

Checkshop on OCD and Diffraction VAROUS FACES Of Comparison OCD and Diffraction

Fundamental Interactions of the Polish Physical Society

We can actually fix only one and determine the rest!

DESY

~

Wichmann

Krakow'18

Polarised H1 data

Neutral current

$$\frac{d^2 \sigma_{\rm NC}^{\pm}}{dx dQ^2} \sim Y_+ \tilde{F}_2 \mp Y_- x \tilde{F}_3$$

$$\tilde{F}_2 \simeq F_2 - P_e g_A^e \kappa_Z F_2^{\gamma Z} + (g_V^e g_V^e + g_A^e g_A^e) \kappa_Z^2 F_2^Z$$
$$x \tilde{F}_3 \simeq -g_A^e \kappa_Z x F_3^{\gamma Z} + P_e g_A^e g_A^e \kappa_Z^2 x F_3^Z$$

$$F_2^{\gamma Z} = 2x \sum_q Q_q g_V^q \{q + \bar{q}\}$$
 degree of longitudinal polarisation $xF_3^Z = 2x \sum_q g_V^q g_A^q \{q - \bar{q}\}$

$$W_2^- = x \left(\rho_{\text{CC},eq}^2 U + \rho_{\text{CC},e\bar{q}}^2 \overline{D} \right)$$
$$xW_3^- = x \left(\rho_{\text{CC},eq}^2 U - \rho_{\text{CC},e\bar{q}}^2 \overline{D} \right)$$
$$U = u + c$$
$$\overline{D} = \bar{d} + \bar{s}$$

 $\frac{d^2 \sigma_{\rm CC}^{\pm}}{dx dQ^2} \simeq (1 \pm P_e) \frac{G_{\rm F}^2}{4\pi x} \left[\frac{m_W^2}{m_W^2 + Q^2} \right]^2 \left(Y_+ W_2^{\pm} \mp Y_- x W_3^{\pm} \right)$

Charge current

- Longitudinal polarised lepton beams at HERA-II introduce additional terms
- Terms containing g_V^e neglected

Perform simultaneous QCD + EW fit NNLO for QCD NLO for EW

W boson mass

Eur.Phys.J.C78 (2018), 777

DESY

[arxiv:1806.01176]

Light Quark Couplings to Z Boson

- results are competitive with other determinations, especially for u quarks
- 2-coupling fit is more precise due to the reduced correlation

HERA

DESY

Jet Production @ HERA

- Direct information on gluon distribution comes from jet production
 - Possible determination of $\alpha_s(m_z)$ and simultaneous determination of parton densities and $\alpha_s(m_z)$

→ theory predictions for ep jets available at NNLO DESY

Wichmann

Scale dependence of NNLO cross sections

Eur.Phys.J.C77 (2017), 791

[arxiv:1709.07251]

- Simultaneous variation of $\mu_{\!_{\rm R}}$ and $\mu_{\!_{\rm F}}$
- At lower scales
 - Significant NNLO k-factors
 - NNLO with reduced scale dependence
 - Inclusive jets with higher scale dependence than dijets
- At higher scales
 - NNLO with reduced scale dependence
 - µ_F dependence very small

DESY

Strong coupling in NNLO from jets

• $\alpha_s(m_z)$ determined as free parameter to NNLO theory prediction σ in χ^2 minimisation

$$\chi^2 = \sum_{i,j} \log \frac{\varsigma_i}{\sigma_i} (V_{\text{exp}} + V_{\text{had}} + V_{\text{PDF}})_{ij}^{-1} \log \frac{\varsigma_j}{\sigma_j}$$

- $\alpha_s(m_z)$ from individual data sets
 - High experimental precision
 - Scale uncertainty is largest (theory) error
 - All fits with good \rightarrow consistency of data
- Main result
 - Inclusive jets & dijets µ > 28GeV
 - Moderate exp. Precision (due to µ>28GeV)
 - Scale uncertainty dominates
 - PDF uncertainties negligible

 $\alpha_{\rm s}(m_{\rm Z}) = 0.1157\,(20)_{\rm exp}\,(6)_{\rm had}\,(3)_{\rm PDF}\,(2)_{\rm PDF\alpha_{\rm s}}\,(3)_{\rm PDFset}\,(27)_{\rm scale}$

Krakow'18

- H1PDF2017
 - High recision, χ^2 /ndf ~ 1.01 (npts=1529)
 - Despite free parameter α_s , precision is competitive with global PDF fit
- Gluon at lower x values tends to be higher (than e.g. NNPDF3.1)
- Gluon very similar to NNPDF3.1sx, which includes low-x resummation

α_s from simultaneous fit

Heavy Quark Production @ HERA

- Final HERA charm and beauty data combined
 - QCD global analysis performed
- Simultaneous fit of PDFs and HQ masses

DESY

<u></u>

Wichmann

Combination of charm & beauty

Charm

EPJ C78 (2018), 473 [arxiv:1804.01019]

Beauty: first combination

K. Wichmann

- Datasets consistent and significantly reduced uncertainties
- Combined charm cross sections significantly more precise than those previously published
- Combined data reasonably described by theory predictions

QCD global analysis & HQ masses

- HERA inclusive + HV data used in NLO QCD analysis in fixed-flavour-number scheme using MS running-mass definition
- Wichmann Running heavy-quark masses determined \rightarrow agreement with PDG and previous ones

 $m_c(m_c) = 1.290^{+0.046}_{-0.041}(\exp/\text{fit})^{+0.062}_{-0.014}(\text{model})^{+0.003}_{-0.031}(\text{parameterisation}) \text{ GeV}$ $m_b(m_b) = 4.049^{+0.104}_{-0.109}(\exp/\text{fit})^{+0.090}_{-0.032}(\text{model})^{+0.001}_{-0.031}(\text{parameterisation}) \text{ GeV}$ Krakow'18

ZEUS

16

DESY

K. Wichmann

Krakow'18

Where do isolated photons come from?

- Can be emitted from lepton (LL) or proton (quark, QQ)
- Emerge directly from hard scattering process
 - Use dynamics to probe modes such as k_t-factorisation and pQCD approaches
- Assume lepton emission is well known

 \rightarrow Use photon to probe proton

Trick is to find these photons ...

DESY

Wichmann

Krakow'18

Neutral-meson produce broader energy deposits

Comparison with theory

BLZ S. Baranov, A. Lipatov and N. Zotov, Phys. Rev. D 81 (2010) 094034.
• K_t factorisation

NLO P. Aurenche, M. Fontannaz and J.Ph. Guillet, Eur. Phys. J. C 44 (2005) 395.

P. Aurenche and M. Fontannaz, Eur. Phys. J. C 77 (2017) 324.

AFG:

- BLZ: shapes fairly described, some distributions off, ~20% too high normalisation
- AFG: excellent agreement in shape and normalisation for all distributions
 - The same in two Q^2 bins, between 10 and 30 GeV² and 30 to 350 GeV²

ZEUS

Wichmann

Krakow'18

Various

Faces

9

QCD

ര

HERA

Various Faces of QCD ୭ HERA

Diffractive prompt photon + jet

ZEUS

(DPDFs)

Diffractive D* cross sections

Electron variables		
	Dif	
EPJ C77 (2017) 340		
[arXiv:1703.09476]		

- $\begin{array}{l} {\rm DIS \ phase \ space} \\ 5 < Q^2 < 100 \ {\rm GeV}^2 \\ 0.02 < y < 0.65 \\ \hline \\ {\it D^* \ kinematics} \\ p_{t,D^*} > 1.5 \ {\rm GeV} \\ -1.5 < \eta_{D^*} < 1.5 \\ \hline \\ {\rm Diffractive \ phase \ space} \\ \hline \\ x_{I\!P} < 0.03 \\ M_Y < 1.6 \ {\rm GeV} \\ |t| < 1 \ {\rm GeV}^2 \\ \end{array}$
- Good description by NLO QCD
 - large theory scale uncertainties
- DPDF uncertainties similar to data precision
- D* kinematic distributions also described

→ within large uncertainties factorisation seems to hold in diffractive charm production in DIS

Instead of summary: thank you for your patience :)

DESY

 $\overline{\mathbf{x}}$

Wichmann

Krakow'18

Extra slides

- HERA: ep collider in Hamburg
- Operation: 1992-2007
- Colliding experiments: H1 and ZEUS
- Collected ~1 fb⁻¹ for both experiments together

DESY

 $\overline{\mathbf{x}}$

Wichmann

Krakow'18

ep Scattering at HERA

two regions: $Q^2 \approx 0 \text{ GeV}^2$ — photoproduction $Q^2 > 1 \text{ GeV}^2$ — electroproduction (DIS) 1

HERA

DESY

Deep Inelastic Scattering @ HERA

Neutral Current (NC): γ, Z exchange electron + jet

• NC/CC cross section expresses in terms of structure functions $\sigma_{r,\text{NC}}^{\pm} = \frac{\mathrm{d}^2 \sigma_{\text{NC}}^{e^{\pm}p}}{\mathrm{d}x \mathrm{d}O^2} \cdot \frac{Q^4 x}{2\pi \alpha^2 Y_+} = \tilde{F_2} \mp \frac{Y_-}{Y_+} x \tilde{F}_3 - \frac{y^2}{Y_+} \tilde{F_L}$ DESY

Wichmann

Krakow'18

Proton structure functions

$$F_2 = x \sum e_q^2 [q(x) + \bar{q}(x)]$$

• Sensitive to quarks

Neutral Current $\frac{d^2 \sigma_{NC}^{\pm}}{dx d\Omega^2} = \frac{2\pi \alpha^2}{x \Omega^4} \left[Y_+ F_2 \mp Y_- x F_3 - y^2 F_L \right]$

- $xF_3 = x\sum 2e_q a_q[q(x) \bar{q}(x)]$
- Sensitive to valence distributions

 $F_L \sim \alpha_s \times g$

- Sensitive to gluon
- Gluon also from scaling violation and charm+jet data

CC: helicity effects

DESY

Text book plots of fundamental properties of particle interactions

Polarised DIS

• Generalised structure functions depend on e-beam polarisation $P_e = \frac{N_R - N_L}{N_R + N_L}$

$$\tilde{F}_{2}^{\pm} = F_{2}^{\gamma} - (v_{e} \pm P_{e}a_{e})\chi_{Z}F_{2}^{\gamma Z} + (v_{e}^{2} + a_{e}^{2} \pm 2P_{e}v_{e}a_{e})\chi_{Z}^{2}F_{2}^{Z},$$

 $x\tilde{F}_{3}^{\pm} = -(a_{e} \pm P_{e}v_{e})\chi_{Z}xF_{3}^{\gamma Z} + (2v_{e}a_{e} \pm P_{e}(v_{e}^{2} + a_{e}^{2}))\chi_{Z}^{2}xF_{3}^{Z}$

Structure functions in QP model NC sensitive to $sin^2\theta_w$ via NC $\chi_Z = \frac{1}{\sin^2 2\theta_W} \frac{Q^2}{M_Z^2 + Q^2} \frac{1}{1 - \Delta R}$ $[F_2^{\gamma}, F_2^{\gamma Z}, F_2^{Z}] = \sum [e_q^2, 2e_q v_q, v_q^2 + a_q^2] x(q + \bar{q}),$ $[xF_3^{\gamma Z}, xF_3^Z] = \sum [e_q a_q, v_q a_q] 2x(q - \bar{q}),$ Calculation in on-shell scheme $\frac{d^2 \sigma_{\rm CC}(e^- p)}{dx_{\rm Bi} dQ^2} = (1 - P_e) \frac{G_F^2 M_W^4}{2\pi x_{\rm Bi} (Q^2 + M_W^2)^2} x \left[(u+c) + (1-y)^2 (\bar{d} + \bar{s} + \bar{b}) \right]$ CC sensitive to $\sin^2\theta_w$

HERAI+II determinations so far

Various Faces of QCD @ HERA

DESY

 $\overline{\mathbf{x}}$

Wichmann

Krakow'18

 $\mathbf{\overline{\mathbf{x}}}$

Wichmann

Krakow'18

Final HERA data - exclusively - used as input to global QCD fit HERAPDF2.0

• Parton densities parametrised @ $Q^2 = 1.9 \text{ GeV}^2$

$$xf(x) = Ax^{B}(1-x)^{C}(1+Dx+Ex^{2})$$

$$xg(x), xu_{v}(x), xd_{v}(x), x\bar{U}(x), x\bar{D}(x)$$

• Evolution using DGLAP equations

•14 parameters determined in paramerisation scan

• Heavy quarks from Roberts-Thorne Variable Flavor Number Scheme

QCD fits performed using HERAFitter package www.herafitter.org

Color decomposition of uncertainties

Parametrisation uncertainties - largest deviation

🔶 Model uncertainties

- all variations added in quadrature

Experimental uncertainties:

- Hessian method
- Conventional $\Delta \chi^2$ = 1 => 68% CL

Variation	Standard Value	Lower Limit	Upper Limit
$Q_{\rm min}^2$ [GeV ²]	3.5	2.5	5.0
Q_{\min}^2 [GeV ²] HiQ2	10.0	7.5	12.5
$M_c(\text{NLO})$ [GeV]	1.47	1.41	1.53
M_c (NNLO) [GeV]	1.43	1.37	1.49
M_b [GeV]	4.5	4.25	4.75
f_s	0.4	0.3	0.5
μ_{f_0} [GeV]	1.9	1.6	2.2
Adding D and F parameters to each PDF			

DESY

 $\mathbf{\overline{\mathbf{N}}}$

Wichmann

HERA

HERAPDF2.0Jets α_s free

$\underline{\alpha}_{s}$ determined from QCD fit

 $\alpha_s(M_Z^2) = 0.1183 \pm 0.0009(\text{exp})$

Experimental uncertainty below 1%

 ± 0.0005 (model/parameterisation)

 ± 0.0012 (hadronisation)

 $^{+0.0037}_{-0.0030}$ (scale)

Uncertainty dominated by theory NNLO ep jet calculations needed

DESY

 $\mathbf{\overline{\mathbf{N}}}$

Wichmann

- NLO and approximate NNLO QCD predictions compared to the data
 - fair agreement charm data
 - Best description for NLO in fixed-flavour-number scheme
- beauty data, with larger uncertainties, well described by all predictions

Jet production @HERA

- Direct information on gluon distribution comes from jet production
- Possible simultaneous determination of parton densities and $\alpha_{\!s}$
- Jets at HERA

^{***} SUHS (GEV) *** PTOT 35,768 PTRANS 29.964 PLONG 15,700 CHARGE -2 TOTAL CLUSTER ENERGY 15,169 PHOTON ENERGY 4.093 NR OF PHOTONS 11

Jets at PETRA, 1979

dijets

 $\overline{\mathbf{x}}$

Wichmann

Krakow'18

Various Faces

of f

QCD

ଡ

HERA

DIS jet production in NNLO

J. Currie, et al. [RPL 117 (2016) 042001] J. Currie, et al. [JHEP 1707 (2017) 018]

A bit of history

- 1973 asymptotic freedom of QCD [PRL 30(1973) 1343 & 1346]
- 1993 NLO studies of DIS jet cross sections [Phys. Rev. D49 (1994) 3291]
- 2016 NNLO corrections for DIS jets [Phys. Rev. Lett. 117 (2016) 042001], [arXiv:1703.05977]

Antenna subtraction

- Cancellation of IR divergences
 with local subtraction terms
- Construction of (local) counter terms
- Move IR divergences across different phase space multiplicities

H1 dijets with NNLO predictions

DESY

 $\mathbf{\overline{\mathbf{N}}}$

Wichmann

Krakow'18

Why study prompt photons?

- Prompt photons emerge directly from the hard scattering process and give a particular view of this
- Use dynamics to probe modes such as k_t-factorisation and pQCD approaches
- See if dynamics changes with virtuality
- Combined photon/jet/electron variables give more detailed ways to test the theories than with single particles and jets
- Check proton PDFs
- Photons can be background to new physics

 → DGLAP evolves HERA scales
 to LHC scales

Single prompt variable already measured (Phys. Lett. B 715 (2012) 88-97), this study complements previous analysis

Comparison to AFG: low Q²

• Possibly due to photon p_{τ} cut in calculations

ZEUS

Comparison to AFG: large Q²

• Excellent agreement in shape and normalisation for all distributions

Also in lower Q² bin in range between 10 and 30 GeV²

ZEUS