Determination of electroweak parameters in polarised DIS at HERA

arXiv:1806.01176 Submitted to EPJC

- Deep Inelastic Scattering
- EW Couplings & PDFs
- H1 Detector & Selection
- Fit Methodology
- Neutral & Charged Current Weak Coupling Fits
- BSM Form Factor Deviations in NC and CC DIS

Determination of EW Parameters Using H1 Data

QCD@LHC — Dresden — 27th August 2018

Deep Inelastic Scattering

Neutral current scattering

Charged current scattering

Use factorisation in pp collisions at LHC: $\sigma_{pp\to X} = f_{p\to i} \otimes \hat{\sigma}_{i,j\to X} \otimes f_{p\to j}$

Signature Isolated electron/positron pT balanced with hadronic system X Signature No detected lepton (neutrino) pT imbalanced for hadronic system X

PDFs are not observables - only structure functions are Measuring these cross sections allows indirect access to the universal PDFs $xf_{p\rightarrow i}$

Structure Functions

neutral current

charged current

$$t = \frac{d\sigma_{NC}^{\pm}}{dxdQ^{2}} = \frac{2\pi\alpha^{2}}{x} \left[\frac{1}{Q^{2}}\right]^{2} \left[Y_{+}\tilde{F}_{2}\mp Y_{-}x\tilde{F}_{3}-y^{2}\tilde{F}_{L}\right]$$

$$t = \frac{d\sigma_{CC}^{\pm}}{dxdQ^{2}} = \frac{G_{F}^{2}}{4\pi x} \left[\frac{M_{W}^{2}}{M_{W}^{2}+Q^{2}}\right]^{2} \left[Y_{+}\tilde{W}_{2}^{\pm}\mp Y_{-}x\tilde{W}_{3}^{\pm}-y^{2}\tilde{W}_{L}^{\pm}\right]$$

$$Y_{\pm} = 1 \pm (1-y)^{2}$$

 $\tilde{F}_2 \propto \sum (xq_i + x\overline{q}_i)$ **Dominant contribution** $x\tilde{F}_3 \propto \sum (xq_i - x\overline{q}_i)$ Only sensitive at high $Q^2 \sim M_Z^2$ $\tilde{F}_{I} \propto \alpha_{s} \cdot xg(x,Q^{2})$

Only sensitive at low Q² and high y

The NC reduced cross section defined as:

$$\tilde{\sigma}_{NC}^{\pm} = \frac{Q^2 x}{2\alpha\pi^2} \frac{1}{Y_+} \frac{d^2 \sigma^{\pm}}{dx dQ^2}$$
$$\tilde{\sigma}_{NC}^{\pm} \sim \tilde{F}_2 \mp \frac{Y_-}{Y_+} x \tilde{F}_3$$

The CC reduced cross section defined as:

similarly for pure weak CC analogues: W_2^{\pm} , xW_3^{\pm} and W_L^{\pm}

$$\sigma_{CC}^{\pm} = \frac{2\pi x}{G_F^2} \left[\frac{M_W^2 + Q^2}{M_W^2} \right]^2 \frac{d\sigma_{CC}^{\pm}}{dx dQ^2}$$
$$\frac{d\sigma_{CC}^{\pm}}{dx dQ^2} = \frac{1}{2} \left[Y_+ W_2^{\pm} \mp Y_- x W_3^{\pm} - y^2 W_L^{\pm} \right]$$

Kinematic Range

HERA data cover wide region of x,Q²

 $\frac{NC\ Measurements}{F_2\ dominates\ most\ of\ Q^2\ reach} \\ xF_3\ contributes\ in\ EW\ regime \\ F_L\ contributes\ only\ at\ highest\ y$

 $\frac{CC\ Measurements}{W_2\ and\ xW_3\ contribute\ equally} W_L\ only\ at\ high\ y$

EW Couplings at LO

$$\begin{bmatrix} F_2, F_2^{\gamma Z}, F_2^Z \end{bmatrix} = x \sum_q [e_q^2, 2e_q v_q, v_q^2 + a_q^2](q + \bar{q})$$
$$\begin{bmatrix} x F_3^{\gamma Z}, x F_3^Z \end{bmatrix} = 2x \sum_q [e_q a_q, v_q a_q](q - \bar{q})$$

$F_2 x^Z$	\rightarrow main v_q constraint
F_2^Z	\rightarrow main constraint on a_q / v_q correlation
xF_3^Z	\rightarrow main a_q constraint

NC data constrain:

- singlet quarks / gluon PDFs
- non-singlet valence quark PDFs at high Q²
- But, flavour sensitivity is weak

CC data enable flavour decomposition of proton:

$$W_2^- = x(u+c+\overline{d}+\overline{s}), W_2^+ = x(\overline{u}+\overline{c}+d+s),$$

$$xW_3^- = x(u+c-\overline{d}-\overline{s}), xW_3^+ = x(d+s-\overline{u}-\overline{c})$$

Requires e⁺ and e⁻ scattering data

$$\frac{d^2 \sigma_{CC}^-}{dx dQ^2} = \frac{G_F^2}{2\pi} \left(\frac{M_W^2}{M_W^2 + Q^2} \right)^2 \left[(u+c) + (1-y)^2 (\overline{d} + \overline{s}) \right] \qquad \frac{d^2 \sigma_{CC}^+}{dx dQ^2} = \frac{G_F^2}{2\pi} \left(\frac{M_W^2}{M_W^2 + Q^2} \right)^2 \left[(\overline{u} + \overline{c}) + (1-y)^2 (d+s) \right]$$

For polarised lepton beams CC cross section scales linearly with P_e:

 $\sigma_{CC}(e^{-}p) = 0$ for $P_e = +1$ $\sigma_{CC}(e^{+}p) = 0$ for $P_e = -1$ CC e+ data provide strong d_v constraint at high x $(y \sim 0)$

Higher Order EW Corrections

201

$$e_q$$
 , a_q , v_q

$$a_e = \sqrt{\rho_{NC}} \ I_{L,f}^3$$
$$v_e = \sqrt{\rho_{NC}} \ (I_{L,f}^3 - 2e_q \kappa_{NC,q} \sin^2 \theta_W)$$

In on-shell scheme

$$\sin^2 \theta_W = 1 - \frac{m_W^2}{m_Z^2} \qquad \qquad G_F = \frac{\pi \alpha}{\sqrt{2}m_W^2} \frac{1}{\sin^2 \theta_W} \frac{1}{(1 - \Delta r)}$$

$$\Delta r = \Delta r(\alpha, m_W, m_Z, m_t, m_h, ...)$$

The $\rho_{NC,q}$ and $\kappa_{NC,q}$ are form factors — universal (fermion independent) functions of Q² and encapsulate HO EW loop effects,

 $\rho_{CC,q}, \rho_{CC,\bar{q}}$ are inserted for quarks and anti-quarks in the above formulae account for HO EW effects (mainly loop effects)

$$W_{2}^{-} = x \left(\rho_{\text{CC},eq}^{2} U + \rho_{\text{CC},e\bar{q}}^{2} \overline{D} \right), \quad xW_{3}^{-} = x \left(\rho_{\text{CC},eq}^{2} U - \rho_{\text{CC},e\bar{q}}^{2} \overline{D} \right) \qquad \qquad U = u + c, \quad U = \bar{u} + \bar{c}, \\ W_{2}^{+} = x \left(\rho_{\text{CC},eq}^{2} \overline{U} + \rho_{\text{CC},e\bar{q}}^{2} D \right), \quad xW_{3}^{+} = x \left(\rho_{\text{CC},e\bar{q}}^{2} D - \rho_{\text{CC},e\bar{q}}^{2} \overline{U} \right) \qquad \qquad D = d + s, \quad \overline{D} = \bar{d} + \bar{s}$$

$$\rho_{\rm NC} \rightarrow \rho_{\rm NC}' \rho_{\rm NC}$$

In SM extensions, form factors can be modified $\kappa_{\rm NC} \rightarrow \kappa'_{\rm NC} \kappa_{\rm NC}$

$$\rho_{\rm CC} \rightarrow \rho_{\rm CC}' \rho_{\rm CC}$$

Can test for deviations beyond the SM

H1 Detector / Selections

Neutral current event selection:

High P_T isolated scattered lepton Suppress huge photo-production background by imposing longitudinal energy-momentum conservation

Kinematics may be reconstructed in many ways: energy/angle of hadrons & scattered lepton provides excellent tools for sys cross checks

Removal of scattered lepton provides a high stats "pseudo-charged current sample" Excellent tool to cross check CC analysis

Final selection: ~10⁵ events per sample at high Q^2 ~10⁷ events for 10 < Q^2 < 100 GeV²

Charged current event selection:

Large missing transverse momentum (neutrino) Suppress huge photo-production background Topological finders to remove cosmic muons Kinematics reconstructed from hadrons Final selection: ~10³ events per sample

HERA Operation

full HERA-1 and HERA-II dataset

longitudinal lepton polarisation to enhance sensitivity

factor 10 increase in e⁻ & factor 3 increase in e⁺ luminosity

much improved systematic uncertainties

	Data set	Q ² -range	\sqrt{s}	L	No. of	Polarisation	_
		[GeV ²]	[GeV]	$[pb^{-1}]$	data points	[%]	
1	e^+ combined low- Q^2	(0.5) 8.5 – 150	301,319	20, 22, 97.6	94 (262)	_	$-$ Low Ω^2 data constrain PDEs
2	e^+ combined low- E_p	(1.5) 8.5 – 90	225,252	12.2, 5.9	132 (136)	_	
3	<i>e</i> ⁺ NC 94–97	150 - 30 000	301	35.6	130	_	
4	<i>e</i> ⁺ CC 94–97	300 - 15 000	301	35.6	25	_	
5	<i>e</i> ⁻ NC 98–99	150 - 30 000	319	16.4	126	_	
6	<i>e</i> ⁻ CC 98–99	300 - 15 000	319	16.4	28	_	
7	<i>e</i> ⁻ NC 98–99 high- <i>y</i>	100 - 800	319	16.4	13	_	
8	<i>e</i> ⁺ NC 99–00	150 - 30 000	319	65.2	147	_	
9	<i>e</i> ⁺ CC 99–00	300 - 15 000	319	65.2	28	_	
10	e^+ NC L HERA-II	120 - 30 000	319	80.7	136	-37.0 ± 1.0	_
11	e^+ CC L HERA-II	300 - 15 000	319	80.7	28	-37.0 ± 1.0	
12	e^+ NC R HERA-II	120 - 30 000	319	101.3	138	$+32.5\pm0.7$	
13	e^+ CC R HERA-II	300 - 15 000	319	101.3	29	$+32.5\pm0.7$	HERA-II
14	e^- NC L HERA-II	120 - 50000	319	104.4	139	-25.8 ± 0.7	
15	e^{-} CC L HERA-II	300 - 30 000	319	104.4	29	-25.8 ± 0.7	
16	e^{-} NC R HERA-II	120 - 30 000	319	47.3	138	$+36.0\pm0.7$	
17	e^{-} CC R HERA-II	300 - 15 000	319	47.3	28	$+36.0\pm0.7$	
18	e^+ NC HERA-II high-y	60 - 800	319	182.0	11	_	
19	e^- NC HERA-II high-y	60 - 800	319	151.7	11	_	_

Unpolarised High Q² NC Cross Sections

Unpolarised High Q² CC Cross Sections

Electron scattering

$$\frac{d^2 \sigma_{CC}}{dx dQ^2} = \frac{G_F^2}{2\pi} \left(\frac{M_W^2}{M_W^2 + Q^2} \right)^2 \left[(u+c) + (1-y)^2 (\overline{d} + \overline{s}) \right]$$

H1 combination of high Q² CC data (HERA-I+II) Improvement of total uncertainty Dominated by statistical errors Provide important flavour decomposition information

$\frac{d^2 \sigma_{CC}^+}{dx dQ^2} = \frac{G_F^2}{2\pi} \left(\frac{M_W^2}{M_W^2 + Q^2} \right)^2 \left[(\overline{u} + \overline{c}) + (1 - y)^2 (d + s) \right]$

Positron scattering

CC e+ data provide strong d_v constraint at high x Precision limited by statistics: typically 5-10% HERA-I precision of 10-15% for e+p

Dedicated PDF fit required to avoid bias (EW params used in PDF fits) Combine NC and CC HERA-I data from H1 Complete MSbar NNLO QCD fit $\alpha_s = 0.1176$ (fixed in fit)

> Each PDF parameterised by form $xf(x,Q_0^2) = A \cdot x^B \cdot (1-x)^C \cdot (1+Dx+Ex^2)$

$$\begin{array}{rcl} xg & xg(x) &= A_g x^{B_g} (1-x)^{C_g} - A'_g x^{B'_g} (1-x)^{C'_g} \\ xu_v & xu_v(x) &= A_{u_v} x^{B_{u_v}} (1-x)^{C_{u_v}} (1+E_{u_v} x^2) \,, \\ xd_v & \longrightarrow & xd_v(x) &= A_{d_v} x^{B_{d_v}} (1-x)^{C_{d_v}} \,, \\ x\bar{U} & x\bar{U}(x) &= A_{\bar{U}} x^{B_{\bar{U}}} (1-x)^{C_{\bar{U}}} \,, \\ x\bar{D} & x\bar{D}(x) &= A_{\bar{D}} x^{B_{\bar{D}}} (1-x)^{C_{\bar{D}}} \end{array}$$

13 free PDF params. + 4 polarisation params. 1410 measurements d+ 4 polarisation params.

$$\chi^2/n_{\rm dof} = 1432/(1414 - 17)^{A_{\bar{U}}} \overline{1.03}, B_{\bar{U}} = B_{\bar{D}}$$

Excellent consistency of data allows standard statistical error definition: $\Delta \chi^2 = 1$

- Combined QCD / EW fit accounts for correlations in uncertainties
- Fits constructed very similar to HERAPDF2.0 at NNLO QCD

Apply momentum/counting sum rules:

$$\int_{0}^{1} dx \cdot (xu_{v} + xd_{v} + x\overline{U} + x\overline{D} + xg) = 1$$
$$\int_{0}^{1} dx \cdot u_{v} = 2 \qquad \int_{0}^{1} dx \cdot d_{v} = 1$$

Parameter constraints: $A_{Ubar} = A_{Dbar}$ $B_{Ubar} = B_{Dbar}$ sea = 2 x (Ubar +Dbar) C'g = 25 (fixed)

 $Q_0^2 = 1.9 \text{ GeV}^2$ (below m_c) $Q^2 > 8.5 \text{ GeV}^2$ $2 \times 10^{-4} < x < 0.65$ Fits performed using ZM-VFNS

Determination of W Boson Mass

Perform fit to W mass - sensitivity mainly from CC cross section normalisation (i.e. via G_F) $m_W = 80.520 \pm 0.070_{\text{stat}} \pm 0.055_{\text{syst}} \pm 0.074_{\text{PDF}} [\pm 0.115_{\text{total}}] \text{GeV}$

Perform 4-coupling and two 2-coupling fits: 4-coupling fits extract u,d axial and vector couplings α , m_W, m_Z, m_t, m_H are taken as other input EW parameters

2-coupling fit extracts u-type axial / vector couplings 2-coupling fit extracts d-type axial / vector couplings

Similar sensitivity to $g_{V^{\text{u}}}$ and $g_{A^{\text{u}}}$ as LEP and D0

Test Deviations from SM Weak Form Factors

Divide data with Q²>500 GeV² into four Q² bins to probe scale dependence

Can repeat fits in bins of Q² scale of DIS data:

- 1. fit PDFs and quark form factors
- 2. fit PDFs and electron form factors
- 3. fit PDFs and common fermion form factors

Error bars / bands show full uncertainties Set ρ ' and κ ' = unity for Q²<500 GeV²

Best sensitivity at Q~60 GeV of ~6% Results consistent with SM at <1.5 σ

First test of flavour and scale dependence of CC weak form factors

All CC data divided into four Q² bins to probe scale dependence

Repeat fits in bins of Q² scale of DIS data:

- 1. fit PDFs and eq form factors
- 2. fit PDFs and eqbar form factors

3. fit PDFs and common fermion form factors Error bars / bands show full uncertainties

Precision on $\rho'_{eqbar} \sim 4\%$ Precision on $\rho'_{eq} \sim 1.3 - 3\%$ Precision on $\rho'_{f} \sim 0.8 - 1.8\%$

No significant deviations from SM

This study completes analysis of legacy HERA polarised data

Light quark weak couplings consistent with SM Analysis tests complementarity of time-like and space-like regimes H1 sensitivity similar to Tevatron and LEP

Search of indirect BSM effects in weak coupling scale dependencies First determination of scale and flavour dependence in CC DIS No significant deviations from SM observed

> arXiv:1806.01176 Submitted to EPJC

Size of 1-loop EW corrections for NC and CC vs Q^2 (excl. vacuum polarisation & virtual photon corrections) Corrections vary by < 0.1% for polarised case, or for e⁻ scattering

Electroweak Precision Observables - sin²θ_{eff}

 $sin^2\theta_W$ is a fundamental parameter of the SM - specifies the mixing between EM and weak fields Relates the Z and W couplings g_Z and g_W (and their masses)

At leading order $\sin^2 \theta_W = 1 - \frac{g_W^2}{q_Z^2} = 1 - \frac{m_W^2}{m_Z^2}$ Higher order EW corrections modify this to an effective mixing angle dependent on fermion flavour f

and 95% CL contours

world comb. $\pm 1\sigma$

0.231

GFitter 2014

0.2312

$$\sin^2 \theta_{\text{eff}}^f = \left(1 - \frac{m_W^2}{m_Z^2}\right) \cdot \left(1 + \Delta r\right)$$

 Δr encapsulates radiative corrections Is EW scheme dependent

sin²(0^f,...) LEP+SLC ±

0.2318

0.232

- m_z = 91.1876 GeV
- G_µ = 1.16637 x 10⁻⁵ GeV⁻²

fit w/o M_w , sin²(θ_{aff}^{f}) and Z widths measurements

fit w/o M_w , sin²(θ_{eff}^{f}), M_u and Z widths measurements

0.2314

direct M_w and $sin^2(\theta_{eff}^f)$ measurements

fit w/o M_w , sin²(θ_{eff}^f) and M_{H} measurements

$$m_{\rm W}^2 = \frac{\pi \alpha(0)}{\sqrt{2}G_\mu \sin^2 \theta_{\rm W}} \frac{1}{1 - \Delta r}$$

EW scheme dependent corrections incorporated into $\Delta r \rightarrow \Delta r(m_H, m_{top}, new physics)$ Measurement of one observable can predict the other $m_W \Leftrightarrow sin^2 \theta_W$

 m_W and $sin^2\theta_{eff}$ allows self-consistency check of SM New physics may hide in the indirect higher order corrections Valuable in absence of direct signals

Previous results on $\sin^2\theta_{eff}$

LEP: 29 x10⁻⁵	CDF/D0:	35 x10 ⁻⁵
SLD: 26 x10 ⁻⁵	CMS(7TeV):	320 x10 ⁻⁵
	ATLAS(7TeV):	120 x10 ⁻⁵

Uncertainty of \pm 50x10⁻⁵ in sin² θ_{eff} is equivalent to \pm 25 MeV in m_W

0.2316

0.2308

80.5

Sec. 80.5 80.48

≥ 80.46

80.44

80.42

80.4

80.38

80.36

80.34

80.32

0.2322

 $sin^2(\theta_{eff}^l)$

Typically experiments measure AFB

- \rightarrow unfold detector effects / dilution \rightarrow fit for $\ sin^2\theta_{eff}$
- \rightarrow or, perform detector level template fits to A_{FB}
- \rightarrow estimate PDF uncertainties on extraction

D0 + CDF combination 2017

$$\sin^2 \theta_{\text{eff}}^{\text{lept}} = 0.23148 \pm 0.00027 \text{ (stat.)}$$

 ± 0.00005 (syst.)

 ± 0.00018 (PDF)

ATLAS 7 TeV

At LHC / Tevatron largest uncertainty ~ PDFs worse at LHC due to pp collisions worse at larger \sqrt{s} due to lower x (more dilution)

 $\sin^2 \theta_{\text{eff}}^{\text{lept}} = 0.2308 \pm 0.0005(\text{stat.}) \pm 0.0006(\text{syst.}) \pm 0.0009(\text{PDF}) = 0.2308 \pm 0.0012(\text{tot.})$

CMS 7 TeV

 $\sin^2 \theta_{\rm eff} = 0.2287 \pm 0.0020 \text{ (stat.)} \pm 0.0025 \text{ (syst.)}$

dominated by PDF (±0.00130)

LHCb 7 & 8 TeV

$$\sin^2 \theta_{\rm W}^{\rm eff} = 0.23142 \pm 0.00073(\text{stat}) \pm 0.00052(\text{sys}) \pm 0.00056(\text{theo})$$

dominated by PDF

Electroweak Precision Observables

Direct measurements compared to EW fits and indirect constraints

New ATLAS measurement of m_W reaches ±19 MeV precision arXiv:1701.07240

ATLAS approaches precision of combined LEP + Tevatron measurement Theory prediction from EW fit has uncertainty ±8 MeV