EPS Conference on High Energy Physics

Limits on the effective quark radius from inclusive ep scattering

 at HERAO. Turkot
On behalf of ZEUS Collaboration

- Combined inclusive DIS data from HERA
- Quark form-factor model
- Beyond-the-Standard-Model analysis combined with PDFs fit

HERA - world's only $\mathbf{e}^{ \pm} \mathbf{p}$ collider

HERA operated during 1992-2007 with:
$\boldsymbol{e}^{ \pm}$energy of 27.5 GeV ;
p energies of $920,820,575$ and 460 GeV .

H1 and ZEUS - two general purpose collider experiments at HERA:
$\sim 0.5 \mathrm{fb}^{-1}$ of luminosity were recorded by each experiment.

Kinematics of the $e^{ \pm} p$ collisions:

$$
\begin{gathered}
Q^{2}=-\left(k-k^{\prime}\right)^{2} \\
x_{B j}=\frac{Q^{2}}{2 P \cdot q} \\
y=\frac{P \cdot q}{P \cdot k}
\end{gathered}
$$

HERA inclusive data combination

- 2927 data point combined to 1307
- up to 8 data points combined to 1
- impressive improvement of precision due to:
- increased statistics
- better understanding of systematics - cross-calibration of the data from two experiments

Eur. Phys. J. C75 (2015), No. 12, 580

QCD analysis of the combined DIS data

Neutral Current:

$$
\begin{aligned}
& \frac{d^{2} \sigma_{N C}^{e^{\mp} p}}{d x d Q^{2}}=\frac{2 \pi \alpha^{2}}{x Q^{4}} \cdot\left(Y_{+} \cdot F_{2} \pm Y_{-} \cdot x F_{3}-y^{2} \cdot F_{L}\right) \\
& \\
& \quad Y_{L} \sim \gamma_{s} g
\end{aligned}
$$

Charged Current:

$$
\begin{array}{r}
\frac{d^{2} \sigma_{C C}^{e^{\mp} p}}{d x d Q^{2}}=\frac{G_{F}^{2}}{4 \pi x} \cdot \kappa^{2} \cdot\left(Y_{+} \cdot W_{2}^{\mp} \pm Y_{-} \cdot x W_{3}^{\mp}-y^{2} \cdot W_{L}^{\mp}\right) \\
\kappa=\frac{M_{W}^{2}}{M_{W}^{2}+Q^{2}}
\end{array}
$$

At the Quark-Parton Model:

$$
\begin{array}{lll}
F_{2}=\frac{4}{9}(x U+x \bar{U})+\frac{1}{9}(x D+x \bar{D}) & W_{2}^{-}=x(U+\bar{D}) & W_{2}^{+}=x(D+\bar{U}) \\
x F_{3} \sim x u_{v}+x d_{v} & x W_{3}^{-}=x(U-\bar{D}) & x W_{3}^{+}=x(D-\bar{U})
\end{array}
$$

Parton Density Functions parametrisation at the starting scale $\mathrm{Q}^{2}{ }_{0}=1.9 \mathrm{GeV}^{2}$:

$$
\begin{aligned}
& x g(x)=A_{g} x^{B_{g}}(1-x)^{C_{g}}-A_{g}^{\prime} x^{B_{g}^{\prime}}(1-x)^{C_{g}^{\prime}} \\
& x u_{v}(x)=A_{u_{v}} x^{B_{u_{v}}}(1-x)^{C_{u_{v}}}\left(1+E_{u_{v}} x^{2}\right) \\
& x d_{v}(x)=A_{d_{v}} x^{B_{d_{v}}}(1-x)^{C_{d_{v}}} \\
& x \bar{U}(x)=A_{\bar{U}} x^{B_{\bar{U}}}(1-x)^{C_{\bar{U}}}\left(1+D_{\bar{U}} x\right) \\
& x \bar{D}(x)=A_{\bar{D}} x^{B_{\bar{D}}}(1-x)^{C_{\bar{D}}}
\end{aligned}
$$

\square fixed or calculated by the sum-rulesset equal
Evolve to any $\mathrm{Q}^{2}>\mathrm{Q}^{2}{ }_{0}$ with DGLAP at NLO. Obtained PDFs are referred to as ZCIPDFs and have a good agreement with the HERAPDF 2.0.

Phys. Lett. B757 (2016), 468-472

How big is a quark ?

One of the possible parameterisations of the deviations from the Standard Model spatial distribution or substructure of electrons and/or quarks.

In a semi-classical form-factor approach cross sections are expected to decrease at high-Q ${ }^{2}$:

$$
\frac{d \sigma}{d Q^{2}}=\frac{d \sigma^{S M}}{d Q^{2}} \cdot\left(1-\frac{R_{e}^{2}}{6} Q^{2}\right)^{2} \cdot\left(1-\frac{R_{q}^{2}}{6} Q^{2}\right)^{2}
$$

There \mathbf{R}^{2} and $\mathbf{R}^{2}{ }_{\mathbf{q}}$ are the mean-square radii of the electron and quark, respectively.
Same dependence expected for NC and CC $e^{+} p$ and $e^{-} p$.
Electrons were assumed to be point-like, $\mathrm{R}^{2}{ }_{\mathrm{e}}=0$, and both, positive and negative values of $\mathrm{R}^{2}{ }_{\mathrm{q}}$ were considered.

Reason for the simultaneous fit procedure

- BSM signal in the data could affect the PDF fit and result in biased PDFs.
- Use of the biased PDFs in the BSM analysis would result in overestimated limits.
- This cannot be avoided for the analysis of HERA data by using another available PDF set, since all high-precision PDF fits include the DIS data from HERA (MMHT2014, NNPDF 3.0, etc.).
- The proper procedure for a BSM analysis of the HERA data - global QCD analysis which includes a possible contribution from BSM processes.

Necessity of the simultaneous fit procedure

Pseudodata generated for values of $\mathbf{R}^{2}{ }_{\mathbf{q}}=\mathbf{R}^{2} \mathbf{q}^{\text {True }}$

Pseudodata generated for value of $\mathbf{R}^{2}{ }_{q}=\mathbf{0}$

$\mathbf{R}^{\mathbf{2}}{ }_{\mathbf{q}}$-only procedure results in too strong limits

Limits setting method

Limits are derived in a frequentist approach using the technique of Monte Carlo replicas. Two procedures were used:
> R_{q}-only
> Monte Carlo replicas generated for $\mathrm{R}^{2}{ }_{\mathrm{q}}$ True using ZCIPDFs and $\mathrm{R}^{2}{ }_{\mathrm{q}}$ Fit parameter fitted with PDFs fixed to ZCIPDFs.
> $\mathbf{P D F}+\mathbf{R}_{\mathbf{q}} \quad \begin{aligned} & \text { Monte Carlo replicas generated for } \mathrm{R}^{2}{ }_{\mathrm{q}} \text { True } \text { using ZCIPDFs and }\end{aligned}$ R_{q}^{2} Fit parameter fitted simultaneously with PDFs.

The $P D F+\mathbf{R}_{\mathrm{q}}$ frequentist method was the main analysis method.

Monte Carlo replicas

Monte Carlo replicas of the cross-section measurements were calculated with:

Cross-section prediction from
the ZCIPDF modified with $\mathrm{R}^{2}{ }^{\text {True }}$

Measured cross-section value
 systematic uncertainties

Correlated systematic uncertainties

Random numbers from a normal distribution

Fitted MC replicas for $\mathbf{R}_{\mathrm{q}}{ }^{\text {True }}=\mathbf{0 . 4 8} \cdot \mathbf{1 0} \mathbf{0}^{-16} \mathbf{~ c m}$:
R_{q}-only

PDF $+\mathrm{R}_{\mathrm{q}}$

Rq limits with the MC replicas

R_{q}-only

ZEUS

Rq_{q} limits with the MC replicas

PDF $+\mathrm{R}_{\mathrm{q}}$

ZEUS

Comparison to Data

Neutral Current:

Charged Current:

Phys. Lett. B757 (2016), 468-472

Summary

- Combined HERA inclusive DIS cross-section measurements allow to study the proton substructure at the scales down to $10^{-17} \mathrm{~cm}$.
- The simultaneous analysis of PDFs and quark form factor yield the 95\% C.L. limits of the effective quark radius of

$$
-\left[0.47 \cdot 10^{-16} \mathrm{~cm}\right]^{2} \leq R^{2}{ }_{q} \leq\left[0.43 \cdot 10^{-16} \mathrm{~cm}\right]^{2}
$$

- The simultaneous analysis is necessary since the limits that would be obtained otherwise are too strong by about 10%.

More results of the combined PDFs and BSM analysis were presented by K. Wichmann today at 9:45.

