

Latest tests of hard QCD at HERA

Oleksandr Zenaiev (DESY) on behalf of the H1 and ZEUS collaborations

18th Lomonosov Conference, MSU, 23-30 August 2017

Experimental set-up

HERA Collider

- ep collisions
- $\sqrt{s} = 300 \dots 318 \text{ GeV}$ and lower energy runs

H1 and ZEUS:

- 4π multipurpose detectors
- $\mathcal{L} \sim 500 \text{ pb}^{-1}$ per each experiment

$$E_p = 920 \, GeV \qquad E_e = 27.5 \, GeV$$

$$\sqrt{s} = 318 \, GeV$$

Kinematics

Any two of the variables (Q^2, x, y) define kinematics

 $Q^2 > 1 \ GeV^2$ — deep inelastic scattering (DIS) $Q^2 < 1 \ GeV^2$ — photoproduction processes (PHP)

New results from HERA covered in this talk:

• H1 and ZEUS Collaborations,

"Combination and QCD analysis of beauty and charm production cross section measurements in deep inelastic ep scattering at HERA" [preliminary] H1prelim-17-071, ZEUS-prel-17-01 https://www.desy.de/h1zeus/combined_results/index.php?do=heavy_flavours

• H1 Collaboration,

"Measurement of Jet Production Cross Sections in Deep-inelastic ep Scattering at HERA" EPJ C77 (2017) 215, EPJ C75 (2015) 65, H1prelim-17-031

• ZEUS Collaboration, "Further measurements of isolated photons accompanied by jets in deep inelastic ep scattering" [preliminary] ZEUS-prel-16-001

Overview

New results from HERA covered in this talk:

 H1 and ZEUS Collaborations,
 "Combination and QCD analysis of beauty and charm production cross section measurements in deep inelastic ep scattering at HERA" [preliminary] H1prelim-17-071, ZEUS-prel-17-01
 https://www.desy.de/h1zeus/combined_results/index.php?do=heavy_flavours

• H1 Collaboration,

"Measurement of Jet Production Cross Sections in Deep-inelastic ep Scattering at HERA" EPJ C77 (2017) 215, EPJ C75 (2015) 65, H1prelim-17-031

• ZEUS Collaboration, "Further measurements of isolated photons accompanied by jets in deep inelastic ep scattering" [preliminary] ZEUS-prel-16-001

Heavy flavour (HF) production in DIS

Production is directly sensitive to g PDF in the proton and to HQ masses

PDF: parton distribution functions ME: (hard) matrix element FF: fragmentation function & fraction

pQCD approximation of heavy flavour production

Fixed Flavour Number Scheme (FFNS)

 $\bullet\,$ c,b-quarks are massive $\Rightarrow\,$ not a part of the proton, produced perturbatively in hard scattering

• valid for
$$Q^2 \sim m_{c,b}^2$$

Zero Mass Variable Flavour Number Scheme (ZMVFNS)

• c,b-quarks are massless \Rightarrow a part of the proton

• valid for
$$Q^2 >> m^2_{c,b}$$

General Mass Variable Flavour Number Scheme (GMVFNS)

- equivalent to FFNS at low Q^2
- equivalent to ZMVFNS at high Q^2
- not unique (RT, ACOT, ...)

detailed discussion in [EPJ C73 (2013) 2311]

Input data

Data set		Tagging	Q^2 range		N_c	L	\sqrt{s}	N_b
			[Ge	V^2]		$[pb^{-1}]$	[GeV]	
1	H1 VTX [8]	VTX	5 –	2000	29	245	318	12
2	H1 D*+ HERA-I [9]	D^{*+}	2 -	100	17	47	318	
3	H1 D^{*+} HERA-II (medium Q^2) [10]	D^{*+}	5 –	100	25	348	318	
4	H1 D^{*+} HERA-II (high Q^2) [11]	D^{*+}	100 -	1000	6	351	318	
5	ZEUS D*+ 96-97 [12]	D^{*+}	1 –	200	21	37	300	
6	ZEUS D*+ 98-00 [13]	D^{*+}	1.5 –	1000	31	82	318	
7	ZEUS D ⁰ 2005 [14]	D^0	5 –	1000	9	134	318	
8	ZEUS µ 2005 [7]	μ	20 -	10000	8	126	318	8
9	ZEUS D ⁺ HERA-II [2]	D^+	5 –	1000	14	354	318	
10	ZEUS D*+ HERA-II [3]	D^{*+}	5 –	1000	31	363	318	
11	ZEUS VTX HERA-II [4]	VTX	5 –	1000	18	354	318	17
12	ZEUS e HERA-II [5]	е	10 -	1000		363	318	9
13	ZEUS μ + jet HERA-I [6]	μ	2 -	3000		114	318	11

(corresponding references can be found in backup)

- Combined reduced cross sections: $\sigma_{\text{red}}^{Q\bar{Q}} = \frac{\mathrm{d}^2 \sigma^{Q\bar{Q}}}{\mathrm{d}x_{\text{Bi}}\mathrm{d}Q^2} \cdot \frac{x_{\text{Bj}}Q^4}{2\pi\alpha^2 (1+(1-y)^2)}$
- Combined data provided in kinematic range: $2.5 \le Q^2 \le 2000 \text{ GeV}^2$, $3 \times 10^{-5} \le x_{\text{Bj}} \le 5 \times 10^{-2}$
- Input 209 c, 52 b data points \Rightarrow combined 52 c, 27 b points
- Extends previous HERA charm combination with 3 new c data sets and 5 new b: first combination of HERA b data

Combined data

BACKUP. Combined data

CHARM

Significantly improved precision compared to input measurements

Theoretical predictions compared to combined data

Predictions calculated with OPENQCDRAD interfaced in xFitter

www-zeuthen.desy.de/ \sim alekhin/OPENQCDRAD

www.xfitter.org

- input PDFs: HERAPDF2.0FF3A, ABM11, ABMP16, or fitted
- NLO or approx. NNLO as implemented in OPENQCDRAD
- $\mu_f = \mu_r = \sqrt{Q^2 + 4m_Q^2}$, varied by factor 2 (dominant unc.)
- $m_c(m_c) = 1.27 \pm 0.03$ GeV, $m_b(m_b) = 4.18 \pm 0.03$ GeV [PDG2016], or fitted

FFN scheme, $n_f = 3$: reliable in this kinematic range

Overall reasonable description, some x slope at low and medium Q^2

Theoretical predictions compared to combined data

Predictions calculated with OPENQCDRAD interfaced in xFitter

www-zeuthen.desy.de/ \sim alekhin/OPENQCDRAD

www.xfitter.org

- input PDFs: HERAPDF2.0FF3A, ABM11, ABMP16, or fitted
- NLO or approx. NNLO as implemented in OPENQCDRAD
- $\mu_f = \mu_r = \sqrt{Q^2 + 4m_Q^2}$, varied by factor 2 (dominant unc.)
- $m_c(m_c) = 1.27 \pm 0.03$ GeV, $m_b(m_b) = 4.18 \pm 0.03$ GeV [PDG2016], or fitted

FFN scheme, $n_f = 3$: reliable in this kinematic range

Overall reasonable description, some x slope at low and medium Q^2 Small sensitivity to PDFs, appr. NNLO do not improve description

QCD analysis of combined charm and beauty data

Similar to HERAPDF2.0 FF:

- performed using xFitter [www.xfitter.org]
- inclusive HERA data + new combined c&b data
- NLO DGLAP [QCDNUM] and matrix elements [OPENQCDRAD], $n_f = 3$

•
$$\mu_f = \mu_r = \sqrt{Q^2 + 4m_Q^2}$$
 varied by factor 2 (model unc.)

• free $m_c(m_c)$, $m_b(m_b)$

•
$$\alpha_s(M_Z)^{n_f=3} = 0.106 \ (\to \alpha_s(M_Z)^{n_f=5} = 0.118)$$

- HERAPDF parametrisation, 14p
- fit uncertainty using $\Delta\chi^2=1$
- model and parametrisation uncertainties

 $m_c(m_c) = 1290^{+46}_{-41}(\text{fit})^{+62}_{-14}(\text{mod})^{+7}_{-31}(\text{par}) \text{ MeV}$ $m_b(m_b) = 4049^{+104}_{-109}(\text{fit})^{+90}_{-32}(\text{mod})^{+1}_{-31}(\text{par}) \text{ MeV}$ \Rightarrow determined precise HQ masses consistent with world average

PDG2016: $m_c(m_c) = 1270 \pm 30$ MeV, $m_b(m_b) = 4180^{+40}_{-30}$ MeV

Running of m_c from HERA DIS data

Gizsko et al., arXiv:1705.08863 (work partially done within scope of PROSA, ZEUS and H1 collaborations)

μ [GeV]

Overview

New results from HERA covered in this talk:

• H1 and ZEUS Collaborations,

"Combination and QCD analysis of beauty and charm production cross section measurements in deep inelastic ep scattering at HERA" [preliminary] H1prelim-17-071, ZEUS-prel-17-01

https://www.desy.de/h1zeus/combined_results/index.php?do=heavy_flavours

 H1 Collaboration,
 "Measurement of Jet Production Cross Sections in Deep-inelastic ep Scattering at HERA"
 EPJ C77 (2017) 215, EPJ C75 (2015) 65, H1prelim-17-031

• ZEUS Collaboration, "Further measurements of isolated photons accompanied by jets in deep inelastic ep scattering" [preliminary] ZEUS-prel-16-001

H1 multijet production in NC DIS

QCDC

- Breit frame: separates QCD processes from EW
- QCD jets at LO are produced via Boson-Gluon Fusion (BGF) and QCD Compton (QCDC): \rightarrow probe $g \cdot \alpha_S$ at LO

• Jets are reconstructed using k_T algorithm

• Phase space:

DIS:	$5.5 < Q^2 < 80 { m ~GeV^2}$
	0.2 < y < 0.6
inclusive jets	$\begin{array}{l} 4.5 < p_T^{\rm jet} < 50 {\rm GeV} \\ -1.0 < \eta^{\rm lab} < 2.5 \end{array}$
dijets	$5.0 < \left< p_T^{\rm jet} \right>_2 < 50 ~{\rm GeV}$
trijets	$5.5 < \left< p_T^{\rm jet} \right>_3 < 40 ~{\rm GeV}$

+ extension of high- Q^2 meas. [EPJ C75 (2015) 65]

• Simultaneous unfolding of (multi)jet and NC DIS events, respecting all statistical correlations

15/25

H1 inclusive jets: comparison to theoretical predictions

- High precision data over the whole kinematic range!
- Good description by QCD predictions

 $\begin{array}{l} 150 < Q^2 < 15000 \ {\rm GeV}^2 \\ 0.2 < y < 0.7 \\ 5 < p_T^{\rm jet} < 50 \ {\rm GeV} \\ -1.0 < \eta^{\rm lab} < 2.5 \\ [{\rm EPJ}\ {\rm C75}\ (2015)\ 65] \end{array}$

H1 inclusive jets: comparison to theoretical predictions

 Ratio to NLO

 $5.5 < Q^2 < 80 \text{ GeV}^2$

 0.2 < y < 0.6

 $4.5 < p_T^{\text{jet}} < 50 \text{ GeV}$

 $-1.0 < \eta^{\text{lab}} < 2.5$ [EPJ C77 (2017) 215]

NNLO calculations [PRL 117 (2016) 042001]:

- improved shape
- reduced scale unc. at high scales

$$\begin{split} &150 < Q^2 < 15000 \,\, \mathrm{GeV}^2 \\ &0.2 < y < 0.7 \\ &5 < p_T^{\mathrm{jet}} < 50 \,\, \mathrm{GeV} \\ &-1.0 < \eta^{\mathrm{lab}} < 2.5 \\ &[\mathrm{EPJ}\ \mathrm{C75}\ (2015)\ 65] \end{split}$$

O. Zenajev

Latest tests of hard QCD at HERA

Dijets / NC DIS / NLO

Trijets / NC DIS / NLO

- Experimental systematic unc. partially cancel in ratio Jets / NC DIS
- Improved description of dijets shape by NNLO calculations

H1 multijets: extraction and running of $lpha_S$ at NNLO

H1 Collaboration and V. Bertone, J. Currie, T. Gehrmann, C. Gwenlan, A. Huss, J. Niehues, M. Sutton

Fit to inclusive and dijet data: $\chi^2/n_{
m dof}=1.03$, $n_{
m dof}=203$

 $lpha_{S}(m_{Z}) = 0.1157(6)_{
m exp}(3)_{
m had}(6)_{
m PDF}(12)_{
m PDF} lpha_{S}(2)_{
m PDFset} inom{+27}{-21}_{
m scale}$

Overview

New results from HERA covered in this talk:

• H1 and ZEUS Collaborations,

"Combination and QCD analysis of beauty and charm production cross section measurements in deep inelastic ep scattering at HERA" [preliminary] H1prelim-17-071, ZEUS-prel-17-01 https://www.desy.de/h1zeus/combined_results/index.php?do=heavy_flavours

• H1 Collaboration,

"Measurement of Jet Production Cross Sections in Deep-inelastic ep Scattering at HERA" EPJ C77 (2017) 215, EPJ C75 (2015) 65, H1prelim-17-031

• ZEUS Collaboration, "Further measurements of isolated photons accompanied by jets in deep inelastic ep scattering" [preliminary] ZEUS-prel-16-001

ZEUS isolated photons in DIS

ZEUS-prel-16-001, complements ZEUS publication PLB 715 (2012) 88: new variables

Isolated (prompt) photons can be radiated from:

- quarks (QQ): part of hard process, provide insights into QCD
- leptons (LL)

Phase space:

- ${\sf DIS} ~~10 < Q^2 < 350 ~{\rm GeV^2}$
- $\begin{array}{ll} \gamma & \quad 4 < E_T^\gamma < 15 \, \, \mathrm{GeV} \\ -0.7 < \eta^\gamma < 0.9 \end{array}$
- jet $2.5 < E_T^{\rm jet} < 35~{\rm GeV} \\ -1.5 < \eta^{\rm jet} < 1.8$

ZEUS isolated photons in DIS: signal/background separation

 \Rightarrow calorimeter granularity was used to separate prompt γ (QQ and LL) from hadronic background (e.g. $\pi^0 \rightarrow \gamma\gamma$)

ZEUS isolated photons in DIS: comparison to MC models

ZEUS preliminary

Djangoh (LL) + Pythia (QQ):

- QQ contrbution scaled by 1.6
- LL contribution taken as predicted

 \rightarrow good description for all variables

•
$$x_{\gamma} = \frac{E^{\gamma} - p_{x}^{\gamma} + E^{\text{jet}} - p_{z}^{\text{jet}}}{2E_{e}y_{JB}}$$
•
$$x_{p} = \frac{E^{\gamma} + p_{x}^{\gamma} + E^{\text{jet}} + p_{z}^{\text{jet}}}{2E_{p}}$$
•
$$\Delta \phi = \phi^{\text{jet}} - \phi^{\gamma}$$
•
$$\Delta \eta = \eta^{\text{jet}} - \eta^{\gamma}$$
•
$$\Delta \phi_{e,\gamma} = \phi^{e} - \phi^{\gamma}$$
•
$$\Delta \eta_{e,\gamma} = \eta^{e} - \eta^{\gamma}$$

23/25

O. Zenaiev

Latest tests of hard QCD at HERA

ZEUS isolated photons in DIS: comparison to QCD predict.

ZEUS Preliminary 16-001

- NLO collinear factorisation by Aurenche, Fontannaz and Guillet (AFG) [1704.08074]
 → describe all variables well
- k_T-factorisation by Baranov, Lipatov and Zotov (BLZ) [PRD81 (2010) 094034]
 - \rightarrow fair agreement, except x_{γ}

Summary

New preliminary combined HERA HQ data:

- improvement in precision w.r.t previous HERA results on charm
- first combined HERA results on beauty
- enables precise determination of charm and beauty masses

[H1prelim-17-071, ZEUS-prel-17-01]

https://www.desy.de/h1zeus/combined_results/index.php?do=heavy_flavours

Measurement of multijet production by H1:

- high precision data over wide Q^2 , p_T kinematic range
- successfull test of recently appeared NNLO calculations: improved p_T shape at NNLO, smaller scale uncertainties
- ullet enables precise determination and check of running of $lpha_S$

[EPJ C77 (2017) 215, EPJ C75 (2015) 65, H1prelim-17-031]

Measurement of isolated photons by ZEUS:

- good agreement with NLO collinear factorisation predictions
- worser agreement with k_T -factorisation predictions

[ZEUS-prel-16-001]

H1 and ZEUS continue producing valuable QCD results after 10 years of HERA shutdown!

BACKUP. Measurement of charm production at HERA

"Golden" decay channel $D^* ightarrow D^0(K\pi)\pi_s$

Dedicated H1ZEUS combination: "Combination of differential $D^{*\pm}$ cross-section measurements in deep-inelastic ep scattering at HERA" [JHEP09 (2015) 149]

ZR View

XX View

BACKUP. Measurement of c and b production at HERA

Recent reviews of HF production at HERA:

- O. Behnke, A. Geiser, M. Lisovyi, "Charm, Beauty and Top at HERA", Prog. Part. Nucl. Phys. 84 (2015) 1
- O.Z., "Charm Production and QCD Analysis at HERA and LHC ", Eur. Phys. J. C77 (2017) 151

BACKUP. Combination procedure

- fiducial cross sections extrapolated to full phase space using consistent NLO predictions [HVQDIS], account for relevant unc.
- combined at the level of **reduced cross sections** $\sigma_{\text{red}}^{c\bar{c}}$, $\sigma_{\text{red}}^{b\bar{b}}$ $\sigma_{\text{red}}^{Q\bar{Q}} = \frac{d^2 \sigma^{Q\bar{Q}}}{dx_{\text{Bj}} dQ^2} \cdot \frac{x_{\text{Bj}}Q^4}{2\pi\alpha^2 (1+(1-\underline{y})^2)}$ (full phase space) $(Q\bar{Q} \text{ stands either for } c\bar{c} \text{ or } b\bar{b})$
- $\bullet\,$ combination accounts for correlation of systematic uncertainties, as well as correlation of c and b from same measurements
- \Rightarrow significant improvement in precision via cross calibration of different measurement techniques and c/b

Combined using HERAverager program

[https://wiki-zeuthen.desy.de/HERAverager] well established combination method used in:

- previous HERA charm combination [EPJ C73 (2013) 2311]
- HERAPDF2.0 [EPJ C75 (2015) 580]
- ATLAS papers [1603.09222, 1512.02192, 1606.01736, 1612.03016]

BACKUP. Input data

- [2] H. Abramowicz et al. [ZEUS Collaboration], "Measurement of D[±] Production in Deep Inelastic ep Scattering with the ZEUS detector at HERA", JHEP 05, (2013) 023 [arXiv:1302.5058].
- [3] H. Abramowicz *et al.* [ZEUS Collaboration], "Measurement of D^{r±} Production in Deep Inelastic Scattering at HERA", JHEP 05, (2013) 097 [arXiv:1303.6578]. Erratum-ibid JHEP 02, (2014) 106.
- [4] H. Abramowicz et al. [ZEUS Collaboration], "Measurement of beauty and charm production in deep inelastic scattering at HERA and measurement of the beauty-quark mass", JHEP 09, (2014) 127 [arXiv:1405.6915].
- [5] H. Abramowicz et al. [ZEUS Collaboration], "Measurement of beauty production in deep inelastic scattering at HERA using decays into electrons", Eur. Phys. J. C71, (2011) 1573 [arXiv:1101.3692].
- [6] H. Abramowicz et al. [ZEUS Collaboration], "Measurement of beauty production in DIS and F2bb extraction at ZEUS", Eur. Phys. J. C69, (2010) 347 [arXiv:1005.3396].
- [7] S. Chekanov et al. [ZEUS Collaboration], "Measurement of charm and beauty production in deep inelastic ep scattering from decays into muons at HERA", Eur. Phys. J. C65, (2010) 65 [arXiv:0904.3487].
- [8] F. D. Aaron et al. [H1 Collaboration], "Measurement of the Charm and Beauty Structure Functions using the H1 Vertex Detector at HERA", Eur. Phys. J. C65, (2010) 89 [arXiv:0907.2643].
- [9] A. Aktas et al. [H1 Collaboration], "Production of D*+- Mesons with Dijets in Deep-Inelastic Scattering at HERA", Eur. Phys. J. C51, (2007) 271 [hep-ex/0701023].
- [10] F. D. Aaron et al. [H1 Collaboration], "Measurement of D^{±±} Meson Production and Determination of F₂^{cbarn} at low Q2 in Deep-Inelastic" Eur. Phys. J. C71, (2011) 1769 [arXiv:1106.1028].
- [11] F. D. Aaron et al. [H1 Collaboration], "Measurement of the D*+- Meson Production Cross Section and F(2)**(c c-bar), at High Q**2, in ep Scattering at HERA", Phys. Lett. B686, (2010) 91 [arXiv:0911.3989].
- [12] J. Breitweg et al. [ZEUS Collaboration], "Measurement of D*+- production and the charm contribution to F2 in deep inelastic scattering at HERA", Eur. Phys. J. C12, (2000) 35 [hep-ex/9908012].
- [13] S. Chekanov et al. [ZEUS Collaboration], "Measurement of D*+- production in deep inelastic e+- p scattering at HERA", Phys. Rev. D69, (2004) 012004 [hep-ex/0308068].
- [14] S. Chekanov et al. [ZEUS Collaboration], "Measurement of D+- and D0 production in deep inelastic scattering using a lifetime tag at HERA", Eur. Phys. J. C63, (2009) 171 [arXiv:0812.3775].

BACKUP. Combination procedure

- Take measured visible x-section $\sigma_{\rm vis}$ and extrapolate to full phase space $\sigma_{\rm red}$ using consistent NLO setup: $\sigma_{\rm red} = \sigma_{\rm vis} \frac{\sigma_{\rm red}^{\rm NLO}}{\sigma_{\rm NLO}}$ [HVQDIS]
- Combine $\sigma_{\rm red}$ accounting for bin-to-bin correlations [HERAverager]

NLO setup for extrapolation as in [DESY-12-172]

- pole masses $m_c = 1.5 \pm 0.15$ GeV, $m_b = 4.5 \pm 0.25$ GeV consistent with extracted from data: $m_c = 1.43 \pm 0.04$ GeV, $m_b = 4.35 \pm 0.11$ GeV and consistent with PDG: $m_c = 1.67 \pm 0.07$ GeV, $m_b = 4.78 \pm 0.06$ GeV
- $\mu_R = \mu_F = \sqrt{Q^2 + 4m_Q^2}$, varied simultaneously by factor 2
- $\alpha_s^{n_f=3}(M_Z) = 0.105 \pm 0.002 \ [\alpha_s^{n_f=5}(M_Z) = 0.116 \pm 0.002]$
- HERAPDF1.0 FFNS, n_f = 3, assign 2% uncor. unc. (checked vs HERAPDF2.0: see backup)
- c fragmentation: Kartvelishvili frag. function parametrised as step function with k_T kink (H1, ZEUS meas. [DESY-08-080, DESY-08-209])
- *b* fragmentation: Peterson $\epsilon_b = 0.0035 \pm 0.0020$ [NP B565 (2000) 245]
- charm fragmentation fractions [EPJ C76 (2016) 397]
- branching ratios PDG2016
- hadronisation uncertainties for data with jets in the final state

BACKUP. Combined data

BEAUTY

Significantly improved precision compared to input measurements

BACKUP. Data combination

$$\chi^{2}(\mathbf{m}, \mathbf{b}) = \sum_{e=1}^{N_{e}} \sum_{i=1}^{N_{m}} \frac{\left(m_{i} - \sum_{j=1}^{N_{s}} \Gamma_{i}^{e, j} b^{e, j} - \mu_{i}^{e}\right)^{2}}{\sigma_{i}^{e^{2}}} + \sum_{j=1}^{N_{s}} b^{e, j^{2}}$$

Minimised in iterative procedure

BACKUP. Theoretical predictions compared to data

Predictions calculated with OPENQCDRAD interfaced in xFitter

www-zeuthen.desy.de/ \sim alekhin/OPENQCDRAD

www.xfitter.org

- input PDFs: HERAPDF2.0FF3A, ABM11, ABMP16, or fitted
- NLO or approx. NNLO as implemented in OPENQCDRAD
- $\mu_f = \mu_r = \sqrt{Q^2 + 4m_Q^2}$, varied by factor 2 (dominant unc.)
- $m_c(m_c) = 1.27 \pm 0.03$ GeV, $m_b(m_b) = 4.18 \pm 0.03$ GeV [PDG2016], or fitted

FFN scheme, $n_f = 3$: reliable in this kinematic range

Overall reasonable description, some x slope at low and medium Q^2 Same in previous H1ZEUS charm combination, but within larger unc.

BACKUP. Theoretical predictions compared to data

Predictions calculated with OPENQCDRAD interfaced in xFitter

www-zeuthen.desy.de/ \sim alekhin/OPENQCDRAD

www.xfitter.org

- input PDFs: HERAPDF2.0FF3A, ABM11, ABMP16, or fitted
- NLO or approx. NNLO as implemented in OPENQCDRAD
- $\mu_f = \mu_r = \sqrt{Q^2 + 4m_Q^2}$, varied by factor 2 (dominant unc.)
- $m_c(m_c) = 1.27 \pm 0.03$ GeV, $m_b(m_b) = 4.18 \pm 0.03$ GeV [PDG2016], or fitted

FFN scheme, $n_f = 3$: reliable in this kinematic range

BEAUTY HERA (prel.) O HERAPDF2.0 FF3A H1 and ZEUS appr. NNLO ABMP16 II O ARM11 preliminary NLO fit DIS + c + b 5^{bb} $Q^2 = 2.5 \text{ GeV}^2$ $Q^2 = 5 \text{ GeV}^2$ $Q^2 = 7 \text{ GeV}^2$ 0.01 0.005 $Q^2 = 18 \text{ GeV}^2$ $Q^2 = 32 \text{ GeV}^2$ = 12 GeV² 0.04 0.02 Q² = 120 GeV² $Q^2 = 60 \text{ GeV}^2$ $Q^2 = 200 \text{ GeV}^2$ 0.04 0.02 $Q^2 = 350 \text{ GeV}^2$ $Q^2 = 650 \text{ GeV}^2$ Q² = 2000 GeV² 0.04 0.02 10⁻⁴ 10⁻³ 10⁻⁴ 10⁻³ 10⁻² 10⁻⁴ 10⁻³ 10⁻² 10⁻²

Overall good description within data uncertainties

BACKUP. Theoretical predictions compared to data

Predictions calculated with OPENQCDRAD interfaced in xFitter

www-zeuthen.desy.de/ \sim alekhin/OPENQCDRAD

www.xfitter.org

- input PDFs: HERAPDF2.0FF3A, ABM11, ABMP16, or fitted
- NLO or approx. NNLO as implemented in OPENQCDRAD
- $\mu_f = \mu_r = \sqrt{Q^2 + 4m_Q^2}$, varied by factor 2 (dominant unc.)
- $m_c(m_c) = 1.27 \pm 0.03$ GeV, $m_b(m_b) = 4.18 \pm 0.03$ GeV [PDG2016], or fitted

FFN scheme, $n_f = 3$: reliable in this kinematic range

Overall good description within data uncertainties Small sensitivity to PDFs and higher order corrections

Dataset	PDF	χ^2	χ^2 with PDF unc.
HERA 2012 c [1]	HERAPDF20_NLO_FF3A_EIG	59	59
11ERA 2012 C [1]	abm11_3n_nlo	62	62
(dof = 52)	ABMP16_3_nnlo	64	63
New combined c	HERAPDF20_NLO_FF3A_EIG	86	85
riew comonica e	abm11_3n_nlo	92	91
(dof = 52)	ABMP16_3_nnlo	101	99
ZEUS VTX 6 [4]	HERAPDF20_NLO_FF3A_EIG	14	14
2203 11 0 [4]	abm11_3n_nlo	13	13
(dof = 17)	ABMP16_3_nnlo	14	14
New combined h	HERAPDF20_NLO_FF3A_EIG	33	33
new combined b	abm11_3n_nlo	34	34
(dof = 27)	ABMP16_3_nnlo	39	39

[1] previous HERA charm combination EPJ C73 (2013) 2311

[4] ZEUS *b* lifetime tagging measurement JHEP09 (2014) 127

(most precise individual public data sets for c and b from HERA to date)

Quantitatively confirms observed findings:

- larger tension for new charm data owing to reduced uncertainties
- appr. NNLO does not improve data description compared to NLO
- overall small sensitivity to input PDFs

Similar to HERAPDF2.0 FF, using running HQ mass definition:

- xFitter-1.2.0
- Input data:
 - HERA $e^\pm p$ inclusive data, $Q^2_{\rm min} > 3.5~{\rm GeV}^2~{\rm [1506.06042]}$
 - $\bullet\,$ new HERA c and b combined
- FFNS $n_f = 3$ ('FF ABM RUNM'), $(\alpha_s(F_L) = \alpha_s(F_2))$

•
$$\alpha_s^{n_f=3}(M_Z) = 0.106$$

• free $m_c(m_c)$, $m_b(m_b)$, or PDG $m_c(m_c) = 1.27$ GeV, $m_c(m_c) = 4.18$ GeV

- DGLAP NLO [QCDNUM]
- PDF parametrisation: 14p HERAPDF at $\mu_{f0}^2 = 1.9 \text{ GeV}^2$, $f_s = 0.4$:

$$\begin{split} & xg(x) = A_g x^{B_g} (1-x)^{C_g} - A'_g x^{B'_g} (1-x)^{C'_g} \\ & xu_v(x) = A_{u_v} x^{B_{u_v}} (1-x)^{C_{u_v}} (1+E_{u_v} x^2) \\ & xd_v(x) = A_{d_v} x^{B_{d_v}} (1-x)^{C_{d_v}} \\ & x\bar{U}(x) = A_{\bar{U}} x^{B_{\bar{U}}} (1-x)^{C_{\bar{U}}} (1+D_{\bar{U}} x) \\ & x\bar{D}(x) = A_{\bar{D}} x^{B_{\bar{D}}} (1-x)^{C_{\bar{D}}} \\ \end{split}$$
 $\begin{aligned} & \text{Additional constrains:} \\ & A_{\bar{U}} = A_{\bar{D}} (1-f_s), \ B_{\bar{U}} = B_{\bar{D}}, \ C'_g = 25 \\ & \int_0^1 [\sum_i (q_i(x) + \bar{q}_i(x)) + g(x)] x dx = 1 \\ & \int_0^1 [u(x) - \bar{u}(x)] dx = 2, \\ & \int_0^1 [d(x) - \bar{d}(x)] dx = 1 \end{aligned}$

• fit ($\Delta\chi^2 = 1$), model (scales, α_s , f_s , Q^2_{\min}) and par. (μ_{f0} , $E_{u_v} = 0$) unc.

BACKUP. Discussion of HQ mass extraction

$$m_c(m_c) = 1290^{+46}_{-41}(\text{fit})^{+62}_{-14}(\text{mod})^{+7}_{-31}(\text{par}) \text{ MeV}$$

 $m_b(m_b) = 4049^{+104}_{-109} (\text{fit})^{+90}_{-32} (\text{mod})^{+1}_{-31} (\text{par}) \text{ MeV}$

Results have sizable model and parametrisation uncertainty:

- model uncertainties dominated by scale variations
- parametrisation uncertainties dominated by reduced 13p form: closely related to inclusive HERA data in the fit

Using inclusive HERA data only:

$$n_c(m_c) = 1798^{+144}_{-134}$$
(fit) MeV

$$m_b(m_b) = 8450^{+2280}_{-1810}$$
(fit) MeV

No full uncertainty evaluation, but observed large sensitivity to PDF parametrisation (\rightarrow 13p):

$$m_c(m_c) = 1798 \rightarrow 1450 \text{ MeV},$$

 $m_b(m_b) = 8450 \rightarrow 3995 \text{ MeV}$

$$\begin{split} & xg(x) = A_g x^{Bg} (1-x)^{Cg} - A'_g x^{B'g} (1-x)^{C'g} \\ & xu_v(x) = A_{u_v} x^{B_{u_v}} (1-x)^{C_{u_v}} (1+E_{u_v}) x^2) \\ & xd_v(x) = A_{d_v} x^{B_{d_v}} (1-x)^{C_{d_v}} \\ & x\bar{U}(x) = A_{\bar{U}} x^{B_{\bar{U}}} (1-x)^{C_{\bar{U}}} (1+D_{\bar{U}}x) \\ & x\bar{D}(x) = A_{\bar{D}} x^{B_{\bar{D}}} (1-x)^{C_{\bar{D}}} \end{split}$$

13p: $E_{u_v} = 0$

 \Rightarrow inclusive HERA data alone cannot constrain HQ masses \Rightarrow interplay of PDFs and HQ masses needs carefull treatment

I

BACKUP. $m_c(m_c)$ extraction in FFNS and VFNS

IHEP 1608 (2016) 050	variation	FONLL-C	FFN
51121 1000 (2010) 050	central	1.335 ± 0.043	1.318 ± 0.054
	$Q_0^2 = 1.5$	1.354 [+0.019]	1.329 [+0.011]
0	D_{uv} non-zero	1.340 [+0.005]	1.308 [-0.010]
	$f_s = 0.3$	1.338 [+0.003]	1.320 [+0.002]
	$f_{s} = 0.5$	1.332 [-0.003]	1.315 [-0.003]
vEittor	$\overline{m_b(m_b)} = 3.93 \text{ GeV}$	1.330 [-0.005]	1.312 [-0.006]
XFRIEI	$m_b(m_b) = 4.43 \text{ GeV}$	1.343 [+0.008]	1.324 [+0.006]
	$\alpha_s(M_Z) = 0.1165$	1.342 [+0.007]	1.332 [+0.014]
0	$\alpha_s(M_Z) = 0.1195$	1.329 [-0.006]	1.300 [-0.018]
ADCEI	$\mu_F^2 = \mu_R^2 = 2 \cdot Q^2$	1.347 [+0.012]	1.314 [-0.004]
ACTLL	$\mu_F^2 = \mu_R^2 = Q^2/2$	1.361 [+0.026]	1.363 [+0.045]
	FONLL Damping power $= 1$	1.352 [+0.017]	-
	FONLL Damping power $= 4$	1.327 [-0.008]	-

A determination of $m_c(m_c)$ from HERA data using a matched heavy-flavor scheme

- consistent results obtained in FFNS and FONLL, with somewhat different decomposition of uncertainties
- \Rightarrow VFNS can be used for $\overline{\rm MS}$ mass extraction, if all uncertainties from extra parameters are considered