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Inelasticity Photon virtuality

HERA Collider
● The only existing ep collider (1992 - 2007)
● About 0.5 fb-1 of data per experiment
● Two multi-purpose detectors (H1 + ZEUS) 

Photoproduction

Deep-inelastic
scattering (DIS)

    e±         +    p
27.6 GeV + 920 GeV
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Diffractive photoproduction of the 
isolated photon

(ZEUS)

DESY-17-077 [arXiv:1705.10251] 
submitted to Phys. Rev. D
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Diffractive photoproduction of 
isolated photon

●              → photon may dissociate 
into low mass hadronic system
(structure of such resolved photon 
described by             )

●              →                   (electron 
leaves detector undetected)

Direct photon interaction Resolved photon interaction

Photon momentum fraction 
entering the hard subprocess:
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Diffractive photoproduction of 
isolated photon

● Diffraction → beam proton stays 
intact and leaves detector undetected

● Standardly described by exchange of 
an hadronic object with vacuum 
quantum numbers (pomeron)

Direct Pomeron Resolved Pomeron

:Pomeron momentum fraction 
entering the hard subprocess:
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pe
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forward part
of detector
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hadronic
activity in

forward part
of detector

Non-diffractive
event

pe Diffractive
event

Large Rapidity Gap

η
max

Here H1 detector
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Theoretical predictions

● Resolved pomeron model 
(Ingelman Schlein)

● Implemented in the MC generator 
RAPGAP (LO matrix element + 
LL parton shower + Lund string 
fragmentation)

● Contains direct and resolved 
photon processes

No model for the possible 
direct pomeron interaction 
available

● The partonic structure of the 
resolved pomeron described by
H1 2006 DPDF Fit B (from fits 
of inclusive diffractive DIS)

● The partonic structure of the 
resolved photon described by 
SASGAM-2D ɣPDF

● Non-diffractive background 
simulated by Pythia 6

Diffractive predictions (Resolved pomeron)
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Photoproduction

Event selection

Photon Jet

Diffraction

Forward detector’s region 
without hadronic activity 

Nondiffractive background

● Veto on scattered electron
● Diffractive events dominate for 

small pomeron momentum 
fraction wrt proton xIP+ large 
rapidity gap
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Extraction of prompt photons signal

● Template fit to obtain the signal 
and background contribution

● Background mainly from 

● Width of the photon candidate 
cluster in the beam direction in 
units of cell width 

● 90% of photon candidate  
energy required to be
measured in EM
calorimeter

Gamma
events

Gamma+jet
events

HERA I  (82 pb-1) 91 76

HERA II (374 pb-1) 366 311

Background
~2 cells hit

equally
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Direct pomeron exchange?

● The zIP < 0.9 region well 
described by MC both in 
shape and normalization

● The zIP > 0.9 region
overshot in data

Rapgap reweighted:
MC reweighted 
separately for zIP < 0.9 
and zIP > 0.9 to data

Resolved pom. Direct pom.

Resolved pomeron model
prediction

Direct pomeron interactions?

Photon + jet
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Prompt photon transverse momentum
● Shape of the gamma transverse momentum well described by 

MC prediction (MC always normalized to data)

● 85% of events with prompt photon contain jet as well

Prompt photons with jetPrompt photons
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Spectrum of xIP
● The relative energy loss of the leading proton 

with respect to the incoming beam proton 
(~1%)

● As leading proton directly not measured, 
reconstructed from EFO Prompt photons
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Direct vs Resolved pomeron
Direct pomeron 

enriched (                 )
Resolved pomeron

enriched (                 )

Direct photon
enriched

Resolved photon
enriched

Gamma/jet pT 
balance

Photon 
momentum 
fraction entering 
hard process

Photon + jet
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Conclusion 1
● The first measurement of diffractively produced 

prompt photon
● The peak in        distribution suggests direct pomeron 

interactions (occurring mostly in direct photon 
interactions)

● Other distributions well described by MC prediction
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Extraction of       at NNLO from jet 
cross sections in DIS

(H1)

H1prelim-17-031
[http://www-h1.desy.de/publications/H1preliminary.short_list.html]

DESY-16-200 Eur.Phys.J.C77 (2017) 4, 215 [arxiv:1611.03421]
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NNLO       fit of H1 jets data in DIS
Why       ?

● Among the least known SM 
parameters

● Great importance for LHC 
physics

Why now?
● NNLO revolution in the last years 
● NNLO predictions now available 

for both pp and ep dijets
● LHC has not fitted their jet data 

with NNLO yet

Dijet DIS production at H1

First NNLO       fit of the jet ep data

[PDG16]
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NNLO calculations

A bit of history
● 1973 Asymptotic freedom of QCD
● 1993 NLO studies of DIS jets
● 2016 NNLO corrections for DIS 

jets

real-real real-virtual

virtual-virtual

● New NNLO predictions for ep dijets 
based on antenna subtraction
J. Currie, T. Gehrmann, A. Huss and J. 
Niehues, JHEP 07 (2017) 018, [1703.05977]

● Matrix element tables precalculated 
by NNLOJET program
(~1M CPU hours)

● Then convoluted with PDFs and       
 using fastNLO (<1s)

✔ Real-real + real-virtual 
crosschecked with 
NLOJET++ & SHERPA
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H1 Data – Dijets
Double-diff.

●       and 
● Mean dijet 

jets found in
with kT algo (R=1)

NLO predictions
● NNPDF 3.0 NLO
● Larger scale unc.
● Chi2/ndf = 1.4

NNLO predictions
● NNPDF 3.0 NNLO
● Smaller scale unc.
● Chi2/ndf = 0.6
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H1 Data – Inclusive jets
Double-diff.

●       and 
● Mean dijet 

jets found in
with kT algo (R=1)

NLO predictions
● NNPDF 3.0 NLO
● Larger scale unc.
● Chi2/ndf = 1.7

NNLO predictions
● NNPDF 3.0 NNLO
● Smaller scale unc.
● Chi2/ndf = 1.3



20

Scale dependence
● The NNLO predictions depend less on the 

renormalization scale (=have smaller theor. unc.)

● To estimate the uncertainty the scale varied up and 
down by the factor of 2

● As a scale we use Others functional 
forms also tested
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Functional form of the scale
● 7 possible function studied
● NNLO         is usually 

smaller than the NLO one
● The NNLO chi2 is usually 

better
● NNLO scale unc. is smaller

All data above mb threshold used
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Original PDFs from scale
evolved to higher/lower scales by
DGLAP with 

     in PDF and      in ME
● Alpha strong affecting both, 

PDFs and matrix element
● Both effects considered,

      in ME more prominent

DGLAP equations

PDFs at scale                        very 
well constrained by lot of data 
→        - “independent”
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Independent fitting of two 
● The alpha strong from PDF and ME consistent
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Which data use in the fit?
● The scale uncertainty gets 

higher with smaller scales

(                            )

● We use only data

Small          → high theor. unc.
Large          → high exp. unc. Compromise 
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Running of alpha strong

← PETRA
← LEP
← LEP

← LHC

← HERA
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History of Alpha Strong
● The current world average 

value
● Mostly driven by lattice and 

tau-decays
● From LHC the most precise 

estimate is from ttbar (NNLO)

[PDG16]

At least NNLO fits [PDG16]
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● Consistent with the “world 
average value”

● Consistent with       from global 
PDF fits

● The NNLO reduces the scale 
uncertainty by half

● The theoretical scale 
uncertainty still dominant

Data unc.

Hadronisation

NNPDF 3.1
unc.

NNPDF 3.1
       variants

PDFs from 5
collaborations

Measured alpha strong value

Scale unc.
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Conclusion 2
● The       from the jet DIS data estimated with NNLO 

precision for the first time
● The obtained value competitive with LHC and LEP 

measurements
● The uncertainty of H1 data even now smaller than 

the theoretical one → waiting for N3LO

H1 NNLO jets

S. Bethke, Nucl.Part.Phys.Proc. 282-284 (2017) 149-152
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