Testmessungen an Prototypen der H 1 - φ - Streifen - Silizium - Detektoren

Diplomarbeit am II. Institut für Experimentalphysik der Universität Hamburg

vorgelegt von

Martin Schreckenberg

 im

Juli 1995

Kurzfassung

Der H1-Detektor am Elektron-Proton-Speicherring HERA wird durch den Einbau von Silizium-Streifendetektoren erweitert, um die Vertexbestimmung zu verbessern und die Messung gestreuter Elektronen unter kleinen Polarwinkeln und Impulsüberträgen zu ermöglichen. Im rückwärtigen Teil dieses Detektors werden Silizium-Streifendetektoren mit r- und φ -Segmentierung senkrecht zur Strahlachse eingesetzt.

In der vorliegenden Arbeit werden Prototypen des sogenannten φ -Detektors, eines kapazitiv gekoppelten, einseitigen Silizium-Streifendetektors mit radial verlaufenden Streifen, hinsichtlich ihrer statischen Eigenschaften untersucht. Die Kapazitäts-Spannungs-Kennlinie der Detektoren weist einen Kurvenverlauf auf, der sich nicht mit der Theorie eines einfachen pn-Übergangs erklären läßt. Eine Analyse des Detektorersatzschaltbildes durch das Programm "Spice" zeigt, daß der Kennlinienverlauf durch das elektrische Netzwerk des Detektors erklärt werden kann.

Abstract

The H1 detector at the high energy electron-proton collider HERA has been upgraded by a high resolution silicon detector. Located around the beam pipe, it improves the vertex resolution and the measurement of scattered electrons at small angles with low momentum transfer. The backward part of this detector consists of single-sided, ACcoupled silicon microstrip detectors with radial and azimuthal segmentation, which are installed perpendicular to the beam pipe.

The static properties of prototypes of the detectors with radial strip segmentation were measured and the results are presented in this report. C-V measurements show a behaviour of the junction capacity which cannot be explained by the theory of a simple pn-junction. A simulation of the detector's equivalent circuit diagram with the program 'Spice' is able to reproduce these C-V plots and indicates that the curves result from the electric network of the detector and the measurement set-up.

Inhaltsverzeichnis

E	inleit	ung	3
1	\mathbf{Einf}	ührung	4
	1.1	HERA	4
	1.2	Physik bei HERA	5
	1.3	Der H 1-Detektor	7
	1.4	Erweiterung des H1-Detektors	9
	1.5	Aufgabenstellung	10
2	Halb	oleiter als Teilchendetektoren	11
	2.1	Halbleiter	11
	2.2	pn-Übergang	14
	2.3	Halbleiterdetektoren	17
	2.4	Verschiedene Detektormaterialien	20
	2.5	Der Backward Silicon Tracker	22
		2.5.1 Gesamtkonzept	22
		2.5.2 Die φ - Streifendetektoren	25
3	\mathbf{Test}	der Detektoren	31
	3.1	Meßaufbau	31
	3.2	Sperrströme	32
	3.3	Polysiliziumwiderstände	34
	3.4	Interstreifenkapazitäten	35
	3.5	Volumenkapazität des Detektors	38
		3.5.1 Teststruktur	38
		3.5.2 Detektorkapazität (385 Streifen)	39
		3.5.3 Detektorkapazität (1 Streifen)	40
	3.6	Simulation des Detektors	40
		3.6.1 Ansätze (allgemeines Schaltbild)	40
		3.6.2 Strukturparameter	42
		3.6.3 Anpassung der Parameter	43
		3.6.4 Ergebnisse	45
		3.6.5 Erweiterungsmöglichkeiten	45

Zusammenfassung

 $\mathbf{47}$

Anhang:

A Meßgeräte	48
A.1 Das HP4248 LCR-Meter	48
A.1.1 Funktionsweise	48
A.1.2 Meßgenauigkeit	49
A.2 Das Keithley 487 Meßgerät	50
A.2.1 Spannungsquelle	50
A.2.2 Picoampèremeter	50
A.3 Das Philips PM 2525 Meßgerät	50
B Das Programm "Spice"	51
B.1 Geschichte	51
B.2 Die 'PSpice'-Familie	51
Danksagung	57

Einleitung

Seit jeher versucht der Mensch zu verstehen, wie die Welt, die ihn umgibt, aufgebaut ist und woraus sie besteht (...daß ich erkenne, was die Welt im Innersten zusammenhält, ...; Johann Wolfgang von Goethe, Faust I). Lange Zeit beschränkte sich die "Forschung" auf theoretisch-philosophische Modelle, ohne den Wissensdrang zu befriedigen. Erst in den letzten 200 Jahren gelang es, den Aufbau der Materie systematisch zu erforschen und besser zu verstehen.

Das gegenwärtig umfassendste Modell der Struktur der Materie auf der Ebene der Elementarteilchen ist das *Standardmodell*, das zuerst in den sechziger Jahren von Glashow, Salam und Weinberg erdacht wurde [1]. Es verwendet in seiner heutigen weiterentwikkelten Form sechs *Quarks* und sechs *Leptonen*, die zusammen mit ihren *Antiteilchen* die 24 Grundbausteine des Systems bilden. Diese können durch den Austausch von sogenannten *Eichbosonen* (z. B. Photonen bei elektromagnetischer Wechselwirkung) miteinander in Wechselwirkung treten. Quarks treten nicht einzeln auf, sondern nur in Teilchen mit zwei oder drei Quarks (*Hadronen*). Das bekannteste Hadron mit drei Quarks ist das Proton. Aus diesem Grund werden den Quarks *Farbladungen* zugeordnet. Es gibt drei verschiedene Farben, sowie deren "Antifarben". Alle Teilchen müssen so aus den verschiedenfarbigen Quarks aufgebaut werden, daß sie nach außen *farblos* sind, d. h. daß sich ihre Farbladungen "neutralisieren".

Trotz der umfangreichen Vorhersagen, die das Standardmodell macht, bleiben noch viele elementare Fragen offen. Eine große Anzahl von Parametern (16 - 20) wird nicht vorhergesagt und muß experimentell bestimmt werden. Eine Möglichkeit hierzu ist die gezielte Kollision von subatomaren Teilchen mit hohen Energien und die Analyse ihrer Reaktionsprodukte. Dazu werden die Teilchen auf immer größere Energien beschleunigt, und es werden immer genauere Nachweisgeräte (Detektoren) gebaut.

Heute sind die Experimentiereinrichtungen bereits so groß und aufwendig geworden, daß nur noch an wenigen Orten der Welt in diesem Bereich experimentiert werden kann. Das Deutsche Elektronen-Synchrotron DESY in Hamburg mit seinem Elektron-Proton-Speicherring HERA ist eine dieser wenigen Forschungsstätten.

Kapitel 1 Einführung

1.1 HERA

Die Hadron-Elektron-Ring-Anlage (HERA) am Deutschen-Elektron-Synchrotron (DESY) in Hamburg wurde nach über sechsjähriger Bauzeit im November 1990 fertiggestellt. Am 20. Oktober 1991 konnte die erste ep-Kollision beobachtet werden.

Abbildung 1.1: Die Speicherring-Anlage HERA und ihre Vorbeschleuniger (Abb. aus [2])

Die Anlage besteht aus zwei unabhängigen Speicherringen: einem Speicherring für Protonen von maximal 820 GeV und einem Speicherring für Elektronen von maximal 30 GeV. Der Elektronring wurde Mitte 1994 auf den Betrieb mit Positronen umgestellt. Beide Speicherringe sind in einem Tunnel von 6,3 km Länge untergebracht, der sich 10 – 25 m unter der Erdoberfläche befindet (s. Abb. 1.1). In den Speicherringen können die Teilchen mehrere Stunden gespeichert werden. Magnetische Führungsfelder halten sie auf Kreisbahnen. Im Elektronring werden die Führungsfelder von normalleitenden Magneten, im Protonring – wegen der größeren Energie der Protonen – von stärkeren, supraleitenden Magneten erzeugt. Die Elektronen verlieren durch Synchrotronstrahlung 127 MeV pro Umlauf und müssen daher ständig nachbeschleunigt werden. Die Protonen haben wegen ihrer viel größeren Ruhemasse nur unbedeutende Strahlungsverluste.

In jedem der Speicherringe lassen sich bis zu 220 Teilchenpakete, die jeweils aus bis zu $0.8 \cdot 10^{13}$ Elektronen bzw. $2.1 \cdot 10^{13}$ Protonen bestehen, gleichzeitig speichern. An insgesamt vier Stellen des Tunnels können alle 96 ns Protonen und Elektronen zur Kollision gebracht werden. Aufgrund des totalen Wirkungsquerschnitts der ep-Streuung wird jedoch im Mittel nur alle 10^5 Kreuzungen eine Streuung erwartet. Die Schwerpunktsenergie beträgt an den Wechselwirkungspunkten $\sqrt{s} = 314$ GeV (bei den Nominalenergien). Damit sind die bei HERA erreichbaren Viererimpulsüberträge um zwei Größenordnungen größer als bei Streuexperimenten von Elektronen an ruhenden Protonen, sogenannten "fixed target"-Experimenten. Bisher sind zwei Experimente am HERA-Speicherring in Betrieb. An der nördlichen Wechselwirkungszone befindet sich der "H 1-Detektor", an der südlichen der "ZEUS-Detektor". Für die Zukunft sind zwei weitere Experimente geplant: "HERA-B" in der westlichen Experimentierhalle und "HERMES" in der östlichen.

1.2 Physik bei HERA

Der Elektron-Proton-Speicherring HERA ist die erste Beschleunigeranlage, bei der Elektronen und Protonen gespeichert und zur Kollision gebracht werden. Die hohe Schwerpunktsenergie

$$\sqrt{s} \equiv (P_p + P_e) \approx \sqrt{4 E_e E_p}$$

erlaubt die Erforschung der tief-inelastischen Elektron-Proton-Streuung bei großen Viererimpulsüberträgen

$$Q^2 \equiv -q^2 = -(P_e + P_{l'})^2$$

und bei sehr kleinen Werten der dimensionslosen Skalenvariablen

$$x_{\text{Bjorken}} \equiv \frac{Q^2}{2(q \cdot P_p)}$$

die bislang nur an "fixed target"-Experimenten durchgeführt werden konnten. Durch den Speicherring HERA wird der kinematische Bereich erheblich erweitert.

Bei der Streuung tritt das einlaufende Elektron mit dem Proton durch ein Eichboson in Wechselwirkung (s. Abb. 1.2). Aus dem Elektron, das zur Familie der Leptonen gehört, muß bei der Streuung je nach Art des Eichbosons ein geladenes oder neutrales Lepton entstehen. Ist das Eichboson ungeladen, wird von einem Ereignis mit *neutralem Strom* gesprochen, anderenfalls von einem mit *geladenem Strom* (s. Abb. 1.3).

Die Skalenvariable

$$y \equiv \frac{q \cdot P_p}{P_e \cdot P_p}$$

beschreibt die Inelastizität des Streuprozesses. Bei inelastischer Streuung bleibt das Proton nicht erhalten. Seine Reaktionsprodukte bilden einen sogenannten hadronischen Endzustand X, der aus mehreren *jets* ("Teilchenpaketen") bestehen kann.

HERA ermöglicht Messungen bei sehr kleinen Werten von x_{Bjorken} . Bei Viererimpulsüberträgen $Q^2 \approx 10 \frac{GeV}{c^2}$ sind Werte bis $x \sim 10^{-4}$ möglich, die bisher außerhalb des meßbaren Bereichs lagen. Dieser Bereich ist von besonderem Interesse,

Abbildung 1.2: Diagramm der inklusiven Elektron-Proton-Streuung bei HERA; P_e , P_p , und $P_{l'}$ bezeichnen jeweils Viererimpulse (Abb. aus [3]).

da hier die Grenzen der störungstheoretischen **Q**uanten-Chromo-**D**ynamik (QCD) erreicht werden und die verschiedenen Modelle der starken Wechselwirkung in diesem Bereich große Unterschiede aufweisen. Im Grenzfall hoher Energie kann ein Proton als System von quasi-freien Partonen betrachtet werden. Die tief-unelastische Streuung ist in diesem Bild eine elastische Streuung von Elektronen an quasi-freien Partonen (s. Abb. 1.3).

Abbildung 1.3: Born-Diagramme der tief-unelastischen Elektron-Proton-Streuung bei HERA (Abb. aus [3])

In BORNSCHER Näherung ist der differentielle Wirkungsquerschnitt durch die Strukturfunktionen F_1 und F_2 gegeben:

$$\frac{d^2\sigma}{dx\,dQ^2} = \frac{4\pi\,\alpha^2}{Q^4\,x} \left[y^2 \cdot x \cdot F_1(x,Q^2) + (1\,-\,y) \cdot F_2(x,Q^2) \right]$$

Im Quark-Modell sind F_1 und F_2 durch die CALLAN-GROSS-Beziehung verknüpft:

$$F_2 = 2 \cdot x \cdot F_1$$

 F_2 bezeichnet die Summe der Quarkdichten $q_i(x, Q^2)$ im Proton:

$$F_2(x,Q^2) = x \sum_i e_i^2 \cdot q_i(x,Q^2)$$

Die Abhängigkeit der Strukturfunktion von Q^2 wird als *Skalenverletzung* bezeichnet und durch die Anwesenheit von Gluonen im Proton erklärt. Bei kleinen $x_{Bjorken}$ kann aus der Skalenverletzung von F_2 die Gluonverteilung im Proton ermittelt werden. HERA erlaubt erstmalig, die Strukturfunktion F_2 im Übergangsbereich zur nicht-perturbativen QCD zu messen.

Die ep-Streuung bei HERA wird durch den Austausch von quasi-reellen Photonen bei kleinen Viererimpulsüberträgen $Q^2 \approx 0$ dominiert (*Photoproduktion*). Das Elektron wird dabei unter einem kleinen Polarwinkel θ gestreut. Fusioniert das vom Elektron abgestrahlte Eichboson mit einem *Gluon* (Eichboson der starken Wechselwirkung) aus dem Proton, so kann ein neues, schweres Quarkpaar gebildet werden. Die Diagramme der führenden Ordnung sind in Abb. 1.4 dargestellt.

Abbildung 1.4: Diagramme der Erzeugung von Charmquarks in der Boson-Gluon-Fusion bei HERA (Abb. aus [3])

1.3 Der H1-Detektor

Der H 1-Detektor hat eine Gesamtgröße von 12 m · 10 m · 15 m und ein Gesamtgewicht von 2800 t. Er besteht aus den Komponenten: Spurdetektoren, Kalorimeter, Magnet, Myon-System, Luminositätssystem, und Triggersystem. Aufgabe der verschiedenen Komponenten ist der Nachweis möglichst aller Reaktionsprodukte der ep-Streuung und die Messung ihrer Richtung und Energie. Es sollen Untergrundereignisse, z. B. Wechselwirkungen zwischen Protonenstrahl und Restgasmolekülen im Strahlrohr, oder von außen kommende Teilchen, z. B. Myonen der Höhenstrahlung, erkannt und herausgefiltert werden.

Im Inneren des H 1-Detektors befinden sich die zentralen Spurkammern, die um das Strahlrohr angeordnet sind. Sie bestehen aus zylinderförmigen ("central tracking") und planaren ("forward tracking") Proportional - und Driftkammern, die insgesamt einen Winkelbereich von 5° $< \theta < 174, 5$ ° überdecken. Diese ermöglichen die Spurrekonstruktion und die Vertexbestimmung. Während im zentralen Bereich die Ortsauflösung in der xy-Ebene 150 – 170 µm beträgt, hat sie in der z-Komponente nur eine Genauigkeit von ~ 3 cm.

Ein Magnetfeld von 1,2 T Stärke im Inneren des Detektors wird von einer heliumgekühlten, supraleitenden Solenoidspule erzeugt. Es ermöglicht die Bestimmung der Ladung und der Impulse der Teilchen. Zwischen den Spurkammern und der Solenoidspule befinden sich verschiedene Kalorimeter, die zur Messung der Teilchenenergien verwendet werden. Den größten Winkelbereich deckt ein feinsegmentiertes Flüssig-Argon-Kalorimeter (LAC) ab, das sich innerhalb der H 1-Magneten befindet. Unterstützt wird es

Abbildung 1.5: Der H 1-Detektor

durch das Vorwärts-Kalorimeter (PLUG)¹ und im rückwärtigen Bereich durch ein neues elektromagnetisches und hadronisches Kalorimeter "Spacal" (**Spa**ghetty **cal**orimeter) aus Blei und Szintillatorfasern. Die Energieauflösung des LAC beträgt $\frac{\sigma_E}{E} = \frac{12\%}{\sqrt{E}}$ für elektromagnetische Schauer und $\frac{\sigma_E}{E} = \frac{55\%}{\sqrt{E}}$ für hadronische Teilchen. Hadronische Schauer, die nicht vollständig im LAC absorbiert werden, werden in Plastik-Streamerröhren im segmentierten Eisenjoch außen am Detektor nachgewiesen. Das Eisenjoch, das den magnetischen Fluß zur Spule zurückführt, ist zusätzlich mit ortsauflösenden Kammern zur Myonerkennung instrumentiert.

Das Luminositätssystem mißt die Luminosität am Wechselwirkungspunkt mit einer Genauigkeit von 5%. Da der Wirkungsquerschnitt von Ereignissen der Art $ep \rightarrow ep\gamma$ mit Hilfe der Quanten-Elektro-Dynamik (QED) exakt berechenbar ist, kann durch Koinzidenzmessungen von gestreuten Elektronen und Photonen die Luminosität bestimmt

¹Die z-Koordinate im H 1-System wird ausgehend vom Wechselwirkungspunkt in Richtung des Protonenstrahls gemessen. Sie definiert die "Vorwärtsrichtung" im H 1-Detektor.

Abbildung 1.6: Die Erweiterung des H 1-Detektors im rückwärtigen Teil

Schon bei der Planung des H1-Detektors wurden spätere Erweiterungen des Detektors berücksichtigt und Platz für neue Subdetektoren am Strahlrohr gelassen [4]. Neben einem neuen rückwärtigen Kalorimeter (Spacal), das inzwischen eingebaut ist, werden zwei neue, verbesserte Spurdetektoren mit hoher Ortsauflösung dicht am Strahlrohr entwickelt und gebaut, der "Backward Silicon Tracker" (BST) und der "Central Silicon Tracker" (CST) (s. Abb. 1.6).

Die Strukturfunktion F_2 soll für x_{Bjorken} bis $5 \cdot 10^{-5}$ untersucht werden. Deshalb soll ein neuer Subdetektor (BST), der im rückwärtigen Bereich um das Strahlrohr eingebaut wird, den Nachweis von tief-inelastisch gestreuten Elektronen verbessern.

Bei kleinen $x_{\text{Bjorken}} < 10^{-2}$ wird mit fallendem x_{Bjorken} ein Ansteigen der Protonstrukturfunktion $F_2(x, Q)$ beobachtet [5]. Dieses wird qualitativ von verschiedenen Theorien, die auf der QCD beruhen, vorhergesagt. Erst eine genauere Untersuchung des weiteren Verlaufs von $F_2(x, Q)$ bei noch kleineren x_{Bjorken} kann Aufschluß darüber geben, welche der Theorien den Verlauf auch quantitativ beschreibt.

Desweiteren soll durch einen neuen Subdetektor (CST) die Analyse von Teilchen mit schweren Quarks verbessert werden. Schwere Quarks werden bei der Elektron-Photon-Kollision hauptsächlich durch Photon-Gluon-Fusionen produziert (vgl. 1.2). Bei einem erwarteten Wirkungsquerschnitt in der Größenordnung von 1000 nb [6] für Charmquarks und 5 nb für Bottomquarks [3] werden pro Jahr bei einer integrierten Luminosität von 100 pb⁻¹ im H 1-Detektor ~ 10⁸ Teilchen mit Charmquarks und ~ 10⁶ Teilchen mit Bottomquarks erwartet. Vom H 1-Triggersystem werden ca. 40% akzeptiert werden. Die erzeugten Hadronen mit b- oder c-Quarks haben bei den bei HERA üblichen Energien eine Zerfallslänge $c\tau$ in der Größenordung von 100 μ m. (D°-Meson : $c\tau = 124.4 \,\mu$ m [7]) Um auch in diesem Bereich noch Primär- und Sekundärvertex trennen zu können, ist der Einbau eines hochauflösenden Ortsdetektors um die Wechselwirkungszone erforderlich. Zerfallsmessungen schwerer Quarks ermöglichen eine bessere Bestimmung der Gluonstrukturfunktion. Es lassen sich unterdrückte Zerfallskanäle für D-Mesonen untersuchen bzw. obere Grenzen für verbotene Zerfälle ermitteln.

1.5 Aufgabenstellung

Das Thema der vorliegenden Arbeit ist die Untersuchung und der Test von Siliziumhalbleiterdetektoren, die für die Erweiterung des H 1-Detektors um einen Spurdetektor im rückwärtigen Bereich mit hoher Ortsauflösung entwickelt wurden. Nach einer Diskussion der Anwendung von Halbleitern als Teilchendetektoren, gliedert sich der experimentelle Teil der Arbeit sich in zwei Teile:

Zunächst werden an den Halbleiterdetektoren Akzeptanztests zur Qualitätssichtung und zur Überprüfung der Herstellerdaten vorgenommen. Ziel ist es, anhand dieser Untersuchungen das Design der Halbleiterdetektoren zu testen und gegebenenfalls Vorschläge zu dessen Verbesserung zu erarbeiten.

In einem zweiten Abschnitt der Arbeit wird das elektrische Verhalten der Detektoren durch ein Computerprogramm simuliert, um die Auswirkung des Designs auf die elektrischen Kennlinien eingehender zu untersuchen.

Kapitel 2

Halbleiter als Teilchendetektoren

Bei vielen Experimenten der Hochenergiephysik sind bereits ortsauflösende Detektoren aus Halbleitermaterialien eingesetzt worden. Halbleiter besitzen gegenüber Drahtkammern entscheidende Vorteile:

- Halbleiterdetektoren haben eine bessere Ortsauflösung als Drahtkammern, da es heute mittels photolithographischer Prozesse möglich ist, Strukturen im μ m-Bereich mit großer Präzision und Funktionssicherheit auf Halbleitern herzustellen. Eine Auflösung von < 10 μ m ist bei nur sehr geringem Platzbedarf des Detektors erreichbar.
- Die Energieauflösung ist besser, da z.B. im Silizium zur Erzeugung eines Elektron-Loch-Paares nur 3,6 eV erforderlich sind, im Gegensatz zu 20 – 40 eV in Gasen.
- Es sind keine Hochspannungen zum Betrieb erforderlich. Üblicherweise werden pn-Übergänge, p-i-n-Strukturen oder Oberflächensperrschichten als Nachweisstrukturen in Halbleiterdetektoren verwendet, die schon mit weniger als 100 V betrieben werden können.
- Halbleiterdetektoren benötigen keine Gasversorgung. Sie können in trockener Umgebungsluft betrieben werden.

2.1 Halbleiter

Im periodischen Potential eines Kristalls spalten sich die scharfen Energieeigenwerte der SCHRÖDINGER-Gleichung eines isolierten Atoms auf und bilden Bereiche mit einem quasikontinuierlichen Spektrum. Diese *Bänder* sind untereinander durch Energielücken getrennt (,,verbotene Bereiche"). In einem vollständig besetzten Band kann kein elektrischer Strom fließen. Jede Ladung, die sich in einer Richtung bewegt, wird durch eine gleichzeitige, entgegengerichtete Ladungsbewegung kompensiert. Nur Elektronen in einem unvollständig besetzten Band bzw. fehlende Elektronen (*Löcher*) in einem fast vollständig besetzten Band können einen Effektivstrom bewirken. Die Löcher eines fast vollständig besetzten Bandes entsprechen positiven Ladungsträgern. Im Gegensatz zu Metallen können in Halbleitern sowohl negative als auch positive Ladungsträger vorkommen.

Von Interesse hinsichtlich der elektrischen Leitfähigkeit sind somit nur die beiden obersten Bänder, die durch eine endliche *Bandlücke* ("Energielücke") voneinander getrennt Abbildung 2.1: Schematische Darstellung des Bändermodells

sind: das letzte vollständig gefüllte *Valenzband* und das niedrigste unvollständig besetzte *Leitungsband* (s. Abb. 2.1).

Sowohl Isolatoren als auch Halbleiter besitzen ein vollständig gefülltes Valenzband sowie ein leeres Leitungsband (s. Abb. 2.2). Sie unterscheiden sich nur in der Größe der Bandlücke. Damit ein freies Ladungsträgerpaar (Elektron-Loch-Paar) erzeugt werden kann und ein Stromfluß möglich wird, muß mindestens die Energie der Bandlücke aufgewendet werden. Ist die Anzahl der freien Ladungsträger, die durch die thermische Energie kT erzeugt werden, hinreichend groß, so wird das Material zu den Halbleitern gerechnet, ansonsten zu den Isolatoren. Im allgemeinen wird eine Bandlücke von $E_g = 2,5$ eV als Grenze zwischen Halbleitern und Isolatoren angenommen [8]. Es können aber auch Materialien mit größeren Bandlücken als "Halbleiter" bezeichnet werden, wenn das Hauptaugenmerk auf ihre durchaus noch meßbare Leitfähigkeit gerichtet ist.

Es gibt Elementarhalbleiter, Verbundhalbleiter und glasartige/organische Halbleiter. Zu den bekanntesten Vertretern der Elementarhalbleiter gehören Silizium (Si) und Germanium (Ge). Sie haben ein Diamantgitter, in dem jeder Gitterbaustein (Atom) vier tetraederförmig orientierte, kovalente Bindungen zum nächsten Nachbarn besitzt (s. Abb. 2.3.a). Die äußeren Atomschalen sind mit jeweils acht Valenzelektronen abgeschlossen, entsprechend den gefüllten Valenzbändern im Bändermodell.

Die für Halbleiter so günstige Elektronenkonfiguration von – im Mittel – vier kovalenten Bindungen pro Baustein, läßt sich auch durch eine Kombination von zwei oder mehr Elementen des Periodensystems erreichen. Galliumarsenid (GaAs) mit 3/5-Valenzelektronen, Cadmiumsulfid (CdS) mit 2/6-Valenzelektronen, oder Kupfergalliumdiselenid (CuGaSe₂) mit 1/3/6/6-Valenzelektronen sind hierfür Beispiele. Die meisten organischen Halbleiter sind flüssig, z. B. Benzol (C₆H₆).

Die elektrische Leitfähigkeit von Halbleitern hängt stark von strukturellen und chemischen Störstellen im Kristall ab. Sie kann um viele Größenordnungen variieren. Häufig wird anstelle der Leitfähigkeit der *Substratwiderstand* angegeben. Kanten, Brüche und Versetzungen des Kristalls bewirken zusätzliche Ströme. Meistens werden Fremdatome, chemische Störstellen, bewußt in den Kristall eingebracht, um die Leitfähigkeit dem Bedarf anzupassen. Ein solcher Vorgang wird als *Dotierung* bezeichnet. Fremdatome besitzen ein zusätzliches Elektron in der äußersten Schale (*n-Typ* oder *Donator*), das keine Bindung eingehen kann (s. Abb. 2.3.b), oder es fehlt ihnen ein Elektron (*p-Typ* oder *Akzeptor*), um alle Bindungen im Kristallgitter zu sättigen (s. Abb. 2.3.c). Durch die festen Bindungen der übrigen Elektronen im Kristall ist das überschüssige Elektron

Abbildung 2.3: Das Siliziumkristallgitter

bzw. das entstandene Loch nur schwach gebunden und kann im Kristall um mehrere Atomabstände "verschmieren". Die Bindungsenergie ist häufig so gering gegenüber der thermischen Energie kT, daß durch thermische Anregung alle Ladungsträger der Dotierungsatome ins Leitungsband gehoben werden und zur elektrischen Leitfähigkeit beitragen. Die Dotierungsatome bestimmen Anzahl und Art der freien Ladungsträger (*Elektron*- oder *Löcherleitung*), denn die jeweils andere Ladungsträgerart wird durch *Rekombination* stark reduziert. Als einfacher Zusammenhang zwischen der Anzahl der Dotierungsatome N_B und dem Substratwiderstand ρ gilt:

$$\rho \simeq \frac{1}{q \,\mu \, N_B}$$

q : Elementarladung

 μ : Beweglichkeit der Ladungsträger im Medium [9]

Ist mehr als nur eine Bindung ungesättigt, werden die überschüssigen Elektronen bzw. Löcher weit stärker an die Störstelle gebunden. Solche Fremdatome heißen *tiefe Störstellen*.

2.2 pn-Übergang

Ein pn-Ubergang entsteht in einem Halbleiter, wenn ein p-dotiertes und ein n-dotiertes Gebiet aneinandergrenzen. Erfolgt der Übergang schlagartig, wird er als *abrupter* pn-Übergang bezeichnet. Im thermodynamischen Gleichgewicht driften durch Diffusion Elektronen aus dem n-dotierten in den p-dotierten Bereich. Dort rekombinieren sie mit den Löchern und bewirken eine negative Ladung der Gitteratome. Entsprechend bewirken die Löcher, die in den n-dotierten Bereich hinein diffundieren, eine positive Ladung der Gitteratome. Diese *Raumladungszone* baut sich so lange auf, bis die Potentialdifferenz zwischen beiden Zonen verhindert, daß weitere Ladungsträger ins jeweils andere Gebiet hineindriften können. Die Raumladungszone enthält keine freien Ladungsträger, d. h. sie ist *verarmt* (s. Abb. 2.4).

Wird an den Halbleiter von außen eine zusätzliche Spannung angelegt, die der Raumladungszone entgegenwirkt, driften Ladungsträger in die Raumladungszone hinein und rekombinieren am pn-Übergang. Es fließt ein starker Diffusionsstrom. Wird eine äußere Spannung angelegt, die die Potentialdifferenz weiter verstärkt (*Sperrspannung*), nimmt die Ladungsträgerkonzentration am Rande der Raumladungszone ab. Die Raumladungszone dehnt sich so lange weiter aus, bis ein neuer Gleichgewichtszustand erreicht ist. Ladungsträgerpaare, die in der Zone neu entstehen und zu den Rändern driften, verursachen einen geringen Sperrstrom I, für den gilt:

$$I \propto \sqrt{U}$$
 U : Sperrspannung [9]

Ein solches elektronisches Bauelement, das abhängig von der angelegten Spannung den Strom durchläßt oder sperrt, heißt *Diode*.

Die Tiefe d der Raumladungszone hängt nicht nur von der angelegten Sperrspannung Uab, sondern auch von der Konzentration N_B der Dotierungsatome in der Zone. Als Tiefe

Abbildung 2.4: Der pn-Übergang

der Raumladungszone ergibt sich für einen abrupten pn-Übergang

$$d = \sqrt{\frac{2\,\varepsilon_0\,\varepsilon_r\,U}{q\,N_B}}$$

- ε_0 : Dielektrizitätskonstante
- ε_r : relative Dielektrizitäts-

konstante [9]

Um einen Halbleiter der Dicke d_0 vollständig zu verarmen, muß also mindestens die Spannung

$$U = \frac{1}{2} \frac{q N_B}{\varepsilon_0 \varepsilon_r} d_0^2$$

angelegt werden. Diese Spannung heißt Verarmungsspannung U_{depl}^{-1} .

Da die Raumladungszone nicht-leitend ist, können sich an ihrer Oberfläche Ladungsträger sammeln. Die gesamte Schicht wirkt wie ein Plattenkondensator mit der

¹Nicht alle Dioden halten die zur vollständigen Verarmung notwendige Sperrspannung aus. Viele werden bereits vorher durch lawinenartige, lokale Ladungsdurchbrüche zerstört.

Abbildung 2.5: Kapazitätskurve eines abrupten pn-Übergangs

Aufschluß über die lokalen Dotierungsstärken N_B innerhalb eines Kristalls, in Abhängigkeit von der Tiefe d, läßt sich für beliebige pn-Übergänge aus der Abhängigkeit

$$\frac{d}{dU}\left(\frac{1}{C^2}\right) = \frac{2}{\varepsilon_0 \,\varepsilon_r \, p \, A^2} \, \frac{1}{N_B(d)}$$

gewinnen, die aus der Beziehung

$$C \equiv \frac{dQ}{dU} = \sqrt{\frac{\varepsilon_0 \,\varepsilon_r \, q \, N_B}{2 \, U}} \cdot A$$

folgt [9].

In einer *p-i-n-Diode* wird nur eine Seite des pn-Übergangs stark dotiert, während die andere undotiert (,,intrinsic") bleibt. Da meistens anstelle eines undotierten Halbleiters ein schwach n⁻-dotiertes Material genommen wird, entsteht ein p⁺n⁻-Übergang. Um an der n⁻-Seite einen guten Kontakt mit Metall zu erhalten, muß die Zone am Rand zusätzlich stark n⁺-dotiert werden. Insgesamt entsteht eine p-i-n-Struktur.

Eine äußere Sperrspannung läßt die Raumladungszone auf der un- oder schwachdotierten Seite stark anwachsen. Sie kann Tiefen im Millimeterbereich erreichen und wird nur von der Dicke des Halbleitermaterials begrenzt. Wegen der Tiefe der Zone sind die lokalen Feldstärken gering, trotz Sperrspannungen, die mehrere hundert Volt betragen können. Erst wenn die Verarmungzone die Grenze des i-Bereichs erreicht und sich im stark dotierten Material praktisch nicht weiter ausdehnt, nimmt die Feldstärke bei weiterem Wachsen der Sperrspannung zu, und es kann zu einer Zerstörung der Diode durch lawinenartige Durchbrüche kommen.

2.3 Halbleiterdetektoren

In der Raumladungszone eines pn-Übergangs entstehen nicht nur durch Kristallfehler und thermische Anregung neue Ladungsträger, sondern auch durch ionisierende Strahlung, wenn diese in die Zone gelangen. Energien von bis zu mehreren Kiloelektronenvolt werden entlang der Teilchenspur durch Stoßionisation auf die Kristallelektronen übertragen und allmählich unter Erzeugung von Exzitonen (neuen Elektron-Loch-Paaren) und Phononen (Gitterschwingungen) abgegeben. Dieser Effekt wird bei der Verwendung von Halbleitern als Detektoren genutzt. Es werden möglichst ausgedehnte pn-Ubergänge verwendet, um ein starkes Signal zu erzeugen. Hierzu eignen sich besonders die zuvor besprochenen p-i-n-Übergänge, die sich durch ihre sehr breite Raumladungszone auszeichnen. Bei Spannungen $U > U_{dep}$ ist das gesamte Diodenvolumen frei von freien Ladungsträgern und somit sensitiv auf Strahlung. Trotzdem ist das erzeugte Signal noch sehr schwach (ca. 28 000 Elektron-Loch-Paare bei 300 μ m Si [9]) und kann nicht über längere Signalleitungen geführt werden, sondern muß möglichst dicht am Detektor verstärkt werden. Der Platzbedarf dieser Ausleseelektronik stellt bei der Vielzahl der Kanäle (BST und CST zusammen enthalten ca. 240000 Kanäle) ein Problem dar, das lange Zeit den Bau von einsatzfähigen, ortsauflösenden Halbleiterdetektoren behindert hatte. Erst seitdem es durch die Weiterentwicklung der Halbleitertechnologie möglich wurde, Teile der Ausleseelektronik – insbesondere des Vorverstärkereingangskreises – in kompakter Form integriert herzustellen (z. B. als anwenderspezifizierter integrierter Schaltkreis "ASIC"), können größere Subdetektoren mit einer großen Zahl von Kanälen aus Halbleitermaterialien gebaut und eingesetzt werden.

Die wichtigsten Eigenschaften von Halbleiterdetektoren sind:

• Energieproportionalität

Kommt ein ionisierendes Teilchen im Detektor vollständig zur Ruhe, verhält sich die Anzahl der erzeugten Ladungsträger proportional zur Anfangsenergie des Teilchens (Spektrometrie). Wird es nicht vollstängig abgebremst, sondern verläßt es den Detektor auf der anderen Seite, so entspricht die Impulshöhe des Signals dem differentiellen Energieverlust in der zurückgelegten Weglänge. Der differentielle Energieverlust läßt sich für Teilchen der Masse $m \gg m_e$ durch die BETHE-BLOCH-Formel beschreiben:

$$-\frac{dE}{dx} = \frac{4\pi N_A z^2 e^4}{m_e v^2} \cdot \frac{Z}{A} \cdot \left[\ln \left(\frac{2 m_e v^2}{I [1 - \beta^2]} \right) - \beta^2 \right]$$

- E : mittlerer Energieverlust des Teilchens im Medium
- x : zurückgelegter Weg im Medium
- Z : Kernladungszahl
- A : Kernmassenzahl
- I : effektives Ionisationspotential des Mediums (Si: I=173 eV [10])
- N_A : Avogadrokonstante
- m_e : Elektronenruhemasse
- z : Teilchenladung
- $v = \beta c$: Teilchengeschwindigkeit [11]

• Energieauflösung

Unter Energieauflösung wird die Halbwertsbreite $(\Delta E)_{FWHM}$ der Impulshöhenverteilung verstanden, die eine monoenergetische Strahlung definierter Energie erzeugt. Die Energieauflösung von Halbleiterdetektoren ist i.a. besser als die von gasgefüllten Drahtkammern. Sie ist abhängig von der Effektivität der Ladungsträgersammlung und vom Rauschen im Detektor und Vorverstärker.

• Zeitauflösung

Die Zeitauflösung ist bestimmt durch die Zeit, die Elektronen und Löcher benötigen, um sich an der Oberfläche zu sammeln. In 300 μm dickem Silizium beträgt sie typischerweise 8 ns für Elektronen und 25 ns für Löcher [7]. Durch den Betrieb der Detektoren bei einer Sperrspannung $U > U_{depl}$ läßt sich die Zeitauflösung verbessern.

• Nachweiseffektivität

Die Nachweiseffektivität ist für verschiedene Teilchen unterschiedlich. Schwere Teilchen werden schon in sehr dünnen Siliziumschichten absorbiert, d.h. die Nachweiseffektivität liegt bei ≈ 1 , für hochenergetische Photonen ($E_{\gamma} > 1$ MeV) dagegen bei $10^{-3} - 10^{-2}$ [12].

• Rauschen

Rauschen tritt auch ohne ionisierende Strahlung im Betrieb des Detektors durch Ströme auf, die durch thermische Elektron-Loch-Paare, an Kanten, Brüchen, Rändern oder durch Verunreinigungen entstehen.

 $\bullet \ Lebens dauer$

Die Lebensdauer eines Halbleiterdetektors wird einerseits begrenzt durch Strahlungsschäden, die im Detektor von schnellen Neutronen, schweren geladenen Teilchen und Synchrotronstrahlung am Kristall verursacht werden können, andererseits durch die Stabilität der verschiedenen Strukturen auf dem Detektor, z. B. die Isolation zwischen den Streifen auf einem Streifendetektor. Durch Strahlungsschäden im Kristallgitter und Oberflächeschäden, die durch Ladungsträgeransammlungen entstehen, vergrößert sich das Rauschen [7]. Halbleitermaterialien mit einer großen Bandlücke, d. h. mit besonders festen Kristallbindungen, weisen eine größere Strahlenhärte auf als Materialien mit kleinen Bandlücken. Bei zukünftigen Hochenergieexperimenten wird die Strahlenhärte immer mehr an Bedeutung gewinnen, denn Strahlungsschäden werden nicht nur von der Hintergrundsstrahlung verursacht, sondern auch von den physikalisch interessanten Reaktionsprodukten der Teilchenkollisionen [13]. Bei großen Teilchenflußraten reicht die Stahlenhärte von Silizium, das bisher verwendet wird, nicht mehr aus, um ortsauflösende Siliziumdetektoren in der Nähe des Wechselwirkungspunkts einbauen zu können [14].

Halbleiterdioden, die als Detektoren betrieben werden, können in verschiedener Weise an den Ausleseverstärker angeschlossen werden: Bei *gleichstromgekoppelten* (,,DC"gekoppelten) Detektoren wird als Signal der Sperrstrom direkt vom Vorverstärker gemessen (s. Abb. 2.6.a). Bei *wechselstromgekoppelten* (,,AC"-gekoppelten) Detektoren wird er durch einen Kondensator vom Detektorpotential entkoppelt (s. Abb. 2.6.b).

Um die Ortauflösung zu verbessern, enthalten die meisten Detektoren mehrere einzelne Dioden, die jeweils von einem Vorverstärker ausgelesen werden. Je nach Form der Diodensegmente wird zwischen Streifen- und Flächen- (,,pad") detektoren unterschieden. Bei

(b) "AC"-gekoppelter Streifendetektor

Abbildung 2.6: ,,DC"- und ,,AC"-gekoppelte Halbleiterdetektoren

Streifendetektoren werden statt einer großflächigen Implantwanne viele schmale Streifen² implantiert. Die Implantstreifen werden kontaktiert und mit der Ausleseelektronik verbunden ("DC"-gekoppelte Streifendetektoren). Eine kapazitive Kopplung ("AC"-Kopplung) wird durch einen mit der Ausleseelektronik verbundenen Metallstreifen erreicht, der über dem Implantstreifen liegt und durch eine dünne, nicht-leitende Schicht (z. B. SiO₂ oder Si₃N₄) von ihm getrennt ist (s. Abb. 2.6.b). Der Sperrstrom jedes einzelnen Streifens wird in einem derartigen Design über einen Widerstand ("Bias-Widerstand") abgeleitet. Als Widerstände, die auf den Detektor integriert sein können, bieten sich Strukturen aus Polysilizium oder Feld-Oxid-Feldeffekttransistoren (FOXFET) an³. Der Wert der Widerstände sollte einige Megaohm betragen. Dann ist der Spannungsabfall am Widerstand groß genug, um vom Vorverstärker als Signal "gesehen" zu werden, und das Widerstandsrauschen wird unbedeutend im Vergleich zu dem Sperrstromrauschen, denn das mittlere Rauschstromquadrat eines Widerstandes beträgt

$$\overline{i_{rausch}^2(t)} \propto \frac{1}{R}$$

Mit nur einem Detektor lassen sich zwei Koordinaten gleichzeitig messen, wenn sowohl die Vorder- als auch die Rückseite Streifenstrukturen besitzen. Die Herstellung *doppelseitiger Streifendetektoren* ("Double Sided Strip Detektor") ist jedoch technisch wesentlich aufwendiger, da beide "Wafer"seiten bearbeitet werden müssen. Damit die Seiten vergleichbare elektrische Eigenschaften aufweisen, reicht es nicht aus, identische Strukturen sowohl p-dotiert auf der einen Seite als auch n-dotiert auf der anderen aufzubringen [15].

Auch bei doppelseitigen Streifendetektoren bleibt jedoch das prinzipielle Problem, daß nur die Koordinaten *eines* Teilchens bestimmt werden können. Erzeugen mehrere Teilchen gleichzeitig Signale identischer Stärke im Detektor, treten Vieldeutigkeiten auf. Dieses Problem kann dadurch gelöst werden, daß statt streifenförmiger Strukturen kleine, punktförmige Diodensegmente aufgebracht werden. Die Ausleseelektronik solcher

²Die typische Streifenbreite beträgt 20 μ m, bei einer Streifenlänge von einigen Zentimetern.

³Feld-Oxid-Feldeffekttransistoren besitzen gegenüber Polysilizium-Widerständen den Vorteil, daß ihr Widerstand variabel ist und durch eine Steuerspannung von außen nach Bedarf geregelt werden kann.

,,pixel"-Detektoren ist aber bisher zu langsam, um sie als ortsauflösende Detektoren in der Hochenergiephysik einsetzen zu können.

2.4 Verschiedene Detektormaterialien

Zum Bau von Detektoren mit segmentierten Elektroden wurde bisher fast ausschließlich Silizium verwendet. Mit ihm können große Detektoren von guter Qualität produziert werden. Die einzelnen Verfahrensschritte zur Produktion von Einkristallen und zur Erzeugung von elektrischen Schaltelementen werden heute am besten bei Verwendung von Silizium beherrscht und bedingen einen technologischen Vorsprung gegenüber anderen Halbleitern. Die Detektorgröße wird praktisch nur durch die Größe der produzierbaren Kristalle begrenzt. Die hohe Dichte von Silizium reduziert den energetischen Bereich von Exzitonen, was eine gute räumliche Auflösung bewirkt (bis zu $3 - 4 \ \mu m$ [7]). Wegen der COULOMB-Streuung im Si-Kristall und der Diffusion der Ladungsträger beim Sammeln (~ 5 $\ \mu m$ für 300 $\ \mu m$ Si [7]) sollte die Dicke möglichst klein sein; doch ist durch die mechanische Stabilität und durch die Ausleseelektronik, die eine gewisse Signalstärke benötigt, eine untere Grenze gegeben. Typischerweise liegt die Detektordicke bei 300 $\ \mu m$ [7].

		Si	Ge	GaAs	Diamant
Kernladungszahl		14	32	31 / 33	6
Massenzahl		$28,\!09$	$72,\!60$	$144,\!63$	12,01
Gitterkonstante	[Å, 300K]	5,43	5,65	$5,\!65$	$3,\!57$
Dichte	$\left[\frac{g}{cm^3}\right]$	$2,\!328$	$5,\!3267$	$5,\!32$	3,5
Rel. Dielektrizitätskonstante ε_r	0,110	11,9	$16,\! 0$	$13,\!1$	5,7
Durchbruchsfeldstärke	$[10^{6} \frac{V}{cm}]$	$\sim 0,3$	$\sim 0,1$	~ 0.4	~ 10
Strahlungslänge	Chri	9,4	2,3	2,3	12,0
Bandlücke	[eV, 300K]	$1,\!12$	$0,\!66$	$1,\!424$	5,45
Ladungsträgerdichte (undotiert)	$[cm^{-3}]$	$1,45 \cdot 10^{10}$	$2,4\cdot 10^{13}$	$1,79.10^{6}$	$< 10^{3}$
Widerstand (undotiert)	$[\Omega \ \mathrm{cm}]$	$2,\!3\!\cdot\!\!10^{5}$	47	10^{8}	$> 10^{11}$
Elektronenbeweglichkeit μ	$\left[\frac{cm^2}{Vs}, 300 \mathrm{K}\right]$	1500	3900	8500	1800
Löcherbeweglichkeit μ	$\left[\frac{cm^2}{Vs}, 300\mathrm{K}\right]$	450	1900	400	1200
Thermischer Ausdehnungskoeffizient	$\left[10^{-6} \frac{1}{K}\right]$	2,6	5,8	$6,\!86$	$0,\!8$
Thermische Leitfähigkeit	$\left[\frac{W}{cmK}, 300\mathrm{K}\right]$	1,5	0,6	$0,\!46$	10 - 20
Energie, um e^- -Loch-Paar zu erzeugen	[eV]	3,6	$2,\!85$	4,2	13
Durchschnittl. e^- -Loch-Paare pro 100 μ m [*]	[e]	8900	26000	13000	3600

* Hinweis: Das Signal hängt stark von der Effektivität der Ladungsträgersammlung ab, die für verschiedene Halbleitermaterialien unterschiedlich ist.

Tabelle 2.1: Eigenschaften wichtiger Halbleiter im Vergleich [9, 15, 16, 17, 18]

Trotz der aufgeführten Vorzüge von Silizium wurde anfangs auch **Germanium** (Ge) als Ausgangsmaterial für ortsauflösende Detektoren verwendet [19]. Ein entscheidender

Nachteil von Germanium ist aber, daß es eine noch kleinere Bandlücke besitzt als Silizium. Deshalb werden aus Germanium nur noch totalabsorbierende Detektoren zur Energieauflösung hergestellt. Bei Anwendung in der Kernphysik müssen sie nicht monokristallin sein und sind daher billiger. In dem Germaniumblock kommt das ionisierende Teilchen vollständig zur Ruhe; dadurch wird das erzeugte Signal wesentlich stärker und läßt sich leichter vom Untergrund trennen (vgl. 2.3).

Galliumarsenid besitzt eine größere Bandlücke als Silizium, wodurch das thermische Rauschen verringert wird und die Strahlenhärte zunimmt. In Galliumarsenid werden im Mittel mehr Elektron-Loch-Paare erzeugt als in Silizium oder Germanium. Insgesamt ist das Signal-zu-Rausch-Verhältnis besser als in den anderen Materialien. Die Beweglichkeit der Ladungsträger in GaAs ist größer, wodurch die Ansprechzeit kürzer ist und eine höhere Auslesegeschwindigkeit erreicht werden kann. Schwierigkeiten bereitet jedoch die Produktion großer GaAs-Einkristalle, sowie die Herstellung leitender Kontakte zwischen GaAs und Metallen. Detektoren aus GaAs sind deshalb teurer als die auf Siliziumbasis produzierten.

In letzter Zeit wird auch **Kohlenstoff** (Diamant) hinsichtlich seiner Verwendbarkeit im Detektorbau untersucht. Die extreme Strahlenhärte bei guter Ladungsträgerbeweglichkeit und Wärmeleitfähigkeit machen epitaxisch hergestellte Diamantschichten interessant als Ausgangsmaterial für Halbleiterdetektoren [16]. Nach anfangs noch sehr optimistischer Einschätzung werden jetzt zunehmend die noch zu lösenden technologischen Herausforderungen sichtbar. Die vielversprechenden physikalischen Eigenschaften von Diamant lassen sich bisher noch nicht in dieser Form auf anwendungsreife Bauelemente übertragen. Es ist noch nicht geglückt, Diamant ausreichend n-leitend zu machen; es können bisher nur Metall-Halbleiter-Übergänge, sogenannte SCHOTTKY-Übergänge, erzeugt werden, die jedoch nur mit sehr geringen Sperrspannungen von einigen Volt betrieben werden können. Hinreichend p-dotiert kann Diamant nur durch Bor werden. Bor hat aber im Vergleich zur thermischen Energie kT bei relevanten Temperaturen eine große Bindungstiefe von 0,37 eV. Dies reduziert die Beweglichkeit der Ladungsträger erheblich, eine schnelle Auslese wird unmöglich, ein Einsatz als Detektor in der Hochenergiephysik ist daher vorerst fraglich [18].

Isolator		SiO_2	${ m Si}_3{ m N}_4$
Kernladungszahl		14 / 8	14 / 7
Massenzahl		$60,\!08$	140,3
Dichte	$\left[\frac{g}{cm^3}\right]$	2,2	3,1
Rel. Dielektrizitätskonstante ε_r	- 0110 -	3,9	7,5
Durchbruchsfeldstärke	$\left[\frac{V}{cm}\right]$	10^{7}	10^{7}
Bandlücke	[eV]	9	$\sim 5,0$
Widerstand	$[\Omega$ -cm, 298K]	$10^{14} - 10^{16}$	$\sim 10^{14}$
Thermischer Ausdehnungskoeffizient	$\left[\frac{10^{-6}}{K}\right]$	50	
Thermische Leitfähigkeit	$\left[\frac{W}{cmK}, 300\mathrm{K}\right]$	0,014	

Tabelle 2.2: Eigenschaften wichtiger Isolatoren im Vergleich [9]

Abbildung 2.7: Die Siliziumdetektoren des BST

- Die Vorderseite der "**pad**"-**Detektoren** ist in großflächige Abschnitte ("pads") unterteilt, die in acht Kreisbögen mit jeweils vier Gebieten angeordnet sind. Die "pad"-Detektoren werden zum Triggern auf Spuren mit kleinen Polarwinkeln verwendet. Sie sind "AC"-gekoppelt⁴.
- Die r-Streifendetektoren weisen eine Streifensegmentierung mit gebogenen Streifen konstanter Radien auf. Mit ihnen ist es möglich, den Polarwinkel θ eines am Vertex gestreuten Teilchens mit einer Genauigkeit von ~ 0,4 mrad zu messen. Das Auflösungsvermögen in r beträgt ~ 30 μm. Die Detektoren sind "AC"-gekoppelt⁴.

⁴Die "pad"- und r-Streifendetektoren werden in dieser Arbeit nicht weiter behandelt; weiterführende Erläuterungen finden sich bei [20].

 Die φ-Streifendetektoren sind in radiale Streifen konstanter Winkel φ unterteilt, bezogen auf das Zentrum einer Detektorebene bzw. Strahlachse. Mit ihnen läßt sich der Azimuthwinkel φ einer Teilchentrajektorie bestimmen; damit ist die Messung des Transversalimpulses und der Ladung möglich. Die Detektoren sind "AC"-gekoppelt.

Alle Segmente einer Scheibe sind gegeneinander um $360^{\circ}/16$ verdreht und so groß, daß sich die aktiven Bereiche der Detektoren um jeweils ~ 1,5° leicht überlappen. Die r- und φ -Streifendetektoren erlauben eine Ortsauflösung in orthogonalen Koordinaten.

Abbildung 2.8: Gesamtansicht des BST in der Ausbaustufe 1995

Die acht Detektorebenen befinden sich bei z = -392 mm, -429 mm, -469 mm, -512 mm, -732 mm, -800 mm, -874 mm und -956 mm. Damit kann ein Winkelbereich von 166° - 176° abgedeckt werden.

Die Lage der Detektorebenen und die Radien der Kreisbögen auf den "pad"-Detektoren sind so aufeinander abgestimmt, daß der BST durch seine Geometrie auf das Zentrum des H 1-Detektors "fokussiert" ist. Eine erste, schnelle "Spurerkennung" reduziert sich damit auf einen einfachen Vergleich der Spurmuster eines Ereignisses mit vorgegebenen "Masken" [21]. Die optimale Anzahl von φ -Streifen pro Detektorebene wird in einer Monte-Carlo-Simulation bestimmt. Für die Simulation werden Elektronen mit einer Energie von E < 30 GeV und einem Winkel 5° $< \theta < 15$ ° erzeugt. Als Vertexposition

Abbildung 2.9: Die Ausleseelektronik des BST (Abb. aus [24])

Erfolgt eine positive Triggerentscheidung (,,L1-keep"), wird der Auslesevorgang angehalten und der Speicher an der gewünschten Stelle ausgelesen. Ein Multiplexer leitet die Daten der APC-Chips über Kupferkabel von maximal 30 m Länge an das eigentliche Auslesemodul OnSiRoC (,,Online Silicon Readout Controller") weiter. Ein OnSiRoC-

⁵Um einen Vergleich der Impulsauflösung des BST mit der Energieauflösung eines Kalorimeters zu ermöglichen, wird hier die Auflösung in der für Kalorimeter üblichen Schreibweise angegeben.

⁶Die Tiefe von 32 Signalen ist abgestimmt auf die Entscheidungszeit des L1-Triggers $(2,5 \ \mu s)$, innerhalb der eine Entscheidung vom L1-Trigger getroffen werden muß.

Modul kann bis zu 4 Kanäle mit jeweils 2048 Si-Streifen, d. h. 4.16 APC gleichzeitig verarbeiten. In ihm werden die ankommenden analogen Daten für jeden Streifen einzeln nullunterdrückt. Erst dann erfolgt mit einem schnellen Analog-Digital-Wandler eine Digitalisierung (12 bit). Noch während des Digitalisierens findet eine Analyse auf Teilchenspuren ("Treffer") statt. Alle digitalen Daten stehen dann über dem VME-Bus dem H1-Datensystem zur Verfügung.

Kontrolliert wird die Ausleseelektronik (OnSiRoC und Hybrid-Steuerung) von einer programmierbaren Steuereinheit ("Sequenzer"). Diese Architektur erlaubt, den gesamten BST mit nur wenigen zusätzlichen Kabeln im H1-Detektor und wenigen Steuerbefehlen zu betreiben.

2.5.2 Die φ - Streifendetektoren

Die φ -Steifendetektoren sind aus einem mit Phosphor leicht n-dotieren Silizium-(1,1,1)-Kristall⁷ mit einem Durchmesser von 101,6 mm (4 Zoll) gefertigt, aus dem Scheiben ("wafer") der Dicke von 280 – 300 µm geschnitten und trapezförmige Detektoren gefertigt werden. Die Rückseite ist stark n⁺-dotiert und mit einer schützenden Aluminiumschicht bedeckt; auf der Oberseite befinden sich die Detektorstrukturen. Eine p⁺-Implantwanne,

Abbildung 2.10: Schematische Darstellung der φ - Streifendetektoren (Abb. aus [25])

⁷Die Kristallorientierung ist prinzipiell für die Anwendung im BST unerheblich. Die gewählte Orientierung vereinfacht in der Produktion das Schneiden bzw. Brechen der Detektoren und bewirkt damit eine Reduzierung der Sperrströme an den Rändern.

Abbildung 2.11: Ausschnittsvergrößerung der inneren Ecke eines φ -Streifendetektors (Abb. aus [25])

Abbildung 2.12: Ausschnittsvergrößerung des "fan-out" auf einem φ -Streifendetektor (Abb. aus [25])

Die Differenz von 385 Detektorstreifen zu 384 Auslesekanälen, bzw. 129 zu 128 Anschlüssen pro Auslesechip, ist auf die geometrische Anordnung der Anschlußflächen auf dem Si-Detektor und dem Auslesechip zurückzuführen. Die "pads" sind versetzt angeordnet. Das Bonden erfolgt in zwei Lagen. Zunächst werden die "pads" der äußeren Reihe auf dem Detektor mit der entsprechenden Reihe auf dem APC verbunden, dann werden darüber die inneren "pads" verbunden. Durch ein zusätzliches "pad" wird sichergestellt, daß stets alle Kanäle des APC angeschlossen werden, unabhängig von der Geometrie des APC, dessen "pad"-Anordnung zum Zeitpunkt des Detektordesigns noch nicht bekannt war. Die beiden möglichen "pad"-Anordnungen und die resultierenden Drahtverbindungen sind schematisch in Abb. 2.13 dargestellt. Abbildung 2.13: Vereinfachte Darstellungen der "pad"-Anordnungen und Drahtverbindungen

Das Design der φ -Streifendetektoren weist also zwei Besonderheiten auf, nicht-parallele p⁺-Implantstreifen und fächerartige Anschlußleitungen der "pads" an die Auslesestreifen ("*fan-out*"). Es gilt somit, die Auswirkungen der nicht-parallelen Streifen auf die Verarmungsspannung herauszufinden und zu untersuchen, wie stark das "fan-out" die Interstreifenkapazität erhöht.

Mechanische Daten		Spezifikation	Toleranz
Länge	[mm]	66,50	0,01
Breite (innen)	[mm]	28,59	$0,\!01$
Breite (außen)	[mm]	$55,\!05$	$0,\!01$
,,Wafer"dicke	$[\mu m]$	280 - 300	15
Kristallorientierung		(111)	
minimale Linienbreite	$[\mu m]$	10	
minimaler Linienabstand	$[\mu m]$	10	
Dicke der Al-Metallisierung	$[\mu m]$	< 1	
Streifengeometrie			
Anzahl der Streifen		$385 = 3 \cdot 128 + 1$	
Anzahl der Überlappstreifen		$25 = 2 \cdot 12 + 1$	
Länge der p ⁺ -Implantwannen	[mm]	$60,\!80$	0,01
Breite der p ⁺ -Implantwannen	$[\mu m]$	10,0	$1,\!5$
Winkelabstand der Implantwannen		$0,0625^{\circ} = 360^{\circ}/(16 \cdot 360)$	$0,0015^{\circ}$
Implantabstand (Innenseite)	$[\mu m]$	64	
Implantabstand (Außenseite)	$[\mu m]$	131	
Elektrische Daten			
Spez. Widerstand des Si-Kristalls	$[\Omega \text{ cm}]$	3000 - 5000	
Verarmungsspannung	[V]	< 60	
Guardstrom bei Betriebsspannung	$[\mu A]$	< 1	
Streifenstrom bei Betriebsspannung	[nA]	< 1	
Poly-Silizium-Widerstände	$[M\Omega]$	3 - 5	

Tabelle 2.3: Spezifikation der Detektoreneigenschaften für den Hersteller [25]

Abbildung 2.14: Gesamtansicht eines φ -Streifendetektors mit Hybrid

Kapitel 3

Test der Detektoren

Im Jahre 1994 wurden von der Firma Hamamatsu Photonics K.K. zehn Exemplare vom Prototyp der φ -Streifendetektoren hergestellt. Der Einfachheit halber werden sie in dieser Arbeit nur als SSSD ("Single Sided Strip Detector") bezeichnet und mit einer zusätzlichen Ziffer versehen, die sich auf die "Wafer"nummer aus der Produktion bezieht. Die Angaben zum Design finden sich in 2.5.2; Spezifikationen an die Herstellerfirma werden in der Tabelle 2.3 aufgeführt.

An den Detektoren werden verschiedene Akzeptanztests zur Qualitätssichtung und zur Überprüfung der Herstellerdaten durchgeführt. Es werden im folgenden die statischen Messungen erläutert, die an den Detektoren vorgenommen wurden. Insbesondere gilt es, das Design zu überprüfen und die gemessenen Unterschiede zu Detektoren mit parallelen Streifen im Verarmungsverhalten zu analysieren. Zum besseren Verständnis der Kapazitäts-Spannungs-Kennlinien wird der Detektor durch ein Programm simuliert und die Ergebnisse mit den Messungen verglichen.

3.1 Meßaufbau

Die φ -Streifendetektoren werden an einer "*probe-station*" untersucht, die aus einem Objektträger, einem Mikroskop und mehreren Nadelhaltern besteht. Die Detektoren werden durch Unterdruck auf dem in x-, y- und z-Richtung beweglichen Objektträger fest fixiert. Links und rechts vom Objektträger sind zwei Halterungsschienen montiert, an die Nadelhalter angeschraubt werden können. Die Nadelhalter besitzen einen Auslegearm, an dessen vorderem Ende feine, spitze Nadeln sitzen, die die Kontakte zu den "pads" des Detektors herstellen. Stellschrauben erlauben das mikrometergenaue Justieren der Nadelarme über dem Objektträger. Durch ein beleuchtetes Stereomikroskop über den Objektträger lassen sich die Bewegungen der Nadeln kontrollieren und die Nadeln genau auf den Anschluß, pads" absetzen. Um eine genaue Messung zu gewährleisten, befindet sich die "probe-station" in einem verschließbaren, geerdeten Metallkasten. Alle Meßleitungen sind ebenfalls mit geerdeten Abschirmungen versehen. Die Abschirmung reicht bis zur Spitze der Nadelhalter; nur die Kontaktnadeln sind ungeschirmt. Sowohl die Lichtquelle des Mikroskops als auch die Unterdruckpumpe befinden sich außerhalb des Metallkastens, so daß innerhalb der Abschirmung keine Störungen durch elektrische Geräte entstehen. Nur ein Lichtwellenleiter aus Glas und ein Kunststoffschlauch führen ins Innere der Abschirmung.

Als Spannungsquelle und als Picoampèremeter wird ein Keithley 487 Meßgerät ver-

Abbildung 3.1: Schematische Abbildung des Meßaufbaus für Kapazitätsmessungen

wendet, zu Kapazitätsmessungen ein HP 4248 LCR-Meter eingesetzt. Das LCR-Meter besitzt vier Meßleitungen, für Strom und Spannung jeweils zwei getrennte Leitungen. Erst kurz vor den Meßkontaktspitzen sind jeweils eine Strom- und eine Spannungsleitung zusammengeschlossen. Ein Macintosh Computer steuert beide Meßgeräte und liest die Daten aus (s. Abb. 3.1). Für die unterschiedlichen Messungen, die im folgenden beschrieben werden, stehen insgesamt drei selbstentwickelte Meßprogramme zur Verfügung. Als Grundlage der Meßprogramme dient das Programm 'Labview' in der Version 3.1 (© 1994) von der Firma National Instruments Corporation, das das Steuern und Auslesen von Meßgeräten wesentlich vereinfacht. Zusätzlich kann für die Messungen ein manuelles Multimeter von Philips verwendet werden.

Um überhaupt Kapazitätsmessungen durchgeführen zu können, muß der Innenwiderstand der Quelle $R_{in} \to \infty$ gehen. Dies geschieht außerhalb des Metallkastens in einer separaten Schaltung, durch die die vier Meßleitungen hindurchgeführt werden. Ein zusätzlicher Anschluß erlaubt, eine Gleichspannung, z. B. eine Verarmungspannung, in die Meßleitungen einzuspeisen.

3.2 Sperrströme

Ein wichtiges Kriterium für die Akzeptanz der Detektoren stellen die Sperrströme da, die im verarmten Detektor fließen. Sie werden gemessen, indem die Verarmungsspannung vom Keithley 486 über alle Poly-Si-Widerstände und Implantstreifen gegen die Detektorrückseite angelegt wird. Als Schutz vor Strömen vom Detektorrand wird ebenfalls der "Guard"ring angeschlossen. Mit dem Picoampèremeter wird aber nur der Volumenstrom gemessen.

Es wird folgendes Strom-Spannungsverhalten erwartet [9]:

$$I \propto \sqrt{U}$$

Ein typischer Verlauf ist in Abb. 3.2.a zu erkennen. Es läßt sich jedoch aus dem gemessenen Strom kein direkter Rückschluß auf den Widerstand ziehen, da Halbleiterwiderstände kein Ohmsches Verhalten zeigen.

Alle durchgeführten Messungen an den Detektoren (SSSD-3, SSSD-4, SSSD-6, SSSD-7, SSSD-8 und SSSD-9) zeigen Ströme, die trotz Schwankungen doppelt so groß sind wie maximal spezifiziert (s. Abb. 3.2). Für die Prototypserie sind solche Ströme

Abbildung 3.3: Langzeitmessung des Sperrstroms von SSSD-6

Abbildung 3.4: Poly-Si-Widerstände auf SSSD-6 in relativer Lage

Die Widerstände des Detektors (SSSD-6) werden nochmals genauer untersucht. Mit wechselnden Abständen werden über die volle Detektorbreite insgesamt 102 Si-Streifenwiderstände gemessen. Als mittlerer Wert für die Poly-Si-Widerstände am Detektor SSSD-6 ergibt sich $2,09 \pm 0,01 \text{ M}\Omega$. Dies zeigt, daß die Streuung des Widerstandes nur wenig bestimmt wird von der Streuung der einzelnen Widerstandswerte eines Detektors, sondern dominiert wird von der Streuung über die verschiedenen Detektoren. Die

¹Eine maximale Schwankung der Widerstandswerte war nicht spezifiziert.

Abbildung 3.5: Frequenzabhängigkeit der Poly-Si-Widerstände

Eine anschließend mit dem LCR-Meter durchgeführte Vermessung einiger Poly-Si-Widerstände am Detektor SSSD-6 weist für deren Frequenzverlauf jeweils eine Streukapazität von 3,7 – 24 pF (s. Abb. 3.5) auf. Die Poly-Si-Widerstände zeigen damit ein Tiefpaßverhalten, das aber zu vernachlässigen ist, da der Sperrstrom nicht als Signal verwendet wird. Die Kapazität der Widerstände ist für den Meßbetrieb unerheblich; sie wird vom Vorverstärker aus nicht "gesehen". Für das Verständnis der Eigenschaften im Detektor darf sie aber nicht von vornherein vernachlässigt werden.

3.4 Interstreifenkapazitäten

Zwischen jeweils zwei Auslesestreifen werden am gesamten Detektor SSSD-6 mit dem LCR-Meter die Interstreifenkapazitäten gemessen. Da die Kapazitäten zwischen jeweils benachbarten Streifen im späteren Betrieb den Eingang des Vorverstärkers belasten, der an die Auslesestreifen angeschlossen ist, sollten diese deutlich unterhalb von 30 pF liegen², damit das Rauschen nicht zu groß wird.

Im Meßbetrieb treten Sammlungszeiten für die Ladungsträger im Nanosekundenbereich auf, so daß kurze, steile Impulse erzeugt werden. Die großen Anteile hoher Frequenzen in diesen Impulsspektren machen Kapazitätsmessungen relevant, die bei höheren Frequenzen durchgeführt werden. Ergebnisse von Kapazitätsmessungen, die aus Testfrequenzen $\nu < 1$ kHz stammen, werden daher vernachlässigt.

Die ermittelten Kapazitäten bei Frequenzen 1 kHz $\leq \nu \leq 1$ MHz, der maximalen Testfrequenz des LCR-Meters, liegen bei maximal 12,1 pF, also deutlich unterhalb von 30 pF (s. Abb. 3.6.a).

²Der APC ist für eine maximale Eingangskapazität von ~ 30 pF ausgelegt.

Auffällig in der Abbildung sind außerdem einige ungewöhnlich große Interstreifenkapazitäten, die auf defekte Streifen hindeuten. Zum sicheren Nachweis von Streifendefekten sind jedoch Frequenzen oberhalb von 1 kHz ungeeignet. Die Streifen mit einer Länge von ca. 6 cm stellen eine sehr ausgedehnte Kapazität dar. Da die Impedanz von Kapazitäten mit wachsender Frequenz immer weiter abnimmt ($Z = \frac{1}{j2\pi\nu C}$), wird die Kopplung zur Detektorrückseite am Streifenanfang immer stärker, d.h. das Testsignal "sieht" immer weniger vom Streifen. Defekte verlieren somit zunehmend an Signifikanz. Bei zu kleinen Frequenzen dagegen ist der statistische Fehler des LCR-Meters so groß, daß ein sicheres Auffinden von Defekten zunehmend schwieriger wird (vgl. A.1.2). Eine Meßfrequenz von $\nu = 100$ Hz hat sich zur Suche nach Streifenfehlern als am vorteilhaftesten herausgestellt (s. Abb. 3.6.b).

So wurden z. B. für den Detektor SSSD-6 vom Hersteller neun defekte Streifen angegeben. Die o. a. Messungen der Interstreifenkapazitäten weisen ebenfalls auf neun defekte Streifen hin. Bei sieben defekten Streifen können die vom Hersteller genannten Streifennummern bestätigt werden, bei zwei Streifen wurde vom Hersteller eine falsche Nummer angegeben (s. Tabelle 3.1).

	Streifennummer								
Hamamatsu	24	58	76	93	134	139	288	335	352
Kapazitätsmessung	•	٠	•	90/91	•	•	٠	328/329	•

Tabelle 3.1: Vergleich defekter Streifen von SSSD-6, 1. Zeile: Herstellerangaben [26], 2. Zeile: Eigene Meßdaten (● bedeutet: Streifennummer bestätigt)

Neben den Interstreifenkapazitäten kann auch die Admittanz (komplexer Leitwert) zwischen Streifen, die vom LCR-Meter gleichzeitig gemessen wird, als Kriterium für Defekte verwendet werden. Wiederum erweist sich eine Frequenz $\nu = 100$ Hz als am besten geeignet (s. Abb. 3.7). Mit diesen Messungen können später auch in der Serie defekte Streifen sicher ermittelt werden.

Die Interstreifenkapazität bei 100 Hz zeigt eine deutliche Periodizität (s. Abb. 3.8). Diese hängt mit dem Detektordesign zusammen. Die gleichmäßig über den Detektor verteilten Streifen werden mit drei Gruppen von jeweils 129 Anschlußflächen verbunden (s. Abb. 2.10). Dadurch ergibt sich, daß insbesondere die Streifen 0, 128, 256 und 384 besonders lange Anschlußleitungen haben. Da diese Leitungen z.T. sehr eng nebeneinander liegen (s. Abb. 2.12), verursachen sie, unabhängig von der Meßfrequenz – Aluminium ist ein sehr guter Leiter –, eine zusätzliche Kapazität von 1,8 \pm 0,4 pF (s. Tabelle 3.2), was aber keine kritische Zunahme der Interstreifenkapazitäten bei höheren Frequenzen bewirkt. Das Detektordesign ist hinsichtlich der Interstreifenkapazitäten insgesamt ausreichend und bedarf keiner Optimierung.

				Strei	fennumme	er		
Frequenz		0	64	128	192	256	320	382
100 Hz	max.	$46.8 \mathrm{\ pF}$		$47,0 \ \mathrm{pF}$		47,2 pF		46,9
	min.		$45,\!6~\mathrm{pF}$		$44.8 \ \mathrm{pF}$		$45,5 \ \mathrm{pF}$	
100 kHz	max.	12,0 pF		12,1 pF		11,4 pF		$11,\!5$
	min.		$9,9~\mathrm{pF}$		$9,7~\mathrm{pF}$		$9,7 \ \mathrm{pF}$	

Tabelle 3.2: Extrema der Interstreifenkapazität von SSSD-6

Abbildung 3.8: Ausschnittsvergrößerung von Abb. 3.6.b

(b) Testfrequenzen von 10 kHz, 100 kHz und 1 MHz

Abbildung 3.9: Diodenkapazitäten

Als Verarmungsspannung ergibt sich eine geschätzte Spannung $U_{\text{depl}} \simeq 45$ V (s. Abb. 3.9.a). Die dabei gemessene Kapazität der Diode C = 14,2 pF stimmt sehr gut mit der aus der Diodengröße und -dicke berechneten Kapazität von C = 14,8 pF ± 1,9 pF überein. Der Verlauf der Diodenkapazität ist bei allen getesteten Frequenzen völlig linear (s. Abb. 3.9.b) und weist keinerlei Strukturen auf, welche auf tiefe Störstellen hindeuten könnten [9]. Paßt man die gemessenen Kapazitäten der Diode einer Kurve der Form

$$C(U) = C_0 \cdot U^{-1/\beta}$$

 an^3 , so ergibt sich

$$\beta = 2,10 \pm 0,06$$
 und $C_0 = 84,8 \pm 4,0 \,\mathrm{pF}$

Dieser Wert bestätigt, daß der pn-Übergang in der Diode abrupt erfolgt ($\beta = 2$) und das Detektormaterial gleichmäßig n-dotiert ist (vgl. 2.2). Aus der Kurve errechnet sich die Verarmungsspannung

$$U_{\rm depl} = 43.5 \pm 6.6 \, {\rm V}$$

³Die Anpassung wird für die Kapazitäten C(U) mit 5V < U < 40V vorgenommen; damit werden alle Werte im Bereich der p⁺-dotierten Implantwanne (bei kleinen Spannungen U) und der n⁺-dotierten Rückseite (bei Spannungen knapp unterhalb der Verarmungsspannung) verworfen.

(b) Testfrequenzen von 10 kHz, 100 kHz und 1MHz

Abbildung 3.10: Kapazitätsverlauf des Detektors SSSD-6

Abbildung 3.11: Kapazitätsverlauf eines Implantstreifens vom Detektor SSSD-6

3.6 Simulation des Detektors

Die gemessenen Kapazitätskurven aller untersuchten Detektoren zeigen ein ungewöhnliches Verhalten. Da die Auswirkung der nicht-parallelen Streifen auf die Volumenkapazität zunächst unbekannt war, ist es erforderlich, die Ursachen für solche Kapazitätskurven herauszufinden. Es wird hierzu zunächst ein Modell der physikalischen Vorgänge im Detektor entwickelt, aus dem dann ein elektrisches Ersatzschaltbild entsteht, das in das Programm 'PSpice'⁴ eingegeben wird. Durch Variation des Schaltbildes kann mit dem Programm untersucht werden, ob Entwicklungs- oder Produktionsfehler die Kapazitätskurven verursachen oder ob die Meßmethode zu diesem Kurvenbild führt.

3.6.1 Ansätze (allgemeines Schaltbild)

Zunächst wird ein allgemeines Schaltbild für einen einzelnen Streifen auf dem Detektor entwickelt (s. Abb. 3.12). Hierzu wird der p⁺-Implantstreifen in kurze Abschnitte zerlegt, die durch kleine Ohmsche Widerstände ersetzt werden. In Reihe zu den Implantwi-

⁴Hinweise zum 'PSpice', s. Anhang B.2.

Abbildung 3.13: Vereinfachtes Ersatzschaltbild des LCR-Meters

⁵Diese beinhaltet gleichzeitig, daß die Tiefe der Raumladungszone $d \propto \sqrt{U}$ wächst.

Das LCR-Meter wird in der Simulation auf seine wesentlichen Elemente vereinfacht. Es besteht nur noch aus einem festen Ohmschen (Test-)Widerstand von 100 Ω und einer Wechselspannungsquelle, deren Frequenz vor der Simulation festgelegt werden kann (s. Abb. 3.13). Aus der Darstellung des zeitlichen Verlaufs der Spannung an Netzwerk und Testwiderstand, die mit einem Oszillograph vergleichbar ist, lassen sich die Amplituden und Phasen ablesen. Die Gesamtimpedenz Z_{ges} bzw. -admittanz Y_{ges} des Netzwerkes wird aus dem Amplitudenverhältnis und der Phasenverschiebung zwischen Netzwerk und Testwiderstand errechnet und ergibt den Widerstand und die Kapazität im Ersatzschaltbild des LCR-Meters⁶. In Anlehnung an das Meßgerät und zwecks einfacheren Ablesens liegt die Erdung zwischen dem Testwiderstand und dem Detektornetzwerk.

3.6.2 Strukturparameter

Entscheidend für den Verlauf von Amplitude und Phase am Testwiderstand ist die Wahl der Funktion, die den Volumenwiderstand R mit dem Verarmungsparameter X verknüpft. Deshalb werden im folgenden Abschnitt zwei physikalisch mögliche Volumenwiderstände auf ihre Anwendbarkeit hin untersucht.

Linearer Volumenwiderstand

Ein linearer Zusammenhang zwischen Verarmungsparameter X und Volumenwiderstand beschreibt eine Raumladungszone, die sich als Front im Detektor ausbreitet, d.h.

$$R = R_0 \cdot (aX + b)$$

Diese Betrachtungsweise der Vorgänge im Detektor ist stark vereinfacht.

Logarithmischer Volumenwiderstand

Die Verarmungszone wird sich am Anfang (bei geringen Verarmungsspannungen) nicht als einheitliche Front, sondern zylinderförmig um die Implantstreifen ausdehnen. Das bedeutet für den Volumenwiderstand

$$R = \int_{r_0}^r \frac{r'}{A} dr' \propto \int_{r_0}^r \frac{r'}{r'^2} dr' = \int_{r_0}^r \frac{1}{r'} dr' = \ln \frac{r}{r_0}$$

- r : Radius der Verarmungszone
- r_0 : Radius der Zone bei 0 V
- A : Oberfläche der Verarmungszone

Der Radius der Verarmungszone ohne äußere Sperrspannung (U = 0V) kann vernachlässigt werden gegenüber dem Radius bei angelegter Sperrspannung. Als Widerstandsfunktion ergibt sich der logarithmische Zusammenhang:

$$\Rightarrow R = C_0 \cdot \ln X$$

⁶Hinweise zum Ersatzschaltbild des LCR-Meters, siehe Anhang A.1.1

Kombination

Beide bisher diskutierten Widerstandsfunktionen beschreiben nur teilweise die Verhältnisse im Inneren des Detektors. Die zunächst zylinderförmig um den Streifen wachsende Raumladungszone stößt, wenn ihr Radius die Größe des halben Streifenabstandes erreicht hat, auf die Raumladungszonen der beiden benachbarten Streifen und vereinigt sich mit ihnen. Insgesamt entsteht dann eine einheitliche Front, die anschließend weiterwächst. Beide Modelle müssen daher kombiniert werden. Das bedeutet, daß ab einem bestimmten Wert X_0 , über den vom Modell her keine nähere Aussagen gemacht werden können, eine lineare Funktion mit den Parametern $a = \frac{1}{X_0}$ und $b = \ln X_0$ angesetzt werden muß.

$$R = R_0 \cdot \begin{cases} \ln X & X \le X_0 \\ \left(\frac{1}{X_0}X + \ln X_0\right) & X > X_0 \end{cases}$$

Der Ubergang von einem logarithmischen zu einem linearen Zusammenhang erfolgt aber nicht schlagartig, denn die Streifen des Detektors sind nicht parallel. Zunächst prägt sich eine Front an der inneren, schmaleren Seite des Detektors aus und wächst dann langsam mit steigender Verarmungsspannung über die Streifenlänge an. In dieser Übergangsphase muß zwischen beiden Modellen interpoliert werden.

3.6.3 Anpassung der Parameter

Die Simulation erfolgt mit einem Ersatzschaltbild, bei dem der p⁺-Implantstreifen in 70 kurze Abschnitte zerlegt wird und für jeden Abschnitt ein Widerstandswert von 1 Ω angenommen wird. Die Implantwiderstände repräsentieren somit jeweils eine Länge von ca. 0,9 mm. Der gesamte Streifen hat dann einen Widerstand von 70 Ω . Die Variation der Implantwiderstände zeigt, daß diese Widerstände nur sehr geringen Einfluß auf die Simulation haben. Solange sie nicht um mehrere Größenordnungen variiert werden – wodurch der Gesamtwiderstand des Implantstreifens unrealistisch groß oder klein wird – sind die Effekte des Volumenwiderstandes wesentlich stärker. Es lassen sich aus der Simulation somit keine Rückschlüsse auf das p⁺-Implant ziehen. Als Ohmscher Widerstand für den Poly-Si-Widerstand wird ein Widerstand von 2 M Ω verwendet (vgl. 3.3).

Es zeigt sich, daß in einer Simulation mit linearem Volumenwiderstand kein Kurvenverlauf der (scheinbaren) Detektorkapazität gefunden werden kann, der qualitativ mit den gemessenen Werten übereinstimmt. Es kann entweder nur ein Maximum *und* gleichzeitig ein Minimum oder überhaupt kein Extremum in der Simulation gefunden werden. Die Größenordnung der Extrema läßt sich nicht an die gemessenen Werte anpassen. Sie sind nicht so ausgeprägt wie in den Messungen. Es findet sich allerdings schon bei diesem einfachen Modell eine Abhängigkeit der Kapazitäten von der Testfrequenz bei konstantem Verarmungsparameter X.

Bei einer logarithmischen Funktion für den Volumenwiderstand läßt sich ebenfalls eine Frequenzabhängigkeit bei großen Verarmungsparametern finden. Beträgt $C_0 = 1,2 \text{ pF}$ und $R_0 = 500 \text{ k}\Omega$, dann bewegt sich die simulierte Frequenzabhängigkeit (s. Abb. 3.14.a) qualitativ und quantitativ in der gleichen Größenordnung wie die gemessene (s. Abb. 3.10.b). Außerdem tritt ein Extremum in der Kapazität bei Frequenzen von 10 – 100 kHz auf, das, wie in den Messungen, bei 1 MHz verschwindet.

Wird in diesem logarithmischen Modell $C_0 = 1,0 \text{ pF}$ und $R_0 = 600 k\Omega$ gesetzt, dann liegt das Extremum C_{max} der simulierten Kapazität bei 100 kHz (s. Abb. 3.14.b), also

(b) Logarithmischer Volumenwiderstand bei 100 kHz ($C_0 = 1,0$ pF und $R_0 = 600k\Omega$) mit linearer Ergänzung

Abbildung 3.14: Simulierte Kapazitätskurven eines einzelnen Streifens (Simulierte Kapazitätskurven für einen gesamten Streifendetektor können erstellt werden durch Multiplikation mit dem Faktor $\frac{1}{385^2}$.)

beim gleichen Wert wie in den Messungen (s. Abb. 3.10.a). Die Steigung der Kapazitätskurve genügt aber nicht für $X > X_{max}$, um die Meßwerte zu erreichen. Vergleicht man die möglichen Werte, die der Quotient $\frac{X(C_{max})}{X(C=C_{depletion})}$ annehmen kann, mit dem gemessenen Quotient $\frac{U_{max}}{U_{depletion}} \simeq \frac{25V}{70V}$, so zeigt die starke Diskrepanz, daß eine Skalierung des Verarmungsparameters X auf die Sperrspannung U nicht möglich ist.

Dieses Modell läßt sich mit den unter 3.6.2 besprochenen Annahmen ausbauen. Da das Extremum bereits mit dem gemessenen Wert übereinstimmt, können $C_0 = 1, 0 pF$ und $R_0 = 600 k\Omega$ vom vorherigen Modell übernommen werden. Der Wert X_0 , bei dem sich eine einheitliche Front ausbilden soll, wird willkürlich mit $X_0 = X_{max} = 66$ gesetzt. Eine endgültige Wahl des Verarmungsparameters X_0 hat auf den Wert der Kapazität kaum Einfluß, weil die simulierte Kapazitätskurve in diesem Bereich nur eine geringe Steigung besitzt. Als Funktion des Widerstandes folgt somit:

$$R = 600 \, k\Omega \, \cdot \left\{ \begin{array}{ll} \ln X & X \le X_0 \\ \left(\frac{1}{66}X + 4, 0\right) & X > X_0 \end{array} \right.$$

Das Modell wird durch diese neuen Annahmen erheblich verbessert. Die Steigung der Kurve nach dem Extremum ist wesentlich stärker (s. Abb. 3.14.b).

Bisher unberücksichtigt in der Simulation blieb, daß der Detektor nur eine endliche Dicke besitzt. Die Raumladungszone kann sich nicht beliebig weit ausdehnen. Ab einer bestimmten Kapazität muß also die Simulation abgebrochen und die Kapazität als konstant gesetzt werden. Das wäre beim Verarmungsparameter $X \approx 130$ der Fall, bei dem der simulierte Wert den gemessenen Endwert der Kapazität pro Streifen $C = 3,2 \cdot 10^{13} \Leftrightarrow \frac{1}{C^2} = 9,6 \cdot 10^{24}$ erreicht. Für den o. a. Quotienten ergibt sich folgender Wert $\frac{X(C_{max})}{X(C=C_{depletion})} = \frac{65}{130} \simeq 0,50$ gegenüber dem gemessenen Wert $\frac{U_{max}}{U_{depletion}} = \frac{25V}{70V} \simeq 0,36$. Die Differenz läßt sich dadurch erklären, daß im Detektor der Übergang nicht so abrupt erfolgt wie im Modell angenommen, da die Streifen nicht parallel verlaufen. Es bildet sich zunächst eine Front an der schmaleren Detektorseite, die erst langsam mit wachsender Verarmungsspannung die andere Detektorseite erreicht. In dieser Übergangsphase, die

häufig als "Tiefpaß" oder "Filter" bezeichnet, denn mit steigender Frequenz wird das Signal zunehmend gesperrt.

$$C = \frac{\varepsilon_0 \varepsilon_r p}{d} \sqrt{\frac{U_{deplo}}{U + \left[\frac{p}{2\pi d} \frac{\varepsilon_r}{\varepsilon_r + 1} A_0\right]^2}}$$

d : "Wafer" dicke

 A_0 : Geometrieparameter

 U_{deplo} : Verarmungsspannung

ohne Streifen

p : Streifenabstand

auf [28].

Der Parameter A_0 ist abhängig vom Quotienten $\frac{w}{p}$, Streifenbreite zu Streifenabstand, und läßt sich aus der Geometrie des Detektors berechnen [28].

$$A_0(\frac{\omega}{p}) = \frac{\sqrt{2}}{\pi} \int_0^{\pi (1-\frac{\omega}{p})} \frac{x \sin \frac{1}{2}x}{\sqrt{\cos x + \cos \pi \frac{\omega}{p}}} dx \qquad \qquad \omega \quad : \text{Streifenbreite}$$

Bei φ -Streifendetektoren ist $\frac{\omega}{p}$ nicht konstant, sondern beträgt 0,08 – 0,16. Es folgt für den Geometrieparameter $A_0 = 4, 1 - 2, 8$ [28]. Dieser Zusammenhang kann in einem verbesserten Modell berücksichtigt werden. Möglicherweise läßt sich dann in der Simulation der Kurvenverlauf für Verarmungsparameter X < 40 dem ermittelten Kurvenverlauf besser anpassen. Als schwierig wird sich auch weiterhin der Übergangbereich $40 \leq X \leq 65$ (ca. 20 $V \leq U \leq 30 V$) erweisen, der getrennt untersucht werden muß.

Zusammenfassung der Ergebnisse

In der Diplomarbeit wurden die elektrischen Eigenschaften von Prototypen der H 1- φ -Streifendetektoren untersucht, die für den Bau des Backward Silicon Tracker speziell entwickelt wurden. Es wurden die Sperrströme und kapazitiven Eigenschaften von den Detektoren der Prototypserie gemessen. Dabei zeigte sich, daß die gemessenen Sperrströme mit ca. 2 nA pro Streifen zu hoch sind, sich aber noch in einem tolerablen Rahmen für die Prototypserie befinden. In der endgültigen Produktion der Detektoren sollte daher, wenn möglich, höherresistives Ausgangsmaterial als bisher verwendet werden, um die Ströme und damit auch das Rauschen der Detektoren zu verringern.

Zur Bestimmung von defekten Streifen erwiesen sich Messungen der Interstreifenkapazitäten als geeignet, da sich defekte Streifen durch eine besonders große Interstreifenkapazität auszeichnen und somit signifikant von heilen Streifen unterscheiden.

Durch Messung der Interstreifenkapazität wurde ebenfalls die Streukapazität der Anschlußleitungen auf dem Detektor bestimmt. Sie beträgt maximal 1,8 \pm 0,4 pF und bewirkt somit keine kritische Zunahme der Interstreifenkapazität. Das Design der Anschlußleitungen bedarf daher keiner Änderung.

Ferner wurden die Verarmungsspannungen ermittelt, sowohl der Detektoren als auch einer Teststruktur (Diode), die aus demselben Material besteht. Die Verarmungsspannung der Diode beträgt 43,5 \pm 6,6 V, woraus sich ein Substratwiderstand von ~ 6,1 k Ω cm berechnen läßt. Die Detektoren haben eine Verarmungsspannung von ca. 60 V, die der Spezifikation entspricht. Die Differenz von beiden läßt sich qualitativ aus der Streifensegmentierung der Detektoren erklären.

Die Kapazitätskennlinien der Detektoren zeigten ein komplexes Verhalten, das von der Diodenkennlinie abweicht, aber keine Auswirkung auf den Betrieb der Detektoren hat. Ein RC-Netzwerk, das das elektrische Ersatzschaltbild des Detektors darstellt, konnte das komplexe Verhalten qualitativ und quantitativ beschreiben. Design- oder Produktionsfehler konnten damit als Ursache ausgeschlossen werden.

Anhang A

Meßgeräte

A.1 Das HP4248 LCR-Meter

A.1.1 Funktionsweise

Zur Messung der Kapazitäten wird ein HP4248 LCR-Meter verwendet. Prinzipiell funktioniert das LCR-Meter wie eine Meßbrücke, allerdings mit komplexen Widerständen (s. Abb. A.1). Der zu messende Widerstand X wird in Reihe mit einem Testwiderstand – in diesem Fall ein rein Ohmscher Widerstand von 100 Ω – an eine Wechselspannungsquelle angeschlossen. Amplitude und Phase werden am Testwiderstand mit einer zweiten Reihenschaltung verglichen, bei der anstelle des unbekannten Netzwerks eine bekannte Schaltung eingesetzt ist. Als Meßergebnis erhält man die Werte von Kapazität und Widerstand dieser Vergleichsschaltung. Im HP4248 LCR-Meter sind Frequenzen von 20 Hz – 1 MHz als Testfrequenzen möglich.

Im LCR-Meter wird jedoch kein elektrischer Abgleich mit einer Vergleichsschaltung durchgeführt, sondern es werden die Größen eines Ersatznetzwerkes berechnet (s. Abb. A.2). Dazu werden Spannung und Phasenverschiebung am Testwiderstand gemessen.

$$|Z| = \frac{U_{netz}}{I_{analy}} = \frac{U_{netz} \cdot 100 \,\Omega}{U_{analy}}$$
$$|X| = Z \cdot \sin \Delta \varphi$$
$$C = \frac{1}{2\pi f \cdot |X|}$$

Z : Impedanz

 U_{netz} : Spannung über Netzwerk

 U_{analy} : Spannung über Testwiderstand

- I_{analy} : Strom durch Testwiderstand
 - $\Delta \varphi$: Phasenverschiebung am Testwiderstand
 - X : Reaktanz (Blindwiderstand)
 - C : scheinbare Kapazität
 - f : Testfrequenz

(b) wahlweise meßbar

Abbildung A.2: Ersatznetzwerke des LCR-Meters für den unbekannten Widerstand X in Abb. A.1

A.1.2 Meßgenauigkeit

Die Genauigkeit des LCR-Meters hängt von der Meßfrequenz, der Testamplitude und den gemessenen Größen ab. Bei Temperaturen von 18 – 28°C sind folgende repräsentative Werte für die relative Genauigkeit von Kapazität und Leitwert anzusetzen:

Kapazität	Frequenz	Testamplitude	relative
[pF]	[Hz]	[mV]	Genauigkeit
50	20	200	69~%
50	100	200	4,6~%
50	500	200	1,1~%
15	1000	200	1,7~%
15	$10\ 000$	200	$0,\!28~\%$
15	$100\ 000$	200	$0,\!24~\%$
15	1000000	200	$0,\!24~\%$

Relative Genauigkeit des LCR-Meters, berechnet aus den Herstellerangaben und repräsentativen Meßwerten

A.2 Das Keithley 487 Meßgerät

Das Keithley 487 Meßgerät wurde sowohl als programmsteuerbare Spannungsquelle als auch als programmlesbares (Pico-)Ampèremeter verwendet. Die vom Hersteller genannten Angaben sind folgende:

A.2.1 Spannungsquelle

Bereich	Schrittweite	Genauigkeit	Rauschen
Maximalwert	minimal	$(18 - 28^{\circ}C)$	$0.110~\mathrm{Hz}$
$\pm 505,00$ V	10 mV	$0,\!15\%$ \pm 40 mV	< 1,5 mV
$\pm 50,500$ V	1 mV	0.1% \pm 4 mV	$< 150 \mu { m V}$

(aus: Instruction Manual; Keithley 487; July 1991)

A.2.2 Picoampèremeter

Bereich	Auflösung	Genauigkeit
2 nA	10 fA	0.3% \pm 500 fA
20 nA	100 fA	0.2% \pm 3 pA
200 nA	1 pA	$0.15\%~\pm~20~\rm{pA}$
$2 \ \mu A$	10 pA	$0,\!15\%$ \pm 200 pA
$20 \ \mu A$	100 pA	$0,1\%$ $\pm~2$ nA
$200 \ \mu A$	1 nA	$0,1\%$ \pm 20 nA
2 mA	10 nA	$0,1\%$ \pm 200 nA

(aus: Instruction Manual; Keithley 487; July 1991)

A.3 Das Philips PM 2525 Meßgerät

Das digitale Multimeter PM 2525 von Philips wurde nur in seiner Funktion als Gleichstromampèremeter bei der Messung der Poly-Si-Widerstände eingesetzt. Seine für Gleichstrommessungen wichtigen Eigenschaften sind:

Anzahl der Meßbereiche	5
Skalenlänge	$5 \frac{1}{2}$ Stellen
Max. Auflösung	100 pA
Fehler	0,1%

(aus: Philips und Fluke Katalog; 1990/91)

Anhang B

Das Programm "Spice"

B.1 Geschichte

Spice ist ein universelles Simulationsprogramm, mit dessen Hilfe es möglich ist, elektrische Schaltkreise in Computern zu analysieren. Es simuliert elektrische Netzwerke, die aus

- passiven Schaltelementen, z. B. Widerständen, Kapazitäten und Induktivitäten,
- unabhängigen und gesteuerten Quellen und
- Halbleiterbauelementen, Dioden und Transistoren u.a.,

bestehen [30].

Da die Bauelemente durch mathematische Modelle beschrieben werden, enthalten sie keine parasitären Elemente, wie z. B. Streukapazitäten in Widerständen. Die Simulation ersetzt in Spice die Messung von physikalischen Größen in realen Schaltkreisen. Damit werden auch solche Größen zugänglich, die sonst nur schwer oder gar nicht meßbar wären. Da integrierte Schaltkreise – wegen der unterschiedlichen parasitären Effekte – ein völlig anderes Verhalten zeigen als einzelne, separate Bauelemente, können sie nur durch Computerprogramme analysiert und überprüft werden, ohne das kostspielige Risiko einer möglichen Fehlproduktion eingehen zu müssen.

Aus diesem Grunde wurde an der University of California Berkeley die erste Version von Spice ('Spice 1') entwickelt und im Mai 1972 veröffentlicht. Eine verbesserte Version des Programmes ('Spice 2') folgte 1975. Durch die großzügige, kostenlose Verteilung des Programmes, die Benutzerfreundlichkeit – einfache Eingabesprache und sorgfältige Fehlerprüfung –, sowie die effizienten, mathematisch sorgfältig überprüften Lösungsverfahren bildet 'Spice 2' heute die Grundlage für alle weltweit verbreiteten Spice-Dialekte.

B.2 Die 'PSpice'-Familie

[']PSpice' wurde von der Firma Micro Sim Corporation kommerziell entwickelt und ab 1985 in einer auf IBM Personal Computern lauffähigen Version angeboten [31]. Es verwendet denselben Algorithmus wie 'Spice 2', erweitert ihn aber auf alle Größenordnungen von Meßgrößen und Schaltkreisen. Damit ist 'PSpice' unabhängig von der verwendeten Technologie und auf beliebige elektrische Schaltungen anwendbar. Mit der Weiterentwickung des PCs fand es weltweit Verbreitung. Die in dieser Arbeit vorgestellte Simulation entstand auf einer Sparc 10-40 Work-Station von Sun Microsystems Inc. (ausgerüstet mit einem TI TMS390Z50 Prozessor und 64 MByte Hauptspeicher) und der von Micro Sim Corporation entwickelten 'PSpice' Version 5.4 (©1993) für die Benutzeroberfläche 'OpenWindows' von Sun. Diese Version von 'PSpice' zeichnet sich vor allem durch ihre grafische Ein- und Ausgabeoberfläche ('Design Center') auf der Basis vom 'OpenWindows' aus, die auf die ursprüngliche, textorientierte Ein- und Ausgabe von Spice aufgesetzt wurde. Damit können elektrische Schaltungen direkt in Symbolform eingegeben werden and brauchen nicht mehr in eine spezielle "Schaltungssprache" von Spice übersetzt zu werden. Diese wird vom 'Design Center' generiert und an den eigentlichen Spice-Quellcode übergeben. Die von Spice berechneten Ausgabedaten können, sowohl in der ursprünglichen Textform als auch in grafischer Form, ähnlich wie ein Oszillograph, dargestellt werden (s. Abb. B.1).

Abbildung B.1: Grafische Ausgabe von 'PSpice' mit Fenster für Kurvenwerte

Literaturverzeichnis

[1] S. L. Glashow,

Particle-Symmetries of Weak Interactions, Nucl. Phys. **22** (1961) 579; Towards a Unified Theory: Threads in a Tapestry, Rev. Mod. Phys. **52** (1980) 539

A. Salam,
Renormalizability of Gauge Theories,
Phys. Rev. 127 (1962) 331;
Gauge Unification of Fundamental Forces,
Rev. Mod. Phys. 52 (1980) 525

S. Weinberg,
A Model of Leptons,
Phys. Rev. Lett. 19 (1967) 1264;
Conceptual Foundations of the Unified Theory of Weak and Elektromagnetic Interactions,
Rev. Mod. Phys. 52 (1980) 515

[2] M. W. Schulz,

Untersuchung von Methoden zur Kalibration der H1-Jetkammer, Dissertation, Universität Hamburg Interner Bericht DESY FH1T-93-01 (1993)

[3] A. Gellrich,

Nachweis von Mesonen mit Charm in der Elektron-Proton-Streuung mit dem H1-Detektor bei HERA, Dissertation, Universität Hamburg, Interner Bericht DESY FH1T-94-02 (1994)

- [4] H. J. Behrend et al., H1 Collaboration, Technical Proposal to Built Silicon Tracking Detectors for H1, DESY Bericht 92-226 (1992)
- [5] T. Ahmed et al., H1 Collaboration, *A Measurement of the Proton Structure Funktion*, Nucl. Phys. **B 439** (1995) 471–502
- [6] A. Gellrich, persönliche Mitteilung

- M. Aguilar-Benitez et al., Particle Data Group, Particles and Fields, Phys. Rev. D 50 (1994)
- [8] C. Weißmantel,
 Grundlagen der Festkörperphysik,
 Herausgeber: VEB Deutscher Verlag der Wissenschaften, Berlin-Ost (1989)
- [9] S. M. Sze,
 Physics of Semiconductor Devices,
 Herausgeber: John Wiley & Sons, New York (1981)
- [10] H. O. Wyckoff et al., International Commission on Radiation Units and Measurements, Stopping Powers for Electrons and Positrons, ICRU Report 37 (1984)
- [11] D. H. Perkins, *Introduction to High Energy Physics*, Herausgeber: Addison-Wesley Publishing Company Inc., Menlo Park, Ca (1987)
- W. Stolz, Messung ionisierender Strahlung, Herausgeber: VEB Akademie-Verlag, Berlin-Ost (1985)
- [13] D. Pitzl et al., *Type Inversion in Silicon Detectors*, Preprint Santa Cruz Institute for Particle Physics, University of California, SCIPP 91/05 (1991)
- [14] A. Seiden, Tracking Strategies for Magnetic Detectors at High Luminosity and High Energy, Nucl. Instr. and Meth. A 315 (1992) 6
- [15] G. Hall,
 Semiconductor Particle Tracking Detectors,
 zur Veröffentlichung in Reports on Progress in Physics (1993)
- [16] W. Dulinski et al., Diamond Detectors for Future Particle Physics Experiments, Interner Bericht CERN PPE/94-222 (1994)
- [17] D. R. Lide,
 Handbook of Chemistry and Physics,
 Herausgeber: CRC Press Inc., London (1994)
- [18] R. Sauer,
 Diamant als Elektronikmaterial,
 Phys. Bl. 51 (1995) Nr. 5, 399

- [19] S. R. Amendolia et al., Germanium Microstrip Detectors with 50 and 100 μm Pitch, Nucl. Instr. and Meths. 226 (1984) 117
- [20] K. Stolze,

Untersuchung von Siliziumdetektoren für den 'Backward Silicon Tracker' beim HERA Experiment H 1, Diplomarbeit, Technische Universität Chemnitz-Zwickau (1993)

- [21] H. Henschel et al.,
 A Silicon Backward Tracking Detektor and Trigger for the H1-Experiment at the ep-Collider HERA,
 IEEE Trans. Nucl. Sci. 40 (1993) 692
- [22] N. Wulff, Design Studies for the BST φ -Strip Detector, Interner Bericht DESY FH1T-92-227 (1992)
- [23] N. Wulff, Energy Measurement with the BST, Interner Bericht DESY FH1T-91-191 (1991)
- [24] S. Prell et al., The Readout System of the New H1 Silicon Detectors, Vortrag auf Vienna Wire Chamber Conference, zur Veröffentlichung in Nucl. Instr. and Meth. A (1995)
- [25] J. Bürger, Technical Specifications: BST φ-Microstrip Detector, interner Bericht DESY FH1T (1993)
- [26] Hamamatsu Photonics K.K, Final Tested Sheet of BST-PHI-SSSD 2766, Anlage zur Prototypserie (1994)
- [27] J. Krizmanic, The Depletion Properties of Silicon Microstrip Detectors with Variable Stip Pitch, Nucl. Instrum. Methods Phys. Res. A 342 (1994) 27
- [28] J. Rahn, *Depletion Characteristics of Silicon Microstrip Detectors*, Preprint Santa Cruz Institute for Particle Physics, University of California, SCIPP 93/12 (1993)
- [29] E. Barberis, Analysis of Capacitance Measurements on Silicon Microstrip Detectors, IEEE 0-7803-1487-5/94 (1994)
- [30] E. E. E. Hoefer, H. Nielinger, Spice - Analyseprogramm für elektronische Schaltungen, Herausgeber: Springer-Verlag, Berlin, Heidelberg (1985)

[31] P. W. Tuinenga,

Spice: A Guide to Circuit Simulation and Analysis Using PSpice, Herausgeber: Prentice-Hall Inc., Englewood Cliffs, New Jersey (1992)

Danksagung

Herrn Dr. J. Bürger möchte ich meinen Dank aussprechen für die hervorragende Betreuung während der Anfertigung meiner Diplomarbeit. Seine zahlreichen, hilfreichen Anmerkungen und Vorschläge haben entscheidend zum Gelingen der Arbeit beigetragen.

Frau Prof. Dr. B. Naroska, die freundlicherweise die offizielle Verantwortung für die Diplomarbeit übernommen hatte, danke ich für die Begutachtung dieser Arbeit.

Herrn Prof. Dr. H. Spitzer danke ich für die Erstellung des Zweitgutachtens der Diplomarbeit.

Mein Dank gilt auch besonders Herrn W. Ebenritter für die Bereitstellung der Sparc Work-Station mit dem Programm 'PSpice 5.4', und für seine zahlreichen Erläuterungen zu den oft unverständlichen Handbüchern und zur Bedienung des Programms.

Den Diplomanden und Doktoranden, die ich am DESY kennengelernt habe, danke ich für die gute Zusammenarbeit. Einen besonderer Dank gebührt den Dipl. Phys. S.Prell und Dr. A. Gellrich für die vielen guten Ratschläge.

Allen Mitarbeitern von DESY-Hamburg, mit denen ich im letzten Jahr zusammengearbeitet habe - insbesondere der Gruppe FH1T -, danke ich für die freundliche und motivierende Arbeitsatmosphäre. Stellvertretend für viele möchte ich an dieser Stelle Herrn Dr. L. Criegee nennen, der mich bereits als Diplomand an Meßschichten des H1-Detektors teilnehmen ließ. Hiermit versichere ich, daß ich die vorliegende Arbeit selbständig verfaßt habe und keine anderen, als die angegebenen Hilfsmittel verwendet habe.

Hamburg, im Juli 1995