Hard and Precision QCD @ HERA

Günter Grindhammer, Max-Planck-Institute for Physics, Munich on behalf of the H1 and ZEUS collaborations

20th High-Energy Physics Int. Conf. in QCD, Montpellier, July 3-7, 2017

Combination of open c & b prod. data in DIS

Comparison to NLO & aNNLO

Extraction of m_c & m_b in NLO

New multijet cross sections in DIS

Extraction of as(Mz) in NNLO

Prompt photons plus jets in DIS

HERA ep Collider, H1 & ZEUS

- H1 & ZEUS experiments collected a combined data sample of ~1fb⁻¹
- ~75% of data taken with polarized (~30%) lepton beams, with about equal numbers of e⁻ and e⁺ and positive and negative polarization.
- HERA was the only ep-collider and allowed to investigate a wide range of physics (DIS, DIFF, PHP) and processes.
- Measurement of the proton structure has been a central part of the program.
- H1 & ZEUS provide well calibrated datasets, e.g. hadronic energy scale uncertainty ~1%.
- H1 & ZEUS have published > 130 papers since the end of data talking in 2007.

Inclusive DIS kinematics

e p → e (v) X

 $\begin{array}{c} \mathbf{e}^{\pm} & \mathbf{k}^{\prime} & \mathbf{e}^{z}, \mathbf{0} \\ \mathbf{e}^{\pm} & \mathbf{v}^{\prime}, \mathbf{Z} \\ \mathbf{q}^{\prime} & \mathbf{v}^{\prime}, \mathbf{Z} \\ \mathbf{p}^{\prime} & \mathbf{v}^{\prime}, \mathbf{z}^{\prime} \\ \mathbf{p}^{\prime} & \mathbf{z}^{\prime}, \mathbf{z}^{\prime} \\ \mathbf{p}^{\prime} & \mathbf{z}^{\prime} \\ \mathbf{p}^{$

 $Q^2 = xys$ $s = (k + P)^2$

Heavy quark production in DIS

- Main prod. process is photon-gluon fusion
- Combine H1 & ZEUS measurements based on different tagging techniques
 - reconstructed D*+, D+ and D° meson decays
 - µ and e from semi-leptonic decays
 - analysis of tracks (VTX) exploiting lifetime info
- Extension of previous combination for charm [EPJ C 73 (2013) 2311]
 - 3 new charm data sets
 - 5 beauty data sets
 - 13 analyses in total
 - Reduced cross sections

 $\sigma_{\rm red}^{Q\bar{Q}} = \frac{\mathrm{d}^2 \sigma^{Q\bar{Q}}}{\mathrm{d}x_{\rm Bj}\mathrm{d}Q^2} \cdot \frac{xQ^4}{2\pi\alpha^2\left(1+(1-y)^2\right)}$

Data set		Tagging	Q^2 range		N_c	L	\sqrt{s}	N _b	
			[Ge	V ²]		[pb ⁻¹]	[GeV]	
1 H	11 VTX [8]	VTX	5	-	2000	29	245	318	12
2 H	11 D*+ HERA-I [9]	D^{*+}	2	_	100	17	47	318	
3 H	H1 D^{*+} HERA-II (medium Q^2) [10]	D^{*+}	5	_	100	25	348	318	
4 H	I1 D^{*+} HERA-II (high Q^2) [11]	D^{*+}	100	_	1000	6	351	318	
5 Z	ZEUS D*+ 96-97 [12]	D^{*+}	1	_	200	21	37	300	
6 Z	ZEUS D*+ 98-00 [13]	D^{*+}	1.5	_	1000	31	82	318	
7 Z	$2EUS D^0 2005 [14]$	D^0	5	_	1000	9	134	318	
8 Z	ZEUS μ 2005 [7]	μ	20	_	10000	8	126	318	8
9 Z	$EUS D^+$ HERA-II [2]	D^+	5	_	1000	14	354	318	
10 Z	$2 EUS D^{*+}$ HERA-II [3]	D^{*+}	5	_	1000	31	363	318	
11 Z	EUS VTX HERA-II [4]	VTX	5	_	1000	18	354	318	17
12 Z	EUS e HERA-II [5]	e	10	-	1000		363	318	9
13 Z	EUS μ + jet HERA-I [6]	μ	2	-	3000		114	318	11

 e^{+} 27.6 GeV γ Q^{2} γ Q^{2} Q^{2}

up to 30% of the inclusive prod. is due to charm, up to 1% due to beauty

NLO calculations:

- FFNS: PDFs contain only u,d,s,g. Heavy quarks are generated in ME (multiple scales)
- VFNS: massless quarks in ME.

H1prelim-17-071, ZEUS-prel-17-01]

Combination of c cross sections in DIS

> Significant improvement in precision compared to input data

Combination of b cross sections in DIS

> 1st combination of b cross sections

Ratios to NLO QCD

Predictions from OPENQCDRAD

- HERAPDF2.0 FF3A
- ABM11
- ABMP16 + approx. NNLO
- PDF-fit

 $\mu_{\rm R} = \mu_{\rm F} = (Q^2 + 4m_{\rm c,b}^2)^{1/2}$

cross sections are normalized to NLO predictions using HERAPDF2.0 FF3A

QCD provides reasonable overall description of the data; no improvement by approx. NNLO; slope diff. at Q² ≈ 12 GeV² dominant theory uncertainty from variation of scale (factor of 0.5 to 2)

Extraction of c & b masses

- Perform QCD fit in NLO in FFNS (n_f = 3):
 - besides c & b data, inclusive HERA NC & CC data are used
 - m_c & m_b are free parameters in the fit
 - the light flavor PDFs are parameterized as in the HERAPDF2.0 fit

 $m_c(m_c) = 1290^{+46}_{-41}(\text{fit}) {}^{+62}_{-14}(\text{mod}) {}^{+7}_{-31}(\text{par}) \text{ MeV}$ $m_b(m_b) = 4049^{+104}_{-109}(\text{fit}) {}^{+90}_{-32}(\text{mod}) {}^{+1}_{-31}(\text{par}) \text{ MeV}$

- the QCD fit gives $\chi^2/ndf = 1435/1208$
- the model uncertainties are significant and are dominated by the variation of the scale (factor 0.5 to 2)
- the c & b masses given are the running masses in the MSbar scheme; consistent with the PDG values: m_c(m_c) = 1270 ± 30 MeV and m_b(m_b)
 = 4180 ± 30 MeV

Multijetproduction in NG DIS ment in

Jets in DIS are measured in the Breit frame:

- virtual boson collides head-on with parton from proton
- jets reconstructed using the k_T algorithm
- each jet must have a minimum P_T in the Breit frame
 - jets depend already in LO on a₅ ⊗ g[™]₁r q or qbar) in IS and on a₅ in FS, allowing for a determination of a₅
 - BGF dominant in largest phase space region (lower Q², lower x)
 - QCDC important for high-p_T jets (high x)

boost events into Breit frame:

Jets in DIS at low Q^2

- Simultaneous measurement and unfolding of
 - inclusive jets, dijet and trijet as well as incl. NC DIS cross sections
 - accounting for correlations & detector effects
- Phase space of cross sections:

NC DIS	5.5 < Q ² < 80 GeV ²				
	0.2 < y < 0.6				
(inclusive) Jets	$P_{T}^{jet} > 4.5 \text{ GeV}$				
	$-1.0 < \eta^{lab} < 2.5$				
Dijet and Trijet	$< P_{T}^{jet} >_{2} > 5.0 \text{ GeV}$				
Measure average p_{T}	$< P_{T}^{jet} >_{3} > 5.5 \text{ GeV}$				

- <u>EPJ C 77 (2017) 4, 215</u>
- Include extension of previous high-Q² result
- EPJ C 75 (2015) 2,65

High precision data over wide kinematic range

Comparison to NLO & aNNLO & NNLO

- NLO QCD (NLOjet++)
 - PRL 87 (2001) 082001
 - reasonable description of data
 - large scale uncertainty
- Approximate NNLO (JETVIP)
 - threshold resummation
 - PR D 92 (2015) 074037
 - somewhat improved shape
- NNLO QCD (NNLOJET)
 - PRL 117 (2016) 042001
 - improved description
 - significantly reduced scale uncertainty, particularly for higher scales

Dijet & Trijet production in DIS

- Dijet: in NNLO improved description of shape
- Trijet: in NLO good description at moderate precision

Extraction and running of a_s at NLO

From comb. fit to normalized incl. jet, dijet and trijet cross sections at low and high Q^2 :

- $\alpha_s(M_Z) = 0.1172 \ (4)_{\exp} \ (3)_{\text{PDF}} \ (7)_{\text{PDF}(\alpha_s)} \ (11)_{\text{PDFset}} \ (6)_{\text{had}} \ (^{+51}_{-43})_{\text{scale}}$
- high exp. precision
- large scale uncertainty

Running of $a_{S}(\mu_{R})$:

- data points are grouped into 10 groups with comparable values of µR
- as(Mz) is fitted for each group
- a_s(µ_R) is obtained from a_s(M_Z) using RGE
- consistent with other results from HERA, PETRA, LEP, Tevatron and LHC & QCD

EPJ C 77 (2017) 4, 215

Extraction of a_s at NNLO

H1-prelim-17-031: H1 in collaboration with V.Bertone, T.Gehrmann, C.Gwenlan, A.Huss, J.Niehues and M.Sutton

- Full error breakdown
 - corr. & uncorr. exp. uncertainties
 - theory uncertainty: scale variation (factors 0.5 and 2)
 - various PDF uncertainties
 - hadronisation uncertainties
- a_s (M_Z) results from distinct data sets and from all of them (`H1 jets´)
 - all fits yield good x², indicating consistency of data
 - high exp. precision
 - uncertainties due to PDFs are sizeable
 - scale uncertainty is dominant, but considerably reduced w.r.t. NLO

 $\alpha_s(M_Z) = 0.1157 \ (6)_{\text{exp}} \ (6)_{\text{PDF}} \ (12)_{\text{PDF}(\alpha_s)} \ (2)_{\text{PDFset}} \ (3)_{\text{had}} \ (^{+27}_{-21})_{\text{scale}}$

Running of a_s at NNLO

- Repeat fits to 10 groups of data points at similar scales
- Values of a_s are consistent with other extractions at NNLO
- Running is consistent with other experiments and with QCD
- Value of a_s consistent with the world average, however a bit lower

$$\alpha_{s(M_Z)} = 0.1157 \ (6)_{\exp} \ (^{+38}_{-25})_{\mathrm{pdf,theo}}$$

World average: a_s(M_Z) = 0.1181 ± 0.0011 S.Bethke, Montpellier 2016

- Photons with high P_T may be:
 - radiated from the incoming or outgoing lepton (LL)
 - produced in a hard QCD interaction (QQ)
 - radiated from a quark within a jet $(f_{q \rightarrow \gamma}(z))$
 - a decay product of π° or η mesons within a jet
- LL and QQ photons are relatively isolated from other particles (use isolation criteria).
- Prompt QQ photons emerge directly from the hard interaction and (with jets) allow a more direct test of the ME.
- New preliminary results, using combined photon-jetelectron variables, allow more detailed ways to test theory. ZEUS-prel-16-001, previous ZEUS results in PL B 715 (2012) 88

QQ

- Use segmentation of the barrel calorimeter in Z-direction to suppress photons from meson decays
- Main requirements:
 - 4 < E_T^Y < 15 GeV</p>
 - E_T^{jet} > 2.5 GeV
 - 10 < Q² < 350 GeV²
- Measure diff. cross sections as a function of:

$$\begin{aligned} \mathbf{x}_{\gamma} &= \sum_{\gamma, \text{jet}} (\mathbf{E}^{i} - \mathbf{p}_{\mathbf{Z}}^{i}) / (\mathbf{2}\mathbf{E}_{e}\mathbf{y}_{\mathbf{J}\mathbf{B}}) \\ \mathbf{x}_{p} &= \sum_{\gamma, \text{jet}} (\mathbf{E}^{i} + \mathbf{p}_{\mathbf{Z}}^{i}) / \mathbf{2}\mathbf{E}_{p} \\ \mathbf{\Delta}\eta &= \eta_{\text{jet}} - \eta_{\gamma} \\ \mathbf{\Delta}\phi &= \phi_{\text{jet}} - \eta_{\gamma} \\ \mathbf{\Delta}\phi_{e,\gamma} &= \phi_{e} - \phi_{\gamma} \\ \mathbf{\Delta}\eta_{e,\gamma} &= \eta_{e} - \eta_{\gamma} \end{aligned}$$

17

ZEUS preliminary

ZEUS preliminary

- LO + LLog MC (Djangoh for LL + Pythia for QQ) provides a good description of the data
 - if the LO QQ contribution is weighted by a factor of 1.6
 - and the LL contribution is taken as is in the MC

Collinear factorisation in NLO (AFG), Aurenche, Fontannaz and Guillet : EPJ C 75 (2015) 64, arXiv:1704.08074v1

k_T-factorisation (BLZ), Baranov, Lipatov and Zotov: PR D 81 (2010) 094034

AFG provides a reasonably good description of data

= BLZ fails to describe data particularly for x_{γ} and $\Delta \eta$

Summary

- New combination of charm & beauty cross sections in DIS by H1 & ZEUS
 - improved precision
 - FFNS in NLO & aNNLO provide overall satisfactory description of data
 - PDF fit to inclusive & c & b data in DIS at HERA alone yields values for running quark masses consistent with PDG
- New results on multijet prod. at low Q² & previous results at high Q² by H1
 - satisfactory description by NLO, improved shape in P_T by NNLO with significantly reduced scale uncertainty compared to NLO, particularly at higher scales
 - extraction of a_s and running of a_s in NNLO using all suitable H1 HERA inclusive jet and dijet data: $a_s(M_Z) = 0.1157 (6)_{exp} (^{+38}_{-25})_{pdf,theo}$
- New results on prompt photons & jets in DIS by ZEUS
 - agree better with AFG (coll. fact. NLO) than with BLZ (k_T fact.)
 - agree also, after QQ rescaling, with Djangoh & Pythia

back-up slides

Pull dist. for the c & b combination

Jet cross sections

$$\sigma_i = \sum_{k=g,q,\overline{q}} \int dx f_k(x,\mu_F) \hat{\sigma}_{i,k}(x,\mu_R,\mu_F) \cdot c_{\text{had},i}$$

- a_s dependence calculated in orders of a_s:
 - in hard coefficients

$$\hat{\sigma}_{i,k} = \sum_{n=1}^{\infty} \alpha_s^n(\mu_R) \hat{\sigma}_{i,k}^{(n)}(x,\mu_R,\mu_F)$$

$$\mu_R^2 \frac{d\alpha_s}{d\mu_R^2} = \beta(\alpha_s)$$

in PDF (splitting functions)

$$\mu_F^2 \frac{df}{d\mu_F^2} = \mathcal{P}(\alpha_{\rm s}) \otimes f$$

Scale dependence

all calculations are done using NNPDF3.0 NNLO

Dependence of a_s on scale choice

Study various scales consisting of Q^2 and P_T or $\langle P_T \rangle$

Reduced scale dependence in NNLO

Extraction of as

Fit theory to jet data, using:

$$\chi^2 = \sum_{i,j} \log \frac{\varsigma_i}{\sigma_i} (V_{\exp} + V_{had} + V_{PDF})_{ij}^{-1} \log \frac{\varsigma_j}{\sigma_j}$$

taking experimental, PDF and hadronization uncertainties into account

- define theory inputs (order in a_s , PDFs, scales, ...
- minimise x² using Minuit and obtain as
- propagate exp., PDF, had. uncertainties