Diffraction and Low-x 2018 Aug 26th – Sept 1st, Reggio Calabria. Italy

Collective effects in DIS

Marta Ruspa (Univ. Piemonte Orientale & INFN-Torino, Italy)

Motivation

Azimuthal anisotropies in the angular distribution of particles observed in heavy ion collisions \rightarrow understood as effects of collective expansion

At LHC evidence for long-range correlations in $\Delta \eta$ for particle pairs produced at small $\Delta \phi$ (ridge) in **pPb and pp systems**

Motivation

Azimuthal anisotropies in the angular distribution of particles observed in heavy ion collisions \rightarrow understood as effects of collective expansion

At LHC evidence for long-range correlations in $\Delta \eta$ for particle pairs produced at small $\Delta \phi$ (ridge) in **pPb and pp systems**

Is it initial-, final- or mixed-state effect?

What happens in an even smaller system, i.e. electron-proton collision?

Formalism (hydro-like system)

Amplitude of **single-particle anisotropies** quantified with Fourier decomposition

2-particle angular correlation functions, when evaluated wrt pair azimuthal angle distance, have similar expansion

$$\frac{dN}{d\phi} = \left\langle \frac{dN}{d\phi} \right\rangle \left(1 + \sum_{n} 2v_n \cos[n(\phi - \Psi_n)] \right)$$

$$\frac{dN_{\text{pair}}}{d\Delta\phi} = \left\langle \frac{dN_{\text{pair}}}{d\Delta\phi} \right\rangle \left[1 + \sum_{n} 2v_{n,n} \cos(n\Delta\phi) \right]$$

If the modulation in the correlation function arises solely from the modulation of the single-particle distributions $\rightarrow v_{n,n} = v_n^2 + \delta^2$

(δ^2 is contribution from hard scattering, e.g. jets, that has to be suppressed)

 \rightarrow only long-range part of the correlation functions, usually $\Delta \eta > 2$

For instance...helliptic flow v₂

- Non-central collisions lead to deviations from rotation symmetry
- Pressure gradients larger in one direction
- Larger fluid velocity in this direction \rightarrow more particles
- Quantified by v₂

The ZEUS experiment and DIS at HERA

Data and simulation

2003-2007 ZEUS data, 430 pb⁻¹

- Standard DIS selection (Q² > 5 GeV²)
- Track selection

0.1 < p_T < 5 GeV -1.5 < η < 2.0

True-level particle selection

charged hadrons with $\tau > 1$ cm/c or decay products of short-living particles

Monte Carlo simulation: ARIADNE (color dipole model) and LEPTO (Lund string model)

>> LEPTO: better description of data for N_{ch} > 15

>> ARIADNE: better description of p_T distribution

Formalism

Amplitude of **single-particle anisotropies** quantified with Fourier decomposition

2-particle angular correlation functions, when evaluated wrt pair azimuthal angle distance, have similar expansion

$$\frac{dN}{d\phi} = \left\langle \frac{dN}{d\phi} \right\rangle \left(1 + \sum_{n} 2v_n \cos[n(\phi - \Psi_n)] \right)$$

$$\frac{dN_{\text{pair}}}{d\Delta\phi} = \left\langle \frac{dN_{\text{pair}}}{d\Delta\phi} \right\rangle \left[1 + \sum_{n} 2v_{n,n}\cos(n\Delta\phi) \right]$$

If the modulation in the correlation function arises solely from the modulation of the single-particle distributions $\rightarrow v_{n,n} = v_n^2 + \delta^2$

(δ^2 is contribution from hard scattering, e.g. jets, that has to be suppressed)

 \rightarrow Only Long range part of the correlation functions, usually $\Delta \eta > 2$

Correlation functions studied for charged hadrons vs multiplicity, p_T and $\Delta \eta$ $c_n(2) = \cos(n\Delta\phi)$ reconstructed as $c_n(2) = (\sum_e w_e(\sum_i \sum_{j!=i} w_i w_j \cos(n(\varphi_i - \varphi_j)) / \sum_{j!=i} w_i w_j)) / \sum_e w_e$

- \sum_e loop over events
- $\omega_{
 m i}~$ particle weight (used to apply efficiency corrections)
- ωj event weight (1 is used)

$cos(n(\Delta \phi))$ correlations

12

>> Increasing pseudorapidity separation suppresses correlations

$cos(n(\Delta \phi))$ correlations

 $c_n(2) = \cos(n\Delta\phi)$ with $\Delta\phi$ the azimuthal separation between the 2 particles

>> Increasing pseudorapidity separation suppresses correlations >> For $\Delta \eta > 2$, harmonics n=2, 3, 4 consistent with zero

$cos(\Delta \phi)$ correlations vs Monte Carlo

10≤Nch<25 everywhere

>> For all observables ARIADNE better than LEPTO >> For $\Delta \eta >$ 1 ARIADNE does not follow the data

$\cos(2\Delta\phi)$ correlations vs Monte Carlo 10 Such<25 everywhere

>> For all observables LEPTO better than ARIADNE

Diffraction and Low-x 2018, M. Ruspa

>> At high values of p_{T} and Δp_{T} LEPTO does not follow the data

Summary

- First investigation of collectivity in deep inelastic electron-proton scattering
- 2-particle correlations show harmonics n = 2, 3, 4 consistent with zero for large multiplicity or pseudorapidity separation between the two particles

 \rightarrow No long-range correlations at large multiplicity visible

- Monte Carlo models (ARIADNE and LEPTO) tuned to the HERA data able to reproduce overall features of measured distributions
- Plan to measure 4-particle correlations in DIS as well as to investigate possibile signs of collectivity in photoproduction

