] 0.8 H1 Preliminary data NLO QCD, H1 2006 Fit B 0.4 0.2 -2.5 -2 log₁₀(x_{IP}) **D* in diffractive DIS** dơ/dŋ_{b*} [nb] dơ/dp_{T,D*} [nb / GeV] Preliminary H1 data NLO QCD, H1 2006 Fit B m.
 scale variation 10 10-2 2 6 p___[GeV]

- NLO QCD by HQVDIS in FFNS (H1 DPDF-2006, $m_c=1.5 {
 m GeV},$ $\mu_r^2=\mu_f^2=m_c^2+4Q^2)$ in good agreement with data
- Charm fragm.func. as determined in H1 non-diffractive *D** analysis works here ⇒ supports universality of charm fragmentation
- Data could be used as additional input to the global DPDF fit

Cross-section Ratio $\frac{\sigma_{\psi(2S)}}{\sigma_{J/\psi(1S)}}$ in DIS

pQCD predictions: $R(Q^2 = 0) \simeq 0.17$ and rises with Q^2

Data samples and Decay channels

Results: $\sigma_{\psi(2S)}/\sigma_{J/\psi(1S)}$ vs Q^2, W and |t|

16

Rho-0 with a Leading Neutron at HERA

HERA as a '4P' facility

HERA as a '4P' facility

Here for the first time we investigate the reaction involving all these objects simultaneously:

$$\gamma + \mathbf{p} \longrightarrow \rho^0 \pi^+ \mathbf{n}$$

/	$\gamma \sim \frac{t' \rho^0}{2} \pi^+$	Photoproduction:	$Q^2 < 2~{ m GeV^2}$	$(\langle Q^2 angle = 0.04~{ m GeV^2})$
		Low p_t :	$ t < 1~{ m GeV^2}$	$(\langle t angle = 0.20~{ m GeV^2})$
\mathbf{v}_{p}	π^{+}	Small mass:	$0.3\!<\!m_{\pi\pi}\!<\!1.5~{ m GeV}$	$\prime \qquad (m_{ ho^0})$
	π^+	π^+,π^- in CT:	$20\!<\!W_{\gamma\mathrm{p}}\!<\!100\mathrm{GeV}$	$\langle \langle W_{\gamma \mathrm{p}} angle = 45$ GeV)
	\mathbf{p}	Leading <i>n</i> :	$E_{ m n}\!>\!120$ GeV;	$ heta_{ m n}\!<\!0.75~{ m mrad}$
1	t			

No hard scale present \Rightarrow Regge framework is most appropriate

ρ^0 with Leading Neutron: S/B decomposition

0

20

40

0

-100

0

100 φ_n [deg]

80 100

Wyp [GeV]

60

background fraction uncertainty

ρ -meson shape

Analysis region: $0.6 < M_{\pi^+\pi^-} < 1.1$ GeV extrapolated using BW to the full range: $0.28 < M_{\rho^0} < 1.5$ GeV

Cross sections definitions

$$\mathsf{VMD:} \ \ f_{\gamma/e}(y,Q^2) = \frac{\alpha}{2\pi Q^2 y} \left\{ \left[1 + (1-y)^2 - 2(1-y) \left(\frac{Q_{\min}^2}{Q^2} - \frac{Q^2}{M_\rho^2} \right) \right] \frac{1}{\left(1 + \frac{Q^2}{M_\rho^2} \right)^2} \right\}$$

OPE:

$$f_{\pi/p}(x_L,t) = rac{1}{2\pi} rac{g_{p\pi N}^2}{4\pi} (1-x_L) rac{-t}{(m_\pi^2-t)^2} \exp[-R_{\pi n}^2 rac{m_\pi^2-t}{1-x_L}]$$

Cross sections definitions

$$\mathsf{VMD:} \ \ f_{\gamma/e}(y,Q^2) = \frac{\alpha}{2\pi Q^2 y} \left\{ \left[1 + (1-y)^2 - 2(1-y) \left(\frac{Q_{\min}^2}{Q^2} - \frac{Q^2}{M_\rho^2} \right) \right] \frac{1}{\left(1 + \frac{Q^2}{M_\rho^2} \right)^2} \right\}$$

OPE:

$$f_{\pi/p}(x_L,t) = rac{1}{2\pi} rac{g_{p\pi N}^2}{4\pi} (1-x_L) rac{-t}{(m_\pi^2-t)^2} \exp[-R_{\pi n}^2 rac{m_\pi^2-t}{1-x_L}]$$

Constraining pion flux

Failure to describe $b_n(x_L)$ suggests strong absorptive effects (*n* rescattering) \Rightarrow try to quantify

Estimate of absorption corrections

Optical Theorem: Eikonal approach: World data:

$$egin{aligned} &rac{d\sigma_{el}}{dt}\mid_{t=0}=b_{
m el}\sigma_{
m el}\propto\sigma_{
m tot}^2 & \longrightarrow r_{
m el}=(rac{b_{\gamma p}}{b_{\gamma \pi}})\cdot(\sigma_{
m tot}^{\gamma \pi}/\sigma_{
m tot}^{\gamma p})^2 \ &b=\langle R^2
angle; \ b_{12}=b_1+b_2 \ &(b_{pp}\!\simeq\!11.7,\ b_{\pi^+p}\!\simeq\!9.6,\ b_{\gamma p}\!\simeq\!9.75)\,{
m GeV}^{-2} \end{aligned}$$

Geometric interpretation: $\langle r^2 \rangle = 2b_1 \cdot (\hbar c)^2 \simeq 2 \text{ fm}^2 \Rightarrow (1.6R_p)^2 \Rightarrow \text{ultra-peripheral process}$ DPP explanation: low mass $\pi^+ n$ state \rightarrow large slope, high masses \rightarrow less steep slope

Diffraction is an important part of HERA physics landscape. Despite overall consistent picture, the field is challenging, as it represents a complicated interplay of soft and hard phenomena.

- Statistically limited channels have been studied with full HERA data sample. Whenever a hard scale is present, pQCD calculations are successful.
- The data show sensitivity to some QCD models parameters. They can also be used to further constrain DPDF, especially at high z_{IP} .
- Photon-pion elastic cross section is extracted experimentally (in OPE approximation) for the first time.
- Strong absorptive effects are confirmed in Leading Neutron production. Since the nature of these is non-perturbative, exp. results are essential for tuning models of 'Survival Gap Probability'.

Backup Slides

• $F_2^{D(4)}$ from HERA-II VFPS data and final DPDF determination without assumption on Regge factorisation.

- Explain factorisation breaking mechanizm in PHP, in particular independence of Gap Survival Probability on x_{γ} .
- Multiscale problem: (Q^2, E_T, M_V, t) .

Where is an Odderon ?

Can one observe Glueball in a double Pomeron reaction in PHP? $\gamma p \rightarrow (I\!\!P I\!\!P) \rightarrow M_X \quad (M_X = \sqrt{x_{I\!\!P 1} x_{I\!\!P 2}} W_{\gamma p} = 2 \div 4 \text{ GeV})$

> HERA has finished, but not DIS physics. What's next? **eRHIC**? **LHeC**?