QCD Results from HERA

Daniel Britzger for the H1 and ZEUS Collaborations

> Moriond QCD 2017 La Thuile, Italy 30.03.2017

Deep-inelastic *ep* **scattering**

Neutral current scattering (NC)

Covered topics in this talk

Charm and beauty cross sections

Prompt photons in DIS

Jet production in DIS

 α_s from jet cross sections in NNLO

Kinematic variables

H1 and ZEUS at HERA

HERA electron-proton collider

- Electrons and positrons: $E_e = 27.6 \text{ GeV}$
- Nom. proton energy: E_p = 920 GeV

Data taking

- HERA-I: 1993 2000
- HERA-II 2003 2007
- int. Lumi. ~0.5 fb⁻¹ per experiment

H1 and ZEUS

- Two multi-purpose experiments
- Trackers, calorimeters, magnets, muon System, Lumi system, taggers, forward stations, etc...

DIS allows for excellent calibration

- Overconstrained system in DIS
- Electron measurement: 0.5 1% scale uncertainty
- Jet energy scale: 1%
- Trigger and normalization uncertainties: 1-2 %
- Luminosity: 1.8 2.5%

Heavy quark production in DIS

Heavy quark production

Produced in photon-gluon fusion in DIS

Combination of <u>charm</u> and <u>beauty</u> cross sections

- H1 & ZEUS measurements
- 2.5 < Q² < 2000 GeV²

Extension of 2012 combination [EPJ C73 (2013) 2311]

- 3 new charm data sets
- 5 beauty data sets
- 13 analyses in total

Reduced cross sections

$$\sigma_{\rm red}^{Q\bar{Q}} = \frac{\mathrm{d}^2 \sigma^{Q\bar{Q}}}{\mathrm{d}x_{\rm Bj} \mathrm{d}Q^2} \cdot \frac{xQ^4}{2\pi\alpha^2 \left(1 + (1-y)^2\right)}$$

 'Visible cross sections' extrapolated using NLO theory (HVQDIS)

Data	set	Tagging	Q^2 range		N_c	L	\sqrt{s}	N_b	
			[GeV ²]				$[pb^{-1}]$	[GeV]	
1 I	H1 VTX [8]	VTX	5	-	2000	29	245	318	12
2 H	H1 <i>D</i> ^{*+} HERA-I [9]	D^{*+}	2	_	100	17	47	318	
3 H	H1 D^{*+} HERA-II (medium Q^2) [10]	D^{*+}	5	_	100	25	348	318	
4 H	H1 D^{*+} HERA-II (high Q^2) [11]	D^{*+}	100	_	1000	6	351	318	
5 2	ZEUS D*+ 96-97 [12]	D^{*+}	1	_	200	21	37	300	
6 2	ZEUS <i>D</i> ^{*+} 98-00 [13]	D^{*+}	1.5	_	1000	31	82	318	
7 2	ZEUS D ⁰ 2005 [14]	D^0	5	_	1000	9	134	318	
8 2	ZEUS µ 2005 [7]	μ	20	_	10000	8	126	318	8
9 Z	ZEUS D^+ HERA-II [2]	D^+	5	_	1000	14	354	318	
10 2	ZEUS D^{*+} HERA-II [3]	D^{*+}	5	_	1000	31	363	318	
11 2	ZEUS VTX HERA-II [4]	VTX	5	_	1000	18	354	318	17
12 2	ZEUS e HERA-II [5]	е	10	_	1000		363	318	9
13 Z	ZEUS μ + jet HERA-I [6]	μ	2	_	3000		114	318	11

Charm and beauty combination 🖤 🖉

Combination

- 209 charm and 57 beauty data points are combined to...
- 52 charm and 27 beauty reduced CS

Results from combination

- data sets are found to be consistent χ^2 / ndf = 149 / 187
- Uncertainties are significantly reduced
- Higher precision than previous combination

Charm and beauty combination 🖤 🖉

Predictions from OPENQCDRAD

- HERAPDF2.0 FF3A
- ABM11
- ABMP16 + approx. NNLO
- PDF-fit

Scales are...

$$\mu_r = \mu_f = \sqrt{Q^2 + 4m_Q^2},$$

Theory provides in general reasonable agreement

Charm cross sections

Combination and quark masses 🖤 🚝

Beauty cross sections

- First combination of beauty cross sections
- In general well described by theory
- Marginal differences between PDFs

HQ mass determinations

- Perform FFNS (n_f=3) PDF fit including HERA inclusive NC&CC data
- $m_{\rm c}$ and $m_{\rm b}$ are free parameters in PDF fit

 $m_c(m_c) = 1290^{+46}_{-41}(\text{fit})^{+62}_{-14}(\text{mod})^{+7}_{-31}(\text{par}) \text{ MeV},$ $m_b(m_b) = 4049^{+104}_{-109}(\text{fit})^{+90}_{-32}(\text{mod})^{+1}_{-31}(\text{par}) \text{ MeV}.$

Competitive experimental precision

- Consistent with PDG values
- model and parameterisation uncertainties are significant

Beauty cross sections

Prompt photons in DIS

Prompt photons with jets in DIS

- Photons emitted from quark or lepton
- Photons are radiated before hadronisation
- Direct test of ME
- Complements earlier result [Phys. Lett. B 715 (2012) 88]

Fine segmentation of calorimeter in z-direction

• Suppression of π^{0} ->yy background

γ is emitted from quark as part of hard process → hard process, similar to multi-jets

LL - photons

γ is radiated
from incoming or
outgoing lepton
→ theoretically
well determined

Moriond QCD 2017

Daniel Britzger – QCD results from HERA

Prompt photons in DIS

Cross section as a function of

- x_y,x_p fraction of incoming photon (proton) energy taken by γ+jet (parton)
- $\Delta \varphi, \Delta \eta$ separations of photon and e or jet

Weighted LO MC – Djangoh/Pythia

- Weighting of QQ by 1.6 provides good description
- k_{T} -factorisation fails to describe x_{y}
 - -> More investiagations needed (-> DIS17)

Moriond QCD 2017

Daniel Britzger – QCD results from HERA

Jet production in DIS

Jets in DIS measured in Breit frame

- Virtual boson collides 'head-on' with parton from proton -> Process: ep -> 2jets
- Boson-gluon fusion dominant process in most phase space regions
- QCD compton important for high- p_{T} jets (high-x)

Jet measurement sensitive to α_s and gluon density

Jet production in DIS at low Q²

Simultaneous measurement of

- inclusive jets, dijet and trijet
- Statistical correlations preserved

Moreover <u>normalised</u> jet cross sections

- Normalisation to inclusive NC DIS
- Some cancellation of uncertainties

Phase space of cross sections

NC DIS	5.5 < Q ² < 80 GeV ²
	0.2 < y < 0.6
(inclusive) Jets	$P_{T}^{jet} > 4.5 \text{ GeV}$
	$-1.0 < \eta^{lab} < 2.5$
Dijet and Trijet	$< P_{T}^{jet} >_{2} > 5.0 \text{ GeV}$
Measure average p_{T}	$< P_T^{jet} >_{3} > 5.5 \text{ GeV}$

Moriond QCD 2017

Daniel Britzger – QCD results from HERA

Jet production in NC DIS

Inclusive jets

- Low-Q² new analysis
- High-Q² extension of previous results

NLO & aNNLO

- Reasonable description by NLO
- approx. NNLO from JetVip
 - threshold resummation [PR D 92 (2015) 074037]
 - somewhat improved shape

NNLO from NNLOJET

- PRL 117 (2016) 042001 arXiv:1703.05977
- Improved description
- Significantly reduced scale uncertainty (particularly for higher scales)
- See talk by J. Niehues

Dijet and trijet production

Dijets in comparison to theory

- NLO reasonable description
- NNLO Significantly improved shape
- Norm. jets: NC DIS problematic in NNLO

Trijet

NLO good description with moderate precision

 $\alpha_{s}(m_{Z})$ in NLO ... (now improved with NNLO [next slides]) $\alpha_{s}(M_{Z}) = 0.1172 \, (4)_{exp} \, (3)_{PDF} \, (7)_{PDF(\alpha_{s})} \, (11)_{PDFset} \, (6)_{had} \, (^{+51}_{-43})_{scale}$

Daniel Britzger – QCD results from HERA

Strong coupling from jets in NNLO H1 in collaboration with

Jet cross sections directly sensitive to α_s

• Two α_s -dependencies (we consider both)

$$\sigma_i = \sum_{n=1}^{\infty} \sum_{k=g,q,\overline{q}} \int dx f_k(x,\mu_F) \hat{\sigma}_{i,k}^{(n)}(x,\mu_R,\mu_F) \cdot c_{\text{had}}$$

$$\begin{array}{c} \overbrace{\beta} \\ \hline \beta \\ \hline \end{array} \end{array} \left(\begin{array}{c} \text{Hard ME's} \\ \hat{\sigma}_{i,k}^{(n)} = \alpha_s^n(\mu_R) \tilde{\sigma}_{i,k}^{(n)}(x,\mu_R,\mu_F) \end{array} \right)$$

Jet measurements by H1

Kinematic range of H1 jet data					
Period	\sqrt{s}	int. \mathcal{L}	DIS kinematic	Inclusive jets	Dijets
[Ref.]	[GeV]	$[\mathrm{pb}^{-1}]$	range		$n_{ m jets} \geq 2$
$300{ m GeV}$	300	33	$150 < Q^2 < 5000 {\rm GeV}^2$	$7 < P_{\rm T}^{\rm jet} < 50 {\rm GeV}$	$P_{\mathrm{T}}^{\mathrm{jet}} > 7 \mathrm{GeV}$
[1]			0.2 < y < 0.6		$8.5 < \langle P_{\rm T} \rangle < 35 {\rm GeV}$
HERA-I	319	43.5	$5 < Q^2 < 100 \mathrm{GeV}^2$	$5 < P_{\rm T}^{\rm jet} < 80{\rm GeV}$	$5 < P_{\rm T}^{\rm jet} < 50 {\rm GeV}$
[2]			0.2 < y < 0.7		$5 < \langle P_{\rm T} \rangle < 80 {\rm GeV}$
					$(\langle P_{\rm T} \rangle > 7 {\rm GeV})^*$
					$M_{12} > 18 \mathrm{GeV}$
HERA-I	319	65.4	$150 < Q^2 < 15000 \mathrm{GeV}^2$	$5 < P_{\rm T}^{\rm jet} < 50 {\rm GeV}$	_
[3]			0.2 < y < 0.7		
HERA-II	319	290	$5.5 < Q^2 < 80 { m GeV}^2$	$4.5 < P_{\rm T}^{\rm jet} < 50 {\rm GeV}$	$P_{\rm T}^{\rm jet} > 4 {\rm GeV}$
[4]			0.2 < y < 0.6		$5 < \langle P_{\rm T} \rangle < 50 {\rm GeV}$
HERA-II	319	351	$150 < Q^2 < 15000 {\rm GeV}^2$	$5 < P_{\rm T}^{\rm jet} < 50 {\rm GeV}$	$5 < P_{\rm T}^{\rm jet} < 50 {\rm GeV}$
[5, 4]			0.2 < y < 0.7		$7 < \langle P_{\rm T} \rangle < 50 {\rm GeV}$
					$M_{12}>16{\rm GeV}$

4 dijet data sets (103 pts)

 $\mathsf{PDFs} \ \frac{\partial f}{\partial \alpha_{\mathsf{f}}}$

Daniel Britzger – QCD results from HERA

ATP

V. Bertone. J. Currie, T. Gehrmann,

C. Gwenlan, A. Huss, J. Niehues, M. Sutton

Strong coupling in NNLO from jets

PDF selection for predictions

- PDF are external input to NNLO theory
 - PDF set (ABMP,CT,HERA,MMHT,NNPDF)
 - $\alpha_s(m_z)$ which is input to PDF extraction

Scale choice for NNLO predictions

• Study functional form of μ_R and μ_F

- All PDFs with comparable results
- $\alpha_s(m_z)$ of PDF is important

Reduced scale-dependence w.r.t NLO More NNLO studies: talk by J. Niehues

Daniel Britzger – QCD results from HERA

 $\chi^2 / n_{\rm dof} = 1.03$

Strong coupling in NNLO from jets

- Experimental uncertainties
- Scale uncertainties (factors: 0.5, 2)
- various PDF uncertainties
- hadronisation uncertainties

α_s results from individual data sets

- High experimental precision
- Scale uncertainty is largest (theory) error
- All fits with good χ²
 -> consistency of data

H1 jets (203 data points)

$$\alpha_{\rm s}(M_{\rm Z}) = 0.1157\,(6)_{\rm exp}\,(3)_{\rm had}\,(6)_{\rm PDF}\,(12)_{\rm PDF\alpha_{\rm s}}\,(2)_{\rm PDFset}\,(^{+27}_{-21})_{\rm scale}$$

- High exp. precision
- Scale uncertainty dominates
- PDF uncertainties sizeable

Strong coupling in NNLO from jets

H1 in collaboration with V. Bertone, J. Currie, T. Gehrmann, C. Gwenlan, A. Huss, J. Niehues, M. Sutton

Test running of strong coupling

- Repeat fits to groups of data points at similar scales
- All fits with good χ^2
- Theory uncertainty often larger than experimental uncertinaty
- Confirmation of 'running' between 7-90 GeV

Result in agreement with world average and other measurements with tendency to be a bit lower

Summary

Combination of charm and beauty reduced cross sections

• Charm and beauty quark masses

Prompt photons in DIS: new observables studied

Direct tests of hard process

Jet cross sections in DIS

- New NNLO predictions provide good description
- High sensitivity to gluon PDF and strong coupling

Strong coupling in NNLO from jets

Comprehensive phenomenological study of new NNLO calculations
 -> High experimental precision and good theoretical precision

Results not covered in this talk

- Search for <u>QCD instantons</u>
 -> excludes significant part of phase space predicted by Instanton model
- Improved limit on <u>Pentaquark</u> production cross section (pK₀s)
- Diffractive photoproduction of prompt photons
- <u>Running</u> of the charm mass
- <u>Charm production</u> (D*) in diffractive DIS
 -> probes: DPDFs, NLO theory & factorisation properties in diffr. DIS

H1prelim-17-071, ZEUS-prel-17-001

ZEUS-prel-16-001

DESY-16-200 (acc. by EPJ C)

H1prelim-17-031 (H1 et al.)

EPJ C76 (2016), 7

Phys. Lett. B 759 (2016) 446

to be subm. next week

to be subm. O(2 weeks)

to be subm. next week

Charm and beauty combination

Charm and beauty cross section ratios

Stat. correlations of H1 low-Q² multijets

Strong coupling from jets in NNLO

Jet cross sections directly sensitive to α_s

Fit with two free parameters

$$\sigma_i = f(\alpha_{\rm s}^f(m_Z)) \otimes \hat{\sigma}_k(\alpha_{\rm s}^{\hat{\sigma}}(m_Z)) \cdot c_{\rm had}$$

- Most sensitivity arises from matrix elements
- PDF and ME values are consistent

Strong coupling in NNLO from jets

Jet measurements by H1

- 5 inclusive jet data sets
- 4 <u>dijet</u> data sets
- 137 & 103 considered data points
- high & low-Q² data
- Different running periods and \sqrt{s}
- p_T > 4.5 GeV (often > 7 GeV)
- Data below $2m_b$ excluded from fit

χ^2 minimization

- Account also for PDF and hadronisation uncertainties
- · Correlations between data sets

Kinematic range of H1 jet data							
Period	\sqrt{s}	int. \mathcal{L}	DIS kinematic	Inclusive jets	Dijets		
[Ref.]	[GeV]	$[\mathrm{pb}^{-1}]$	range		$n_{ m jets} \geq 2$		
$300{\rm GeV}$	300	33	$150 < Q^2 < 5000 {\rm GeV}^2$	$7 < P_{\rm T}^{\rm jet} < 50 {\rm GeV}$	$P_{\rm T}^{\rm jet} > 7 {\rm GeV}$		
[1]			0.2 < y < 0.6		$8.5 < \langle P_{\rm T} \rangle < 35 {\rm GeV}$		
HERA-I	319	43.5	$5 < Q^2 < 100\mathrm{GeV}^2$	$5 < P_{\rm T}^{\rm jet} < 80 {\rm GeV}$	$5 < P_{\rm T}^{\rm jet} < 50 {\rm GeV}$		
[2]			0.2 < y < 0.7		$5 < \langle P_{\rm T} \rangle < 80 {\rm GeV}$		
					$(\langle P_{\rm T} \rangle > 7 {\rm GeV})^*$		
					$M_{12}>18{\rm GeV}$		
HERA-I	319	65.4	$150 < Q^2 < 15000 {\rm GeV}^2$	$5 < P_{\rm T}^{\rm jet} < 50 {\rm GeV}$	_		
[3]			0.2 < y < 0.7				
HERA-II	319	290	$5.5 < Q^2 < 80 {\rm GeV}^2$	$4.5 < P_{\rm T}^{\rm jet} < 50 {\rm GeV}$	$P_{\rm T}^{\rm jet} > 4{\rm GeV}$		
[4]			0.2 < y < 0.6		$5 < \langle P_{\rm T} \rangle < 50 {\rm GeV}$		
HERA-II	319	351	$150 < Q^2 < 15000 {\rm GeV}^2$	$5 < P_{\rm T}^{\rm jet} < 50{\rm GeV}$	$5 < P_{\rm T}^{\rm jet} < 50 {\rm GeV}$		
[5, 4]			0.2 < y < 0.7		$7 < \langle P_{\rm T} \rangle < 50 {\rm GeV}$		
					$M_{12} > 16{\rm GeV}$		

Perform α_s -determination from...

- Individual data sets
- All inclusive jet cross sections
- All dijet cross sections
- 'H1 jet' cross sections (incl. jet & dijet) (exclude HERA-I dijets, because of correlations)
- Data points at similar scale (running)

Study of scale uncertainty

Scale uncertainties at various scales µ

- At low-µ: large scale uncertainties...
- ... but also high sensitivity to $\alpha_s(m_z)$

Fits imposing a cut on scale μ_R

- Each data point is assigned a representative scale $\boldsymbol{\mu}$
- Repeat α_s fits: successively cut on μ

Results

- Experimental uncertainty increases (as number of data points decreases)
- Theory (scale) uncertainty remains almost constant
 - NNLO cross sections suggest large scale uncertainty at low-µ...
 - ... but the NNLO predictions at low- μ are finally equally sensitive to α_s

Cut on μ can balance between exp. and theoretical uncertainties at constant total precision

Moriond QCD 2017

Running from inclusive jets and dijets

Scale dependence of cross sections

Scale dependence of α_s fit

Scale choice for $\alpha_{_{\! S}}$ fit

Inclusive jet and dijet cross sections in comparison to NNLO using best-fit α_s

Tests of the charm mass running

QCD Instantons

QCD Instantons

- Solution to Yang-Mills equation of motion
 - Non-perturbative fluctations of the gauge field
 - Physical interpretation: Pseudo-particle or tunneling process between topologicaly different vacuum states
- The discovery of instantons would be the first evidence for non perturbative QCD effect at high energies
- <u>QCDINS MC generator</u> by Ringwald/Schrempp
 - Sizeable cross section using Instanton-perturbation theory
 - Uncertainty coming from $\Lambda_{QCD}(MSbar)$

Characteristic signature of Instanton

- One hard jet (not originating from instanton)
- Densily populated narrow band; flat in $\boldsymbol{\phi}$
- Large particle multiplicities

Strategy

- Find jets in hadronic center of mass frame
- Remove hardest jets from HFS
- Define topological input-variables in 'instanton rest-frame' which are input to TMVA
 - Train MVA with QCDINS Monte Carlo

