Measurement of Jet Production Cross Sections in Deep-inelastic ep Scattering at HERA

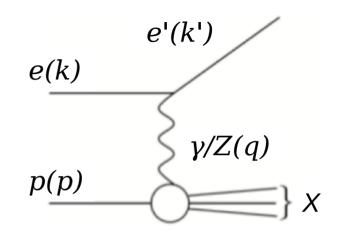
Daniel Britzger for the H1 Collaboration Eur.Phys.J.C 77 (2017), 215 [arXiv:1611.03421]

> ICHEP2018 Seoul Seoul, Korea 05.07.2018

Deep-inelastic scattering

Neutral current deep-inelastic scattering

Process: $ep \rightarrow e'X$ Electron or positron


Kinematic variables

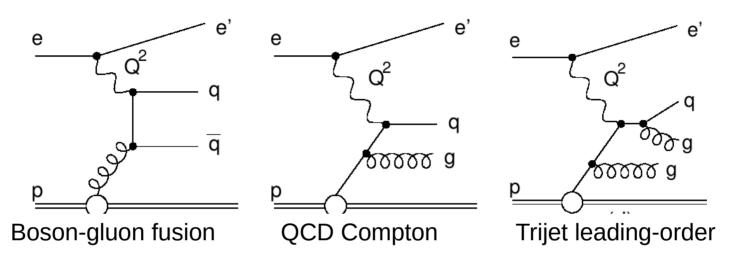
Virtuality of exchanged boson Q²

$$Q^2 = -q^2 = -(k-k')^2$$

Inelasticity

$$y = \frac{p \cdot q}{p \cdot k}$$

$$\sigma_{ep\to eX} = f_{p\to i} \otimes \hat{\sigma}_{ei\to eX}$$


NC and CC DIS cross sections (HERA-II) are mandatory ingredients for PDF fits

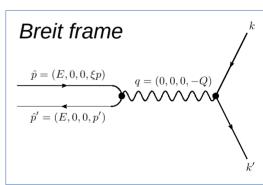
- Only one proton involved
 - -> lepton directly probes (charged) constitutents of proton

Gluon is mainly indirectly constrained by DGLAP and sum-rules

-> Measurement of $ep \rightarrow 2j+X$ will allow direct access of gluon content

Jet production in ep scattering

Jet measurements are performed in Breit reference frame


Exchanged virtual boson collides 'head-on' with parton from proton ('brick-wall' frame)

Jet measurements directly sensitive

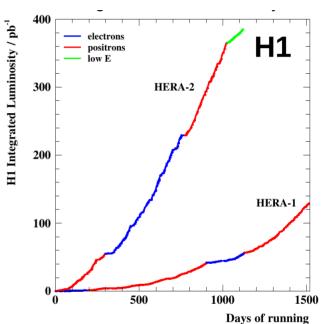
- to α_s already at leading-order
- to gluon content of proton

Trijet measurement

- More than three jets with significant transverse momenta
- Leading-order already at $O(\alpha_s^2)$

The HERA ep collider

HERA ep collider


HERA ep collider in HamburgData taking periods

• HERAI: 1994 – 2000

• HERA II: 2003 – 2007

Delivered integrated luminosity ~ 0.5 fb⁻¹

Integrated luminosity

HERA-II period

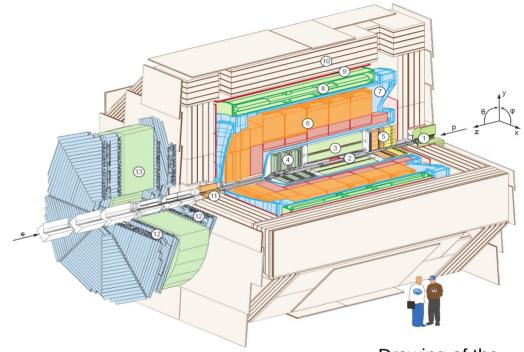
- Electron and positron runs
 √s = 319 GeV
- - $E_e = 27.6 \text{ GeV}$
 - $E_n = 920 \text{ GeV}$
- Analysed int. Luminosity: L = 290 pb-1

H1 Experiment at HERA

H1 multi-purpose detector

Asymmetric design

Trackers


- Silicon tracker
- Jet chambers
- Proportional chambers

Calorimeters

- Liquid Argon sampling calorimeter
- SpaCal: scintillating fiber calorimeter

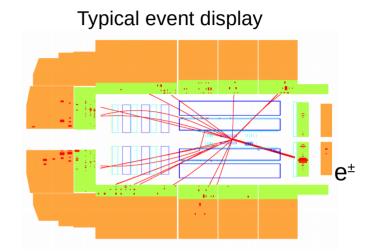
Superconducting solenoid, 1.15T

Muon detectors

Drawing of the H1 experiment

Excellent control over experimental uncertainties

- Overconstrained system in NC DIS
- Electron measurement: 0.5 1% scale uncertainty
- Jet energy scale: 1%
- Luminosity: 1.5 2.5%
- Continuous upgrades with time


Analysis strategy and kinematic range

Data must be corrected for detector effects

- Kinematic migrations
- Acceptance and efficiency effects

Regularised unfolding

• For accurate descripton of migrations consider an 'extended phase space'

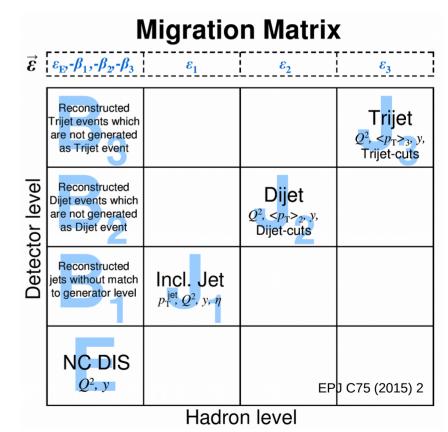
	Extended phase space for unfolding	Cross section phase space
NC DIS	$Q^2 > 3 \text{ GeV}^2$	$5.5 < Q^2 < 80 \text{ GeV}^2$
	y > 0.08	0.2 < y < 0.6
(inclusive) Jets	$P_T^{jet} > 3 \text{ GeV}$	$P_T^{jet} > 4.5 \text{ GeV}$
	$-1.5 < \eta^{lab} < 2.75$	$-1.0 < \eta^{lab} < 2.5$
Dijet and Trijet		P _T jet > 4 GeV
	$\langle P_T^{jet} \rangle > 3 \text{ GeV}$	>5 [5.5] GeV

Regularised unfolding

Regularised unfolding using TUnfold

Calculate unfolded distribution x by minimising

$$\chi^{2}(x,\tau) = (y-Ax)^{T} V_{y}^{-1} (y-Ax) + \tau L^{2}$$


- Linear analytic solution
- Linear error propagation
- Statistical correlations are considered in V_{ν}

Simultaneous unfolding of Inclusive jet, Dijet, Trijet, NC DIS

- Statistical correlations are considered
- Matrix constituted from O(106) entries
 - · Two generators used
 - Difference between the two -> model uncertainty
- Up to 6 variables considered for migrations
- 'detector-level fake jets' (or events) are constrained with NC DIS data

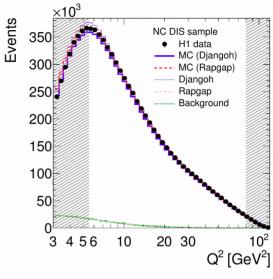
JINST 7 (2012) T10003

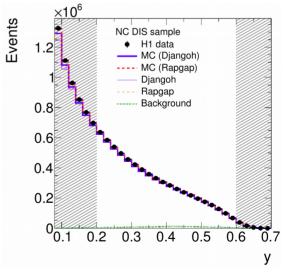
Control distributions

Acceptance of NC DIS events

- Scattered lepton is found in SpaCal
- Lepton energy E_e > 10.5 GeV
- Selection based on un-prescaled SpaCal electron trigger

Monte Carlo generators


Rapgap: LO matrix elements + PS


• Djangoh: Color-dipole model

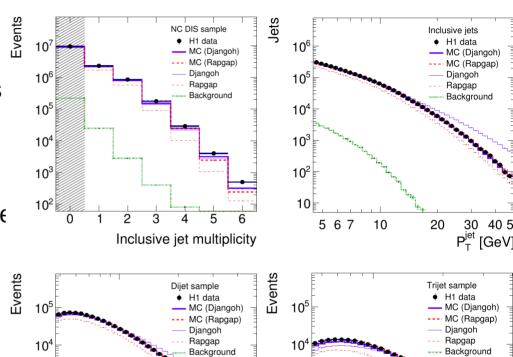
String fragmentation for hadronisation

Background

- Photoproduction simulation using Pythia
- Normalised to data using dedicated event selection
- Background for jet quantities almost negligible

Detector-level distributions for jets

Jet reconstruction


- k_T jet algorithm with R=1
- · Jets built from tracks and clusters
- Jet energy calibration using neural networks Approx. 1% Jet-energy-scale uncertainty

Monte Carlo predictions

- MC simulations used for unfolding
- Jet multiplicities and spectra not well modelle
 - Djangoh: p_Tjet spectra too hard
 - Rapgap: Jet multiplicity underestimated
 - Both generators tend to have too few jets in forward direction
- -> MC is weighted to describe data

Dijet and Trijet

- Distributions raise steeply due to p_T^{jet} > 5 GeV requirement
- -> Extended phase space important for migrations

30 40 50

 $\langle P_T^{jet} \rangle$, [GeV]

5 6 7

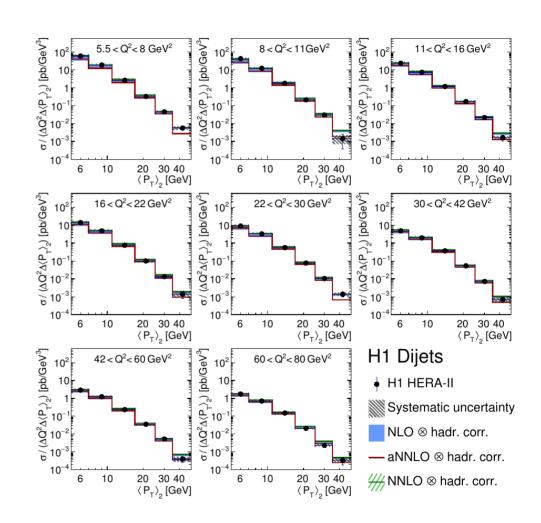
10

Comparisons to Predictions

Recently improved prediction became available for DIS jets

- approximate NNLO (Phys. Rev. D92 (2015) 7, 074037)
- NNLO (Rev. Lett. 117 (2016) 042001)
- Both theory groups have extended their calculations for our data

Predictions	NLO	aNNLO	NNLO
Program for jet cross sections	nlojet++	JetViP	NNLOJET
pQCD order	NLO approximate NNLO		NNLO
Calculation detail	Dipole subtraction	Phase space slicing	Antenna subtraction
		NNLO contributions	
		from unified threshold	
		resummation formalism	
Program for NC DIS	QCDNUM	APFEL	APFEL
Heavy quark scheme	ZM-VFNS	FONLL-C	FONLL-C
Order	NLO	NNLO	NNLO
PDF set	NNPDF3.0_NLO	NNPDF3.0_NNLO	NNPDF3.0_NNLO
$\alpha_s(M_Z)$	0.118	0.118	0.118
Hadronisation corrections	Djangoh and Rapgap		
Available for			
(Normalised) Inclusive jet	✓	✓	✓
(Normalised) Dijet	✓	✓	✓
(Normalised) Trijet	✓		

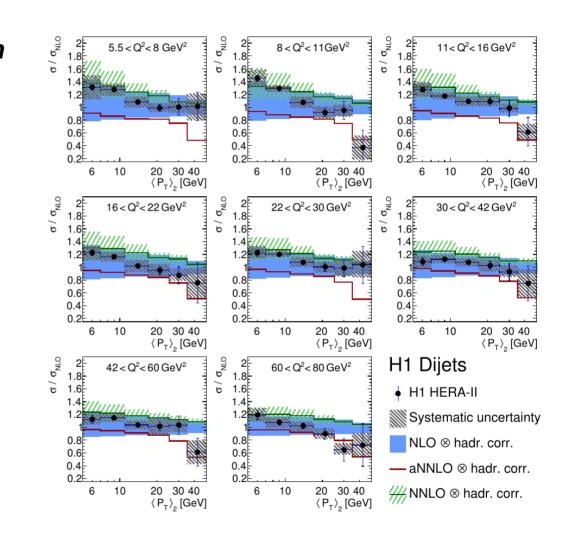

Dijet cross sections

Dijet cross sections in NC DIS as a function of Q^2 and $\langle p_T \rangle_2$

• $\langle P_T \rangle_2 = (P_T^{\text{jet1}} + P_T^{\text{jet2}})/2$ with: $P_T^{\text{jet}} > 4 \text{ GeV}$

Comparison to Predictions

- NLO (nlojet++, NNPDF30_nlo)
- approximate NNLO (JetVip, NNPDF30_nnlo)
- NNLO (NNLOJET, NNPDF30_nnlo)
- Overall: predictions give reasonable description of data


Ratio of dijet cross sections to NLO

Scale uncertainty: 7-point variation

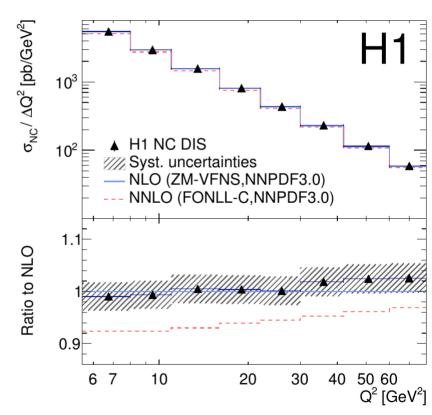
- Vary μ_r and μ_f with factors of 2 and 0.5
- Exclude variations in 'opposite' directions
- Assign largest and smallest variations as uncertainty

Ratio to NLO prediction

- NLO give reasonable descriptions within large scale uncertainties
- aNNLO improves shape
 - aNNLO expected to improve description at high <p_T>
- NNLO improves shape dependence
 - NNLO predictions have smaller scale uncertainties than NLO at high-<p $_{T}>$

Normalised jet cross sections

 Jet cross sections are normalised to 'inclusive neutral-current DIS cross section' in respective Q² bin


Advantage

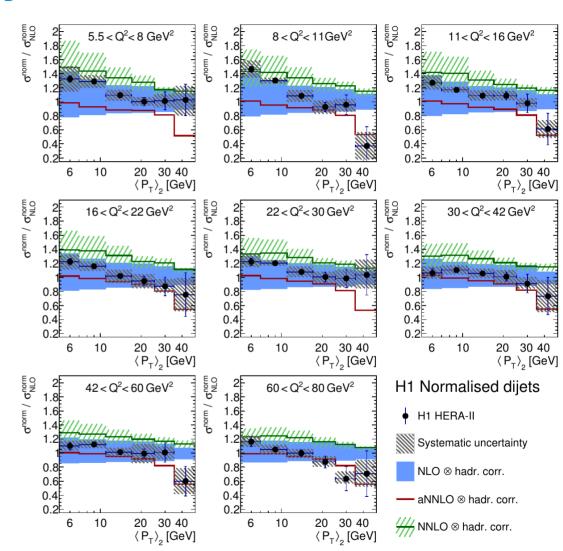
Reduced experimental uncertainties:
 Cancellation of normalisation uncertainty
 (in our case: only partial cancellation, because NC DIS cross sections are measured only with a subset of the jet data because of trigger reasons)

NC DIS cross sections

- NLO (ZM-VFNS) and NNLO (FONLL-C) predictions provide good description of data
- PDFs are fitted to NC DIS cross sections

Inclusive neutral-current DIS cross sections

Normalised dijet cross sections


Normalised dijet cross sections

$$\sigma_i^{\text{norm}} = \frac{\sigma_i}{\sigma_{i_q}^{\text{NC}}}$$

- Predictions obtained as ratio jet and NC DIS calculations
- Scale uncertainties are obtained by varying jet cross sections only (because NC DIS are fitted to data)

Data to theory agreement

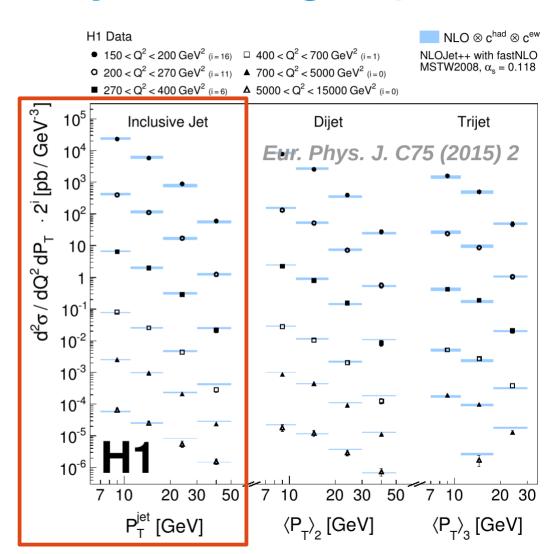
- Overall good description by NLO, aNNLO and NNLO predictions
- Somewhat reduced experimental uncertainties
- NNLO slightly overshoots data
 -> partially caused by normalisation w.r.t. NC DIS

Reminder: inclusive jets @ high-Q²

Eur. Phys. J. C75 (2015) 2:

- Jet cross sections at high-Q²
- Inclusive jet, dijet and trijet cross sections
- 150 < Q² < 15000GeV²

Inclusive jets previously published


• $7 < p_T < 50 \text{ GeV}$

Recent studies showed

- Inclusive jets are well measurable down to $p_T = 4 \text{ GeV}$
- The original 'high-Q² '-analysis contained a cross section bin for inclusive jets for:

$$5 < p_T < 7 \text{ GeV}$$

- These additional bins are now provided (for each Q² range)
- Absolute and normalised cross sections

Inclusive jet cross sections

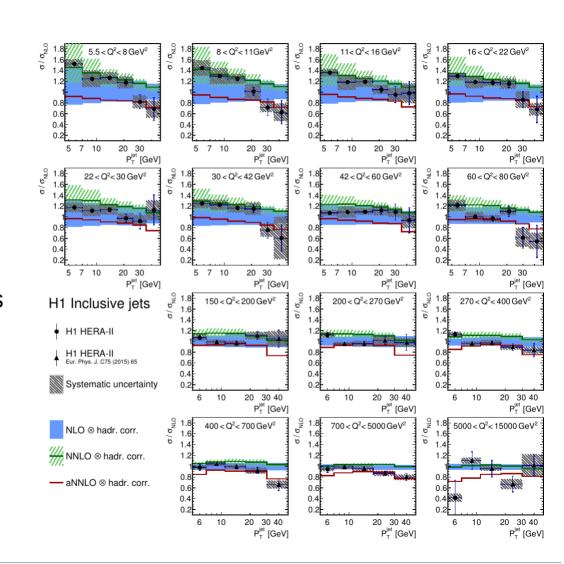
Inclusive jet cross sections

- low Q²: $4.5 < P_T < 50 \text{ GeV}$
- high Q²: 5 < P_T < 50 GeV

Predictions

NLO, aNNLO & NNLO

NLO

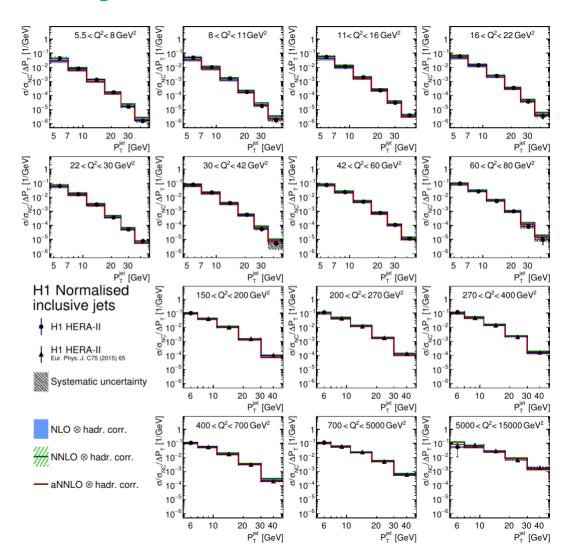

Data well described within uncertainties

aNNLO

Somewhat improved shape description

NNLO

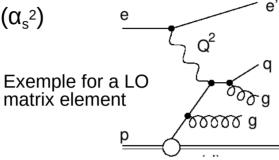
- Improved shape and normalisation
- Reduced scale uncertainties for larger values of $\mu_{\mbox{\tiny r}}$


Normalised inclusive jet cross sections

Normalised inclusive jets

- Normalisation w.r.t. inclusive NC DIS cross section in respective Q² bin
- Significant reduction of uncertainties at higher values of *Q*²

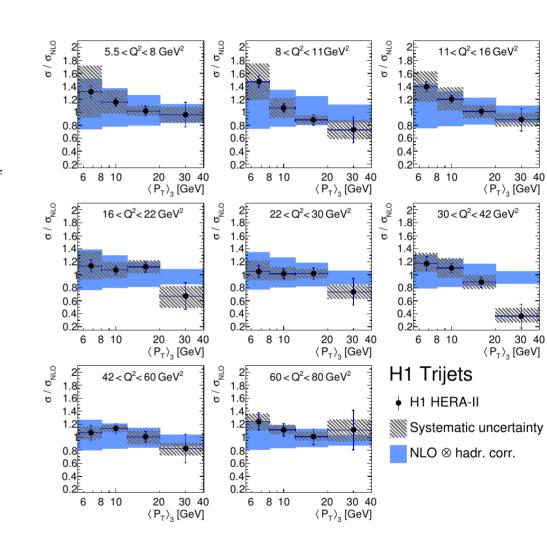
Normalised jet cross sections


• Increase as a function of Q^2 for a given P_T interval

Trijet cross sections

ep -> 3jets

• Leading order $O(\alpha_s^2)$

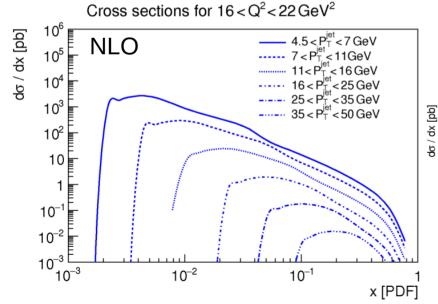


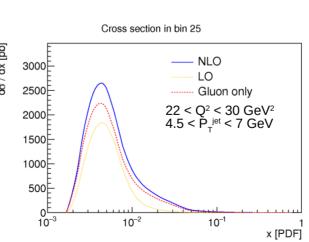
- No NNLO predictions available yet
- NLO(trijets) of same order in α_s than NNLO inclusive jet or dijet

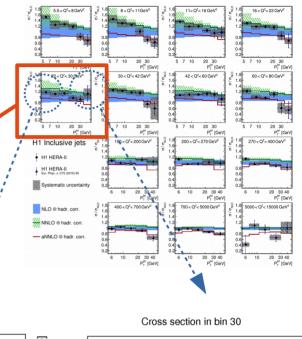
Description by NLO

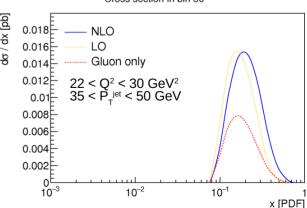
- Data well described by NLO
- Data precision mainly higher than scale uncertainties
- Similar trends than for dijets observed: low scales: NLO undershoots data high <P_T>: NLO overshoots data

Normalised trijets also measured


Phenomenological application


PDF dependence of <u>inclusive jet</u> cross sections


Cross sections of single data points as a function of x(PDF)


P_T-binning probes different x-regions

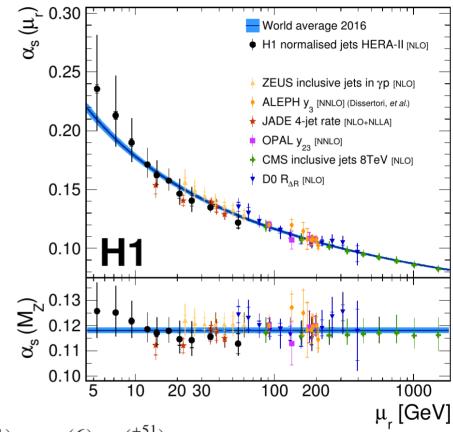
- Lowest x-values: $x \sim 10^{-3}$
- High-P_T cross sections: x > 10-1
 - -> H1 Jets may become important for high-x gluon
 - -> Advantage: No convolution with second hadron in DIS
- x-dependence shows little dependence on Q²

Determination of the strong coupling $\alpha_s(M_z)$

Use low- and high-Q2 data

- Low-Q2 jets [arxiv:1611.03421]
- high-Q2 jets (Eur.Phys.J.C75 (2015) 2)

All normalised jet cross sections


- Normalised inclusive jet
- Normalised dijets
- Normalised trijets
- Correlations of uncertainties are known
- Fit $\alpha_s(M_z)$ in χ^2 -minimization procedure

Two results (NLO)

- Probe running of $\alpha_s(\mu_r)$ Group data points with similar value of μ_r
- One fit to all data points together: $\alpha_s(M_Z)$

$$\alpha_s(M_Z) = 0.1173 (4)_{\text{exp}} (3)_{\text{PDF}} (7)_{\text{PDF}(\alpha_s)} (11)_{\text{PDFset}} (6)_{\text{had}} (^{+51}_{-43})_{\text{scale}}$$

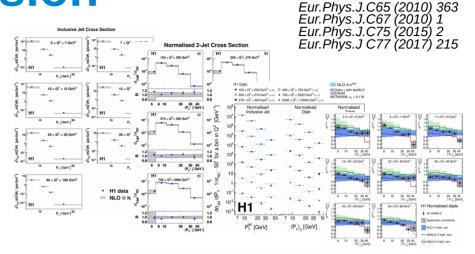
- Very high experimental precision
- Using NNLO: dominating theory uncertainties is reduced → see talk this afternoon

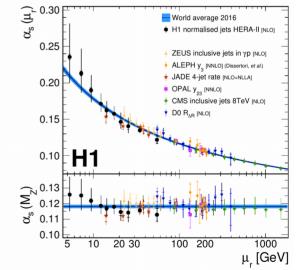
World average (PDG2016) $\alpha_s(M_Z) = 0.1181 \pm 0.0011$

Conclusion

Last missing piece of H1 jet legacy

Process		HERA-I	HERA-II
Low Q ²	Inclusive jet Dijet Trijet	EPJ C 67 (2010) 1	EPJ C 77 (2017) 215 (this presentation)
High Q ²	Inclusive jet Dijet Trijet	EPJ C 65 (2010) 363	EPJ C 75 (2015) 2


- Inclusive jet, dijet and trijets
 Also available: normalised w.r.t. inclusive NC DIS


Probe running of α_s over one order of magnitude

- Very high experimental precision on $\alpha_s(M_7)$
- Challenging regime: 5 < μ_r < 70 GeV

Future applications PDFs with H1 jet data

Very high sensitivity to gluon density

Finally we arrived: High-precision jet data together with NNLO predictions

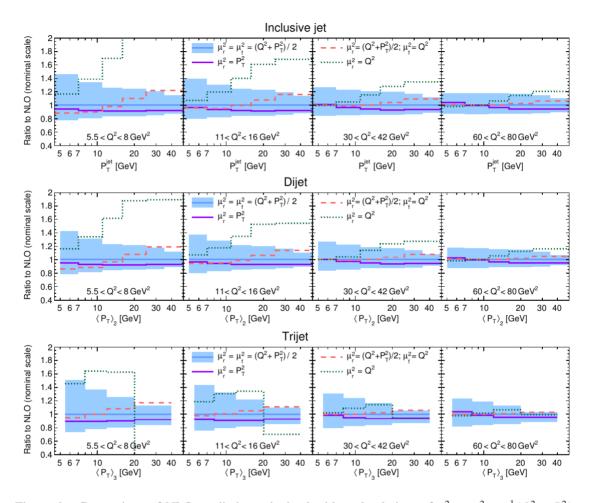


Figure 6: Comparison of NLO predictions obtained with scale choices of $\mu_r^2 = \mu_f^2 = \frac{1}{2}(Q^2 + P_{\rm T}^2)$, $\mu_r^2 = \mu_f^2 = P_{\rm T}^2$, $\mu_r^2 = \mu_f^2 = Q^2$, and $\mu_r^2 = \frac{1}{2}(Q^2 + P_{\rm T}^2)$ with $\mu_f^2 = Q^2$ for selected Q^2 bins of the inclusive jet, dijet and trijet cross sections. The shaded area around the theory predictions indicates the scale uncertainty on the nominal scale choice of $\mu_r^2 = \mu_f^2 = \frac{1}{2}(Q^2 + P_T^2)$ as described in the text.

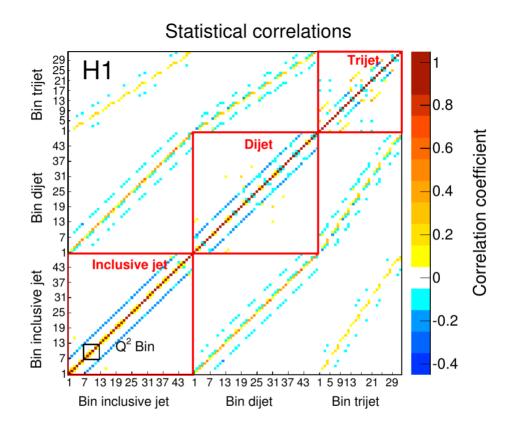
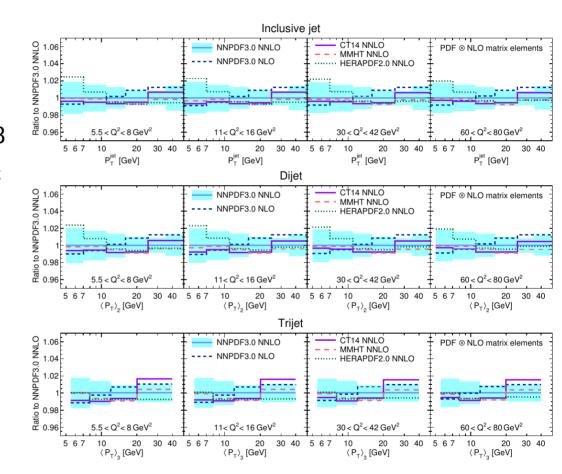


Figure 7: Matrix of statistical correlation coefficients of the unfolded cross sections. The bin labels are specified in table 5.


PDF dependence

Studies using different PDF sets

- Study various NNLO PDF sets
 - NNPDF3.0
 - CT14
 - MMHT
 - HERAPDF2.0
- All PDFs determined with $\alpha_s(M_z) = 0.118$
- Technical aspect: Convolute with NLO matrix elements because NNLO matrix elements are too time-consuming to recalculate

Effect of different PDFs

- Very small
- All studied NNLO PDF sets are quite consistent
- Different PDFs mainly covered by NNPDF30 PDF uncertainty
- Increased PDF uncertainty for high values of P_T
- -> Future PDFs may have lower high-x gluon

