Combined measurement of charm and beauty production in DIS and extraction of $m_{\rm c}$ and $m_{\rm b}$

Achim Geiser, DESY Hamburg for the H1 and ZEUS collaborations (+extensions)

HERA

7FUS

Low-x 2017 Bari, Italy June 14, 2017

The 2 of 11.00 1 -

IntroductionH1prelim-17-071, ZEUS-prel-17-001HERA charm and beauty data combination
Charm and beauty mass fitscompare also talk
0. Zenaiev DIS17Running of masses and Yukawa couplings
ConclusionsarXiv:1705.08863, Pos CHARM2016 (2017) 012

The HERA ep collider and experiments

Heavy flavour contributions to DIS

14. 6. 17

A. Geiser, charm and beauty in DIS, Lowx 17

XBi

Further charm results in DIS: D*, D+, vtx 31157 (2013) 027

Reminder:

- → completes HERA measurements
- → consistent findings

→ will further improve combination, PDF and m_c fits

→ recombine H1 and ZEUS

and add beauty, including c-b-correlations

Data sets to be combined

H1prelim-17-071, ZEUS-prel-17-001

Data set		Tagging	Q^2 range		N_c	L	\sqrt{s}	N_b
			[GeV	V^2]		$[pb^{-1}]$	[GeV]	
1	H1 VTX [8]	VTX	5 –	2000	29	245	318	12
2	H1 D*+ HERA-I [9]	D^{*+}	2 –	100	17	47	318	
3	H1 D^{*+} HERA-II (medium Q^2) [10]	D^{*+}	5 –	100	25	348	318	
4	H1 D^{*+} HERA-II (high Q^2) [11]	D^{*+}	100 -	1000	6	351	318	
5	ZEUS D*+ 96-97 [12]	D^{*+}	1 –	200	21	37	300	
6	ZEUS D*+ 98-00 [13]	D^{*+}	1.5 –	1000	31	82	318	
7	ZEUS D ⁰ 2005 [14] (D ⁺ removed)	D^0	5 –	1000	9	134	318	
8	ZEUS µ 2005 [7]	μ	20 –	10000	8	126	318	8
9	$ZEUS(D^+)$ HERA-II [2]	D^+	5 –	1000	14	354	318	
10	ZEUS D*+ HERA-II [3]	D^{*+}	5 –	1000	31	363	318	
11	ZEUS VTX HERA-II [4]	VTX	5 –	1000	18	354	318	17
12	ZEUS e HERA-II [5]	е	10 –	1000		363	318	9
13	ZEUS μ + jet HERA-I [6]	μ	2 -	3000		114	318	11

- Combined data provided in kinematic range: $2.5 \le Q^2 \le 2000 \text{ GeV}^2$, $3 \times 10^{-5} \le x_{\text{Bj}} \le 5 \times 10^{-2}$
- Input 209 c, 52 b data points \Rightarrow combined 52 c, 27 b points 14. 6. 17 A. Geiser, charm and beauty in DIS, Lowx 17

new points

added

H1prelim-17-071, ZEUS-prel-17-001

BEAUTY

CHARM

 χ^2 /dof = 149/187, including correlations: input data are consistent 14. 6. 17 A. Geiser, charm and beauty in DIS, Lowx 17 7

significantly improved precision compared to individual measurements noticeably (up to ~20%) improved precision compared to previous charm combination, final HERA combination 14. 6. 17 A. Geiser, charm and beauty in DIS, Lowx 17 8

significantly improved precision compared to individual measurements first (and final) HERA beauty DIS combination

Fixed Flavour Number Scheme (FFNS)

- + NLO (+partial NNLO) corrections,
- "natural" scale: $\mu^2 = \mathbf{Q}^2 + 4\mathbf{m}_c^2$

- no charm in proton
- full kinematical treatment of charm mass (multi-scale problem: Q^2 , p_T , m_c -> logs of ratios)
- no resummation of logs 😣
- no extra matching ③ parameters

Theoretical predictions vs. charm

Theoretical predictions calculated using xFitter

ZEUS

[www.xfitter.org]

- input PDFs: HERAPDF2.0FF3A, ABM11, ABMP16, or fitted
- NLO or approx. NNLO as implemented in OPENQCDRAD
- $\mu_f = \mu_r = \sqrt{Q^2 + 4m_Q^2}$, varied by factor 2 (dominant unc.)

overall reasonable description

• $m_c(m_c) = 1.27 \pm 0.03$ GeV, $m_b(m_b) = 4.18 \pm 0.03$ GeV [PDG2016], or fitted

H1prelim-17-071, ZEUS-prel-17-001

 x_{Bi} slope shallower in theory than in data at low and medium Q^2

14. 6. 17

Comparison to previous combination: charm

Theoretical predictions calculated using xFitter

ZEUS

[www.xfitter.org]

- input PDFs: HERAPDF2.0FF3A, ABM11, ABMP16, or fitted
- NLO or approx. NNLO as implemented in OPENQCDRAD
- $\mu_f = \mu_r = \sqrt{Q^2 + 4m_Q^2}$, varied by factor 2 (dominant unc.)
- $m_c(m_c) = 1.27 \pm 0.03$ GeV, $m_b(m_b) = 4.18 \pm 0.03$ GeV [PDG2016], or fitted

H1prelim-17-071, ZEUS-prel-17-001

same effect as in previous combination, reduced uncertainty -> effect more visible

14. 6. 17

Ratio data/predictions, charm

Theoretical predictions calculated using xFitter

[www.xfitter.org]

- input PDFs: HERAPDF2.0FF3A, ABM11, ABMP16, or fitted
- NLO or approx. NNLO as implemented in OPENQCDRAD
- $\mu_f = \mu_r = \sqrt{Q^2 + 4m_Q^2}$, varied by factor 2 (dominant unc.)
- $m_c(m_c) = 1.27 \pm 0.03$ GeV, $m_b(m_b) = 4.18 \pm 0.03 \text{ GeV}$ [PDG2016], or fitted

overall reasonable description, some x_{B_i} slope differences (as before) approximate NNLO does not improve description 14.6.17

Theoretical predictions vs. beauty

Theoretical predictions calculated using xFitter

[www.xfitter.org]

- input PDFs: HERAPDF2.0FF3A, ABM11, ABMP16, or fitted
- NLO or approx. NNLO as implemented in OPENQCDRAD
- $\mu_f = \mu_r = \sqrt{Q^2 + 4m_Q^2}$, varied by factor 2 (dominant unc.)
- $m_c(m_c) = 1.27 \pm 0.03$ GeV, $m_b(m_b) = 4.18 \pm 0.03$ GeV [PDG2016], or fitted

overall good description (larger data uncertainties, smaller x_{Bi} range)

14. 6. 17

Ratio data/predictions, beauty

Theoretical predictions calculated using xFitter

ZEUS

[www.xfitter.org]

- input PDFs: HERAPDF2.0FF3A, ABM11, ABMP16, or fitted
- NLO or approx. NNLO as implemented in OPENQCDRAD
- $\mu_f = \mu_r = \sqrt{Q^2 + 4m_Q^2}$, varied by factor 2 (dominant unc.)
- $m_c(m_c) = 1.27 \pm 0.03$ GeV, $m_b(m_b) = 4.18 \pm 0.03$ GeV [PDG2016], or fitted

overall good description approx. NNLO corrections + PDF effects are small in measured range

14. 6. 17

Combined inclusive HERA II DIS data

14. 6. 17

A. Geiser, charm and beauty in DIS, Lowx 17

QCD analysis of combined charm,

beauty and inclusive DIS data

Similar to HERAPDF2.0 FF:

- performed using xFitter [www.xfitter.org]
- inclusive HERA data + new combined c&b data
- NLO DGLAP [QCDNUM] and matrix elements [OPENQCDRAD], $n_f = 3$

•
$$\mu_f = \mu_r = \sqrt{Q^2 + 4m_Q^2}$$
 varied by factor 2 (model unc.)

• free $m_c(m_c)$, $m_b(m_b)$

•
$$\alpha_s (M_Z)^{n_f=3} = 0.106 \ (\to \alpha_s (M_Z)^{n_f=5} = 0.118)$$

- HERAPDF parametrisation, 14p
- fit uncertainty using $\Delta \chi^2 = 1$
- model and parametrisation uncertainties

Check: fit inclusive DIS data only

 $m_c(m_c) = 1798^{+144}_{-134}$ (fit) MeV

 $m_b(m_b) = 8450^{+2280}_{-1810}$ (fit) MeV

somewhat unphysical ...

H1prelim-17-071, ZEUS-prel-17-001

No full uncertainty evaluation, but large sensitivity to PDF parametrisation observed:

 $m_c(m_c) = 1798 \rightarrow 1450 \text{ MeV}, \ m_b(m_b) = 8450 \rightarrow 3995 \text{ MeV}$ in 13p reduced parametrisation recover ~ physical values! (PDG: 1270 and 4180 MeV)

- -> inclusive data alone can not reliably constrain HQ masses
- -> can yield bias (see also arXiv:1605.01946, JHEP 1608 (2016) 050), interplay between PDFs and HQ masses needs careful treatment

-> use difference between 13p and 14p parametrisations as additional systematic uncertainty

Fit inclusive, charm and beauty data

H1prelim-17-071, ZEUS-prel-17-001

measure charm and beauty quark masses in MSbar scheme

PDG2016: $m_c(m_c) = 1270 \pm 30$ MeV, $m_b(m_b) = 4180^{+40}_{-30}$ MeV

significant improvement w.r.t. and consistent with previous H1/ZEUS mass determinations

A. Geiser, charm and beauty in DIS, Lowx 17

14.6.17

Comparison with previous $m_c(m_c)$ results

from DIS data

APFEL

 $m_c(m_c) = 1290^{+46}_{-41}(\text{fit})^{+62}_{-14}(\text{mod})^{+7}_{-31}(\text{par}) \text{ MeV}$ H1/ZEUS preliminary

scheme	$m_c(m_c)$ [GeV]
FONLL (this work)	$1.335 \pm 0.043(\exp)^{+0.019}_{-0.000}(\operatorname{param})^{+0.011}_{-0.008}(\operatorname{mod})^{+0.033}_{-0.008}(\operatorname{th})$
FFN (this work)	$1.318 \pm 0.054 (\exp)^{+0.011}_{-0.010} (\operatorname{param})^{+0.015}_{-0.019} (\operatorname{mod})^{+0.045}_{-0.004} (\operatorname{th})$
FFN (HERA) [9]	$1.26 \pm 0.05(\text{exp}) \pm 0.03(\text{mod}) \pm 0.02(\text{param}) \pm 0.02(\alpha_s)$
FFN (Alekhin et al.) [24]	$1.24 \pm 0.03(\exp)^{+0.03}_{-0.02}(\operatorname{scale})^{+0.00}_{-0.07}(\operatorname{th})$ (approx. NNLO)
	$1.15 \pm 0.04 (\exp)^{+0.04}_{-0.00} (\text{scale}) \text{ (NLO)}$
S-ACOT- χ (CT10) [29]	$1.12^{+0.05}_{-0.11}$ (strategy 1)
	$1.18^{+0.05}_{-0.11}$ (strategy 2)
	$1.19_{-0.15}^{+0.06}$ (strategy 3)
	$1.24^{+0.06}_{-0.15}$ (strategy 4)
World average [53]	1.275 ± 0.025

ABMP, arXiv:1701.05838 HERA, DY, ttbar and nu fixed target approx. NNLO $m_c(m_c) = 1.252 \pm 0.018_{fit}$ GeV (not full uncertainty)

FF (new c/b + HERA II) +++

all results (NLO, approx. NNLO, FFNS, VFNS) consistent

14. 6. 17

Charm quark mass running

A. Gizhko et al., arXiv:1705.08863

subdivide (previous) HERA DIS charm data into 6 kinematic intervals, determine running of charm-quark mass in MSbar scheme for the first time (conceptually similar to running of α_s from jets)

Running of α_s and quark Yukawa couplings

PoS CHARM2016 (2017) 012

Summary and conclusions

final HERA DIS charm and beauty data have been combined
-> very good consistency, full correlations, reduced uncertainties, replaces previous charm combination

well-described by NLO QCD in FFNS -> measure charm and beauty quark masses in MSbar scheme $m_c(m_c) = 1290^{+46}_{-41}(\text{fit})^{+62}_{-14}(\text{mod})^{+7}_{-31}(\text{par}) \text{ MeV}$ $m_b(m_b) = 4049^{+104}_{-109}(\text{fit})^{+90}_{-32}(\text{mod})^{+1}_{-31}(\text{par}) \text{ MeV}$

- split (previous) combined charm data into subsets spanning different scales
- -> first determination of charm quark mass running, consistent with QCD
 - convert to Higgs Yukawa couplings

ZEUS

-> representation of running Yukawa couplings with running of strong coupling

Deep Inelastic ep Scattering at HERA

14. 6. 17

Why are heavy flavours important?

- charm contribution to inclusive DIS data ~10-30%!
 kinematic effect of mass, fragmentation effects
 competing scales for perturbative expansion
 - e.g. m, Q^2 , $p_T \rightarrow$ terms log Q^2/m^2

 $\log p_T^2/m^2$ etc.

- "massless" treatment allows resummation beyond NLO, but fails near "mass threshold" -> avoid !
- "massive" treatment gets kinematics right, but does not allow resummation (fixed flavour number schemes) or induces ambiguities in QCD corrections near flavour threshold (variable flavour number schemes, available for semi-inclusive only)

check theory against HERA data

χ^2 for different predictions

H1prelim-17-071, ZEUS-prel-17-001

Dataset	PDF	χ^2	χ^2 with PDF unc.
HERA 2012 of 11	HERAPDF20_NLO_FF3A_EIG	59	59
HEKA 2012 C [1]	abm11_3n_nlo	62	62
(dof = 52)	ABMP16_3_nnlo	64	63
New combined c	HERAPDF20_NLO_FF3A_EIG	86	85
New combined t	abm11_3n_nlo	92	91
(dof = 52)	ABMP16_3_nnlo	101	99
ZEUS VTY LIA	HERAPDF20_NLO_FF3A_EIG	14	14
2E03 VIX 0 [4]	abm11_3n_nlo	13	13
(dof = 17)	ABMP16_3_nnlo	14	14
New combined h	HERAPDF20_NLO_FF3A_EIG	33	33
rew combined b	abm11_3n_nlo	34	34
(dof = 27)	ABMP16_3_nnlo	39	39

 previous HERA charm combination EPJ C73 (2013) 2311

[4] ZEUS *b* lifetime tagging measurement JHEP09 (2014) 127

(most precise individual public data sets for c and b from HERA to date)

Quantitatively confirms observed findings:

- larger tension for new charm data owing to reduced uncertainties
- appr. NNLO does not improve data description compared to NLO
- overall small sensitivity to input PDFs

well described using HERAPDF1.5 (VFNS) (fitted from inclusive DIS only)

EPJ C73 (2013) 2311

strong charm mass dependence (blue band: 1.35->1.6 GeV)

> constrains PDFs, -> talk O. Zenaiev

Previous combination compared to ABM FFNS

Combination procedure

H1prelim-17-071, ZEUS-prel-17-001

- Take measured visible x-section σ_{vis} and extrapolate to full phase space σ_{red} using consistent NLO setup: $\sigma_{red} = \sigma_{vis} \frac{\sigma_{red}^{NLO}}{\sigma_{vis}^{NLO}}$ [HVQDIS]
- Combine $\sigma_{\rm red}$ accounting for bin-to-bin correlations [HERAverager]

NLO setup for extrapolation as in [DESY-12-172]

- pole masses $m_c = 1.5 \pm 0.15 \text{ GeV}$, $m_b = 4.5 \pm 0.25 \text{ GeV}$ consistent with extracted from data: $m_c = 1.43 \pm 0.04 \text{ GeV}$, $m_b = 4.35 \pm 0.11 \text{ GeV}$ and consistent with PDG: $m_c = 1.67 \pm 0.07 \text{ GeV}$, $m_b = 4.78 \pm 0.06 \text{ GeV}$
- $\mu_R = \mu_F = \sqrt{Q^2 + 4m_Q^2}$, varied simultaneously by factor 2
- $\alpha_s^{n_f=3}(M_Z) = 0.105 \pm 0.002 \ [\alpha_s^{n_f=5}(M_Z) = 0.116 \pm 0.002]$
- HERAPDF1.0 FFNS, n_f = 3, assign 2% uncor. unc. (checked vs HERAPDF2.0: see backup)
- c fragmentation: Kartvelishvili frag. function parametrised as step function with k_T kink (H1, ZEUS meas. [DESY-08-080, DESY-08-209])
- b fragmentation: Peterson $\epsilon_b = 0.0035 \pm 0.0020$ [NP B565 (2000) 245]
- charm fragmentation fractions [EPJ C76 (2016) 397]
- branching ratios PDG2016
- hadronisation uncertainties for data with jets in the final state

14.6.17

QCD analysis settings

H1prelim-17-071, ZEUS-prel-17-001

Similar to HERAPDF2.0 FF, using running HQ mass definition:

- xFitter-1.2.0
- Input data:
 - HERA $e^{\pm}p$ inclusive data, $Q^2_{\min} > 3.5 \text{ GeV}^2$ [1506.06042]
 - new HERA c and b combined
- FFNS $n_f = 3$ ('FF ABM RUNM'), $(\alpha_s(F_L) = \alpha_s(F_2))$

•
$$\alpha_s^{n_f=3}(M_Z) = 0.106$$

- free $m_c(m_c)$, $m_b(m_b)$, or PDG $m_c(m_c) = 1.27$ GeV, $m_c(m_c) = 4.18$ GeV
- DGLAP NLO [QCDNUM]
- PDF parametrisation: 14p HERAPDF at $\mu_{f0}^2 = 1.9$ GeV², $f_s = 0.4$:

 $\begin{aligned} xg(x) &= A_g x^{Bg} (1-x)^{Cg} - A'_g x^{B'g} (1-x)^{C'g} \\ xu_v(x) &= A_{u_v} x^{B_{u_v}} (1-x)^{C_{u_v}} (1+E_{u_v} x^2) \\ xd_v(x) &= A_{d_v} x^{B_{d_v}} (1-x)^{C_{d_v}} \\ x\bar{U}(x) &= A_{\bar{U}} x^{B_{\bar{U}}} (1-x)^{C_{\bar{U}}} (1+D_{\bar{U}} x) \\ x\bar{D}(x) &= A_{\bar{D}} x^{B_{\bar{D}}} (1-x)^{C_{\bar{D}}} \end{aligned}$ Additional constrains: $\begin{aligned} A_{\bar{U}} &= A_{\bar{D}} (1-f_s), \ B_{\bar{U}} &= B_{\bar{D}}, \ C'_g &= 25 \\ \int_0^1 [\sum_i (q_i(x) + \bar{q}_i(x)) + g(x)] x dx &= 1 \\ \int_0^1 [u(x) - \bar{u}(x)] dx &= 2, \\ \int_0^1 [d(x) - \bar{d}(x)] dx &= 1 \end{aligned}$

• fit ($\Delta \chi^2 = 1$), model (scales, α_s , f_s , Q^2_{\min}) and par. (μ_{f0} , $E_{u_v} = 0$) unc. 14. 6. 17 A. Geiser, charm and beauty in DIS, Lowx 17 31

Running of α_{s} and quark masses m_{Q}

α_s running depends on number of coulours N_C and number of quark flavours n_f

$$\alpha_{s}(\mu) = \frac{\alpha_{s}(\mu_{0})}{1 + \alpha_{s} \times (11N_{c} - 2n_{f})/12\pi \ln(\mu^{2}/\mu_{0}^{2})}$$

quark mass running depends on
$$\alpha_s$$
, e.g.
m_Q(pole) = m_Q(m_Q) (1 + 4/3 \alpha_s/\pi)
= m_Q(\mu) (1 + \alpha_s/\pi (4/3 + \ln(\mu^2/m_Q^2)))
or

$$m_Q(\mu) = m_Q(m_Q) \times \left(\frac{\alpha_s(\mu)}{\alpha_s(m_Q)}\right)^{c_0} \qquad c_0 = 4/(11 - 2n_f/3) = 4/9$$

 part of gluon field around quark not 'visible' any more when 'looking' at smaller distances/larger energy scales
 -> effective quark mass decreases

leading

mb from reduced beauty cross section

DESY-14-083

ZEUS

A. Geiser, charm and beauty in DIS, Lowx 17

14.6.17

The running beauty quark mass ZEUS ZEUS, JHEP 1409 (2014) 7; review, arXiv:1506.07519 LEP, Eur. Phys. J. C55 (2008) 525 Prog. Part. Nucl. Phys. 84 (2015) 1 translate to 2m_b ZEUS m_b(μ) [GeV $2m_{\rm h}$ PDG 4.5 (lattice etc.) LEP **MSbar** ZEUS scheme

3.5

3

2.5

2

PDG with evolved uncertainty

10

ZEUS

ALEPH

OPAL

SLD

 \star

Δ

Ο

DELPHI 3-jets

DELPHI 4-jets NLO

10²

μ [GeV]

A. Geiser, charm and beauty in DIS, Lowx 17

(White measurement of MS charm mass

simultaneous fit of combined charm data and inclusive HERA I DIS data

EPJ C73 (2013) 2311

 $\begin{array}{ll} m_{c}(m_{c}) = 1.26 \pm 0.05_{exp} \pm 0.03_{mod} \pm 0.02_{\alpha s} & GeV \\ \mbox{PDG:} & 1.275 \pm 0.025 & GeV & (lattice QCD + time-like processes) \\ 14.6.17 & A. Geiser, charm and beauty in DIS, Lowx 17 \end{array}$

Measurement of m_c running

A. Gizhko et al., DESY-17-048

14.6.17

m_c fit and uncertainties

A. Gizhko et al., DESY-17-048

- Variation of α_s
- Variation of the factorisation and renormalization scales of heavy quarks by factor 2 -> outer error bar

sensitivity to $m_c(m_c)$ decreases with increasing scale $\mu^2 = Q^2 + 4m_c^2$

'in reality', have measured $m_c(\mu)$ at each scale

The running charm quark mass

A. Gizhko et al., DESY-17-048

Step 2: translate back to $m_c(\mu)$, which was actually measured, using LO formula consistent with NLO MS QCD fit

(OpenQCDrad, Alekhin et al.)

14.6.17

A. Geiser, charm and beauty in DIS, Lowx 17

Running of strong coupling "constant" α_s EPJC 75 (2015) 186

reminder

e.g. from jet production at e+e-, ep, and pp at DESY, Fermilab and CERN

