

Latest results on hard QCD at HERA

Nataša **Raičević** University of Montenegro

on behalf of the H1 and ZEUS Collaborations

Excited QCD 2018

Kopaonik, Serbia, March 11th - March 15th, 2018

HERA (DESY, Hamburg) was the only ep collider: 1992 - 2007

- ➤ Total lumi H1, ZEUS: 0.5 fb⁻¹ each HERA-I 1992-2000 ~120 pb⁻¹ HERA-II 2003-2007 ~380 pb⁻¹
- Beams and energies

$$E_{e+/e-} = 27.6 \text{ GeV}$$

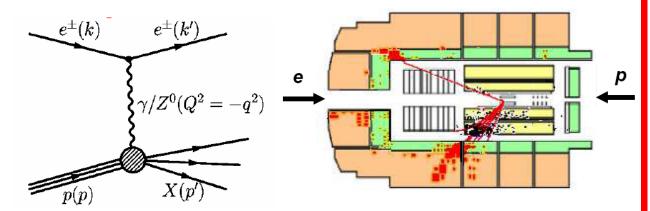
 $E_p = 820, 920 \text{ GeV (HERA-I)}$

 $E_p = 920 \text{ GeV (HERA-II)}$

 $E_p = 460, 575 \text{ GeV (Since April 2007)}$

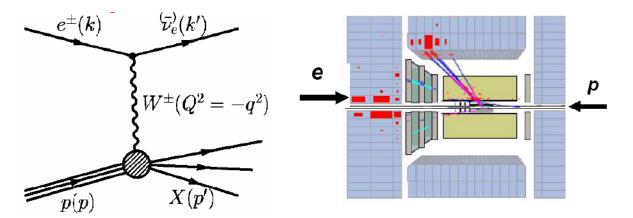
until the end of June)

Outline


- ☐ Final combination of charm and beauty data from H1 and ZEUS experiments
 H1prelim-17-071 and ZEUS-prel-17-01
 H1prelim-18-071 and ZEUS-prel-18-01-extension
- □ First determination of α_s from DIS jet data at NNLO H1 collaboration Eur.Phys.J.C77 (2017), 79 [arxiv:1709.07251]
- ☐ Isolated photon production with a jet in DIS ZEUS collaboration

 JHEP 1801 (2018) 032 [arXiv:1712.04273]

Deep Inelastic Scattering (DIS)


Neutral Current (NC)

H1 NC event display

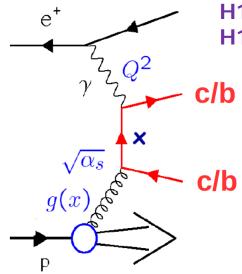
Charged Current (CC)

ZEUS CC event display

N. Raicevic

Virtuality of exchanged boson:

$$Q^{2} = -q^{2} = -(k - k')^{2}$$

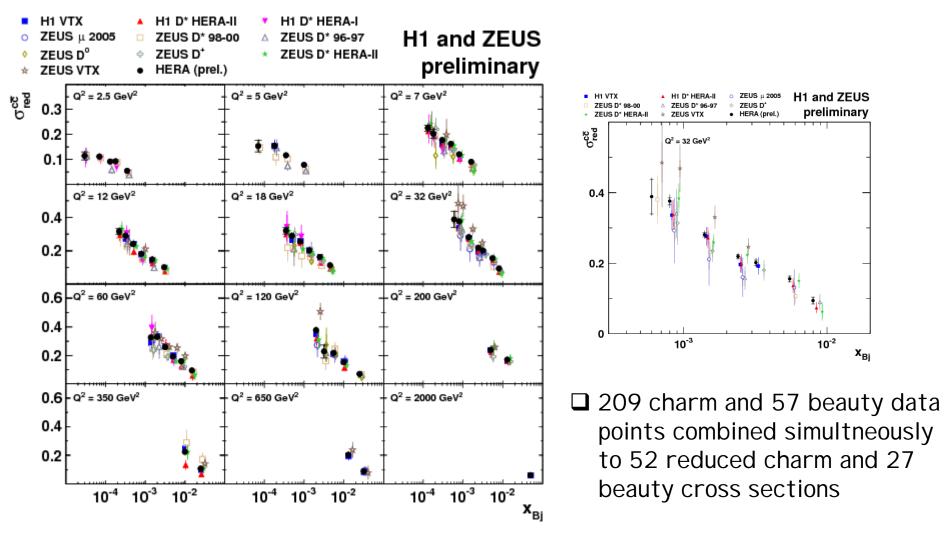

Fraction of proton momentum carried by struck quark

$$x = \frac{Q^2}{2p \cdot q}$$

Fraction of energy transferred from incoming lepton in proton rest frame

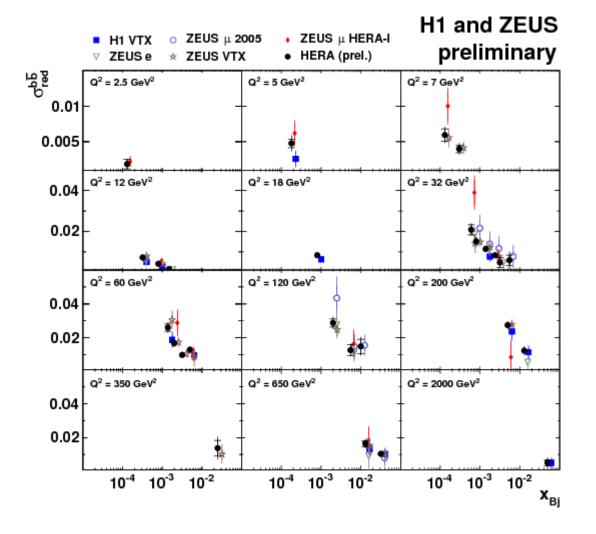
$$y = \frac{p \cdot q}{p \cdot k}$$

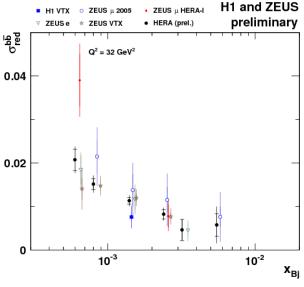
Production of heavy quarks in DIS


H1prelim-17-071 and ZEUS-prel-17-01 H1prelim-18-071 and ZEUS-prel-18-01-extension

- ☐ Boson-gluon fusion main source of heavy quarks
- ☐ Inclusive production up to about 30 % is due to charm and up to 1 % due to beauty
- ☐ Reduced cross sections calculated as

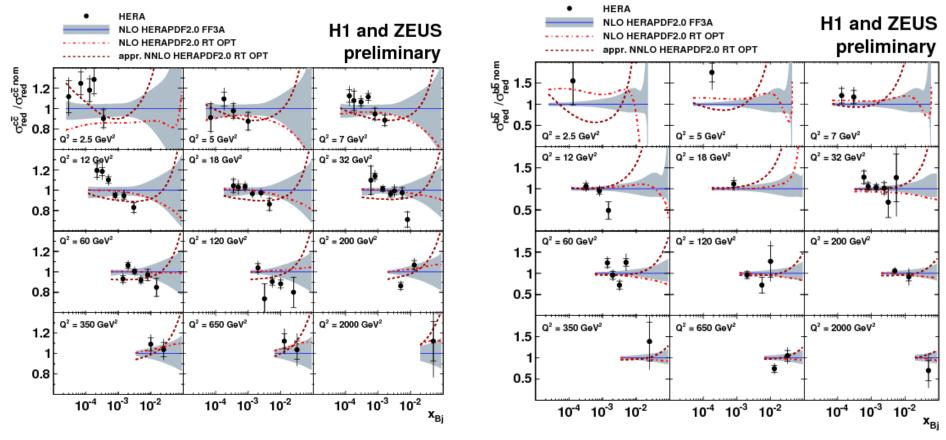
$$\sigma_{\text{red}}^{Q\bar{Q}} = \frac{d^2 \sigma^{Q\bar{Q}}}{dx_{\text{Bj}} dQ^2} \cdot \frac{xQ^4}{2\pi\alpha^2 (1 + (1 - y)^2)}$$


- ☐ To improve precision, H1 and ZEUS combine their measurements based on different tagging techniques:
- the reconstruction of particular decays of charmed mesons (8 data sets)
- the inclusive analysis of tracks exploiting lifetime information (2 data sets)
- reconstruction of leptons from heavy-flavour semi-leptonic decays (3 data sets)
- ☐ There are 8 new data sets (3 charm and 5 beauty data sets) compared to previous combination for charm cross sections (EPJ C73 (2013) 2311)


Combined charm cross section measurements

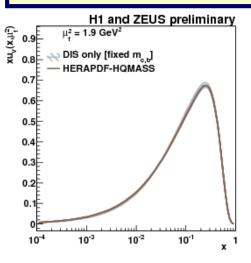
The combination method accounts for the correlations of the statistical and systematic uncertainties among the different data sets
5

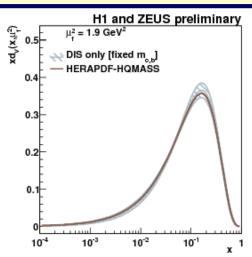
Combined beauty cross section measurements

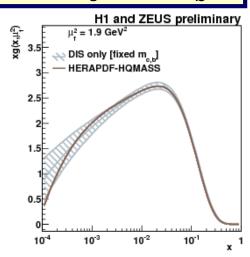

☐ First combination of b cross sections

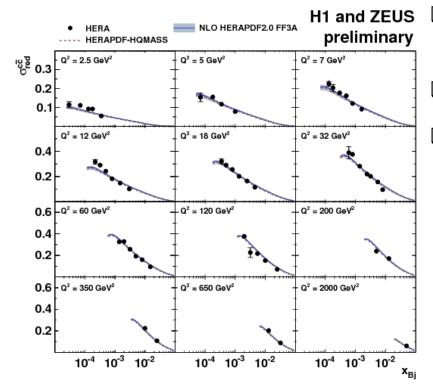
- $\square \chi^2$ /ndf = 149/187 consistency of input data
- ☐ Significant improvement by data combination

Theory predictions

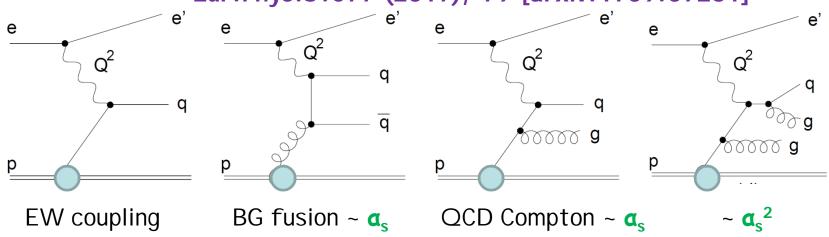

- NLO and NNLO predictions calculated with OPENQCDRAD interfaced in xFitter (www-zeuthen.desy.de/~alekhin/OPENQCDRAD and www.xfitter.org)
- ☐ Comparison of the data to theoretical predictions performed using input PDFs: HERAPDF2.0, ABKM09, ABMP16, NNPDF or fitted
- in the FFNS NLO and approximate NNLO QCD
- in the VFNS NLO and approximate NNLO QCD
- $\square \mu_f = \mu_r = (\Omega^2 + 4m_{\Omega}^2)^{1/2}$ dominant uncertainty (factor of 2 variations)
- \square m_c(m_c) = 1270 ± 30 MeV, m_b(m_b) = 4180 ± 30 MeV [PDG2016], or fitted
- ☐ Here, we show:
- ➤ Comparison of the combined data and predictions obtained using HERAPDF2.0 at NLO using FFNS and at NLO and approximate NNLO using VFNS
- QCD fit at NLO obtained from the combined data HERAPDF-HQMASS
- ➤ Results of determination of m_c and m_b


Combined data compared with theory predictions



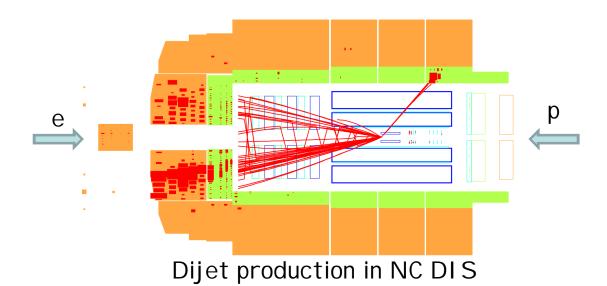

- ☐ Cross sections are normalized to NLO predictions using HERAPDF2.0 FF3A
- ☐ The uncertainties for VFNS predictions are of similar size to those presented for the FFNS calculation
- ☐ Overall reasonable description by NLO predictions
- ☐ Within the uncertainties the aNNLO provides fair description

HERAPDF-HQMASS and extracted m_c and m_b


- Only uncertainties for the fit to the inclusive data shown for better visibility
- ☐ Good agreement between the two fits
- With m_c and m_b as free parameters, QCD fit in NLO in FFNS (n_f = 3) performed using the combined heavy quark cross sections together with inclusive HERA data

$$m_c(m_c) = 1290^{+46}_{-41}(\text{fit})^{+62}_{-14}(\text{mod})^{+7}_{-31}(\text{par}) \text{ MeV}$$

 $m_b(m_b) = 4049^{+104}_{-109}(\text{fit})^{+90}_{-32}(\text{mod})^{+1}_{-31}(\text{par}) \text{ MeV}$


> Consistent with world average $_9$ $m_c(m_c) = 1270 \pm 30$ MeV, $m_c(m_b) = 4180 \pm 30$ MeV

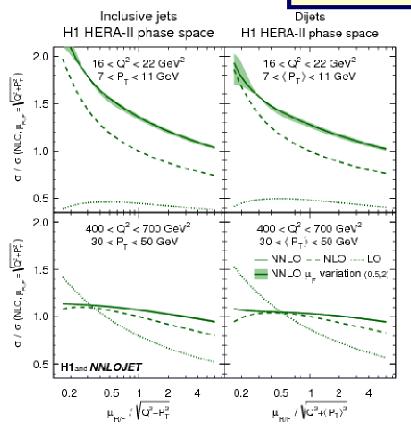
NNLO a_s fit of DIS jet data

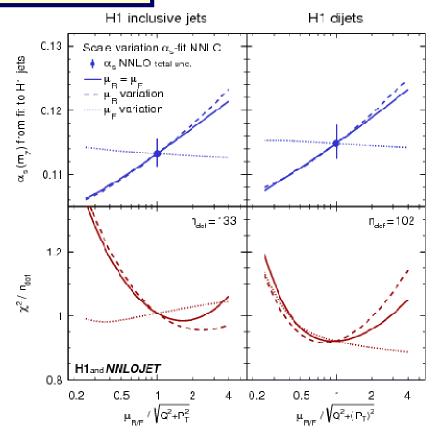
Eur.Phys.J.C77 (2017), 79 [arxiv:1709.07251]

☐ Jet production directly sensitive to the strong coupling and has a clean experimental signature with sizable cross sections

NNLO a_s fit of DIS jet data

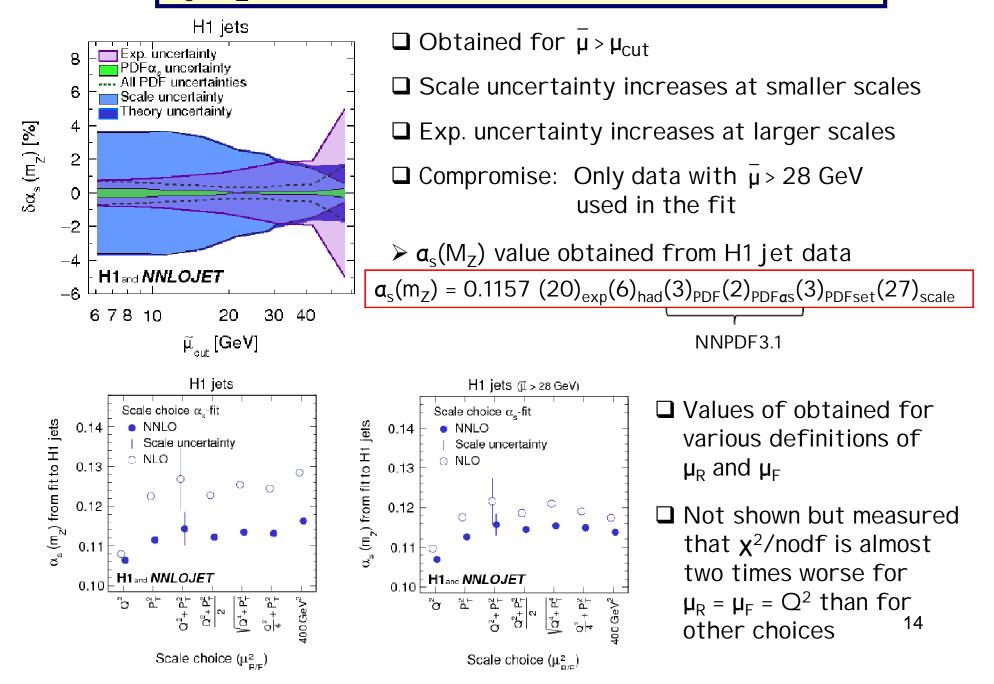
- Precise knowledge of a_s as one of the least known parameters of the SM crucial for:
- precision measurements
- consistency tests of the SM and
- right searches for physics beyond the SM.
- → Very important for LHC physics
- ☐ Complete predictions at NNLO for jet production in DIS are now available- about 25 years after NLO calculations for jet production cross sections in DIS have been available for the first time
 - for inclusive jet and dijet production in DIS
 - J. Currie, T. Gehrmann and J. Niehues, Phys. Rev. Lett. 117 (2016) 042001, arXiv:1606.03991.
 - J. Currie, T. Gehrmann, A. Huss and J. Niehues, JHEP 1707 (2017) 018,
- \Box Jets are defined in the Breit frame (the virtual boson and the proton collide head on) using the k_t clustering algorithm with a resolution parameter R = 1
- \blacksquare Common to all used jet data sets is requirement on the pseudorapidity of the jets, -1 < $\eta_{lab}^{\ jet}$ < 2.5

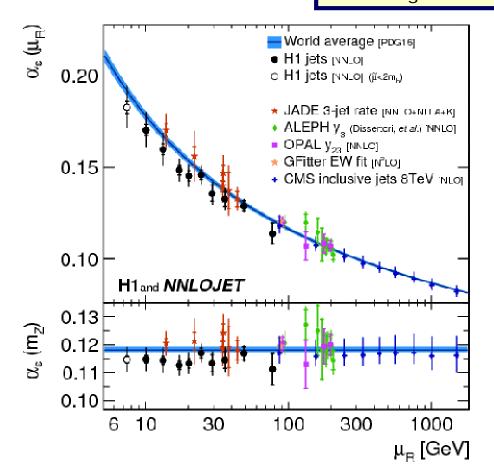

NNLO calculations

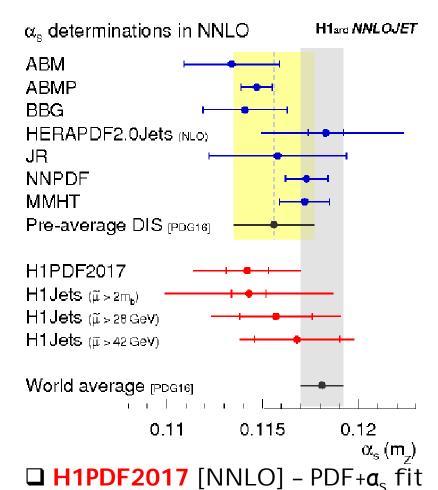

 \square $a_s(m_Z)$ is determined from inclusive jet and dijet cross sections in NC DIS measured by the H1 collaboration and using NNLO QCD predictions.

$$\underline{\sigma_i} = \sum_{k=g,q,\overline{q}} \int dx f_k(x,\mu_F) \underline{\hat{\sigma}_{i,k}(x,\mu_R,\mu_F)} \cdot \underline{c_{\mathrm{had},i}} \\ \text{PDFs} \qquad \qquad \text{Perturbatively calculated partonic cross sections Matrix Elements (ME)} \qquad \text{Accounts for non-pert. effects (hadronisation corrections)} \\ \text{both parts $a_{\!\!\!s}$ dependent}$$

- The jet cross section calculations are performed using the program NNLOJET which is interfaced to fastNLO to provide efficient, repeated calculations with different values of a_s , different scale choices and different PDF sets.
- ☐ Two approaches:
- > The value of a_s determined in NNLO from inclusive and dijet data using pre-determined PDFs as input. The evolution starting scale μ_0 = 20 GeV.
- > The value of a_s determined together with the PDFs from inclusive DIS data and jet data.
- \Box The scales are chosen to be: $\mu_R^2 = \mu_F^2 = Q^2 + P_T^2$.

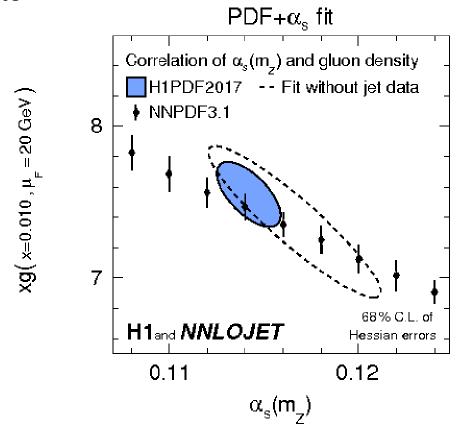

Scale dependence




- > The strongest dependence on the scale factor at lower values of μ_R (lower Q^2 and P_T)
- NNLO predictions less dependent on the scale factor than the NLO predictions
- ightharpoonup Variations of μ_R have a larger impact on the result than those of μ_F
- The scale choice yields reasonable value of χ^2/ndf

$a_s(M_7)$ uncertainties and alternatives for scales

a_s results

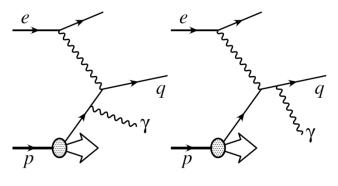

- The fitted values of $a_s(M_Z)$ are translated to $a_s(\mu_R)$ using the solution of the QCD renolmasation group equation
 - $a_s(m_Z) = 0.1142 (11)_{exp,had,PDF} (2)_{mod} (2)_{par} (26)_{scale}$

from inclusive and jet data

- ☐ Scale uncertainty reduced about two times in NNLO
- ☐ The theoretical scale uncertainty still dominates

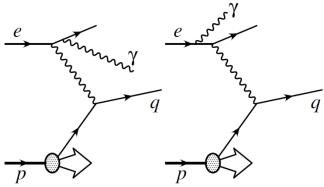
Gluon density and a_s

 \Box Error ellipse of 68 % confidence level of a_s and the gluon density as a result of two different fits



- lacktriangle The inclusion of jet data significantly reduces $oldsymbol{\alpha}_s$ and xg uncertainties
- All H1 jet data together with all inclusive H1 data provide simultaneous determination of xg and with xg with precision comparable to global PDF fits obtained at fixed value of a_s

Prompt photon accompanied by jet in DIS

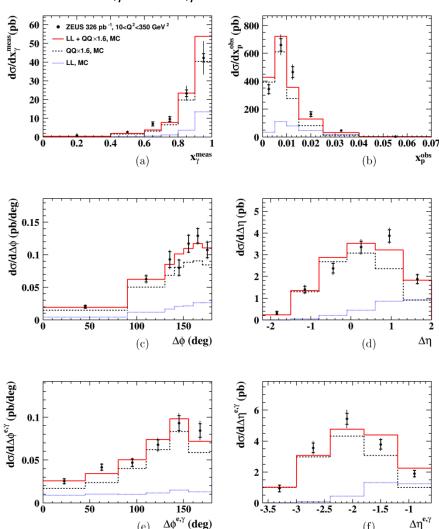

JHEP 1801 (2018) 032 [arXiv:1712.04273]

□ Photons are emitted from incoming or outgoing quark (QQ-photons) or lepton (LL-photons)

QQ - photons

 $\triangleright \gamma$ is emitted from quark as part of hard process similar to multi-jets

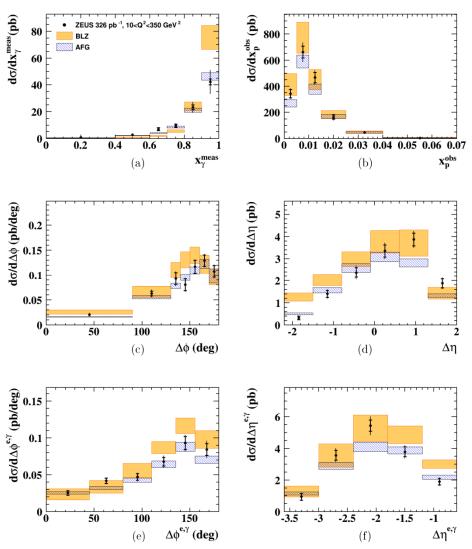
LL - photons


 $\triangleright \gamma$ is radiated from incoming or outgoing lepton (theoretically very well determined)

- □ Prompt photons unaffected by parton hadronisation
 - → Provide information on the structure of the proton and give a probe of underlying partonic process
- → Complements previous result (Phys. Lett. B 715 (2012) 88)

Prompt photon accompanied by jet in DIS

ZEUS-prel-16-001


• x_{γ}^{meas} , x_{p}^{obs} – fraction of the exchanged photon (proton) energy taken by γ +jet $\Delta \phi$, $\Delta \eta$ ($\Delta \phi_{e,\gamma}$, $\Delta \eta_{e,\gamma}$) - separations of photon and jet (scattered electron)

- ☐ Djangoh (LL contribution) and Pythia (☐☐ contribution)
- Reweighting of Pythia by 1.6 provides good description

Prompt photon accompanied by jet in DIS

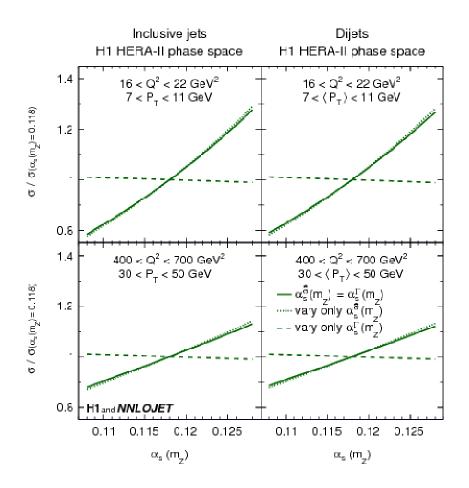
• x_{γ}^{meas} , x_{p}^{obs} – fraction of the exchanged photon (proton) energy taken by γ +jet $\Delta \phi$, $\Delta \eta$ ($\Delta \phi_{e,\gamma}$, $\Delta \eta_{e,\gamma}$) - separations of photon and jet (scattered electron)

- □ BLZ (Baranov, Lipatov, Zotov) model (PR D 81 (2010) 094034)
- $ightharpoonup x_{v}^{\text{obs}}$ and $\Delta \eta$ distribution not described by k_{T} -factorisation
- □ AFG (Aurenche, Fontannaz, Guillet)model (EPJ C 75 (2015) 64)
- Collinear factorisation in NLO provides reasonable description of the data

Summary

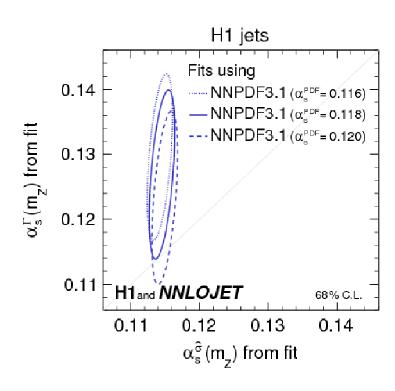
☐ Combined results on charm and beauty cross sections in DIS by H1 & ZEUS

- > significant improvement in precision
- >FFNS and VFNS (RT OPT) in NLO and aNNLO provide fear description of data
- ➤ PDF fit of charm and beauty cross sections together with inclusive data from HERA alone yields values for running quark masses consistent with PDG


\Box First determination of a_s from DIS jet data at NNLO

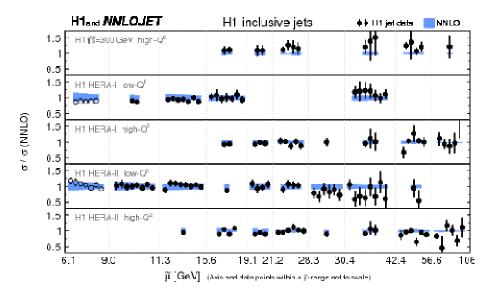
- ➤ The obtained value consistent with world average and competitive with LHC and LEP measurements
- ➤ The NNLO calculations reduce the dominating scale uncertainty in comparison to previous NLO calculations
- > The first precision extraction of $a_s(m_z)$ from jet data at NNLO involving a hadron in the initial state

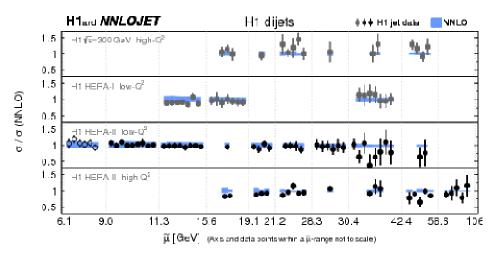

□ New ZEUS results on prompt photons acompained by jets in DIS


- good agreement with Djangoh and Pythia after rescaling QQ contribution in Pythia
- reasonably described with collinear factorisation NLO (AFG)
- \triangleright not good description with k_{τ} factorisation (BLZ)

$a_s(M_7)$ in PDF and in ME

 μ_0 = 30 GeV by large amount of data and are not so sensitive to α_s




 \Box Consistency of a_s from PDF and ME

Ratio of jet cross sections to NNLO predictions

 \Box Obtained with a_s from the fit of inclusive jet and dijet data

$$a_s(m_Z) = 0.1157 (20)_{exp} (6)_{had} (3)_{PDF} (2)_{PDFas} (3)_{PDFset} (27)_{scale}$$

