New measurements of jets in DIS and extraction of α_s at NNLO

Vladimir Chekelian (MPI for Physics, Munich) on behalf of the H1 Collaboration

H1: 0.5 fb⁻¹ of the *ep* collision data with E_e =27.5 GeV and E_p =920/820/575/460 GeV \sqrt{s} =319/300/252/225 GeV

Completion of the jet measurements by the H1 collaboration at HERA:

 new multi-jets cross sections measurements in DIS at low Q² Eur.Phys.J.C77(2017)4,215
 α_s determination at NNLO using jet measurements in DIS by H1 H1prelim-17-031

Jets in deep-inelastic *ep* scattering at HERA

DIS kinematics:

 $Q^2=-q^2=-(e-e')^2$ virtuality x = $Q^2/2(pq)$ Bjorken x y = (pq)/(pe) inelastisity

Breit frame:

Jet production in DIS:

- defined in the Breit frame
 (e.g. k_T algorithm with R=1)
- sensitive to a_s already at LO
- dominated by boson-gluon fusion and directly sensitive to gluon
- leading order for trijets is $O(a_s^2)$

Eur.Phys.J.C77(2017)4,215

New jet measurements in DIS by H1

Inclusive jet, dijet and trijet production cross sections in ep NC DIS at low Q² (Q² < 100 GeV²) with scattered electron in Spacal (E > 10.5 GeV) at high Q² (Q² > 150 GeV²) - an extension to the low P_T bin: $5 < P_T^{\text{jet}} < 7 \text{ GeV}$ - HERA II data (290 pb⁻¹, $\int s = 319 \text{ GeV}$);

- in the Breit frame using k_T algorithm with R=1

- as a function of Q^2 and P_T at the hadron level

 \rightarrow also jet cross sections normalised to inclusive NC DIS

	Low- Q^2 extended	Low-Q ² measurement	High-Q ² measurement
	phase space	phase space	phase space extension
Application	Used for event	Phase space of	Phase space of
	selection and unfolding	jet cross sections	jet cross sections
NC DIS phase space	$3 < Q^2 < 120 \mathrm{GeV}^2$	$5.5 < Q^2 < 80 \mathrm{GeV}^2$	$150 < Q^2 < 15000{ m GeV}^2$
	0.08 < y < 0.7	0.2 < y < 0.6	0.2 < y < 0.7
Phase space common	$-1.5 < \eta_{\text{lab}}^{\text{jet}} < 2.75$	$-1.0 < \eta_{\text{lab}}^{\text{jet}} < 2.5$	$-1.0 < \eta_{lab}^{jet} < 2.5$
for all jets	$P_{\rm T}^{\rm jet} > 3 {\rm GeV}$	$P_{\rm T}^{\rm jet} > 4 {\rm GeV}$	
Inclusive jet	$P_{\rm T}^{\rm jet} > 3 {\rm GeV}$	$4.5 < P_{\rm T}^{\rm jet} < 50 {\rm GeV}$	$5 < P_{\rm T}^{\rm jet} < 7 {\rm GeV}$
			$(7 < P_{\rm T}^{\rm jet} < 50 {\rm GeV}$ published in [26])
Dijet	$N_{\rm jet} \ge 2$	$N_{\rm jet} \ge 2$	
	$\langle P_{\rm T} \rangle_2 > 3 {\rm GeV}$	$5 < \langle P_{\rm T} \rangle_2 < 50 {\rm GeV}$	asymmetric cuts $\langle P_T^{j} \rangle_{2,3} \gg P_T^{jet}$
Trijet	$N_{\text{jet}} \ge 3$	$N_{\text{jet}} \ge 3$	to avoid IR sensitive regions
	$\langle P_{\rm T} \rangle_3 > 3 {\rm GeV}$	$5.5 < \langle P_{\rm T} \rangle_3 < 40 {\rm GeV}$	• in the theory calculations
w x meeting	V. Chekelian, Jets in DIS and		3
ri 14.06.2017	alp	ha sat NNLO	

Simultaneous regularised unfolding of inclusive jets, dijets, trijets and NC DIS

Detector effects like *migrations, acceptance, effiency* are corrected for in **regularised unfolding** by minimising

 $\chi^{2}(x,\tau) = (y - Ax)^{T} V_{y}^{-1} (y - Ax) + \tau L^{T} L$

Hadron level Detector level Covariance matrix Migration matrix Regularisation term

Statistical correlations

х

y V_y

А

τL²

- all stat. correlations are provided
- systematics: total & eight correlated unc.
- normalisation/lumi uncertainty 2.5%
- hadronisation corr. to compare to theory

Low x meeting Bari 14.06.2017

Control distributions

Doble differential dijets cross sections

$\sigma(\text{bin})$ / $\Delta Q^2 \Delta \langle P_T \rangle_2$

- as a function of Q² and $\langle P_T \rangle_2 = (P_T^{jet1} + P_T^{jet2})/2$ with $P_T^{jet1,2} > 4 \text{ GeV}$
 - $\begin{array}{l} 5.5 < Q^2 < 80 \; GeV^2 \\ 5 < \left< P_T \right>_2 < 50 \; GeV \end{array}$
 - compared to calculations at NLO, aNNLO, NNLO (NNPDF3.0, $\alpha_s(m_Z) = 0.118$) multiplied by hadronic corr.
 - → reasonable description
 of the dijet data over
 4-5 orders of magnitude

Low x meeting Bari 14.06.2017

Dijets:

aNNLO & NNLO calculations

Phys.Rev.D92(2015)7,074037 NNLO Rev.Lett.117(2016)042001

aNNLO (approximate NNLO)

- scale unc. from variation of μ_r and μ_f by factors 0.5/2, excluding (0.5,2) and (2,0.5)

→ aNNLO and NNLO improve P_T shape dependence → NNLO reduced scale unc. at high P_T compared to NLO

Low x meeting Bari 14.06.2017

Normalised dijet cross sections

- best suited for possible "PDF+as" fits together with inclusive NC & CC DIS data

Low x meeting Bari 14.06.2017

Double diff. inclusive jet cross sections

 $\sigma(bin) / \Delta Q^2 \Delta P_T^{jet}$ 5.5<Q²<8GeV² New measurements: 06 - low Q²: 5.5 - 80 GeV² $4.5 < P_T < 50 GeV$ 20 30 7 10 5 P_T^{jet} [GeV] - high Q²: 150 - 15000 GeV² 22 < Q² < 30 GeV² $5 < P_T < 7 GeV$ $7 < P_T < 50$ GeV published in 0.6 4 ۵ Eur.Phys.J.C75(2015)2,65 20 30 5 7 10 5 P_T^{jet} [GeV] Similar to dijets: H1 Inclusive jets - scale unc. from variation H1 HERA-II of μ_r and μ_f by factors 0.5/2, H1 HERA-II excluding (0.5,2) and (2,0.5) Eur. Phys. J. C75 (2015) 65 Systematic uncertainty 6 \rightarrow aNNLO and NNLO NLO ⊗ hadr. corr. improve P_T shape dependence ₩ NNLO ⊗ hadr. corr. \rightarrow NNLO

Low x meeting Bari 14.06.2017

compared to NLO

reduced scale unc. at high P_{T}

Normalised inclusive jet cross sections

Similar to dijets:

- scale unc. from variation of μ_r and μ_f by factors 0.5/2, excluding (0.5,2) and (2,0.5)

→ aNNLO and NNLO improve P_T shape dependence → NNLO reduced scale unc. at high P_T compared to NLO

Low x meeting Bari 14.06.2017

Trijet cross sections $\langle P_T \rangle_3 = (P_T^{jet1} + P_T^{jet2} + P_T^{jet3})/3$

 \rightarrow good description of the data by calculations at NLO \rightarrow NNLO is not available yet

Low x meeting Bari 14.06.2017

Extraction of α_s at NNLO from jet data in DIS

H1prelim-16-031 H1 collaboration and V.Bertone, J.Currie, T.Gehrmann, C.Gwenlan, A.Huss, J.Niehues, M.Sutton

Input jet data in DIS: 5 inclusive jet sets and 4 dijet sets published by H1

Jet cross section
$$\sigma_i = \sum_{n=1}^{\infty} \sum_{k=g,q,\overline{q}} \int dx f_k(x,\mu_F) \hat{\sigma}_{i,k}^{(n)}(x,\mu_R,\mu_F) \cdot c_{\mathrm{had},i}$$
& α_s -dependence: $\sigma_i = \sum_{n=1}^{\infty} \sum_{k=g,q,\overline{q}} \int dx f_k(x,\mu_F) \hat{\sigma}_{i,k}^{(n)}(x,\mu_R,\mu_F) \cdot c_{\mathrm{had},i}$

NNLO calculations for ep DIS jet production (2016):

using antenna subtraction technique

J. Currie et al., Rev.Lett.117(2016)042001; arXiv:1703.05977

Low x meeting Bari 14.06.2017

Input H1 jet data compared to α_s NNLO fit

Scale dependence of jet cross sections at NNLO

Scales (renormalisation and factorisation) are chosen to be

$$\mu_R^2 = \mu_F^2 = Q^2 + P_T^2$$

- scale dependence by varying multiplicative factors to $\mu_{\rm R}$, $\mu_{\rm F}$ in four phase space domains (low & high μ , incl.jets & dijets)

- → reduction of scale dependency at NNLO compared to NLO
- → still relevant scale dependence at NNLO at low scales

- $\mu_{\rm F}$ dependence small (green band)

Low x meeting Bari 14.06.2017

Methodology of the $\alpha_s(m_Z)$ determination

The strong coupling constant is determined in a fit of theory to jet data with free parameter $\alpha_{s}(m_{Z})$ by minimizing χ^{2} based on log-normal probabilities

$$\chi^{2} = \sum_{i,i} \log \frac{\varsigma_{i}}{\sigma_{i}} (V_{exp} + V_{had} + V_{PDF})_{ij}^{-1} \log \frac{\varsigma_{j}}{\sigma_{j}}$$

$$\varsigma = \text{Data, } \sigma_{i} = \text{NNLO, V} = \text{covariance matrices}$$

- experimental uncertainties (stat. & syst.)
- scale uncertainty (varying multiplicative factors to $\mu_{\rm R,F}$ by 0.5,2)
- PDF uncertainties (repeating fits without V_{PDF} in χ^2)
- hadronisation unc. (repeating fits without V_{had} in χ^2)

Theory: α_s dependences of the jet cross sections (factorisation theorem)

$$\sigma_i = \sum_{n=1}^{\infty} \sum_{k=g,q,\overline{q}} \int dx f_k(x,\mu_F) \hat{\sigma}_{i,k}^{(n)}(x,\mu_R,\mu_F) \cdot c_{\text{had},i}$$

explicit dependence in hard ME:

$$\hat{\sigma}_{i,k}^{(n)} = \alpha_s^n(\mu_R) \tilde{\sigma}_{i,k}^{(n)}(x,\mu_R,\mu_F)$$

perturbative expansion in orders of $\alpha_{\!_{\rm S}}$

Low x meeting Bari 14.06.2017 V. Chekelian, Jets in DIS and alpha_s at NNLO

implicit dependence in PDFs:

 $\frac{\frac{\partial f}{\partial \alpha_{\rm s}}}{\frac{\partial \sigma_{\rm s}}{\partial \alpha_{\rm s}}} = \frac{\mathcal{P} \otimes f}{\beta}$

splitting kernels
$$\mathcal{P}$$

 $\mu^2 \frac{d\alpha_s}{d\mu^2} = \beta(\alpha_s)$

Variations of the scale and the scale choices

- μ_{R} variation has more impact than μ_{F}
- theory uncertainty related to scale from variation of $\mu_{\rm R}$, $\mu_{\rm F}$ by 0.5 & 2.0

Low x meeting Bari 14.06.2017 V. Chekelian, Jets in DIS and alpha_s at NNLO

- other choices are within scale unc.

compared to NLO

- NNLO has smaller scale uncertainty

Variation of the input PDF sets

 $\alpha_{s}(m_{z}) \equiv \alpha_{s}^{\sigma}(m_{z}) \equiv \alpha_{s}^{f}(m_{z})$ and χ^{2}/ndf from repetitive fits with different input PDF sets as a function of " $\alpha_{s}(m_{z})$ of PDF"

→ different PDF sets obtained for our default α_s(m_Z)=0.118 deliver very stable fit results:

additional PDF unc. "PDFset": ½ max.[Δ(all PDFs at 0.118)]

- → the α_s(m_Z) results are sensitive to input "α_s(m_Z) of PDF"
 - minimum of χ^2 /ndf is obtained around our default value 0.118

additional PDF unc. "PDFa_s": $\frac{1}{2} [\Delta \alpha_s(m_Z)=0.004]$

(2nd largest unc. after scale unc.)

Low x meeting Bari 14.06.2017

Strong coupling from jets in DIS at NNLO

Results for $\alpha_s(m_Z)$ at NNLO using

- 9 individual H1 data sets separatly
- all H1 inclusive jets data
- all H1 dijets data
- all H1 jets (excluding dijets HERA-I since no correlations to incl. jets)

all H1 jet data sets are consistent:

- χ^2 /ndf is around unity for all fits

all $\alpha_s(m_Z)$ results are consistent

H1 jets (203 data points, $\chi^2/ndf=1.03$)

 $\begin{aligned} \alpha_{\rm s}(m_{\rm Z}) &= 0.1157\,(6)_{\rm exp}\,(3)_{\rm had}\,(6)_{\rm PDF} \\ &(12)_{\rm PDF\alpha_{\rm s}}\,(2)_{\rm PDFset}\,(^{+27}_{-21})_{\rm scale} \end{aligned}$

excellent experimental precision
still scale uncertainty is the largest
in agreement with the world average

Low x meeting Bari 14.06.2017

Running of strong coupling using jets at NNLO

Fits are performed for groups of jet data points at similar scales and resulting $\alpha_s(m_Z)$ are transported to the average μ_R of the group

- running of $\alpha_{\rm s}$ in one experiment from 7 to 90 GeV is demonstrated
- in the full range α_s is in agreement with other α_s results at NNLO and the world average with a tendency to be a bit lower
- scale uncertainty is about the same at all $\mu_{\rm R}$ values

Low x meeting Bari 14.06.2017

Conclusions

The last missing piece in the jet measurements by H1 is on place:

	Process	HERA-I	HERA-II
Low Q ²	Inclusive jets Dijets Trijets	Eur.Phys.J.C67 (2010) 1	Eur.Phys.J.C77 (2017) 4,215
High Q ²	Inclusive jets Dijets Trijets	Eur.Phys.J.C65 (2010) 363	Eur.Phys.J.C75 (2015) 2,65

The first determination of the strong coupling constant $\alpha_s(m_Z)$ at NNLO using ep DIS jet data from H1

$$\alpha_{\rm s}(m_{\rm Z}) = 0.1157(6)_{\rm exp}(^{+31}_{-26})_{\rm theo}$$

 \rightarrow very close and nice cooperation of theoreticians and experimentalists

Jets in DIS: precision QCD phenomenology with NNLO accuracy

Low x meeting Bari 14.06.2017