Determination of α_s in NNLO QCD using H1 jet cross section measurements

Vladimir Chekelian (MPI for Physics, Munich) on behalf of the H1 Collaboration (and NNLOJET)

- completion of the jet measurements by the H1 collaboration at HERA Eur.Phys.J.C77(2017) 215

 - α_s(m_Z) determination at NNLO using jet measurements in DIS by H1 Eur.Phys.J.C77(2017) 791

ISMD2018 Singapore 5.09.2018

Jets in deep-inelastic *ep* scattering at HERA

New jet measurements in DIS by H1

Eur.Phys.J.C77(2017) 215

Inclusive jet, dijet and trijet cross sections in the *ep* NC DIS are measured at low Q^2 as a function of Q^2 and P_T^{iet} at the hadron level

NC DIS for all jets $5.5 < Q^2 < 80 \text{ GeV}^2$; 0.2 < y < 0.6 $-1.0 < \eta_{lab}^{jet} < 2.5$; $P_T^{jet} > 4 \text{ GeV}$ inclusive jets $4.5 < P_T^{jet} < 50 \text{ GeV}$ dijets $5.0 < P_T^{>_2} < 50 \text{ GeV}$ $5.5 < P_T^{>_3} < 40 \text{ GeV}$ asymmetric cuts $P_T^{j}_{>_{2,3}} \gg P_T^{jet}$ to avoid IR sensitive regions in theory calculations

extension of the inclusive jet measurements at high Q² published in Eur.Phys.J.C75(2015)65 (Q² > 150 GeV², 7 <P_T^{jet} <50 GeV) to the low P_T bin: $5 < P_T^{jet} < 7 \text{ GeV}$

- HERA II data: 290 pb⁻¹, \sqrt{s} =319 GeV
- in the Breit frame using k_T algorithm with R=1
- also jet cross sections normalised to inclusive NC DIS are obtained (normalised jet cross sections)

ISMD2018 Singapore 5.09.2018

Simultaneous regularised unfolding of inclusive jets, dijets, trijets and NC DIS

Detector effects like migrations, acceptance, efficiency are corrected for in **regularised unfolding** by minimising :

$$\chi^{2}(x,\tau) = (y - Ax)^{T} V_{y}^{-1} (y - Ax) + \tau L^{T}$$

x Hadron level y Detector level V_y Covariance matrix A Migration matrix

τL² Regularisation term

Migration Matrix

 \rightarrow two times more bins in P_T (combined later)

ISMD2018 Singapore 5.09.2018 V. Chekelian, alpha_s in NNLO QCD using H1 jet measurements

Statistical correlations

- all stat. correlations are provided
- systematics: total & eight correlated unc.
- normalisation/lumi uncertainty 2.5%
- hadronisation corr. to compare to theory

4

Double differential dijets cross sections

$\sigma(\text{bin})$ / $\Delta Q^2 \, \Delta \langle P_T \rangle_2$

- as a function of Q² and $\langle P_T \rangle_2 = (P_T^{jet1} + P_T^{jet2})/2$ with $P_T^{jet1,2} > 4 \text{ GeV}$
 - $\begin{array}{l} 5.5 < \mathrm{Q}^2 < 80 \ \mathrm{GeV^2} \\ 5 < \left< \mathrm{P_T} \right>_2 < 50 \ \mathrm{GeV} \end{array}$
 - compared to calculations at NLO, aNNLO, NNLO (NNPDF3.0, $\alpha_s(m_Z)$ =0.118) multiplied by hadronic corr.
 - → reasonable description
 of the dijet data over
 4-5 orders of magnitude

ISMD2018 Singapore 5.09.2018

Dijets:

aNNLO & NNLO calculations

aNNLO (approximate NNLO) - two-loop threshold correction Phys.Rev.D92(2015)7,074037

NNLO (program NNLOJET) Rev.Lett.117(2016)042001

- scale unc. from variation of $\mu_{\rm r}$ and $\mu_{\rm f}$ by factors 0.5/2, excluding (0.5,2) and (2,0.5)

→ aNNLO and NNLO improve P_T shape dependence → NNLO reduced scale unc. at high P_T compared to NLO

ISMD2018 Singapore 5.09.2018

Normalised dijet cross sections

- best suited for possible "PDF+ α_s " fits together with inclusive NC & CC DIS data

ISMD2018 Singapore 5.09.2018

Double diff. inclusive jet cross sections

0.6

New measurements: - low Q²: 5.5 - 80 GeV² $4.5 < P_T < 50 \text{ GeV}$ - high Q²: 150 - 15000 GeV² $5 < P_{T} < 7 \text{ GeV}$ $7 < P_T < 50$ GeV published in Eur.Phys.J.C75(2015)65

Similar to dijets: \rightarrow aNNLO and NNLO improve P_T shape dependence \rightarrow NNLO reduced scale unc. at high P_{T} compared to NLO

also "normalised" cross sections are provided

ISMD2018 Singapore 5.09.2018

8

Trijet cross sections

as a function of Q² and $\langle P_T \rangle_3 = (P_T^{jet1} + P_T^{jet2} + P_T^{jet3})/2$ with $P_T^{jet1,2,3} > 4 \text{ GeV}$ $5.5 < Q^2 < 80 \text{ GeV}^2$ $5.5 < \langle P_T \rangle_3 < 40 \text{ GeV}$

→ good description by calculations at NLO

 \rightarrow NNLO is not available yet

also "normalised" cross sections are provided

ISMD2018 Singapore 5.09.2018

Extraction of α_s at NNLO from jet data in DIS

Eur.Phys.J.C77(2017) 791H1 collaboration together withV.Bertone, J.Currie, T.Gehrmann, C.Gwenlan, A.Huss, J.Niehues, M.Sutton (NNLOJET)

Input jet data in DIS: 5 inclusive jet sets and 4 dijet sets published by H1

Jet cross section:
$$\sigma_{i} = \sum_{n=1}^{\infty} \sum_{k=g,q,\overline{q}} \int dx f_{k}(x,\mu_{F}) \hat{\sigma}_{i,k}^{(n)}(x,\mu_{R},\mu_{F}) \cdot c_{\text{had},i}$$
hadronisation correction

NNLO calculations for ep DIS jet production (2016/2017):

using antenna subtraction technique

J. Currie et al., Rev.Lett.117(2016)042001; JHEP 1707(2017) 018

ISMD2018 Singapore 5.09.2018

Input H1 jet data compared to α_s NNLO fit

Scale dependence of jet cross sections at NNLO

Scales (renormalisation and factorisation) are chosen to be

$$\mu_R^2=\mu_F^2=Q^2+P_T^2$$

- scale dependence by varying multiplicative factors to $\mu_{\rm R}$, $\mu_{\rm F}$ in four phase space domains (low & high μ , incl.jets & dijets)

- → reduction of scale dependency at NNLO compared to NLO
- $\mu_{\rm F}$ dependence small (green band)

ISMD2018 Singapore 5.09.2018

Methodology of the $\alpha_s(m_Z)$ determination

NNLO theory: a_s dependences of the jet cross sections

$$\sigma_{i} = \sum_{k=g,q,\overline{q}} \int dx f_{k}(x,\mu_{\rm F}) \hat{\sigma}_{i,k}(x,\mu_{\rm R},\mu_{\rm F}) \cdot c_{{\rm had},i}$$

explicit α_s dep. in hard ME:

RGE: running of α_s

implicit α_s dependence in PDFs:

$$\mu_{\rm F}^2 \frac{df}{d\mu_{\rm F}^2} = \mathcal{P}(\alpha_{\rm s}) \otimes f \quad \Longrightarrow$$

 $f = \Gamma(\mu_{\rm F}, \mu_0, \frac{\alpha_{\rm s}(m_{\rm Z})}{\text{evolution kernel}}) \otimes f_{\mu_0}(x)$

Two complementary approaches to determine $\alpha_{\!s}(m_Z^{})$:

a_s -fit (H1 jet data only)

perturbative expansion in orders of α_s

- take external PDFs at $\mu_0=20$ GeV (NNPDF3.1 NNLO, $\alpha_s^{PDF}(m_Z)=0.118$)
- propagate those PDFs to any value of $\mu_{\rm F}$ using DGLAP equation in NNLO
- fit theory predictions to H1 jet data with a free parameter $\alpha_s(m_Z)$ by minimizing χ^2 pro: *NNLO theory for jets only* contra: *needs external PDFs*

PDF+ a_s -fit (H1 jet and inclusive NC+CC data)

 $\hat{\sigma}_{i,k} = \sum \alpha_{\mathrm{s}}^{n}(\mu_{\mathrm{R}}) \hat{\sigma}_{i,k}^{(n)}(x,\mu_{\mathrm{R}},\mu_{\mathrm{F}}) \qquad \mu_{\mathrm{R}}^{2} \frac{d\alpha_{\mathrm{s}}}{d\mu_{\mathrm{R}}^{2}} = \beta(\alpha_{\mathrm{s}})$

- simultaneous fit of PDFs and $\alpha_s(m_Z)$ in NNLO QCD.

pro: everything in one go contra: complicated theory environment

ISMD2018 Singapore 5.09.2018

α_{s} -fit

- fit jet data with a free parameter $\alpha_s(m_Z)$ by minimizing χ^2 based on log-normal probabilities

$$\chi^2 = \sum_{i} \sum_{j} \left(\log \varsigma_i - \log \sigma_i \right) \left(V_{exp} + V_{had} + V_{PDF} \right)_{ij}^{-1} \left(\log \varsigma_j - \log \sigma_j \right)$$

$$\zeta = \text{Data, } \sigma_i = \text{NNLO} \quad \text{V=covariance matrices}$$

Uncertainties of the resulting $\alpha_s(m_Z)$ originate from:

exprelative uncertainties of datahaduncertainty of hadronisation correctionPDFuncertainty of PDF (NNPDF3.1 NNLO)PDFsetvariation of the PDF setsPDFasvariation of the α_s^{PDF} -value by 0.002scalevariation of the scale by factors 0.5 & 2.0

Cut on the scale value of jet data in the fit :

- *exp*. incertainty is increasing with the cut value on μ
- *scale* and *PDFas* are decreasing with the cut on μ

\rightarrow compromise for the main result: $\mu > 28 \text{ GeV}$

ISMD2018 Singapore 5.09.2018

Strong coupling from H1 jets in DIS at NNLO

Results for $\alpha_s(m_Z)$ at NNLO using H1 jets:

- input H1 jet data sets (9) are consistent and χ²/ndf are around unity
 all α_s(m_Z) results are consistent
- main result: H1 jets with $\mu > 28$ GeV ($\chi^2 = 63.2$ for 91 data points)

 $\begin{aligned} \alpha_{\rm s}(m_{\rm Z}) &= 0.1157\,(20)_{\rm exp}\,(6)_{\rm had}\,(3)_{\rm PDF} \\ &(2)_{\rm PDF\alpha_{\rm s}}\,(3)_{\rm PDFset}\,(27)_{\rm scale} \end{aligned}$

- scale uncertainty is the largest
- PDF uncertainties are negligible
- in agreement with the world average

Running of strong coupling at NNLO

 α_s -fits are performed for groups of jet data points at similar scales and resulting $\alpha_s(m_Z)$ are transported to the average μ_R of the group

- running of α_s is tested from 7 to 90 GeV (in one experiment)
- → consistency with expectation at all scales
- → scale uncertainty dominates at low μ_R values

ISMD2018 Singapore 5.09.2018

PDF+ α_s -fit in NNLO (H1PDF2017)

The second approach: simultaneous determination of $\alpha_s(m_Z)$ and PDF in the NNLO QCD fit (H1PDF2017)

Input data:

- inclusive NC and CC DIS data from H1 $(Q^2 > 10 \text{ GeV}^2)$
- normalised incl. jet and dijet cross section data from H1 ($\mu > 2m_b$)

Scales: $\mu_R^2 = Q^2$ for inclusive DIS and $\mu_F^2 = Q^2 + P_T^2$ for jet data

Parameterisation of PDFs: (similar to HERAPDF2.0)

$$xf(x)|_{\mu_0} = f_A x^{f_B} (1-x)^{f_C} (1+f_D x+f_E x^2)$$

12 parameters in total at $\mu_0 = 1.9 \text{ GeV}$

very different theory and data sets from α_s -fit:

- min μ^{jet} , "normalised jets"; + NC & CC data
- starting at much lower scale μ_0 ; + DIS

→ reduces correlation between gluon and α_s and stabilizes gluon density determination

ISMD2018 Singapore 5.09.2018 V. Chekelian, alpha_s in NNLO QCD using H1 jet measurements

= 20

xg(x=0.010 , μ_F

PDF+ α_s fit 30 Gluon and singlet PDFs 25 H1PDF2017 [NNLO] **NNPDF3.1** ($\alpha_{s} = 0.118$) 20 **NNPDF3.1** ($\alpha_{s} = 0.114$) $\mu_{-} = 20 \text{ GeV}$ 15 ¥ 10 xg 5 H1 and NNLOJET 0 10^{-3} 10^{-2} 10^{-1} х PDF+ α_s fit xg 1.1 1.0 0.9 хΣ 1.1 1.0 0.9 H1 and NNLOJET

 10^{-2}

х

 $\mu_{r} = 20 \, \text{GeV}$

 10^{-1}

V. Chekelian,

QCD using H1

PDFs & $\alpha_s(m_7)$ in H1PDF2017

all H1 incl. DIS, incl. jets and dijet data are included into fit consistency of data sets: χ^2 = 1539.7 for ndf = 1529-13

- PDFs – comparable precision to global fits (with fixed $\alpha_s(m_Z)$) - $\alpha_s(m_z)$ – good overall precision of 2.5%

 $\alpha_{\rm s}(m_{\rm Z}) = 0.1142 \,(11)_{\rm exp,had,PDF} \,(2)_{\rm mod} \,(2)_{\rm par} \,(26)_{\rm scale}$

consistent with the "H1 jet" fits and other NNLO results

Ratio to NNPDF3.1

 10^{-3}

Singapore 5.09.2018

ISMD2018

18

Summary

H1 measurements of jet cross section in NC DIS are accomplished

- HERA I + II (1992-2007)
- inclusive, dijets, trijets
- $5 < Q^2 < 15000 \text{ GeV}^2$, $5 < P_T^{\text{jet}} < 50 \text{ GeV}$

Determination of $\alpha_s(m_Z)$ at NNLO using H1 incl. jets, dijets and incl. DIS data Eur.Phys.J.C77(2017) 791

 $\begin{array}{ll} a_{\rm s} - {\rm fit} & \alpha_{\rm s}(m_{\rm Z}) = 0.1157\,(20)_{\rm exp}\,(6)_{\rm had}\,(3)_{\rm PDF}\,(2)_{\rm PDF\alpha_{\rm s}}\,(3)_{\rm PDFset}\,(27)_{\rm scale} \\ {\rm PDF} + a_{\rm s} - {\rm fit} & \alpha_{\rm s}(m_{\rm Z}) = 0.1142\,(11)_{\rm exp,had,PDF}\,(2)_{\rm mod}\,(2)_{\rm par}\,(26)_{\rm scale} & ({\rm H1PDF2017}) \end{array}$

- two alternative approaches provide consistent results at NNLO with high experimental and theoretical precision
- fruitful collaboration of theoreticians and experimentalists (H1 & NNLOJET)

Jets in eh/hh collisions \rightarrow precision QCD phenomenology with NNLO accuracy

ISMD2018 Singapore 5.09.2018

α_s -fit: variations of the scale and $\alpha_s^{PDF}(m_Z)$ of PDFs & different scale choices

- variations of $\mu_{R,F} = Q^2 + P_T^2$ by factors 0.5 & 2.0 are used for theory uncertainty estimation of the resulting $\alpha_s^{\text{fit}}(m_Z)$

- variation of external PDF sets and $\alpha_s^{PDF}(m_Z)$ of PDF different choices of the scale:

- Q^2 as scale is disfavored (larger χ^2)
- other choices are within scale unc.
- NNLO scale uncertainty is better than the NLO one

Scale choice $(\mu_{P/F}^2)$

ISMD2018 Singapore 5.09.2018

V. Chekelian, alpha_s in NNLO QCD using H1 jet measurements

 $100 \, \text{GeV}^2$