

Extended studies of isolated photon production in deep inelastic scattering at HERA

Ian C. Brock on behalf of the ZEUS collaboration University of Bonn

EPS 2017, Venice

Outline

- Introduction
- Event selection
 - Separating direct photons from other sources
- Differential cross-section measurements
- Summary

HERA and ZEUS

- $e^{\pm}p$ collisions at $\sqrt{s} = 318$ GeV
 - ~0.5 fb⁻¹ per experiment
- HERA 1:
 - 1996 2000
- HERA 2 (longitudinal e[±] polarisation)
 - 2004 2007

Measurement uses 326 pb⁻¹ from HERA 2

DIS events and kinematics

- Characterise events:
 - $Q^2 = S X Y$
 - Bjorken *x*, (0 < *x* < 1)

DIS \Rightarrow scattered *e* in detector $Q^2 \gtrsim 1 \text{ GeV}^2$

NC - scattered e

• Inelasticity y, (0 < y < 1)

Kinematic regions

Parameterise structure functions as a function of *x* Use DGLAP equations to evolve from HERA to LHC

Why isolated photons?

- Use dynamics to probe modes such as k_t-factorisation and pQCD approaches
- See if dynamics changes with virtuality
- Check proton PDFs
- Photons can be a background to new physics

Where do isolated photons come from?

- Can be emitted from lepton (LL) or proton (quark, QQ)
- Assume lepton emission is well known
- Use photon to probe proton
- Trick is to find these photons

Selection criteria

- Event
 - $10 < Q^2 < 350 \text{ GeV}^2$
 - $E_e > 10$ GeV and $\theta_e > 140^\circ$
 - $35 < E p_Z < 65 \text{ GeV}$
- Jets
 - k_t clustering, R=1.0
 - $E_{jet} > 2.5 \text{ GeV}$
 - $-1.5 < \eta_{jet} < 1.8$

Photon selection

- $4 < E_T < 15 \text{ GeV}$
- $-0.7 < \eta_{\gamma} < 0.9$
- Isolation:
 - $\Delta R > 0.2$ from tracks
 - >90 % jet energy
- Look in detail at shower shape in Z

≈6000 events selected

Separating photons from hadrons

• ZEUS barrel electromagnetic calorimeter finely segmented in Z

Uncertainties (typical sizes)

- Statistics: 13 %
- Acceptance: 3-4 %
- Systematics: 10 %
 - Dominated by energy scale
- Fraction of QQ events: 1 %
- Luminosity: 2 % (not included in plots)

Comparison with generators

LO + LL QQ (PYTHIA) and LL (Ariadne)

Comparison with generators

LO + LL QQ (PYTHIA) and LL (Ariadne)

Comparison with generators

LO + LL QQ (PYTHIA) and LL (Ariadne)

Comparison with theory

*k*_t-factorisation: BLZ: Baranov, Lipatov, Zotov - PRD 81 (2010) 094034 Collinear: AFG: Aurenche, Fontonnaz, Guillet - LAPTH-005/17 LPT-Orsay 16-88

0-88 14 UNIVERSITÄT BONN

- Recent measurements complement previous studies: Phys. Lett. B 715 (2012) 88
- Extracted differential cross-sections for correlated observables: x_{γ} , x_{p} , $\Delta \eta$, $\Delta \varphi$, $\Delta \eta_{e\gamma}$ and $\Delta \varphi_{e\gamma}$
- PYTHIA x 1.6 describes data in both Q² regions
- AFG (NLO) calculations describe data well
- k_t -factorisation (BLZ) does OK except for x_{γ} and $\Delta \eta$

Backup

Cross-section calculation

• Production cross-section for variable *Y*:

$$\frac{\mathrm{d}\sigma}{\mathrm{d}Y} = \frac{N(\gamma_{\mathrm{QQ}})}{A_{\mathrm{QQ}} \cdot \mathcal{L} \cdot \Delta Y} + \frac{\mathrm{d}\sigma_{\mathrm{LL}}^{\mathrm{MC}}}{\mathrm{d}Y}$$

- $N(\gamma_{QQ})$: number of QQ photons from fit
- ΔY : bin width
- £: integrated luminosity
- $d\sigma_{LL}^{MC}/dY$: cross-section for LL photons
- A_{QQ} : events reconstructed / events generated in bin

Theory models

- Baranov, Lipatov, Zotov (BLZ)
 - Calculation of cross-section based on convolution of offshell matrix element and unintegrated parton densities (*k_t*-factorisation)
 - Some final-state jets can come from parton evolution cascade - model uses approximations (especially for y)
 - $\Lambda_{QCD} = 200 \text{ MeV}, \text{ NF}=4, \mu_{R}^{2} = \mu_{F}^{2} = Q^{2}, \text{ MSTW}2008 \text{ PDF}$
- Aurenche, Fontannaz, Guillet (AFG)
 - NLO theory with conventional PDFs

Previous results

Previous results

Basic equations

• $e^{\pm}p$ cross-section and structure functions $Y_{\pm} = 1 \pm (1-y)^2$

$$\frac{\mathrm{d}^2 \sigma(e^{\pm} p)}{\mathrm{d}x \,\mathrm{d}Q^2} = \frac{2\pi\alpha^2}{xQ^4} \left[Y_+ F_2(x, Q^2) \mp Y_- x F_3(x, Q^2) - y^2 F_L(x, Q^2) \right]$$

• (Unpolarised) reduced cross-sections often used:

$$\sigma_{\mathrm{r}}(\mathrm{or}\ \tilde{\sigma}) = \frac{\mathrm{d}^2\sigma}{\mathrm{d}x\,\mathrm{d}Q^2} \cdot \frac{xQ^4}{2\pi\alpha^2 Y_+} = F_2(x,Q^2) - \frac{y^2}{Y_+}F_L(x,Q^2)$$

