Blois Workshop 2017

Prague, June 26th-30th 2017

Inclusive and exclusive diffraction

 $e p \rightarrow e' J/\psi p J/\psi \rightarrow \mu^+\mu^-$

Inclusive and exclusive diffraction

- **Q²** = virtuality of photon = = (4-momentum exchanged at e vertex)²
- W = invariant mass of γ^* -p system
- t = (4-momentum exchanged at p vertex)²
 typically: |t|<1 GeV²
- Single diffraction/elastic: N=proton
- Double diffraction: proton-dissociative system N

Exclusive e(k) $\gamma^{*}(q)$ $VM = \rho, \omega, \phi, J/\psi, \psi', Y, \gamma$ t P(p) t $N(p^{*})$

 M_X = invariant mass of γ^* -IP system

- **B** = Bjorken's variable for the IP
 - = fraction of IP momentum carried by struck quark
 - $= x/x_{IP}$
 - Scattered electron
 - VM decay products and nothing else in the central detector
 - Proton undetected

M Ruspa, Blois 2017

Motivation

 Ψ(2S) wave function different from J/ψ wave function

Ratio
$$R = \frac{\sigma_{\gamma p \to \psi(2S)p}}{\sigma_{\gamma p \to J/\psi p}}$$
 sensitive to radial wave function of charmonium

pQCD models predict R \approx 0.17 (photoproduction) and rise of R with Q²

Samples $\Psi(2S) \rightarrow J/\psi \pi^{+} \pi^{-} J/\psi \rightarrow \mu^{+} \mu^{-}$ $\Psi(2S) \rightarrow \mu^{+} \mu^{-}$ $J/\psi \rightarrow \mu^{+} \mu^{-}$

Data sample: all ZEUS data (1996-2007) integrated luminosity 468 pb⁻¹

- Monte Carlo samples:
 - signal

DIFFVM exclusive VM production

- background

GRAPE Bethe-Heitler elastic and proton dissociative dimuon production

Event selection

- Scattered electron detected
- Scattered proton undetected
- Two reconstructed tracks identified as muons and nothing else in the detector above noise level
- Two reconctructed tracks identified as muons, two pion tracks and nothing else $\Psi(2S) \rightarrow J/\psi \pi^+ \pi^{--} J/\psi \rightarrow \mu^+ \mu^-$ in the detector above noise level
- → Proton dissociative events removed above masses ~ M_N 4 GeV Assuming cross section ratio does not vary with M_N, results not affected by proton dissociation background

 $30 \le W \le 210 \text{ GeV}$ $2 \leq Q^2 \leq 80 \text{ GeV}^2$ $|\dagger| \leq 1 \text{ GeV}^2$

$$\begin{split} \Psi(2S) & \rightarrow \mu^{\scriptscriptstyle +} \, \mu^{\scriptscriptstyle -} \\ J/\psi & \rightarrow \mu^{\scriptscriptstyle +} \, \mu^{\scriptscriptstyle -} \end{split}$$

$$\begin{split} \Psi(2S) & \rightarrow \mu^{\scriptscriptstyle +} \mu^{\scriptscriptstyle -} \\ J/\psi & \rightarrow \mu^{\scriptscriptstyle +} \mu^{\scriptscriptstyle -} \end{split}$$

Function used for the fit and $M_{\mu^+\,\mu^-}$ window varied as systematic checks M Ruspa, Blois 2017

 $\Psi(2S) \rightarrow \mu^{+} \mu^{-}$ $J/\psi \rightarrow \mu^{+} \mu^{-}$

Number of events above background in the ranges $3.59 < M_{\mu+\mu-} < 3.79 \text{ GeV} \rightarrow N_{\psi(25)}$ $3.02 < M_{\mu+\mu-} < 3.17 \text{ GeV} \rightarrow N_{J/\psi}$

Function used for the fit and $M_{\mu^+\,\mu^-}$ window varied as systematic checks M Ruspa, Blois 2017

Signal extraction

$\Psi(2S) \rightarrow J/\psi \pi^+ \pi^- J/\psi \rightarrow \mu^+ \mu^-$

• ZEUS 468 pb⁻¹

 $\Delta M = M_{\mu\mu\pi\pi} - M_{\mu\mu}$

Signal extraction

 $\Psi(2S) \rightarrow J/\psi \pi^+ \pi^- J/\psi \rightarrow \mu^+ \mu^-$

• ZEUS 468 pb⁻¹

 $\Delta M = M_{\mu\mu\pi\pi} - M_{\mu\mu}$

Signal extraction

 $\Psi(2S) \rightarrow J/\psi \pi^+ \pi^- J/\psi \rightarrow \mu^+ \mu^-$

Measured ratios

$$\begin{split} R_{J/\psi\pi\pi} &= \frac{\sigma_{\psi(2S)}}{\sigma_{J/\psi(1S)}} = \frac{N_{\psi(2S)}}{N_{J/\psi(1S)}} \cdot \frac{Acc_{J/\psi(1S) \to \mu^+\mu^-}}{Acc_{\psi(2S) \to J/\psi\pi^+\pi^-}} \cdot \frac{1}{BR_{\psi(2S) \to J/\psi\pi^+\pi^-}} \\ R_{\mu\mu} &= \frac{\sigma_{\psi(2S)}}{\sigma_{J/\psi(1S)}} = \frac{N_{\psi(2S)}}{N_{J/\psi(1S)}} \cdot \frac{Acc_{J/\psi(1S) \to \mu^+\mu^-}}{Acc_{\psi(2S) \to \mu^+\mu^-}} \cdot \frac{BR_{J/\psi(1S) \to \mu^+\mu^-}}{BR_{\psi(2S) \to \mu^+\mu^-}} \\ R_{comb} &= \text{ combination of } R_{J/\psi\pi\pi} \text{ and } R_{\mu\mu} \end{split}$$

$$Acc_{i} = \frac{N_{i}^{reco}}{N_{i}^{true}} \qquad BR[\psi(2S) \rightarrow J/\psi \pi\pi] = (33.6\pm0.4)\%$$
$$BR[\psi(2S) \rightarrow \mu\mu] = (7.7\pm0.8)\times10^{-3}\%$$
$$BR[J/\psi \rightarrow \mu\mu] = (5.93\pm0.06)\%$$

Measured ratios

$R_{J/\psi\pi\pi}$	$0.26 \pm 0.03^{+0.01}_{-0.01}$
$R_{\mu\mu}$	$0.24 \pm 0.05^{+0.02}_{-0.03}$
$R_{\rm comb}$	$0.26 \pm 0.02^{+0.01}_{-0.01}$
$R_{\psi(2S)}$	$1.1 \pm 0.2^{+0.2}_{-0.1}$

 $30 \le W \le 210 \text{ GeV}$ $2 \le Q^2 \le 80 \text{ GeV}^2$ $|\dagger| \le 1 \text{ GeV}^2$

 $R_{\psi(2S)} = R_{J/\psi\,\pi\pi}/R_{\mu\mu}$

$Q^2 \; ({ m GeV}^2)$	$R_{J/\psi\pi\pi}$	$R_{\mu\mu}$	$R_{\rm comb}$	$R_{\psi(2S)}$
2 - 5	$0.21 \pm 0.07 ^{+0.04}_{-0.03}$	$0.10 \pm 0.09^{+0.09}_{-0.09}$	$0.17 \pm 0.05 \substack{+0.05 \\ -0.02}$	
5 - 8	$0.19 \pm 0.05 ^{+0.02}_{-0.02}$	$0.13 \pm 0.06^{+0.12}_{-0.03}$	$0.17 \pm 0.04^{+0.05}_{-0.02}$	$1.5\pm0.8^{+0.4}_{-0.7}$
8 - 12	$0.27 \pm 0.05 ^{+0.06}_{-0.01}$	$0.29 \pm 0.08^{+0.03}_{-0.08}$	$0.28 \pm 0.05^{+0.03}_{-0.03}$	$0.9\pm0.3^{+0.4}_{-0.1}$
12 - 24	$0.27 \pm 0.05 ^{+0.04}_{-0.03}$	$0.24 \pm 0.08^{+0.01}_{-0.08}$	$0.26 \pm 0.05^{+0.01}_{-0.03}$	$1.1 \pm 0.4^{+0.6}_{-0.1}$
24 - 80	$0.56 \pm 0.13^{+0.04}_{-0.09}$	$0.42 \pm 0.17^{+0.12}_{-0.04}$	$0.51 \pm 0.10^{+0.04}_{-0.04}$	$1.3\pm0.6^{+0.3}_{-0.6}$
W (GeV)	$R_{J/\psi\pi\pi}$	$R_{\mu\mu}$	$R_{ m comb}$	$R_{\psi(2S)}$
30 - 70	$0.24 \pm 0.07^{+0.01}_{-0.13}$	$0.24 \pm 0.10^{+0.03}_{-0.14}$	$0.24 \pm 0.06^{+0.01}_{-0.13}$	$1.0\pm0.5^{+0.5}_{-0.2}$
70 - 95	$0.30\pm0.06^{+0.01}_{-0.04}$	$0.31 \pm 0.09^{+0.09}_{-0.03}$	$0.30 \pm 0.05^{+0.02}_{-0.03}$	$1.0\pm0.3^{+0.1}_{-0.2}$
95 - 120	$0.28\pm0.06^{+0.05}_{-0.01}$	$0.24 \pm 0.08^{+0.04}_{-0.05}$	$0.27 \pm 0.05 \substack{+0.03 \\ -0.01}$	$1.2\pm0.5^{+0.5}_{-0.2}$
120 - 210	$0.22\pm0.05^{+0.07}_{-0.01}$	$0.17 \pm 0.07^{+0.02}_{-0.05}$	$0.21 \pm 0.04^{+0.03}_{-0.01}$	$1.3\pm0.6^{+0.7}_{-0.2}$
$ t (GeV^2)$	$R_{J/\psi\pi\pi}$	$R_{\mu\mu}$	$R_{ m comb}$	$R_{\psi(2S)}$
0 - 0.1	$0.23 \pm 0.05 \substack{+0.02 \\ -0.02}$	$0.23 \pm 0.09^{+0.04}_{-0.05}$	$0.23 \pm 0.04^{+0.01}_{-0.02}$	$1.0 \pm 0.4^{+0.3}_{-0.2}$
0.1 - 0.2	$0.22\pm0.06^{+0.02}_{-0.03}$	$0.23 \pm 0.09^{+0.02}_{-0.06}$	$0.22 \pm 0.05^{+0.02}_{-0.02}$	$0.9\pm0.4^{+0.5}_{-0.2}$
0.2 - 0.4	$0.27\pm0.06^{+0.06}_{-0.01}$	$0.18 \pm 0.07^{+0.05}_{-0.06}$	$0.24 \pm 0.04 ^{+0.03}_{-0.02}$	$1.5\pm0.6^{+0.5}_{-0.2}$
0.4 - 1	$0.32 \pm 0.06^{+0.05}_{-0.03}$	$0.30 \pm 0.08^{+0.02}_{-0.05}$	$0.32 \pm 0.05 \substack{+0.01 \\ -0.02}$	$1.1 \pm 0.3^{+0.3}_{-0.1}$

Ratios vs Q^2 , W and t

Comparison with models and with H1

ZEUS

HIKT, Hüfner et al.: dipole model, dipole-proton constrained by inclusive DIS data AR, Armesto and Rezaeian: impact parameter dependent CGC and IP-Sat model KMW, Kowalski Motyka Watt: QCD description and universality of quarkonia production FFJS, Fazio et al.: two component Pomeron model KNNPZZ, Nemchik et al.: dipole cross section derived from BFKL generalised eq. LM, Lappi and Mäntysaari : dipole picture in IP-Sat model

HIKT calculation

[J. Hüfner et al., Phys. Rev. D 62,094022 (2000)]

 Q^2 (GeV²)

- COR and POW with $m_c \approx 1.8 \; \text{GeV}$

\rightarrow BT predictions larger than the data

Comparison with models and with H1

ZEUS

HIKT, Hüfner et al.: dipole model, dipole-proton constrained by inclusive DIS data AR, Armesto and Rezaeian: impact parameter dependent CGC and IP-Sat model KMW, Kowalski Motyka Watt: QCD description and universality of quarkonia production FFJS, Fazio et al.: two component Pomeron model KNNPZZ, Nemchik et al.: dipole cross section derived from BFKL generalised eq. LM, Lappi and Mäntysaari : dipole picture in IP-Sat model

AR calculation

[N. Armesto and A. H. Reazeian, Phys. Rev. D 90, 054003 (2014)]

Impact-parameter-dependent Color Glass Condensate model (b-CGC) or Saturation model (IP-Sat) for the calculation of the ccbar-dipole cross section

 \rightarrow IP-Sat prediction about 30% lower and gives a better description of the data

Comparison with models and with H1

ZEUS

HIKT, Hüfner et al.: dipole model, dipole-proton constrained by inclusive DIS data AR, Armesto and Rezaeian: impact parameter dependent CGC and IP-Sat model KMW, Kowalski Motyka Watt: QCD description and universality of quarkonia production FFJS, Fazio et al.: two component Pomeron model KNNPZZ, Nemchik et al.: dipole cross section derived from BFKL generalised eq. LM, Lappi and Mäntysaari : dipole picture in IP-Sat model

Assumes universality of production of vector quarkonia states.
 Parameter δ depends on the choice of the charmonium wave function

 $\rightarrow \delta$ = 0 provides a better description of the data

Comparison with models and with H1

ZEUS

HIKT, Hüfner et al.: dipole model, dipole-proton constrained by inclusive DIS data AR, Armesto and Rezaeian: impact parameter dependent CGC and IP-Sat model KMW, Kowalski Motyka Watt: QCD description and universality of quarkonia production FFJS, Fazio et al.: two component Pomeron model KNNPZZ, Nemchik et al.: dipole cross section derived from BFKL generalised eq. LM, Lappi and Mäntysaari : dipole picture in IP-Sat model

Summary

- $J/\psi(2S)/J/\psi$ measured by ZEUS with full HERA statistics
- $J/\psi(2S)/J/\psi$ rises with Q² and is constant in W and |t|
- Discrimination of different models possible

DESY 16-008, Nucl. Phys. B 909 (2016) 934

FFJS calculation

[S. Fazio et al., Phys. Rev. D 90, 016007 (2014)]

KNNPZZ calculation

[B. Kopeliovich et al., Phys. Rev D 44, 3466 (1991),

- B. Kopeliovich et Al., Phys. Lett. B 324, 469 (1994)
- J. Nemchik et al., Phys. Lett. B 341, 228 (1994)
- J. Nemchik et al., J. Exp. Theor. Phys. 86, 1054 (1998)]

LM calculation

[T. Lappi and H. Mäntysaari, Phys. Rev. C 83, 065202 (2011), T. Lappi and H. Mäntysaari, PoS (DIS2014), 069 (2014)]

BFKL equation + IP-Sat

Data/MC $J/\psi \rightarrow \mu^{+} \mu^{-}$

Monte Carlo reweigthed in t, Q^2 and angular distributions

Data/MC $\Psi(2S) \rightarrow \mu^{+} \mu^{-}$

Monte Carlo reweigthed in t, Q^2 and angular distributions

Data/MC $\Psi(2S) \rightarrow J/\psi \pi^+ \pi^- J/\psi \rightarrow \mu^+ \mu^-$

Monte Carlo reweigthed in t, Q^2 and angular distributions

Comparison with H1 earlier measurement

→ Much larger luminosity in ZEUS measurement (HERA I + HERA II)