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Abstract

A new method is presented to determine the gluon density in the proton from jet production
in deep inelastic scattering. By using the technique of Mellin transforms not only for the solution
of the scale evolution equation of the parton densities but also for the evaluation of scattering
cross sections, the gluon density can be extracted in next-to-leading order (NLO) QCD.

This method is, however, more general, and can be used in situations where a repeated
fast numerical evaluation of scattering cross sections for varying parton distribution functions
is required.

The Mellin transform technique is applied to a data set consisting of a luminosity of 2.74 pb™*
collected with the H1 detector in 1994 to extract the gluon density in NLO from (2+1) jet rates
using the JADE algorithm. The momentum fraction domain of £ > 0.02 is covered for this first
direct extraction of the gluon density in NLO.
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Chapter 1

Introduction

Since the begin of recorded history, humankind has striven to describe quantitatively the different
ways in which matter appears and the forces that act between them by principles that can be
experimentally tested and thus to find a starting point to understand nature. In recent times,
especially in modern physics of the 19th and 20th century, a more precise and consistent picture
of matter has evolved that reaches from the atomic model up to elementary particle physics,
the limit of today’s knowledge within this area. Here, the theory of relativity on one side and
quantum theory on the other play an important role. In modern field theories, special relativity
and quantum theory are treated in a common formalism [1, 2, 3].

Today, the so-called “Standard Model” is widely accepted as a description of matter that
treats three of the four known forces in a unified way, although more questions must still be
answered. Because this model is covered in many textbooks [4, 5, 6, 7], only a cursory discussion
will be given here. The “fourth force,” gravity, which is described by general relativity, could not
be unified with the Standard Model up to now and thus will not be dealt with in the following.

Within quantum theory, which is a precondition for the understanding of processes at very
small distances, the concept of interaction replaces the one of force, since here the force between
particles is mediated by the exchange of “force quanta.” The theoretical machinery of the
standard model describes the particles that exist within that model and their interactions. It
consists of the fundamental building blocks of matter, as we know them today, leptons and
quarks, as well as gauge bosons (spin 1) that mediate interactions. Leptons and quarks are
particles of spin 1/2 (fermions) and are classified into left-handed doublets following a SU(2)-
symmetry group and right-handed singlets, respectively. They are summarized in table 1.1,
where the different types of quarks are also denoted as “flavors.”

The top-quark was recently discovered at Fermilab, Chicago, USA [8, 9] after a search that
lasted several decades and involved many different experiments.

The three “forces” within the Standard Model are the strong, the electromagnetic and the
weak interaction. The last two are unified to the electroweak interaction, which occurs as well
for leptons as for quarks. The corresponding gauge bosons are named ~ for the electromagnetic
and W and Z° for the weak interaction. In the case of v and Z°, there are interference terms
that do not play an important role except for very high momentum transfers due to the high
mass of the Z°. Their group representation is SU(2) x U(1). The exchange of a v or Z° is often
referred to as neutral current, and W¥ exchange as charged current.

In contrast, the strong interaction does only occur between quarks and gluons. The “charge”
of the strong interaction is a state with three degrees of freedom, which is described by “color”
in the jargon of the Standard Model, and that are called “green,” “blue” and “red,” moti-
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Table 1.1: Classification of leptons and quarks in the Standard Model.

vated by the theory of colors in optics. The exchange particles, the “gluons,” carry one color
and one anticolor, whereas the representation of the group SU(3)¢ describes the combinatorial
possibilities of the color states and thus allows for eight different “sorts” of gluons. Due to the
non-Abelian nature of the SU(3)¢, gluons also interact with each other.

In total, the symmetry group of the Standard Model can be described as the direct product
SU3)c x SU(2) x U(1) of three groups.

Of all the field theories, Quantum Electro Dynamics (QED) and Quantum Chromo
Dynamics (QCD) are probably best understood. Due to the fact that the QED coupling constant
of the electromagnetic interaction a has a very small value of about 1/137 and can therefore
be very well treated in a perturbative approximation by series expansion for relatively large
distances, this region was measured with high precision.

Within QCD, the coupling increases with increasing distance due to the non-Abelian gauge
group SU(3)¢. Thus at some point the binding energy reaches a value that enables new particle-
antiparticle-pairs, making it principally impossible to observe free quarks. Demanding states
neutral in color means immediately that matter can only appear as so-called “baryons” with
three quarks (to which also the proton (uud) and the neutron (udd) belong) or as “mesons”
with a quark and an antiquark. Higher combinations are also possible, as well as pure gluon
states, the so far unobserved “glueballs.” Also called “confinement,” this implies in contrast
that quarks are virtually free at small distances (“asymptotic freedom”).

In this region of asymptotic freedom, a perturbative series expansion is more difficult than
in QED. The QCD coupling constant «g has a larger value at energies that can be reached
with today’s accelerators, thus reducing the convergence of the series. The color charge of the
gluons induces self-interactions in correlation to the non-Abelian character of the SU(3)¢ and
contributes with additional terms. As soon as the asymptotically free region is left, the coupling
increases and makes a perturbative treatment no longer possible. Nevertheless, the progress in
the last two decades enabled a good understanding of the QCD processes at small distances.

In order to test the theoretical predictions of the Standard Model and also determine its
parameters more exactly, or to have the opportunity to look for “new physics,” scattering exper-
iments at particle accelerators and colliders are conducted. Here the scattering of electrons off
protons is an interesting option, since electrons are leptons and do not interact strongly, they
therefore are able to test the structure of the proton very cleanly.

At the “Deutsches Elektronen Synchrotron” DESY in Hamburg, Germany, the “Hadron-



Elektron-Ring-Anlage” HERA investigates this type of scattering.! Its circumference is 6.3 km
and it has two detectors, “H1” and “ZEUS” located at interaction points to detect the particles
emerging from collisions. Two additional experiments, “HERMES” and “HERA-B” cover spin
physics and b meson physics, which will not be discussed here. A picture of the ring can be
found in figure 1.1, and the detector H1 is displayed in figure 1.2.

This thesis is organized as follows: After a short picture of the motivation to measure the
gluon density in chapter 2, the theoretical foundations will be laid in chapter 3. The mathematical
formalism to overcome the CPU time problem induced by the need to fit the gluon density used
here is covered in chapter 4. Then HERA and H1 will be described in chapter 5, after which
the Monte-Carlo-Machinery necessary to analyze data is introduced in chapter 6. All this is
applied in chapter 7 for the event selection and the display of results in chapter 8. Finally, a
conclusion and outlook is given in chapter 9. Several technical appendices terminate the thesis.
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Figure 1.1: The HERA ring.

IFirst collisions were observed in 1991. Since then, the recorded luminosity has increased steadily up to
about 4 pb~! in 1994. In 1995, another 5 pb™! of data was taken.
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Figure 1.2: The H1 detector.



Chapter 2

Motivation

2.1 HERA and H1 Physics

The electron-proton collider HERA, which has been producing collisions since 1991, provides
the opportunity to cover a wide variety of physics. As was outlined in chapter 1, the electron
that probes the structure of the proton does not interact strongly. Therefore, it provides a clean
testing ground for QCD and structure functions.!

HERA is the first collider of this kind, and in contrast to fixed-target experiments, where
the hadron (here the proton) is at rest, the protons are accelerated to 820 GeV and hit the
electrons (or positrons, respectively), which have an energy of 27.5 GeV, thus amounting to a
center-of-mass energy of about 300 GeV. This is equivalent to a fixed-target experiment with
an electron energy of 50 TeV. Clearly, the kinematic range covered here is unique, and allows
the determination of the proton structure down to O(107**m).?

For charged current processes, the exchanged W¥ results in the production of a neutrino,
which escapes detection. This is an interesting type of physics, and mainly deals with elec-
troweak effects. However, we will concentrate on neutral current exchange. As the kinematic
region of interest does not produce a sizeable contribution from Z° we will refer to the ex-
changed boson as the photon ~.

Depending on the absolute virtuality of the exchanged boson, Q% three regions can be
distinguished. For quasi-real photons, Q? is almost zero and constitutes the region of photopro-
duction. Here, the photon can interact either directly with the proton’s constituents or show its
hadronic structure. Therefore, an abundance of physical questions can be investigated such as
the structure of the photon as well as scattering phenomena originating from proton structure.

If Q% gets larger (starting at a few GeV?), one enters the region of Deep Inelastic
Scattering (DIS) after a transition range. Due to the increased virtuality of the photon, only
the direct contribution accounts, so that a precise test of the constituents of the proton can be
made. For example, the proton structure function F, can be measured by detecting the scattered
electron. This inclusive measurement has been performed with increasing precision [10].

On the other hand, energy flows can be measured and jet physics can be pursued, i.e. taking
an exclusive approach. As will be shown later, this allows for the measurement of ags and the
gluon density and provides thus a very sensitive test of perturbative QCD and increases the
precision with which these fundamental quantities are known.

!The formal concept of the physical quantities mentioned here is developed in chapter 3.
2A more detailed discussion of HERA and H1 can be found in chapter 5.

5



6 CHAPTER 2. MOTIVATION

Recently, also rapidity gaps have been observed and led to interesting physics [11]. Further-
more, searches for physics beyond the Standard Model have been conducted, as its numerous
free parameters hint for a structure of nature beyond it [12, 13]. But so far, the Standard Model
has been shown to describe the known phenomena with stunning precision.

An overview over the various physics subjects that are investigated at HERA can be found

in [14, 15, 16].

2.2 The Gluon Density

It has been known for a long time that the quarks carry only about half of the proton’s mo-
mentum, and that gluons account for a large part of the rest [5, 6, 7]. Historically, the parton
densities were introduced to describe the probability of quark flavors and gluons to be found in
the proton for a certain kinematical region of the scattering. They can be linked to the structure
function F,.3

Therefore, an exact knowledge of the gluon density is very important for the description of
the proton structure in the light of perturbative QCD. As will be explained later, cross sections
consist of a convolution involving the hard subprocess, which can be calculated perturbatively,
and parton densities. The divergent part of the cross section calculation can be absorbed in
these parton densities and leads to scale dependences. By providing a parameterization, the
probability distribution of quarks and gluons can be obtained. As this cannot be calculated ab
initio, the only way to determine them is the measurement in an experiment.

To higher orders of perturbative QCD, the simple probabilistic picture no longer holds, and
a more formal concept has to be followed. It is important to note that explicit scale dependences
are reduced in higher orders, and that therefore a determination of the parton densities in Next

to Leading Order (NLO) is highly desirable.

Apart from the importance in its own right of knowing the gluon density in the proton
and thereby understanding proton structure better, applications for future collider design are
noteworthy.

One important channel in the search for the Higgs-Boson H in hadron collisions is the
gluon-gluon fusion process, where two gluons form a H in a heavy quark loop [7]. Clearly,
the gluon density enters quadratically in the calculation of the cross section, and a relatively
small uncertainty in the gluon density can transform into a huge difference in the cross section.
This makes an improved knowledge of the gluon density very interesting for the design of the

Large-Hadron-Collider (LHC) at CERN in Geneva, Switzerland.

So far, different ways to determine the gluon density have been pursued. The most important
technique is the use of sum rules in global parton density fits by combining data of numerous
experiments. While these fits provide the most complete analysis of world data, they rely on
assumptions and can thus constrain the gluon density only indirectly. These fits are currently

performed essentially by three different groups, named GRV, CTEQ and MRS [17, 18, 19], and
the parameterizations are available in the computer library PDFLIB [20].

Some of the most common parton density parameterizations of the proton are plotted in
figure 2.1 for a scale of Q% = 20 GeV?. The familiar behaviour of the valence and sea quarks
can be seen clearly. The ratios of the parameterizations with the set “MRSG” are shown in

38ee section 3.3.



2.2. THE GLUON DENSITY 7

figure 2.2 to illustrate the level of uncertainty.* Since all global fits use similar sets of data,
the results are highly correlated, of course, and the uncertainty is larger than suggested by the
plots.

The same parameterizations and relations for the gluon density are shown in figure 2.3.
As can be seen, the deviations between the parameterizations are much larger, reinforcing the
statement that the gluon is less well known than the quarks. The ratios in the lower plot also
show nicely the correlations, i.e. the same qualitative behaviour, stressing the underestimation
of uncertainty by the parameterization ratios.

Other measurement methods involve prompt photons produced in hadron collisions by the
“Compton-like” subprocess gqg — v¢q. Although this method is direct, it covers mainly the high
momentum fraction £ domain. A recent investigation [21] shows that there is still considerable
uncertainty about the size of the gluon density. Therefore, new and more precise measurements
of the gluon density are highly desirable.

In recent years, the gluon density was determined using the scaling violation behaviour of
F5 [10], see figure 2.4. This is another indirect measurement, covering rather low ¢ values. The
¢ region between 0.01 and 0.1 is still not constrained by a dedicated measurement [22].

A direct measurement of the gluon density g(¢, /,L?c) is very much needed. In ep scattering, one
can use the fusion of v and a gluon from the proton, observing the produced particles. This could
be a heavy meson, i.e. a heavy quark-antiquark pair. In photoproduction, the hadronic structure
of the exchanged photon makes the formation of this heavy meson still very model dependent,
and thus a measurement cannot extract the gluon density properly [23]. One alternative would
be the direct interaction in electroprodution, i.e. at larger virtualities of the exchanged photon.
The statistics gathered with this type of interaction so far has not been sufficient to justify an
extraction of the gluon density.

The alternative process that is interesting here is the Boson-Gluon-Fusion (BGF) in DIS,
where not mesons are formed, but jets can be observed in the detector. Analyzing these jets
can be used to determine the gluon density, provided one knows the competing QCD-Compton
process well enough to take it into account. A Leading Order (LO) determination has been
performed by H1 [24].

The idea pursued in this thesis is a NLO measurement of the gluon density using (241) jets.?
As will be shown below, in NLO one cannot correct back to the incoming gluon momentum
fraction experimentally anymore, and only a determination via a fit is possible.

The (2+41) jet cross section can be generically written as:®

do(ar1) ~ (d&c > (& py) + dorg(€, Mfc)) (2.1)

This observable can be used to determine the gluon density.” In the kinematic region under
investigation here, the quark densities are well constrained, and ag is taken as known.

*The ¢ quark ratio for GRV was not plotted, because it is not available directly, but has to be generated
dynamically.

®A jet can essentially be regarded as energy deposits in the detector stemming from hadronic interactions
that are grouped according to a jet algorithm and corrected back to parton level.

®Here, doc and dop denote the hard QCD-Compton and BGF subprocesses, respectively, while ¢; (&, /JJZC) and
g(&, /JJ%) stand for the quark densities and the gluon density. They depend on parton momentum fraction & and
the factorization scale /JJZC. See chapter 3.

"Strictly speaking, jet rates are used; but this concept will be introduced later, and the underlying idea of
the measurement is the same.
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Figure 2.4: The gluon density from scaling violation of Fj; taken from [10].

The employment of the JADE jet algorithm in this analysis restricts the £ region to between
0.01 and 0.1, which is therefore complementary to the other determinations mentioned. The
lower bound stems from the jet definition parameter y..;, since £ > y.,;. By the use of different
jet algorithms, one will also be able to access lower £. The restriction to higher ¢ values is
imposed by the lack of data in that region and will be reduced with higher luminosity. Both
constraints in ¢ are not induced by the method itself and can be overcome.

The principle can be turned around, and one can take the parton densities as known, and
determine arg. This has been done already [25], see figure 2.5. (For an overview of ag determi-
nations, see [26].) In the future, it will be possible to combine both analyses, thus enabling the
determination of ag and g(, p7) simultaneously.
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Chapter 3

Theoretical Overview

All known phenomena observed in elementary particle physics can be explained by the the-
oretical concepts of quantum field theory, which are used within the Standard Model. The
interactions are derived from local gauge invariances of the Lagrangian £ and the application
of a quantization procedure of the underlying theory. The request for local gauge invariance
results in the formulation of rules for the determination of interaction probabilities. They are
analogous to interaction strengths, as in quantum theories only statistical and no deterministic
statements can be made.

It can be shown that QED is described by the Lagrangian [5]:

_ _ 1
Lopp = (17" 0, — m)y + ey Autp — S Fu I (3.1)

Here, ¢ denotes a spinor, the v* are the Dirac-matrices, e is the charge, m the particle mass,
and the four vector potential A, describes the gauge field of the group U(1), where the field
strength tensor is I, = 0, A, — 0, A,.

The QCD Lagrangian is [5]:

. — a 1 a v
Locp = q(iv" 0, —m)q — g(@v"Taq)G}, — 1 GG (3.2)

In this equation, ¢ is the quark color field, T, are the generators of the SU(3)¢, and the field
strength tensor G describe the associated gauge field.

The weak interaction shall be neglected, as it does not play an important role in the processes
of deep inelastic scattering covered in this thesis.!

By conducting an experiment, one is, of course, not able to measure the field-theoretical
concepts directly, but one can only determine event rates within a certain phase space region.
These rates have to be predicted by theory and thus enable a quantitative verification. Histori-
cally, the concept of the cross section o evolved which is defined by the number of events N
produced by the luminosity L of an experiment:

N = Lo (3.3)

From the field-theoretical point of view, o contains two components. One is the phase space
factor which basically takes into account the number of possible final states of the reaction per
energy, but also comprises kinematical contributions. The other is the square of the modulus of

! As mentioned before, the contribution to the cross section by the intermediate Z° boson is highly suppressed
due to its large mass in the kinematical region under investigation.

13
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the scattering matrix element M which can be derived from the rules mentioned above. To honor
Richard P. Feynman, who invented them, they are called Feynman rules. A very interesting
aspect is not only the mathematical use, but the intuitive meaning of the Feynman graphs set up
according to these rules, which illustrate the reaction clearly. One has to be careful, however,
to always keep the theoretical meaning in mind in order not to fall for simplistic arguments.
In a symbolic notation, the relation between M and the differential cross section do can be
expressed with the Lorentz-invariant phase space factor dLips and a flow factor F' as [5]:

_ M

do dLips (3.4)

Thus o is the integral of do over all kinematic variables. To calculate the cross section, one
can conduct perturbative calculations in phase space regions, where the coupling constant is
small. The matrix element is considered as a series in the coupling constant; typically within
QED this is the fine structure constant «, and in QCD the strong coupling constant ag. The
bare cross sections are ultraviolet-divergent but can be renormalized in any order.

3.1 Kinematics at HERA

In order to test the proton structure, scattering reactions of electrons off protons are particularly
well suited, since the electron reacts only electroweakly, whereas the quarks of the proton can
couple also strongly.? This enables clean tests of QCD, because the behaviour on the electron is
well understood, and therefore theoretical uncertainties can be kept small. In order to describe
a reaction, kinematical variables are used, which are defined preferably as Lorentz-invariant, so
they can be used in all reference frames. Here, always unpolarized particles are assumed.

The four vector used for the kinematical description is of the form:

Pt =(E,p) (3.5)

The square of a four vector, the invariant mass square, is defined as:

Pp. =pt=m? = B — |p)? (3.6)

In the high energy approximation, which is valid in the kinematical region under considera-
tion, the particle masses can be neglected. Only the proton mass (mp = 938 MeV [27]), being
three orders of magnitude larger than the electron mass (m. = 0.511 MeV), is sometimes taken
into account. Thus the invariant squared center of mass energy s (with incoming proton four
momentum vector P, massless) is given by

s=(p.+ P)* ~4E.Ep. (3.7)

On the electron side, a photon is radiated and participates in the hard scattering subprocess,
as depicted in figure 3.1. Its four momentum ¢ = (p. — pes) is spacelike and thus the invariant ¢?
negative. Therefore one defines:

Q2 = _q2 = _(pe - pe’)2 ~ ZEeEe’(l + cos 06') (38)

?In the following, the term “electron” will be used generically for both electrons and positrons. Even though
a large part of the 1994 data sample was collected with positrons, the underlying jet physics is the same.
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Figure 3.1: Generic graph for DIS reactions.

Here, 6./ is the angle between the incoming proton- and scattered electron three momentum

vector (H1 convention).
Furthermore, the invariant scale variable Bjorken-x and the the variable y are important,

which are defined by products of four momenta fulfilling 0 < (z,y) < 1:

T Q" (3.9)

2P - q
P-q
= 3.10
e (3.10)
The invariant mass W of the hadronic system lies between mp and +/s:
2 _ 2 ol — 2
W=+ P)=0Q +mp (3.11)

From these quantities one can derive a relation that is convenient for further consideration:

Q* = 2zyp. - P = zy(s — mp) ~ xys (3.12)

Additional quantities will be introduced in the course of the thesis in order to describe the
hard subprocess and the kinematics associated with it.
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3.2 Kinematical Reconstruction

An overview of the kinematical situation at HERA energies is given in figure 3.2. Isolines of the
following quantities are plotted in the (z,(?) plane:®

E.  Energy of the scattered electron

6.  Polar angle of the scattered electron

Er  Transverse energy of the scattered electron

E;  Energy of the struck quark as computed in the Parton Model

6;  Polar angle of the struck quark as computed in the Parton Model
W? Square of the invariant mass of the hadronic final state

x x T
1 B ° © i aF =
10 = 10 ? _______________
2f PITsr >
10 = 10 &=
3f 3
10"k 10
4l 4
10} 10
-5 , -5
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1 10 10 10° 10° 1 10 10 10° 10°
Q’[GeV?] Q*[GeV’]
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1 At A LS
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Y Fot
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3r 3r
10"k 10
4l 4
10 10
5f 5
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Figure 3.2: Isolines of kinematical quantities in the (z, Q*) plane. The definition of the quantities
can be found above the figure. In the lower right plot, the dashed lines constitute lines of
constant y. Note that the nomenclature £, 0. and 0; is used in this plot only!

W

3The primes are left out in this figure for better readability.
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The reconstruction of the basic kinematical variables can be achieved in different ways
by using different measured quantities, since the system is overconstrained. Depending on
the variable under consideration, the optimal method can be different. A discussion of useful
reconstruction methods can be found in [14, 28, 29]. Only a short overview will be given now
for the methods used in this analysis.

A general procedure is to measure y and (Q? first and derive the other quantities from there.
Using the electron-only method, one finds:

Ee’ . 06/

ye = 1 — z sin? 5 (3.13)
O

Q? = 4E.F. cos® 5 (3.14)

This method gives a very good ()? reconstruction and a good reconstruction of z for higher y,
with a rapid degradation at low y because of equation 3.12.

Using the angles of the scattered electron and of the struck quark 6. (assumed to be given
in the QPM, i.e. using all hadronic clusters in the detector and determining from them the
angle 6;.;), the double angle method yields:

sin (1 — cos bj)

sin @c; 4 sin 0 — sin(0r + 0c¢)

Yda = (315)

O = 4R sin e (1 + cos b.r)
da © sinfe + sinfo — sin(f + 0;.)

(3.16)

This method is more suited to reconstruct . Mixtures of both and other methods can be
applied to optimize the quality of the reconstruction.

3.3 Cross sections

In deep inelastic scattering of electrons off protons a series expansion is performed within QED
and QCD. The expansion is performed in o and ag, assuming that the chosen dynamical region
in the quark phase space can be seen as one where the quark is “asymptotically free” and
thus can enable a perturbative description. The expansion in « is done only to O(«). As two
parameters have to be taken into account simultaneously, a closer look at the series is in order.

In figure 3.1, the principal topology of deep inelastic scattering was shown already. We are
primarily concerned with the exchange of a photon (or Z°) with a quark of the hadronic system.*

In the QPM, one can picture the proton to move with an infinite momentum (therefore the
frame is often denoted by “infinite momentum frame”), thus “freezing” the quarks and gluons
in their state when hit by the electron. The partons are essentially moving in parallel and
have (almost) no transverse momentum with respect to the beam axis. This can be motivated
by the Lorentz-contraction, yielding a “disk-like” proton and can be regarded as a very good
approximation for HERA energies. Then, the interactions that occur between the quark and
electron before the collision can be neglected and one can assume that only one quark participates
in the hard subprocess. The other constituents of the proton essentially function as “spectators”
and are not influenced much by the primary collision.> In the QCD improved QPM, higher
orders can be calculated.

1A somewhat closer look at radiative corrections will be given in section 6.4.
>The spectator quarks are denoted by “dg” in the Feynman graphs.
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After the hard interaction, the participating partons move with large transverse momenta
with respect to each other. Once they reach the distance of about 1 fm, the asymptotic freedom
is not valid anymore and the color forces between the proton remnant and the other hadronic
components become large. As within these particles, transverse momenta persist, they continue
to break up into new particles, until the prevailing energy does not suffice anymore. This
constitutes “fragmentation.” Following the color flow, the particles group to “white” units and
form hadrons. A “jet” emerges that can be recorded in the detector.

In figure 3.3, the process to order a% in QCD is pictured. To order as, the two generic
Feynman diagrams are displayed in figures 3.4 and 3.5, the so called “QCD-Compton-“ and
“Boson-Gluon-Fusion-"graph, respectively. The LO cross sections are given in [30], and a
discussion of this LO cross section can be found in [31]. Therefore, the different terms of the
cross section will be discussed only briefly here.

The complete cross section is formed by integrating over the differential cross section in the
phase space region under consideration. The differential cross section, in turn, is a product
of the flow factor I'; for the transversal polarization of the exchanged photon induced by the
electron, the hard subprocess & and the parton densities f;/,, i.e. ¢; and ¢:°

dogpar 2ma? 1+ (1 —y)?
dyd@?  Q* y

Aria
T+ QPM = ? Fy (3.18)

This uses the definition of the structure function £, and the quark charge squares e?f for

F2 = Ft 0t,QPM (317)

flavors f:

Fy=a) ehqp(é u}) (3.19)
f

For the QCD-Compton and Boson-Gluon-Fusion cross section, one can write after integrating
over the internal degrees of freedom for the hard subprocess [31]:

do@yy—je  doc N dop
déd@Q?dy — déd@*dy  dEdQ?dy

Summing over particles and antiparticles for the QCD-Compton- and over particles for the

(3.20)

Boson-Gluon-Fusion-process, one obtains:

do )
e = Tidée Yo g6 ) (3.21)
dedQ*dy Jels. T}

dO‘F
- =T1.,dF 62957 2 3.22

It is important to note that dop, doc ~ as(Q?). It is well known that the cross sec-
tions contain divergences [31]. Massless quarks result in divergences that are absorbed in the
process-independent parton densities together with additional divergences in the renormaliza-
tion procedure. In the final state, soft and collinear partons produce “mass singularities” and

SIn higher orders of as, also the longitudinal polarization of the photon contributes to a flow factor I';. For
the sake of simplicity, I'; and the corresponding o; has been neglected in the notation.
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“infrared singularities” that have to be cut out of the phase space and also taken into account
by the chosen jet algorithm. The most important algorithms will be described in section 3.4.

As we will be mainly interested in convolutions involving the parton momentum fraction &,
the generic notation

o= /df Lol & 1?) 046 17) + Fopol &)y (€, 1)) (3.23)

shall be adopted [32]. Besides the indicated dependence on ¢ and y, o, and o, also depend
on other variables such as the absolute electron four-momentum transfer squared * and the
momenta of the outgoing partons.”

In leading order (LO), the prescription for the extraction of f,/, from jet cross sections in
deep inelastic scattering reactions is very intuitive. Experimentally the outgoing partons from
the hard scattering reactions are identified with jets. The QCD-Compton-scattering and BGF
reactions lead to (2+1) jet final states, where the notation accounts for the two outgoing jets
from the hard scattering process and the jet in the proton fragmentation region. The calculated
contribution

s = [ A€ fuppléo ) oe() (3.24)

from Compton scattering can be subtracted from the measured cross section

oby = [ A€ [Funl€ ) 6e() + Fappl & m)w(€)] (3.25)

and thus f,/,(&, ¢*) can be determined in LO by a direct unfolding, since in this case £ can be
expressed in terms of measurable quantities as

¢ = (1 + @) : (3.26)

where § is the invariant mass squared of the system of the two current jets. An analysis based
on this principle can be found in [24].

In NLO this simple picture is destroyed. Aside from the virtual corrections to the Born
processes in figures 3.4 and 3.5, real corrections have to be added. An example of a virtual
vertex correction diagram is given in figure 3.6. Diagrams of the type shown in fig. 3.7 can also
lead to (2+1) jet configurations:

If the gluon attached to the outgoing quark is soft or collinear to the quark, the diagram
constitutes a correction to the BGF process. If, on the other hand, this gluon is hard and the
outgoing antiquark is soft or collinear to the incoming gluon, then this configuration can be said
to be a correction to the QCD-Compton scattering reaction. In the latter case, the collinear or
soft antiquark forms a jet with the proton remnant, and the cross section has to be integrated over
all momenta of the antiquark according to a specific jet definition scheme. Collinear singularities
that do not cancel against corresponding singularities from the virtual corrections have to be
absorbed into renormalized parton densities. Depending on the factorization scheme chosen,
finite subtracted pieces remain. The factorization theorems of perturbative QCD guarantee
that the cross section can be written in the form of equation (3.23). However, beyond the
leading order, the arbitrary momentum of collinear partons renders the variable £ unobservable,
because the mass-factorized parton-level cross sections are in general distributions, not regular

"Here and in the following we do not explicitly display the dependence on the renormalization scale p, and
identify p; with p.
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yo

Figure 3.4: Generic diagram for the QCD-Compton-process.

yo

Figure 3.5: Generic diagram for the Boson-Gluon-Fusion-process (BGF).
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N
I

Figure 3.6: Example of a virtual correction diagram.

s

-t

Figure 3.7: Example of a diagram corresponding to a NLO real correction.

functions, and the simple and straightforward method described above can therefore not be
applied. A physical consequence is that the distinction between the QCD-Compton- and BGF
processes becomes meaningless. Related to this is the fact that quark and gluon densities mix
in the Altarelli-Parisi scale evolution (see section 3.8).

A determination of the gluon density in NLO is very desirable. In LO the partonic cross
sections o, and o, (in short denoted by o;) do not depend on g, as already indicated in equa-
tion (3.25),% and the f;/, (as short-hand for f,/, and f,/,) are the solutions of the LO Altarelli-
Parisi evolution equation, where the leading logarithmic terms in the scale y1 are summed up. In
any finite order of perturbation theory, the scattering cross section o depends explicitly on the
factorization scale p, this scale dependence being due to uncalculated higher-order terms. The
scale dependence is particularly strong in the L.LO case, because there no compensation can take
place between f;/, and o;. To a great extent this problem is, for many processes, reduced in
NLO, where explicit terms ~ In p* in ¢; compensate the g-dependence of f;/, such that the vari-
ation is of higher order in the strong coupling constant «;. For reliable theoretical predictions,
a NLO analysis of scale-dependent quantities is therefore mandatory.

The only way to achieve a direct NLO determination of f,/, is to parameterize the function
fq/p at a given scale g, to evolve it to a value of i where the cross section is measured, say
p = @, and to fit the parameters of f,/, with respect to suitable infrared safe observables,
e.g. the (2+1) jet cross section in various bins of . A severe practical problem is that the

8To stress the focus on the parton that induces the interaction, o will be referred to as ¢, and o as oy.
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‘ Q° [GGVQ] H o, [pb] | oy [pb] ‘
10 ... 14 2.67 6.46
14 ... 18 6.00 15.26
18 ... 25 9.52 23.71
25 ... 40 16.40 39.01
40 ... 100 30.08 63.39

100 ... 300 15.29 17.45
300 ... 700 22.36 17.01
700 ... 4000 17.88 6.57

Table 3.1: Comparison of NLO gluon and quark induced (2+1) jet cross sections, calculated
with PROJET. The cuts used are described in chapter 7. The parton density parameterization
is MRSH.

cross section o has to be evaluated repeatedly for every choice of parameters for f,/,. Monte
Carlo methods allow the application of arbitrary cuts on final-state particle momenta, as is
necessary in order to take detector acceptance cuts properly into account, but these methods
are prohibitively slow. A fast numerical method for the repeated application of this procedure
is indispensable.

It should be noted that the sensitivity of the measurement depends on the influence of the
gluon induced part of the (2+1) jet cross section. Therefore a region in phase space is desirable
where the gluon induced part is larger than the quark induced contribution. This is typically
the case for low Q? and low x. Since £ > 0.01 in the analysis discussed here, one would like to
choose a low Q% region, as is motivated by the cross sections of table 3.1. Unfortunately, the
effects of higher orders are large there, so that a compromise is necessary. Furthermore, a region
which is compatible with the as measurement [25] implies rather large Q. Since the analysis
conducted here does not subtract the quark induced part directly, but implements this into a
fit, the sensitivity is somewhat, but not significantly, reduced.

3.4 Jet Algorithms

After a hard scattering has taken place, higher order effects and the hadronization procedure
produce an abundance of particles that proceed through the detector and are further showered
there. In order to calculate jets from observed quantities in the detector (or in theoretical models
on e.g. hadron level), one has to combine the four vectors under consideration according to a jet
algorithm. This algorithm is arbitrary to some degree, since it is given by defining a procedure.
For different types of particle collisions, different algorithms were motivated and developed. In
ete™ physics, the JADE algorithm was favoured, while hadronic collisions like in pp favour the
cone algorithm.

With the advent of HERA, it was argued that ep collisions lie somewhat “in between” both
types of physics. Depending on the point of view, either the leptonic or hadronic part of the
interaction was seen as being most important for the choice of algorithm. Therefore, the first
calculations to O(a%) were performed in the modified JADE jet definition scheme [42].

It has been argued that jet algorithms have to be factorizable. This discussion can be

followed in [33, 34].
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‘ scheme ‘ mi; recombination remarks
JADE | 2E,F;(1 — cosb;;) P = pi +pj m?j neglects individual masses
E (p: +p;)? pE = pi +pj Lorentz invariant
Ly = (£ + Ej)
EO0 (pi +pj)? P not conserved
— E — —
= 7 )
P (pi + pj)? pr = pi + 0, Ex =] Pk | E not conserved
' 2 L o same as P, but scale updated
PO (Pt ps) Pr = Pi 15 Bi =| i | after each combination

Table 3.2: Recombination schemes of the JADE algorithm; taken from [37].

3.4.1

The JADE Algorithm

Inspired by ete™, the modified JADE algorithm is a cluster algorithm, defined in the following

way [35]:

o Define a precluster of longitudinal momentum p, given by the missing longitudinal mo-
mentum of the event.

e Apply the JADE cluster algorithm [36] to the set of momenta {p,...

Py
is m?j = 2pip; > Yeur M*. Here M? is a mass scale and y.,; is the resolution parameter.

7pn7p7’}7 Where

, P are the momenta of the hadrons visible in the detector. The resolution criterion

In the case of a theoretical calculation, p, is directly given by the momentum fraction of the

proton not carried by the incident parton, and pq,..

., pn are the momenta of the partons in

the final state. In the following, we choose W2, the squared total hadronic energy, as the mass
scale M?, since the proton remnant is included in the jet definition.

Because, except for the JADE and E scheme, one operates with massless quantities, a re-
combination scheme has to be applied to render the clustered objects massless. The different
recombination schemes can be found in table 3.2.

Earlier investigations showed that NLO corrections are small, only if the cutoff parameter
Yeur 18 of the order of 0.01 [37]. Because € > y.u, as is obvious from equations 3.26 and 3.11 in
combination with the definition of y.,:, the choice of this jet algorithm restricts the kinematical
region where the parton densities can be probed.
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3.4.2 The k; Algorithm

The k; algorithm [38] is also a cluster algorithm, performed in the Breit frame. The Breit frame
is defined as the frame of reference in which the energy deposit of the electron vanishes. This
results in a back-to-back collision of the virtual boson and the scattered parton. The three
momentum of the parton is thus reversed in the QPM.

A difference to the JADE algorithm lies in a two step procedure to separate the hard subpro-
cess jets from the remnant jet first, and to resolve the jets in the hard subprocess according to a
chosen cutoff parameter in a second step. In addition, the proton direction enters the calculation

directly.
The first step is mediated by
E?
Yip = 2(1 — cos Gip)ﬁlz (3.27)
and n(E2 E)
min(E?, E;
Yij = 2(1 — COS GZJ)TJ (328)

Here, §;, denotes the angle between the object under consideration and the proton direction p.
This clustering is continued until min(y;,, y;;) exceeds unity.

In the second step, y;; is computed for all (¢, 7), and the jets are combined until min(y;;) is
larger than a cutoff parameter y..

This algorithm was developed for eTe™ scattering first and later modified for ep collisions.
It is also called the Durham algorithm.

3.4.3 The Cone Algorithm

The cone algorithm was developed for pp data and defines a cone in (1, ) space. The pseu-
dorapidity n is defined by

9
n = — log(tan 5), (3.29)

while ¢ is the azimuthal angle.

The cone algorithm is not a cluster algorithm like the JADE and the k; algorithm. Energy
deposits in the detector above a threshold are summed up around a cone of R = \/dn? + dp?.
Common values for R lie between 0.7 and 1. In addition, choices have to be made for the
energy threshold, and the minimum energy with which the sum is counted as a jet. An effort to
standardize cone jet algorithms led to the snowmass accord. Further information can be found

in [39].

3.5 Jet Rates

For the determination of the gluon density and ag, the (241) jet cross section is important.
However, the measurement of this observable requires the careful analysis of the normalization,
i.e. the understanding of detector efficiencies and acceptance, trigger conditions and similar
influences. By defining a ratio

0241
Ropy = —5F——— 3.30
o o141+ 021 ( )

this problem is almost completely eliminated, since the quantities mentioned above cancel.
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This ratio can be defined in several ways; here the ratio of (2+1) jets over the sum of (241)
and (1+1) jets is chosen.? It is important to note that in order to ensure the cancelation effect,
the denominator has to consist of an observable that passes selection criteria.

The expression &4511 denotes the (2+1) jet cross section which includes (24+1) events that
are later classified as (1+1) events due to jet acceptance cuts. An example is the case for a 6.,
cut, where one jet lies in the angular region being cut away. It is sufficient to calculate 941 to
O(as), i.e. in LO, while g91; and oy4; have to be calculated to NLO, i.e. O(a%) and O(as),
respectively, for Ryy1 to be NLO.

If one wants to determine the jet rate experimentally, one has to correct back from the
detector to the parton level. The modeling of the simulation chain from the parton to detector
level will be described in chapter 6. The straightforward method is to correct back with the
help of a correction factor that describes the ratio of detected jets over jets on the parton level,
obtained from a Monte Carlo simulation program. This program has to be able to describe the
jet rates consistent with data. A more sophisticated method using a matrix formalism has been
investigated in [40], but for the present analysis, the correction factor method is sufficient [25]
and will be applied.

3.6 Cross Section Integration Programs

3.6.1 PROJET

The first program that was able to integrate cross sections to O(a%) was PROJET [41]. Tt uses
the cross sections of [42] and calculates virtual and real corrections. An event record of four
vectors is supplied, so that phase space cuts can be freely chosen in addition to the integration
variables. The integration is done according to the VEGAS algorithm [43, 44].

PROJET calculates NLO cross sections with massless partons in the M .S renormalization
scheme and the JADE algorithm. The method chosen for the regularization of the cross section
is the phase space slicing method. This method results, however, in a recombination scheme of
the partons in the jet definition process that cannot be mapped unambiguously to one recom-
bination scheme as discussed in table 3.2. Furthermore, terms proportional to y.., - W?/scale®
are neglected.

As will be shown in chapter 4, one can calculate Mellin moments by replacing the parton
densities and ensure that also negative contribution to the integration are taken into account
correctly.

There exists another program that uses the same cross section calculations, DISJET [45],
which yields the same cross sections as PROJET. However, the program is not as flexible in
applying user chosen phase space cuts and was therefore not used here.

3.6.2 MEPJET

Recently, the integration program MEPJET [46] has become available. It offers the choice of
the JADE, k; or cone jet algorithm and also does not make the approximations of PROJET and
DISJET. In order to gain this flexibility, the jet definition is split into two steps. First, a very

small conel® is put around the partons under consideration to absorb singularities. In a second

9As has been shown before [37], higher jet multiplicities can be neglected in the phase space region considered
here.
10T his cone is not to be confused with the cone jet algorithm!
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step, the jet algorithm is applied on these summed quantities. If the cutoff parameter for the
cone is chosen small enough, it can be shown that the resulting cross section is independent of
it.

Technically, the crossing function technique is needed, which makes it necessary to redefine
the parton distributions in the calculation process and map them in beforehand. This makes
the definition of Mellin transforms very difficult and cumbersome, as every point in the complex
moment plane would have to be mapped to a complete set of crossing functions.

Due to the small cone size needed, the program is very slow and needs about 100 to 1000
times more CPU time than PROJET. Since the calculation of moments is intended to reduce
the CPU overhead, this performance is clearly too slow for being used for a gluon density fit at
the present stage.

The program does constitute an improvement in accuracy and enables studies with different
recombination schemes and jet algorithms. Since it is the only program at the moment, the
results have to be taken with caution, as it cannot be cross-checked to other methods. This
will hopefully improve in the future with the advent of additional programs, like the announced
release of the program DISENT, using the dipole formalism [47].

3.7 Parton Densities

The collinear divergences that arise in the renormalization procedure and that do not cancel
against virtual corrections have to be absorbed in parton densities, see the discussion in sec-
tion 3.3. Since they can only be measured, a parameterization is defined at a starting scale Q2,
and the determination for other scales is performed via Altarelli-Parisi evolution. For a useful
parameterization, at least 3 parameters are necessary [17, 18, 19]. In the further discussion, the
factorization scale p will always be identified with Q2.

It should be kept in mind that it is very important to compute cross sections using the same
factorization procedure for parton densities and the hard subprocess cross section. The parton
densities have to be of the appropriate order for the cross sections to be meaningful [48, 49].
Otherwise, the results are inconsistent.

An important consequence of the definition procedure is that the parton densities are univer-
sal, i.e. they do not depend on the process under investigation. Therefore, they can also be used
e.g. for pp scattering. Of course, higher order parton densities are always scheme dependent.

Since the analysis presented here will compute cross sections at different bins in Q% and
evaluate parton densities at these different scales, it is important to take a closer look at the
principles governing this behaviour of the parton densities.

3.8 Altarelli-Parisi-Evolution

The behaviour of parton densities fi/,(£,Q?) is governed by the evolution described by an
integro-differential equation, the “Altarelli-Parisi equation.” As soon as the parton density for
a “starting scale” is given, the evolution to other scales is completely fixed.

3.8.1 Altarelli-Parisi-Equations

If one applies a gluon correction to the struck quark as pictured in figure 3.8, the structure
function Fy is modified to [7]:
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=Y %”q(w) [5 (1 - 3) +22p, (3) In (Q—j)] (3.31)

The splitting function P, is given by

4 {1+ 22
P =3 (1) (332
+
where
T
= —. 3.33
=t (3.33)

The “+7-prescription has to be applied to this function [7]. It function describes the split-
ting of a quark into a quark and a gluon. Other splitting functions can be calculated analog-

ously [5, 7]:
P(2) = % 224 (1 - 2] (3.34)
Pyg(z) = gl * (12_ ) (3.35)
Pp(z) =6 [(1 _ZZ)+ ;! — (-2 (% _ %) 5(1 — Z)] (3.36)

Here f denotes the number of active quark flavors. To lowest order, the splitting functions
P;; can be interpreted as a probability that a parton ¢ is radiated from parton j. After the
absorption of infrared singularities into the bare parton distributions, this behaviour can be
rewritten for quark and gluon radiation into the “Altarelli-Parisi equations:”

o = g [ [t en e

T T

) +g(w, Q%) Py, (—)] (3.37)

w

w

X

[Z q:(w, Q%) Py (g) +g(w, Q%) Py (E)] (3.38)

dg(x, Q%) _ as(Q?) /1 dw

w

d(lnQ?) —  2r

In leading order, the “one loop approximation,” diagrams contribute. It is interesting to
note some useful properties of the splitting functions:

Pry(2) = Pyy(2) (3.39)

Pyz(z) = Pyy(2) (3.40)

Momentum conservation at the splitting vertex gives (for z < 1):

Pog(z) = Pyy(1 = 2) (3.41)

Pyg(z) = Pyy(1 = 2) (3.42)
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Figure 3.8: Generic diagram for gluon radiation.

Pyy(2) = Pyy(1 = 2) (3.43)

The integral of P,,(z) over all z vanishes:

/01 dz P,y (2) = 0 (3.44)

This is equivalent to the relations:

/Ol(u—ﬂ)dz::Q, /l(d—E)dz:1 (3.45)

0
1

S =] dz[s(z)—3(2)] =0 (3.46)

0
1

C= [ dzfe(z)—¢(2)]=0 (3.47)

0

Momentum conservation implies the sum rule

/01 dz 2 {Z q(z, Q%) + g(z, QQ)} =1 (3.48)

as well as ) )
| a2 [Pu(e) + Pl =0, [ dz2f Py(2)+ Pul2)] = 0. (3.49)
Another important relation is the Baryon number sum rule:

B= /01 dz % [u(z) —@(2) +d(2) — d(2) + s(2) = 3(2) + c(2) —2(2)] = 1 (3.50)

The NLO splitting functions are bulky, and will not be presented here; the references can
be found in [50]. They involve “two loop” diagrams.

3.8.2 Solving the Altarelli-Parisi Equations

With the Altarelli-Parisi equations, one can derive the behaviour of a given parton distribu-
tion ¢(&, Q%) and g(&,Q*) with the change of Q?, provided they are known at some start
value Q* = QF, and Q* > AZ)OD' This is an explicit violation of the Bjorken scaling of
structure functions predicted by the simple parton model [7]. Agep is the QCD scale that is
introduced in the renormalization procedure and has to be determined by an experiment.
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To simplify the discussion of the evolution equations, it is convenient to redefine the depend-
ence of as(Q?*) on Agep:

L= 1n(Q*/A2p) (3.51)

Introducing the symbolic notation

U dw T
Pua= [ 2R () o). (3.52)

and similarly for other convolutions, one can rewrite equations 3.37 and 3.38 as:

dqi as t

At (xvt): %[qu@@qi‘kpqg@g] (3-53)
dg ag(t
E(xvt):%[qu(@Z%‘l‘ng@g] (354)

The solution of these integro-differential equations makes the specification of starting condi-
tions necessary at t = ty. The usual approach is to parameterize a distribution at this starting
scale around 2-5 GeV? and then fit the parameterization to data by numerically evolving the
parameterization, i.e. solving the Altarelli-Parisi equations.

These equations assume the quarks to be massless. The simplest approach for taking heavy
quarks into account is to decouple them from the equations below a threshold and include the
contribution, once the mass threshold is passed. This includes the adaption of the quark number
parameter f.

The GRV parameterization takes a different approach [17]. The valence quarks are paramet-
erized according to basic sum rules at Q2 = 4 GeV? and then evolved backwards to 0.34 GeV?,
where the sea quark and gluon evolution is assumed to start by dynamical evolution. Then the
evolution to the scale Q? under consideration is performed.

To solve the evolution equations, it is useful to separate the quark densities into linear
combinations of the following distributions. Define singlet distributions

¢*(z,1) = (¢ +7,), (3.55)

K3

summed over all active flavors 1 = 1,2, ..., f. There are many nonsinglet distributions, including
uy=u—1, dy=d—d, ¢° =q—2f) "¢, (3.56)

and linear combinations thereof. They all fulfill the relations [7]:

dg™ as(t) NS
t) = P, .
At (z,1) or 4 @ q (3.57)
d¢® as(t
W o) = S Wip, 047 4 27p, 0 g (3.58)
d as(t
De)= 22015, 00" 4 20P, 0 g (3.59)

The numerical integration of equations 3.57 to 3.59 can be either performed directly by
stepwise numerical evaluation, or a transformation to a moment space, e.g. the Mellin moment
space.
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It can be shown [7], that the Mellin moments can be mapped to Fourier transforms, where
fast numerical programs for inverting the moments exist. The calculation performed by GRV
uses a direct inversion method of Mellin moments which will be used in the following [51, 52, 53].

Another difference between the evolution in x space (i.e. the direct numerical evolution) and
the computation of a Mellin moment evolution is that the parameterizations are not formally
to the same order, since the evolution in moment space has to use a slightly different definition
of the terms that are taken into account, resulting in differences to Next-to-Next-to-Leading
Order (NNLO). Recent progress has allowed for a clarification and standardization [54, 55].

It should be noted that one property of the splitting functions and thus the evolution is the
fact that sea quark densities rise with decreasing £. This is, of course, expected intuitively,
since the probability for the production of quark-antiquark pairs and gluons rises accordingly.
It is an open question whether a saturation effect occurs at some point and how this saturation
will manifest itself.



Chapter 4

The Mellin Transform Technique

As was motivated in the chapters before, a NLO determination of the gluon density for arbitrary
factorization schemes can only be achieved via a fit. The problem that arises when a fit to some
jet observable is performed consists of the CPU time requirements in repeatedly evaluating the
adapted cross sections. One wishes to parameterize a gluon density, evolve it to the scale at
which it enters the cross section calculation and then integrate the cross section by applying
additional phase space cuts. This process has to be iterated until the fit procedure converges.
Unfortunately, the NLO calculation by a Monte Carlo integration is quite slow,! not allowing
for a manageable amount of computing time to complete the fitting task, especially since an
optimization of the analysis requires repeated running of different fits, and the determination of
errors needs additional calculations.

Therefore, the Mellin transform technique was developed to decouple the integration of the
hard cross section part and the parton density evolution. By doing this, the time consuming
integration step has to be performed only once, while the modification of parton densities and the
subsequent computation of the cross section can be done fast in a separate fitting procedure. Any
other transformation could have achieved the same goal, as long as the underlying mathematical
requirements are fulfilled.

It should be kept in mind that the method works universally also for quark densities.
However, since they are well known in the kinematical region under consideration and since
each parton density requires an additional set of Mellin transforms, the quark densities are
assumed as known and the error induced by their uncertainty is absorbed into the systematic
error. This means that the quark induced (241) jet cross section is integrated directly.

This method can, in principle, also be applied to other jet observables and a modification
to e.g. pp collisions seems easily possible.

The formal derivation of the method is presented in [32]. Here, an overview over the method
and its implementation is presented. Additional details can be found in appendix A.

!The numerical calculation of one cross section needs about 1 minute of CPU time on an SGI Challenge
processor in LO, and about 10 minutes in NLO with PROJET.

31
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4.1 The Mellin Transform Technique for Non-Factorizing
Cross Sections

The Mellin transform technique allows for a quick numerical evaluation of integrals of the form

St = [ 6 (5 (11)

S ¢

in the case where o; is independent of its second argument x, on the basis of the moments defined

by
1d
n_/ ot Fla (4.2)

for an arbitrary function F' and (complex) n. The moments of the function ¥ are then given by

Zn = fi/p,n O%n- (43)

The functional dependence of ¥ can be recovered from the moments ¥,, by an inverse Mellin
transform. An expression of the form of equation 4.1 will be called to be of the factorizable
type if the only dependence on z in the arguments of o; is via x/€. In the application which we
have in mind, f;/, is a parton density, whereas o; is an expression for a mass-factorized parton-
level scattering cross section. In general, acceptance cuts and non-factorizable jet algorithms
introduce an explicit dependence of o; on x. Moreover, the expression for ¥(x) is integrated
over a certain range of x. This might suggest that the Mellin transform technique cannot be
applied. However, this is not the case. As is shown in [32], one can still use this technique,
provided one finds a suitable moment definition.

Assume a fixed Q*-bin (i.e. a fixed factorization scale), then let a4, ..., aj be the experimental
boundaries of the intervals in the Bjorken variable x for which the cross sections are measured.
To proceed, we define

N, = /1 dz X(z). (4.4)

The integral over a specified interval [a;, a;41] in 2 is then simply given by

/“"“ dr S(z) = ¥y, — Yooy, (4.5)

It should be noted that this can be a numerical disadvantage, since depending on the phase
space region, large numbers might be subtracted numerically to yield a small number. Even
though the integration error on the individual integrals is small, the difference could bear a
much larger uncertainty. Therefore, one has to make sure that subsequent bins of similar size
are avoided, if one wants to calculate bins that do not reach to 1 in .

Define a function

a/u
. / dx o; (i,x), if u>a
ha(u) — a a/u (46)
0, if u<a

and its moments in the variable u
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r-space Mellin-(n)-space
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Figure 4.1: Simplified picture of the procedure to calculate the cross section () using
Mellin transforms.

It is shown in appendix A that an explicit expression for h,, is

han = /al dz /: % (%)n o (?x) (4.8)

The hgp, are thus the X, with the parton density f;/,(£) replaced by (a/€)". They can be
determined numerically by means of a Monte Carlo integration. In general, for complex n, the
quantity (a/€)™ has to be split into its real and imaginary part.
Define X
so = [ Epom (%) (19)
a £ 3
and determine the moments of ¥, with respect to the variable a:

N 1
S z/ L (4.10)
0

a

Obviously, ¥, = ¥,,. Then the key relation of the method can be easily derived [32]:

Sob = fifpn ion (4.11)
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This means that for a given parameterization of f;/, in terms of its moments f;/, , the cross
section ¥, can be determined by forming the moments im = fi/pn han and a subsequent inverse
Mellin transform in the variable n, evaluated at a. A schematic overview of the cross section
calculation procedure by Mellin transforms is shown in figure 4.1.

This method of determining the cross section introduces the inconvenience that the moments
han have to be determined for every boundary separately. However, due to the large number of
cross section evaluations in the fitting procedure, this method is far more efficient than a direct
integration of the cross section for every parton density parameterization separately.

The calculation of moments is possible by a numerical cross section integration program like
PROJET. One has to take into account, however, that negative contributions to the integral
have to be allowed, since the moments are complex numbers and therefore have to be assembled
by its real and imaginary part.

For the calculation by PROJET, the Mellin moments are split into their real and imaginary
parts by splitting the expression (a/&)" (see equation 4.8):

o -«

— éﬂ’e"@
"% [(cos(In(¢) rsing)) + 1 (sin(In(¢) rsine))] (4.12)

4.2 From Parton Moments to Observables

Once the moments h,, have been calculated, one needs to determine the evolved moments of
the parton density f;/,, by an Altarelli-Parisi evolution and to invert the product e

Let us now consider the inverse transformation of the moments given by equation 4.2, which
is a special case of the general Mellin transformation for functions F'(x) vanishing identically at
x> 1. If F(x) is piecewise smooth for x > 0, the corresponding Mellin inversion reads

1 c+i00
Fla) = —/ dnae"F,, (4.13)

27 —100

where the real number ¢ has to be chosen such that [ dax2°~'F(x) is absolutely convergent
[56]. Hence ¢ has to lie to the right of the rightmost singularity n,,., of F,. The contour of
the integration in equation 4.13 is displayed in fig. 4.2 and denoted by Cy. Also shown is a
deformed route Cy, yielding the same result as long as no singularities n; of F,, are enclosed by
Co — Cy. For example, for the LO and NLO evolution of structure functions, the n; are real with
i < Npaz < ¢, and this requirement is fulfilled automatically.

It is useful to rewrite equation 4.13 as an integration over a real variable. We are concerned
with functions obeying I = F,», where ‘x’ denotes the complex conjugation. Then it is easy
to show that equation 4.13 yields, for the contour characterized by the abscissa ¢ and the angle

¢ in fig. 4.2:
1 oo :
F(z) = —/ dz Im {exp (i) x_c_zeXp(“b)Fn:c_l_Z exp (i) | - (4.14)
7 Jo
It is obvious from the discussion given above that the integral does not depend on ¢ and ¢.

However, for an efficient numerical evaluation a suitable choice of these parameters is very
useful. For example, it is advantageous to choose ¢ > /2 in case F, is a known analytical
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Figure 4.2: Integration contours of the Mellin inversion in equation 4.13, leading to the inver-
sion formulae of equations 4.14 and 4.15 for the routes Cy and Cy, respectively. The crosses
schematically denote the singularities of F),.

function, especially if this function does not fall off very rapidly for |n| — oo. The factor
exp (Z log % Cos qb) then introduces an exponential dampening of the integrand (which rapidly
oscillates at small x) with increasing z, thereby allowing for a smaller upper limit z,,,, in the
numerical implementation of equation 4.14. This procedure has been employed for the inversion
of moments of parton densities and structure functions for the proton and the photon, e.g. in
[51, 52] and [53], respectively.

In general, however, the moments of the partonic cross section can only be calculated numeri-
cally using equation 4.2, because no analytic continuation to small Re n, where the integral does
not exist, is at our disposal. Likewise, in our case these moments are given by equation 4.8 and
do not behave uniformly for |n| — oo. Especially, they grow exponentially along C;. Therefore,
we will use the ‘textbook contour’ Cy in the following and, with ¢ = 7/2, equation 4.14 simplifies
to

| e .
F(z) = ;/0 dz Re {x_c_” n:c_H'Z} ) (4.15)

We have applications in mind where F,, = f;/, ,h4,, see equation 4.11, and the numerical
evaluation of the moments h,,, in equation 4.8 is very time-consuming. Taking a different upper
limit z,,,, of the numerical z-integration or number of points for the integral at each step in
the integration process is practically unfeasible in such a case. Instead, we want to fix z,,,, at
a value as small as possible in order to allow for an evaluation of equation 4.15 with a rather
small number of fixed moments.

As is estimated in [32], 2,4, lies somewhere between 6.0 and 8.0 depending on z. In this
analysis, z,,.. = 9 yielded a sufficiently accurate convergence behaviour, i.e. the cross sections
were calculated up to an accuracy of 1%.

The integral equation 4.15, truncated at z,,,,, can now be performed by using a sufficiently
large number of fixed support points, e.g. by a sum of 8-point Gaussian quadratures, see [57]
for the weights and support points. A table of the support points used for this analysis can be
found in appendix B.
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4.3 Application to Jet Physics at HERA

To illustrate how the Mellin transform method can be used to fit the gluon density f,/,, the
gluon-induced (241) jet cross sections were calculated in several bins for 820 GeV protons and
27.6 GeV electrons. Quark contributions were set to zero explicitly in the parton distribution
function to reduce the number of moments needed for this case study.

The program PROJET [41] based on the NLO matrix elements from [42] was used, this
allows to calculate jet cross sections in LO and NLO in the modified JADE scheme, as discussed
in chapter 3. In the case of a theoretical calculation, p, is directly given by the momentum
fraction of the proton not carried by the incident parton, and pq,...,p, are the momenta of the
partons in the final state. In the following, we choose W?2, the squared total hadronic energy, as
the mass scale M?, since the proton remnant is included in the jet definition.

The integration routine used in PROJET is VEGAS [43, 44]. As is desirable for an exper-
imental measurement, the phase space was binned in Q? and 2 according to equation 4.4; the
bins are given in tables 4.1 and 4.2. In addition, the following typical H1 detector cuts were
applied, for which the motivation is explained in chapter 7:

e The invariant mass squared of the hadronic system W? was required to be larger than

5000 GeV?.

o The jet resolution cut y.,; was set to 0.02. Lowering this value significantly below 0.01
causes NLO corrections to dominate and leads to unphysical cross sections. It is important
to note that £ > y.,: as a consequence of the applied modified JADE algorithm. The region
¢ > 0.01 is however very interesting [22] for a precise determination of f,/,, see also [21].

o The jets were required to lie in the polar angle range of 10° < 6, < 145°.

e For bins with Q% < 100 GeV?, the scattered electron had to have an energy of E. > 14 GeV
and the polar angle had to lie within the range of 160° < 6., < 172.5°.

e In the bins with Q2 > 100 GeV?, the scaled photon energy y in the proton rest system
had to be y < 0.7 and the scattered electron was required to have 10° < 6., < 148°.

In this list, angles and energies are defined in the laboratory frame, and angles are given with
respect to the direction of the incoming proton. For each bin, 32 complex Mellin moments
were calculated according to the prescription described in section 4.1, see equation 4.8. In all
calculations, a; was computed to second order, and the NLO gluon distribution function of [52]
was employed.

A good convergence of the numerical calculations was found for ¢ = 1.8, ¢ = 7/2 and
Zmaz = 9, with a higher density of support points at lower z, as the influence is greatest there.
For comparison, the cross section was also calculated directly, see equation 4.4. After inverting
the product of the hard subprocess and evolved gluon density moments at the average Q?, the
results were found to coincide at the per cent level. The detailed results can be found in tables 4.1
and 4.2. In most bins, convergence was reached at z,,,, = 3 (corresponding to 16 moments),
the additional moments were used for safety. The convergence of the LO cross section was
much faster than in the NLO case, as for a given number of support points in VEGAS, the L.O
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xr
| Q% [Gev?] || 107*..1 ] 10°...1 [ 1071 107t
10 ... 14]6280]61.64 [28.09 2874 — | — | — | —
14 ... 18]70.64 169725095 4997 — | — || — | —
18 ... 25[8582 8489 [ 71.03[6980 | — | — || — | —
25 ... 401099 [1088 1019 |10L.1 ] — | — | — | —
40 ... 100 — [ — [[1238]1244 | 1451 [ 1443 | — | —
100 ... 300 — [ — 131963218 [ 1469 | 1476 | — | —
300 ... 700 — | — [[28.97[29.23 | 25182542 — | —
700 ... 4000 — | — [ — | — [10.22]10.12 [ 0.96 | 0.93

Table 4.1: Comparison of cross sections with LO matrix elements® (in [pb]) obtained by inte-
grating directly (left columns) or using the Mellin transform method (right columns).

xr
| Q% [Gev’] || 107*..1 ] 10°..1 [ 1071 107t
10 ... 14[[5848|57.25 [[26.60 [26.00 | — | — | — | —
14 ... 18]66.57 6590 47224669 — | — | — | —
18 ... 25[ 82488165 [|67.99 6687 — | — || — | —
25 ... 401081 [1074 1004|9971 — | — | — | —
40 ... 100 — [ — [[126.1]125.6 || 14.07 [13.96 || — | —
100 ... 300 — [ — [|34.86|3452[ 1551 | 1531 | — | —
300 ... 700 — | — [[31.34 3151|2701 [2709 ] — | —
700 ... 4000 — | — [ — | — [J1ra8[11.19]0.99 |0.97

Table 4.2: Comparison of NLO cross sections (in [pb]) obtained by integrating directly (left
columns) or using the Mellin transform method (right columns).

integration is more accurate due to the simpler integration kernel. The method works well for

both LO and NLO.

The number of points in the Monte Carlo integration was chosen such that the error returned
by VEGAS was less than 1%. This number is, however, only a rough estimate [43, 44], and
the achieved accuracy was studied by repeating the calculation for different random number
generator seeds. The direct integrations performed here had a statistical variation of 2-3%.
The partonic cross section from the Mellin transform method is implicitly integrated repeatedly
by the calculation of the moments, which smoothes out statistical variations. The results were
found to be more stable than the direct integration, which varied around the result obtained
by the moment inversion. Even drastic errors of single moments or setting single moments
to zero could be tolerated and led to a reproducible result. We conclude that this method is
numerically very stable and that the accuracy is of the order of 1%. Increasing the accuracy
requires increasing the number of support points for the integration, which would result in a

?Here, ‘LO’ means that the matrix elements were calculated in LO, but o, and the parton distribution
functions in NLO to facilitate a comparison with the results of table 4.2. For a physically meaningful comparison
of the LO with the NLO, a; and the parton distribution functions should be calculated in LO, if they are used
in conjunction with the LO matrix elements.
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dramatic increase in CPU time.? One has to keep in mind that an additional error source arises
from the Mellin transform method, as for each experimental bin in x one has to calculate the
difference of the cross sections depending on the bin boundaries in equation 4.5, leading to error
propagation.

4.4 Fitting the Gluon Density

The extraction of the gluon density can be performed via a x? fit. Defining an observable w, x?
is given by:*

2 (w(z) —@(i))*
X: = ZZ: o) (4.16)

Here, ¢ denotes the number of independent measurements, which in the case of fitting cross
sections or jet rates can be identified with the number of bins in which the measurement takes
place. w, is the uncertainty of the measurement; in the following, one standard deviation will
be assumed for the error, if applicable. @(2) stands for the mean of the function w, or in the
case of a measurement, this translates to the fit of a theoretically motivated function w to the
measurement . Therefore, a different notation is frequently chosen to describe the different
variables and functions under consideration.

To determine the “best” value of w, the function x* has to be minimized [58]. Since nor-
mally this minimization procedure cannot be done analytically, numerical procedures have to
be employed. The most common program package used is MINUIT [59], which is widely tested
and will also be applied in this work. In [58, 59], further mathematical details about Y? fitting
can be found.

The procedure for fitting the gluon density involves the parameterization of g(£,Q?) at
the input scale Q2 = 4 GeV?, as is done with the MRS parameterizations. For the fitting
purpose pursied here, the GRV procedure of parameterizing the valence quarks at 4 GeV? and
subsequently evolving “backwards” to 0.34 GeV?, where the onset of sea quark and gluon density
is dynamically generated, is less desirable, since the backward evolution and the longer evolution
distance for gluons reduces the sensitivity of the fit. Nevertheless, the evolution of MRSD-’ type
parameterizations will be done in moment space, in contrast to the x space evolution normally
performed by MRS, as discussed in chapter 3.

Thus, the ansatz

9(&, Q) = AnE™ (1 = ) (1 + 7€) (4.17)

was made at Q2 = 4 GeV?, and the calculation of the gluon induced cross section was performed
as described in section 4.3, by evolving equation 4.17 to the scale ? under consideration in
moment space and inverting the moment product.

To show that a known gluon density parameterization could be fitted back, gluon induced
(241) jet cross sections defined by MRSD-" [60, 61] were calculated with the cuts described
above. It should be noted, that for the purpose of demonstrating the applicability of the fit,
the exact definition of the phase space is not of importance, as long as the function to be fitted
(i.e. the cross section) is treated in the same way as the underlying calculation (i.e. the direct
integration by PROJET). The same applies for the error determination. Since we deal with

3The numerical calculation of one moment needed about 2 minutes of CPU time on an SGI Challenge processor
in LO, and about 20 minutes in NLO.
4To avoid confusion with cross section variables, the common notation of ¢ for errors was replaced by w,.
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‘ parameter ‘ min ‘ max ‘ MRSD-’ ‘
o —0.7 | =0.1 —0.5
¢ 4.0 7.0 5.3
ol 0.0 20.0 10.6

Table 4.3: Parameter range used for the fitting procedure in comparison to MRSD-" values.

functions that can in principle be calculated to arbitrary precision, an error determination does
not make sense at this point. w, was therefore set to 1, as it only rescales y? and does not
affect the fit itself. It is, however, important to check whether the accuracy with which the
gluon density is reproduced is similar to the integration accuracy of the cross section. This can
be achieved by comparing the resulting gluon density with the parameterization that shall be
reproduced and make sure that the ratio is close to 1.

The normalization constant Ay is given by sum rules provided the quark densities are given
at Q3. Since they are well known in the region under consideration and the difference between
all common parameterizations are small, the quarks of MRSD-" were always used [60, 61]. The
error induced by this assumption can be neglected.

To exclude physically meaningless parameter values, the allowed parameter-space was re-
stricted as described in table 4.3. This removes unwanted y? minima and ensures that un-
physical solutions for the gluon density are avoided. In addition, it is important to choose
a proper initial step width for the fit, since otherwise the calculation of the error matrix by
using derivatives of the y? function can become numerically unstable and can cause convergence
problems.

For the purpose of fitting, the NLO (2+1) jet cross section is decomposed into the quark
induced and the gluon induced part. The quark induced contribution can be integrated directly
by PROJET, while the gluon induced cross section is calculated by the Mellin transform method
and is modified by the fit. This sum is compared to the direct integral of the complete (241)
jet cross section by PROJET in the fitting procedure. One bin in Q% was chosen.

As can be seen in figure 4.3, the gluon density is well reproduced and also the ratio between
the original and the fitted gluon density is of the order of 1%, and thus more accurate than the
integration accuracy of PROJET. This can be explained, as mentioned previously in section 4.3,
by the additional accuracy gained through the repeated calculation of moment integrals, which
averages out statistical fluctuations.

Furthermore, it should be noted, that the region actually fitted is only for & > y.y, i.e. the
plot of the gluon density for smaller £ is an extrapolation. Nevertheless, the agreement is still
excellent, although the ratio is getting worse, as one would expect from such an extrapolation.

To show that also jet rates can be reproduced, the procedure was repeated with the jet rate
definition of equation 3.30. The calculation of the jet rate requires the computation of two sets
of moments per bin for the gluon induced parts of o941 and G94;. Both are modified in the
fitting procedure. The quark induced parts are integrated directly.

As can be seen from figure 4.4, the gluon density is again reproduced, although the deviation
increases slightly. This is due to the larger number of cross sections that have to be computed.
In addition, two sets of moments have to be evaluated, and a ratio of cross sections is calculated.

Another demonstration of the sensitivity of the fit can be obtained by introducing an ad-
ditional point at ¢ = 0.005 and Q? = 20 GeV? with an extremely high or low gluon density,
respectively. In figure 4.5 (top), a gluon density of 20 was assumed at the additional point in
one fit, and in the bottom plot, a value of 1 was assumed. As can be clearly seen, the fit is
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distorted in the direction of the additional point. Since these fits are rather extreme, they also
illustrate the parameter range that can be covered with the boundaries of table 4.3, although
the error treatment described below also allows additional deviations.

These scenario calculations and fits show that it is possible to use the Mellin transform
technique to fit the gluon density from jets.

To summarize the fitting procedure for further reference, the most important steps are re-
peated here:

e For each bin in Q?, calculate the quark induced cross sections directly with PROJET.

e For each bin in ()2, calculate the Mellin transforms for the gluon induced part of the cross
section for o941 and Goy1.

o In the fit, the ansatz 4.17 is modified by varying the parameter set «, 3,7. The normaliz-
ation Ay is fixed by the chosen quark density parameterization.

o Transform the gluon density ansatz 4.17 into Mellin moment space and perform the evol-
ution to the desired scale. The sum rules are automatically fulfilled.

o Compute the product of equation 4.3 and invert it.
e Compose the jet rate from the individual cross section contributions.

e Compare the jet rate to corrected data and vary the parameters, if necessary.

4.5 Error Treatment

In order to determine an error of the fit, the straightforward method of using the MINOS option
of [59] is not feasible, since the three parameter fit of jet rates is a rather complex mathematical
problem, and it turns out that the MINOS procedure does not converge, nor does it produce
an error estimate. The reason is essentially that it is not easily possible to compute error
matrices with the parameters varied such that y? is increased by 1 because of the location of
the local minimum that constitutes the solution of the fit. If the y? function rises by less than 1
before it decreases again in any direction of parameter-space, this procedure does not produce
a solution. A more detailed discussion of stability and error determination issues will be given
in section 8.3.

In order to overcome that difficulty, one can use an estimation procedure that uses the
parabolic error of the three parameters given by the fit. This error is defined as the change of
the parameter necessary to increase 2 by 1, for each parameter separately. The difference to the
“full” mathematical error treatment lies in the fact that correlations between the parameters are
not taken into account. Additionally, it is assumed that y? varies parabolically with the variation
of a parameter, hence the expression. This can be achieved with the HESSE option in [59]. The
parabolic approximation is calculated from finite differences, which implies a dependence of this
procedure of the behaviour of the y?-function around the minimum.

This error estimate is an upper bound to the “true” error by MINOS, and can therefore be
taken as a measure. The estimate produces an error band around the fit value for any given
scale Q% in the £ range under consideration by taking all permutations of o & Aa, 3 £ A3, and
v £ Ay at Q2, evolving to the scale Q% and taking the spread as the error.
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Figure 4.6: Comparison of fitted gluon density from known R,y with MRSD-" by introducing
a ~ 5% error into the fit, which resulted in the shaded area.

Since so far, no data, but well known functions were fitted back, the choice of the error was
arbitrary. Taking not only one bin in (2, but several, and distorting the jet rate fed to the
fit artificially by about 5%, while introducing a 5 % error into the fit, the error band shown in
figure 4.6 was obtained. As can be seen, the band opens up with decreasing ¢ in the ¢ region
where the fit was extrapolated, as one would expect in a region where no constraints are imposed
by the input to the fit. This underlines the confidence in the method.



Chapter 5
HERA and H1

The HERA collider, which is shown in figure 1.1 and already briefly mentioned in chapters 1
and 2, shall be described in some more detail to mention facts that are relevant to the analysis
of DIS data. The same applies to the description of the H1 detector. A detailed discussion of
the H1 apparatus can be found elsewhere [62], where also references are given for HERA.

Since the analysis presented here uses only the positron runs of 1994, only these conditions
will be covered.

5.1 The HERA Machine

In order to reach the high energies that HERA was designed for, the magnetic fields used to keep
particles on track must be quite strong. Both beams are accelerated in the same tunnel, using
superconducting magnets for the protons (B = 4.68 T). The particles are arranged in bunches
separated by 96 ns, having a design length of 11 c¢m (electrons) and 0.8 ¢cm (protons). Some of
these bunches, the so called “pilot bunches,” have no colliding partner in order to study back-
ground conditions. The 1994 positron runs used 153 proton and 153 positron bunches combined
with 15 positron and 17 proton pilot bunches. This setup led to currents of typically 41 mA
for protons and 17 mA for positrons. The specific luminosity was about 1.4 - 10*° cm™2s™! on
average.

5.2 The H1 Detector

A picture of the H1 detector can be found in figure 1.2 where the components described below
are clearly visible. Because of the higher proton energy compared to electrons (and positrons),
the center of mass system is moving along the proton direction, and therefore the detector has
an asymmetric shape along the axis.

The luminosity system is set up at z = —33 m to detect electrons scattered through the
Bethe-Heitler reaction ep — ¢’yp and to detect photons at = = —100 m, using a crystal calor-
imeter which has an energy resolution of o(F)/E ~ 0.10,/E/GeV. The electron angle is less
than 5 mrad with respect to the beam direction.

The two components of the detector being most important for the analysis described here
are the Liquid Argon Calorimeter (LAr) [63] and the Backward Electromagnetic Calorimeter
(BEMC), positioned around the tracking chambers.
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5.2.1 The Tracking Chambers

The detector consists of tracking devices located around the beampipe to record tracks of the
charged particles emerging from the interaction point. Here, the Central Tracking chamber
(CT) and a Forward Tracking (FT) device together with a Backward multiwire Proportional
Chamber (BPC) cover the polar angle range of 7° < § < 175°.

Due to the finite bunch length, the vertex has to be determined by the tracking chambers,
as it may deviate from the nominal interaction point up to +50 cm. This and the measurement
from the BPC are combined to a determination of the electron scattering angle with a resolution
of about 6 mrad.

5.2.2 The Liquid Argon Calorimeter

In the LAr, the scattered electrons and also hadrons deposit most of their energy, and leaking
energy can be measured in the instrumented iron which is located in the return yoke of the
superconducting solenoid. The solenoid itself provides a uniform magnetic field of 1.15 T parallel
to the beam axis in the region where the tracking chambers are situated.

The LAr covers the polar angle range of 4° < 6 < 153° and the azimuthal range com-
pletely. It is composed of an electromagnetic calorimeter (EMC) and a hadronic calorimeter
(HAC) section, where the EMC contains lead absorbers equivalent to a depth of 20-30 radiation
lengths and the HAC is built of steel absorbers. Overall, the depth of the L Ar lies in the range of
4.5-8 hadronic interaction lengths. The calorimeter is highly segmented in both parts, compris-
ing around 45000 geometric cells, which have an electronic noise per channel of 10-30 MeV, as
expressed in 1o equivalent energy. In testbeam measurements, it has been shown that the LAr

calorimeter modules have energy resolutions of o(E)/E ~ 0.12/FE/GeV & 0.01 for electrons
and of o(E)/E ~ 0.5,/ FE/GeV & 0.02 for charged pions [62, 64]. These references also describe

the energy reconstruction.

The hadronic energy scale and resolution are known to a precision of 4% from the balance
of transverse momentum between hadronic jets and 20% from the measurement of the scattered
electron in DIS events. The absolute energy scale uncertainty for electrons is about 3%.

5.2.3 The Backward Electromagnetic Calorimeter

The BEMC is mainly used to trigger on electrons and measure them in DIS processes
with low Q% It has 22 radiation lengths and covers the polar range of 151° < < 177°
in the backward region of the calorimeter, which corresponds to an acceptance region
for Q% of about 5 < Q? <100 GeV®:.  The energy resolution has been determined to be
about o(F)/FE ~ 0.10,/F/GeV with a constant contribution of 3%. Adjusting the observed
energy spectrum to the kinematic peak (the region in phase space where the outgoing electron
has roughly the same energy as the incident) reduces this uncertainty to 1%.

Additionally, a scintillator hodoscope is assembled behind the BEMC to veto background
events caused by protons by comparing the arrival time to the nominally expected.



Chapter 6

The Monte-Carlo Machinery

The description of particle collisions needs techniques to unfold the observed particle tracks and
energies in the detector back to hadronic and also partonic level. Since there is no such procedure
to perform this backward correction directly, one has to rely on Monte-Carlo techniques to
describe the collision with a theoretical model on the parton level, then perform a hadronization
process according to model assumptions and subsequently simulate the passage of the particles
through the detector.

The simulated events thus obtained can be fed into the same reconstruction software that also
deals with the actual data events recorded by the detector, and by comparing both, conclusions
can be derived about the accuracy of the assumed models. In an iterative process, the different
steps in the simulation chain can be modified and “tuned” to data.

However, a “physical understanding” of the data is achieved only when theories can be tested
by data, or physical quantities like QCD parameters are determined by using the simulation
information to correct to hadron and/or parton level and then performing a comparison to the
actual underlying theoretical assumptions.

The events generated are chosen by a pseudo random procedure governed by the cross section
of the process and the phase space under study. A more detailed discussion of LO QCD event
generators can be found in [31].

All generators mentioned here are available in the so-called “Hl-standard”, which consti-
tutes an interface to the detector simulation software. The cross section integration programs

PROJET, DISJET and MEPJET are not event generators in that sense.

6.1 LEPTO

The event generator program LEPTO 6.3 [65] includes a LO description of the matrix element
plus a modeling of higher orders by matching Initial State and Final State Parton Showers
(ISPS, and FSPS, respectively) to the four vector kinematics of the generated event. It integrates
the total and the (2+1) parton cross section to O(ag), i.e. the QCD-Compton- and BGF-events
as pictured in figures 3.4 and 3.5. The difference between the total cross section and the (241)
jet events is attributed to (141) events, which can be interpreted like in figure 3.3. Furthermore,
the longitudinal structure function F, can be included into the calculation, yielding the O(as)
total cross section. Additional effects such as target mass and “higher twist” effects can be
chosen, too.

The (2+1) parton cross sections are calculated in an adaptive way by building a grid which
is used as a probability distribution in choosing the required kinematical variables pseudo-
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randomly. The absorption of divergences is done in a phenomenological way, and the parton
distributions of the PDFLIB [20] are included to calculate the cross section.

6.1.1 Parton Showers

To approximate the effects of higher orders in the perturbative expansion of the cross section
calculation and to take soft interactions into account, parton showers are used. They can be
implemented in the initial state, where gluons are radiated off the incoming parton to the hard
interaction, and they can be applied to the outgoing state, where partons leaving the hard
interaction radiate e.g. gluons, which subsequently shower additional particles.

A parton close to mass shell in the incoming nucleon can start a parton shower by becoming
increasingly off-shell with a space-like behaviour (m? < 0), while the parton radiated is on-
shell or time-like (m? > 0). The parton emitting the cascade then enters the hard subprocess
being space-like, while the outcoming partons are either on-shell (m?* a2 0) or time-like. There,
another cascade can be started. The termination of the showering has to be included as a cutoff
parameter, which is typically in the range of a m2 of about 1 GeV?.

The splitting of the partons in the showers is governed by leading logarithm approximations
of perturbative QCD and Altarelli-Parisi splitting functions, applying angular ordering (i.e.
decreasing opening angles in subsequent branches).

The initial state case is “matched” backwards to ensure four vector momentum conservation.
This is a modeling procedure which traces the virtuality of the incoming parton back from the
hard interaction with decreasing virtuality down to the on-shell partons in the incoming nucleon.

More details can be found in [65]. The use of a LO matrix element plus the implementation
of parton showers is often referred to as the “MEPS model.”

6.1.2 Hadronization

The outgoing quarks and gluons of the hard subprocess and the parton showers have to hadronize
in order to form color singlets, i.e. hadrons that enter into the detector simulation.

The method used here is the “Lund String” model, where a color string between the colored
partons is spanned, denoting the force that exists between them. While the particles are moving
apart, the “tension” increases, until the energy is large enough to form new parton-antiparton
pairs. This process is repeated until no new particles can emerge because their rest mass is larger
than the energy of the string. The model is implemented in JETSET 7.4 [66]. A discussion of
the color interactions in the final state can be found in [31].

6.2 SMURF

Another Monte-Carlo event generator that calculates cross sections to O(as) is SMURF [31].!
It computes the cross sections independently and builds a probability grid in parameter-space,
so that the generation of events can be conducted according to that grid for every process
separately. This has the advantage of being able to study each process independently, and to
make detailed phase space and stability studies.

A concise treatment of FSPS in the JETSET framework is implemented; however, there are
no ISPS available so far which are necessary to describe DIS data.

L“Scattering Monte-Carlo Using Refined Features.”
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6.3 Other Models

There are other models that are trying to describe the hard subprocess and also the subsequent
fragmentation and the showering, respectively. Two of them are the Color Dipole Model (CDM)
implemented in ARTADNE [67], and the cluster fragmentation model provided in HERWIG [68].

The CDM makes the assumption that the color forces between the colored particles can
be interpreted as dipoles that radiate and by the virtue of this mechanism create the showering
effect. HERWIG assumes clusters that are formed after the hard interaction by the arrangements
of color singlets. They are then fragmented and hadronized according to a hadron selection
algorithm, taking into account their quantum numbers.

The CDM is used within the LEPTO framework, and has so far failed to describe (241)
jet rates with sufficient accuracy to be used for a measurement. The same applies to the
cluster fragmentation model. They are being constantly improved, and there might be a better
agreement between the predictions and data in the future. At the moment, they provide a
valuable tool to estimate the systematic error incurred by the model dependence due to the use
of one specific model.

6.4 DJANGO

The event generator program DJANGO6 [69] combines the hadronic description of the hard
scattering process in the MEPS model and the O(«) corrections on the leptonic side. They were
originally included in the program HERACLES, and DJANGO forms an interface between
LEPTO and HERACLES. The photon emission on the quark side is not yet available.

Especially for high y and low x, the corrections due to QED corrections can be sizable, and
the phase space can be distorted to a large degree. Therefore, it is desirable to have a procedure
to account for the correction and implement it in the event generator.

The O(a) corrections can be grouped into three different categories following the poles that
appear in the calculation of the corrections:

e Initial State Radiation (ISR), see figure 6.1.
e Final State Radiation (FSR), see figure 6.2.

o The so called “Compton contribution.”

Additionally, the one loop corrections account for a virtual vertex correction at the emission
vertex of the exchange boson. The Compton contribution plays only a minor role in radiative
corrections and is often neglected.

It should be noted that the ISR and FSR both cover the whole radiation phase space, but
are peaked collinear to the emitting lepton. This interpretation of the phase space is meaningful
only in the leading logarithmic approximation. Beyond the leading logarithmic approximation,
the separation is not unique! The photon emitted from ISR will in most cases move parallel to
the incoming lepton. The FSR photon will most likely be parallel to the outgoing lepton.

In both cases (and in this approximation), the four momentum of the exchanged boson will be
reduced. Therefore, the modeling of these processes can be performed in a two step procedure.
First, the cross section for ISR and FSR is calculated (by taking into account approximations
and cutoffs for the collinear poles), and then the reduced four momentum of the exchange boson
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Figure 6.2: Generic diagram of QED final state radiation.

will be interfaced to LEPTO, which treats this interaction essentially as a process at lower
energy.

So far, DJANGO has not been used in the description of the data, since this interfacing has
only become reliable recently, after removing ambiguities in the treatment of common paramet-
ers, such that DJANGO with radiation switched off could result in the same cross sections as
LEPTO. It has been shown, however, that in the phase space region typically chosen for jet
analyses, the influence of radiative corrections is small, typically less than 5% (see also [25]).
This could be confirmed for the analysis presented here.

6.5 Comparisons

The LO cross sections of the programs described above should agree within the integration
accuracy of typically a few per cent. Comparisons between SMURF and LEPTO were performed
in [31]. The discrepancies pictured in chapter 4 of [31] could be resolved by ensuring the
consistent treatment of a.
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LEPTO and DJANGOG6 without radiative corrections were compared and yielded agreement
once the different treatment of mass thresholds in the BGF cross section calculation was im-
plemented in DJANGOG6. One has to make sure, however, that not only the real, but also the
virtual radiative corrections are switched off.

The comparison between LEPTO, SMURF and PROJET (in LO) resulted in good agree-
ment.

In all the comparisons mentioned, the conditions have to be equal, of course, in order to
ensure valid results. Frequent mistakes are made by not aligning the following items:

e The parton density functions have to be identical. Cutoffs and approximations have to be
treated consistently.

o The phase space cuts have to be identical and internal cuts have to be analogous.

e o and ag have to be calculated to identical orders, respectively, and Agep has to be the
same.

o The jet definition scheme and the cutoff to regulate divergences has to be the same. This
refers particularly to LEPTO, which has different ways to treat the cutoff and might
therefore not cover the same phase space region.

o If a large phase space region is to be covered, one has to make sure that the integration
accuracy is still sufficient. If necessary and possible, the number of support points has to
be increased.

e The threshold for heavy quark production and the number of flavors used have to be the
same for the programs compared.
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Chapter 7

Event Selection

The analysis presented here relies on the data taken by the H1 detector in the year 1994. After
applying basic criteria, the data sample amounted to 2.74 pb™'. This sample is the same as also
used for the ag analysis [70, 71, 72].

7.1

Data Sample and Event Selection Cuts

The construction of the H1 detector as described in chapter 5 makes it necessary to distinguish
between two subsamples that roughly correspond to the kinematic range Q? < 100 GeV? as
covered by the BEMC, and Q? > 100 GeV?, which is covered by the LAr.

Both subsamples had to fulfill the following basic requirements:

The event vertex had to lie within 430 ¢m around the maximum in the vertex distribution,
which was at z = +5 cm.

W2 > 5000 GeV?. This cut ensures that the two hard jets have an invariant mass squared
of at least 100 GeV? for (24+1) jet events, if your > 0.02. Here, W? was calculated using
the double angle method, relying on the angle of the scattered electron and the angle of
the total hadronic system and not on the jet multiplicity.

For the BEMC-sample, the requirements were:

The absolute four momentum transfer Q? had to lie within the range 10 GeV? < Q? <
100 GeV?,

The polar angle of the scattered electron had to fulfill 160° < 8., < 173°.

The energy of the scattered electron E. had to be larger than 14 GeV. This cut corres-
ponds to y £ 0.5 and thus eliminates background from photoproduction. As motivated in
section 6.4, radiative DIS events are also largely suppressed and radiative corrections to
the cross section are kept small.

The LAr-sample had to meet the following criteria:

o Q> 100 GeV>.

o F. > 11 GeV.
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o y < 0.7, again to suppress photoproduction and radiative DIS events.

o 10° < #. < 150°. This cut ensures that the scattered electron is truly contained in the
LAr and that the transition region between the LAr and the BEMC is avoided.

e The quantity § = 3 ,,,(E — P.) had to meet the requirement 38 GeV < § < 70 GeV.
Here, E is the energy and P. the longitudinal momentum of the detector cluster. The
lower cut excludes events where the scattered electron stemming from photoproduction
remains inside the beam pipe. Similar to the cut in y, this cut also suppresses radiative
corrections to the cross section.

For both samples, Q% and y were calculated from the energy and the polar angle of the
scattered electron. After these cuts, the sample contained 32482 events for Q% < 100 GeV? and
6127 events for Q? > 100 GeV?.

7.2 Jet Analysis

The jet analysis was performed using the modified JADE algorithm as described in section 3.4.1.
To ensure that the NLO corrections are smaller than 30 % for all values of z and Q?, y..; was
set to 0.02. In order to contain the jet event fully in the LAr, where the hadronic energy is well
measured, the maximum jet angle 0;., was restricted to 145°.

As was observed in earlier analyses to determine ag [25, 73], the jet rate predicted by
PROJET NLO calculations is much smaller than the measured rate, especially at lower ()?
values. The reason for this is the emission of multi gluon radiation from the initial state, which
is modeled by parton showers as described in section 6.1.1. The Monte Carlo generator can
therefore also be used to determine cuts which suppress this effect.

With decreasing )%, also lower values of x are reached. In order to reduce the higher order
effects, i.e. parton showers, efficiently, an additional jet cut is necessary.

Introducing the quantity for (2+1) jets
J— 1 *
Zp = 5(1 —COSQjet), (71)

with 07, being the smaller angle of the two jets in the photon parton center of mass system and
0 < z, < 0.5, one can reduce the effect of parton showers considerably, if one applies a cut of
z, > 0.1. This can be seen in figure 7.1 for the LAr sample and for Q% > 100 GeV?*  where
;e > 10° was required. The curves are normalized to the number of events. It is demonstrated
that the shape of the data is well reproduced by the detector simulation and also by the MEPS
model on parton level. The PROJET calculation predicts however less (2+1) jet events with
small z, values (z, < 0.1) compared to the MEPS model. A cut in z, alone is not sufficient
because (2+1) jet events originating from parton showers are also concentrated at small jet
angles. This can be seen in fig. 7.1b where the distribution of the smallest jet angle in a (241)

jet event is plotted.
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Figure 7.1: (a) The ;. min distribution of the (2 + 1) jet events for Q? > 100 GeV?, z, > 0.1
and 0,,,, = 145°; (b) The z, distribution of the (24 1) jet events for Q% > 100 GeV?, ;. > 10°
and 0,,,, = 145°. In both figures the data are represented by the points with statistical error
bars only. The solid line represents the prediction of the MEPS model at the detector level and
the dashed line the prediction of the same model at the parton level. The PROJET calculation
is given by the dotted line [75].

As motivated in [70], the cut optimization was performed by using the following criteria:

o The jet rates predicted by PROJET should be close to the jet rates in the MEPS model

on parton level, both in absolute value and shape.
o The data should be described well by MEPS on the detector level.

e The correction factor applied to correct back the to parton level from the detector level

should be small.

In order to be able to go to lower values of ()%, where both the gluon induced part of the
cross section and the influence of the parton shower increase, the cuts in 8, and z, do not
suffice to fulfill the criteria mentioned above.

An additional cut in 6, has been found [74]. It is defined in the laboratory frame as the angle
of the recoiling quark in the quark parton model and is calculated from the electron variables
alone, being very efficient in removing excess parton shower events. The effect of this cut can
be seen in figure 7.2. For the further analysis, only events with 8, < 100° were accepted.

The combination of the three cuts 8., 2z, and 0, removes parton shower effects efficiently
and allows for the extension of the sample to lower Q. The distribution in the (z,Q?) plane
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Figure 7.2: The 0, distribution of the (2 4 1) jet events. (a) for Q* > 100 GeV? and z, > 0.1.
(b) for 40 < Q2 < 100 GeV?, z, > 0.1 and f,.; > 10°. All curves are normalized to the total
number of events. The error bars of the data (black points) correspond to the statistical errors

only [75].

can be found in figure 7.3. Examples of a (1+1) and a (2+1) jet event are given in figures 7.4
and 7.5, respectively. Apart from the side and front view of the events, the energy deposition is
plotted in the (n,¢) plane.
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Figure 7.3: Event distribution of the data sample in the (z,Q?) plane [76].
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Figure 7.4: Example of a (14+1) jet event.
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Figure 7.5: Example of a (24+1) jet event.



Chapter 8

Results

8.1 Jet rates

With the data sample described in chapter 7 and the Mellin transform technique as introduced in
chapter 4, the fitting of the gluon density can be performed. Analogously to the avs analysis, data
were corrected to parton level using correction factors determined by Monte-Carlo simulation.
The uncorrected and corrected jet rates, as well as the PROJET calculations for differ-
ent Agep (as used in the ag fit) for the JADE scheme are shown in figure 8.1 [75]."
The “gap” between the lowest bin and the higher bins in (* can be explained by the 6, cut.
The @* binning follows [32].

8.2 Error Analysis

The determination of the errors follows a similar procedure as in [70, 71]. However, to be
applicable to the determination of the gluon density, the errors were translated into jet rate errors
per Q? bin, according to three categories: statistical, systematic experimental and theoretical
error.

To determine the systematic experimental error, the following studies were made [75, 77]:

e The cut in z, was varied between 0.1 and 0.2 for 0., > 10°, while leaving the other
parameters at their central values. In addition, the cut in 8;., was varied between 8° and
15°, and 6,,,, between 140° and 150°, with the other parameters fixed at their central
value, respectively.

e The cut in 0, was varied between 95° and 120° with the other parameters fixed at their
central values.

e The hadronic energy scale in the detector simulation and data reconstruction was varied

by +4% for 6;.; > 10°.

The final experimental systematic error was taken to be the maximum spread of the rate
deviations from the scenarios discussed above. This automatically takes into account correlations
between the different scenarios and constitutes an upper bound of the “true” error.

!An analogous demonstration of the different parameters of the gluon fit in one plot is not feasible, since
three parameters constitute a complicated three-dimensional space. A discussion of related features is given in
section 8.3.
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Figure 8.1: Jet rates obtained with the JADE scheme [75]. Only statistical errors are shown.
In addition, PROJET calculations obtained with different Agcp are plotted.

The theoretical error was determined by the following studies, performed on generator level:

e The model dependence in the JETSET fragmentation was studied by varying the para-
meters a of the LUND model functions between 0.1 and 1, the o, parameter and the
intrinsic k; of the struck quark between 0.44 and 0.7 GeV. In addition, the cut-off para-
meters which control the parton shower generation were varied between 1 and 4 GeV
and the lowest value y.,; for which the ME calculations were carried out, was varied

between 0.005 and 0.015.

e Instead of LEPTO the HERWIG [68] Monte-Carlo model with its entirely different treat-
ment of parton showering and hadronization was used to calculate the correction factors.
The Q? and y..; dependence of the jet rates is described at the 10-20% level.

e The factorization scale /,L?c and the renormalization scale y? were varied between ?/4 and

402,

e The uncertainty of the as measurement was taken into account by varying the jet rates
by the error of the world average [27] transformed to the mean scale Q* of the bin under
consideration.



8.3. STABILITY OF THE FIT 61

Q? [GeV?] / Error

| Error source | 40...100 | 100...300 | 300...700 | 700...4000

| Statistics | 0.00814 | 0.01122 | 0.01174 | 0.01658
0t and z, cut 0.01792 0.02526 0.02544 0.04115
0, 0.00766 0.00717 0.00778 0.00352
Hadronic Energy Scale 0.00522 0.00504 0.00830 0.00882
Parton Shower and Hadronization Param. | 0.00998 0.00871 0.00740 0.01168
QCD Monte Carlo Model 0.00405 0.00739 0.00569 0.00705
[y, 1 0.01056 0.01642 0.00532 0.00562
Qs 0.00259 0.00553 0.00673 0.00758

Table 8.1: Changes in jet rates by different scenarios, used to determine the error. Values taken
partly from [75, 77].

The uncertainty induced by the different parton density function in the calculation of the
quark induced cross sections can be neglected, since the quark densities are reasonably well
known in the phase space region under consideration. The uncertainty stems mainly from the
gluon density.

Again, the theoretical error per bin was determined by taking the spread of the rate uncer-
tainty. The total error was determined by adding quadratically the statistical, the systematic
experimental and the theoretical error. Details can be found in table 8.1.2

To fix the uncertainty in 3 for “high” £, where no data are available from H1 (see figure 7.3),”
an additional point was introduced into the fit at £ = 0.2 and Q? = 20 GeV?, taking the spread
of the world error as determined in [21] into account. This increased the fit stability.

As a MINOS analysis is not possible due to the accuracy of the Mellin transforms of a few
per cent, the error was estimated by varying the parameters within their errors and taking the
spread as the error band. Details of the stability discussion can be found in section 8.3.

The x? is low (< 0.5), indicating that the error is overestimated. Note that a “crossover” is
expected for varying the parameters to determine the error [78]. This is caused by the fact that
the resulting error band is an enveloppe of the extreme gluon densities which intersect. Since
the band is essentially an upper estimate of the true error, the resulting “kink” in the band can
be accepted.

To facilitate a comparison, several parton density parameterizations are plotted in fig-
ure 8.2. The gluon density with the total error band is plotted in figures 8.3 for Q) = 20 GeV?
and Q% = 100 GeV?, obtained with the JADE scheme. As can be seen, the error band decreases
with increasing Q*. On one hand, this is an evolution effect, but on the other hand, this is also
amplified by the fact that the fit is dominated by an input around Q? = 100 GeV?.

8.3 Stability of the Fit

The reason why the MINOS error determination from [59] cannot be used lies in the particular
parameter-space properties. They are illustrated in figures 8.5 and 8.6, which were produced
by plotting the x? distribution for two parameters and one parameter, respectively, while the

It should be noted that figure 8.3 uses slightly larger errors due to a different treatment of the variation
of 8¢+ and z,. This is, however, not of real importance for the discussion presented here.
3Since € > x, this figure can illustrate the lack of data for high ¢&.
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remaining parameters were held fixed at a value near the expected fitting result. As one can
see, the resulting shapes are rather complicated. In the case where only one parameter was
varied, a clear parabola like behaviour emerges. Taking three dimensions, the picture is less
clear. Then non-diagonal effects of the correlation matrix distort the rotational-paraboloidal
shape and produce even absolute minima at the edges of the parameter-space.

When the error is determined by MINOS, each time one parameter is varied in such a way
that the x? is changed by +1, and then the others are refitted to produce a new minimum. This
procedure is only safe if the minimum under consideration is “deep” enough and a refitting does
not find new minima and thus destroys the fit.

Therefore, the procedure HESSE of [59] is used which explicitly recalculates the error matrix
by determining the second derivative matrix with finite differences and subsequently inverting
it. This method is much more stable, since finite differences are used and a refitting is avoided.
It is not as accurate as MINOS, but gives an upper boundary of the error. Therefore, it can
be employed for the purpose of fitting the gluon density. A more detailed discussion of error
treatment can be found in [58, 59].

These features of the y? function can also be used to explain why a fit using only the
three upper bins in Q? cannot necessarily be used. Apart from the fact that the gluon induced
contribution is smaller, the system is not overconstrained as in the four bin case. Then a fit
can still lead to a satisfactory minimum. However, a HESSE analysis is normally not possible
anymore. Therefore, the errors obtained in the three bin case can only be taken from the
minimum search and are an estimate of the order of magnitude, but no longer accurate. Then,
only the approximation of parabolic errors can be given. Interestingly, it is of the same order of
magnitude.

The discussion above also motivates why it is important to give the right initial step size
and error estimate as starting conditions for the fit, as only properly chosen parameters will
ensure that the local minimum is not left and the desired result is achieved.

8.4 Recombination Scheme

Since the development of the program MEPJET, one is able to study NLO cross sections for
various jet algorithms. Since Mellin transforms can be calculated presently only with PROJET,
there is no feasible procedure at the moment to perform a gluon density fit with MEPJET.

However, since the recombination scheme in PROJET is not unambiguous, it has been
shown that recalculating the NLO cross sections with MEPJET and redetermining ag yields
large discrepancies to PROJET [71]. This is in part due to the fact that the recombination
schemes used on the experimental side and the theoretical side are not the same with PROJET.
The smallest deviation has been found for the P recombination scheme.

In addition, in PROJET, terms proportional to ... - W?/scale® are neglected, and increasing
deviations are therefore found with increasing W2.

The ag determination from jets is becoming more and more a precision measurement. There-
fore, these differences are important and have to be taken into account. For the gluon density,
however, the errors are still rather large, and so the effects of these deviations are much smaller
at the moment.

Since this direct measurement can only use PROJET, a remedy has to be found to circum-
vent the problems described above. One immediate consequence is that the analysis has to be
performed in the P scheme. When this is done, the stability of the fit improves, and also the two
error bands representing the inclusion of statistical and systematic experimental error on one
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‘ Q? [GeV?] ‘ PROJET ‘ MEPJET (p scheme) ‘ Data (p scheme) ‘
40 ... 100 0.0377 0.0508 0.04159
100 ... 300 0.0718 0.0756 0.07869
300 ... 700 0.0889 0.0869 0.08587
700 ... 4000 0.1054 0.0979 0.09168

Table 8.2: Jet rates obtained by PROJET and MEPJET compared with data for the JADE
algorithm. The cuts as described in the text were applied. Taken partly from [75].

side, and the theoretical error additionally on the other side lie within each other much better,
see figure 8.4.

If one then estimates the deviation of PROJET from MEPJET by comparing the (24+1) jet
rates and takes this error into account for the lowest (Q? bin by adding it quadratically, the error
band is modified only slightly. The resulting fit can be seen in figure 8.7, the different jet rates
are shown in table 8.2. The resulting error band itself is partly reduced, even though the total
error in the lowest bin increases. This can be traced back to the error determination procedure
and mirrors the effect of a different fit result and a subsequently different parameter-space for
the error determination as discussed above.

Another possible remedy is the introduction of a “correction factor” for the (241) cross
section into the fit. Doing this globally, again the error band is not changed much, see figure 8.8.
This indicates that the deviation from MEPJET is still within the error range already determined
independently, and thus does not make a big effect. Of course, when this analysis is studied
further, the decrease of errors will necessitate a much closer look at these discrepancies. However,
the resulting “kink” is much more pronounced. This can be due to the chosen mathematical form
of equation 4.17, since the choice of a particular function introduces a bias into the capability
to describe the desired functional behaviour. Then, the intersection of the possible functions
in the error determination procedure can stem from the inherent limitations. It has become
pronounced by the improved understanding of the errors and deserves further study.

A more sophisticated correction factor approach would be the correction in bins of W2 in
the Mellin transform calculation. This could be done in one run of PROJET, if one determines
W? for each cross section weight being calculated, and modifies the weight according to the
correction determined in the W? bin under consideration [79]. Even if this procedure takes the
implicit £ integration much better into account, which is important from a theoretical point of
view, the effects should be small at the current level of experimental accuracy. But it should
improve the stability of the fit and smoothen the error band, indicating a more stable situation.

In addition, different cuts in kinematical and jet definition variables could be looked for
which reduce the discrepancy between PROJET and MEPJET. One possible cut could be in
x, since the agreement for higher z is much better between the two programs. And relying
on lower values in W? would ensure that the terms neglected in PROJET do not distort the
cross section. With the statistics available today, this does not seem to be feasible, because the
remaining number of events is too small to perform a meaningful measurement.

Therefore, it would be very desirable to have additional integration programs to study these
effects further. Since MEPJET is still recent and cannot be cross checked with independent
calculations, the need for additional programs is evident. A new program based on the dipole
formalism [47] will shed new light on this issue. In addition, an extension of PROJET is
necessary in the future to be able to calculate Mellin transforms properly and investigate the
effects in more detail.



64 CHAPTER 8. RESULTS

8.5 x-Distribution

An interesting question is, whether the binning can be changed from ()? to z, since this seems to
be more natural with respect to the quantity under consideration, the gluon density. However,
for several reasons, this does not seem to be advantageous at the moment. As can be seen from
figure 8.9, which shows an z distribution for the complete Q% range and with the cuts described
above, a binning in x would mean the subtraction of large terms to yield a small cross section,
as described in [32]. This puts additional requirements on the bin selection and the accuracy
with which the Mellin transforms are calculated.

In addition, the shape of the distribution is rather complicated. This stems to some degree
from the fact that two samples are used, as can be motivated with figure 8.1, where the BEMC
and LAr sample are clearly separated, in addition by a cut in 6,. A consequence is a more
difficult search for a useful binning that fulfills the requirements mentioned above.

In general, g(¢&, Q?) depends on two input quantities, and therefore, it is not clear a priori,
which binning is to be chosen. A binning in both x and Q?* cannot be done right now due to
missing statistics.

8.6 Higher Statistics

As was described in [80], higher statistics induced by higher luminosity would enable a much
more accurate determination of the gluon density and even a discrimination between several
of the parameterizations available today. In [80], two scenarios were studied. One essentially
consists of a gluon density measurement with today’s luminosity and error analysis. However,
the improvements in the error analysis induced by MEPJET are not yet included. Figure 8.10
shows the result, which is essentially similar to the study presented above. In a second scenario,
it was assumed that due to a higher luminosity (of the order of 250 pb™') and lower errors,
the theoretical error could be neglected and that the systematic error would be halved. Due to
much tighter cuts, the systematics would essentially remain the same, but allow for the dramatic
reduction in systematic error. The result is shown in figure 8.11, and it is clearly obvious that
a discrimination between different parameterizations will be possible.

Comparing these results with the data analysis presented above, it seems that the improve-
ment caused by the recent theoretical development allows already for a much smaller error band.
Therefore, the figures 8.10 and 8.11 should be taken as an illustration of what can be achieved
with a substantially increased luminosity.
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Figure 8.2: Commonly used gluon density parameterizations, plotted for the scales Q? =

20 GeV? and Q? = 100 GeV?>.
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Figure 8.3: Fitted gluon density obtained from data with the JADE scheme, plotted for the
scales Q2 =20 GeV? and Q% = 100 GeV2. The shaded area denotes the total error band.
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Figure 8.4: Fitted gluon density obtained from data with the P scheme, plotted for the scales
Q% = 20 GeV? and Q% = 100 GeV?2. The inner shaded area includes the statistical and systematic
error, the outer band includes the total error.
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Figure 8.5: Two-dimensional y? distributions for different parameter-space projections obtained
for a typical fit close to the minimum. The third parameter was held fixed at the given value.
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Figure 8.7: Fitted gluon density obtained from data with an additional error for the lowest Q?
bin as estimated by MEPJET, plotted for the scales Q? = 20 GeV? and Q2 = 100 GeV?. The

shaded area denotes the total error band.



8.6. HIGHER STATISTICS 71

£9(€,Q%)

£9(5,Q%)

Figure 8.8: Fitted gluon density obtained from data with a correction factor for the lowest ?
bin as determined by MEPJET, plotted for the scales Q? = 20 GeV? and Q% = 100 GeV?. The

shaded area denotes the total error band.
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Figure 8.9: The z-distribution of the data sample with the cuts used in this analysis; k denotes
the bin-width factor.
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Figure 8.10: Fitted gluon density obtained with a scenario available with today’s luminosity,
plotted together with commonly used gluon density parameterizations. The inner error band
includes statistical and systematic error, while the outer band covers the total error. For details
see text and [80].
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Figure 8.11: Fitted gluon density obtained with the high luminosity scenario, plotted together
with commonly used gluon density parameterizations. The error band includes the total error,
assuming a large reduction due to tighter cuts. For details see text and [80].



Chapter 9

Conclusion and Outlook

The determination of the gluon density in NLO continues to be a very interesting subject. Since
the gluon density is still the least well known parton density, a more precise determination is
very desirable for a better understanding of the proton structure.

It has been shown in this analysis that it is possible to directly measure the gluon density
in NLO from jets. The Mellin transform method was introduced, and it was shown that it is
possible to perform a fit of the gluon density, because the method allows to reduce the large
computing time needed for the repeated calculation of NLO cross sections. A fit is the only
way to determine g(¢,Q*) in NLO, since the gluon momentum fraction cannot be reconstructed
any more. In order to be meaningful, parton densities have to be determined at least in NLO
because of scale uncertainties.

The Mellin transform technique itself is universal, i.e. can in principal also be applied to
other types of collisions. One application might be the extension to the determination of the
gluon density from pp collisions at the Tevatron.

The measurement was performed and a gluon density was fitted from (2+1) jet data taken
by H1. The region covered is 0.02 < ¢ $ 0.1 for a Q? range of 40 < Q? < 4000GeV>.

The £ region could previously only be investigated indirectly by performing global fits to
world data. This is the first time that an explicit constraint is put on the gluon density in this
domain. It connects the measurements performed with fixed-target experiments, direct photon
production of pp collisions and the determination of the gluon density via scaling violations
of Fy. Furthermore, it is the first direct NLO measurement of this quantity.

Other jet algorithms and a refined theoretical understanding will enable an extension of the
phase space region to lower £. In addition, a higher luminosity of HERA will allow for much
tighter cuts to reduce systematic uncertainties, which will eventually lead to a discrimination
between given parameterizations.

Another tool that would be very helpful is a NLO event generator program. Here, much
progress will have to be made to deal with negative weights that are used today, but such a
generator program would open the door to a complete NLO description on the experimental side.
At the same time, the improvement in the correction factor description would reduce systematic
uncertainties further.

Since the determination of g is maturing into a precision experiment, a simultaneous meas-
urement of the gluon density and ag will be possible, thus enabling the determination of Agep
in one experiment. This combination will necessitate further systematic and theoretical studies,
since then the world knowledge of these quantities will not enter the determination anymore,
contrary to the determination presented here.
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Therefore, the analysis of jets and the extraction of important QCD quantities will be an
interesting field in the future, and it is important to continue the investigation.



Appendix A

Moment Relations

The aim of this appendix is to fill in the technical details which have been omitted in [32]. We
have to prove the following statements [81]:
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Appendix B

Program Parameters

The program PROJET allows the determination of Mellin transforms and the subsequent writing
to a file for further usage. The interface that is necessary to enable PROJET to do this is
described below.

Furthermore, the format is documented how the transform file is written, such that it can
be read by the evolution and fitting package. A description of the most important routines of
this package conclude this appendix.

B.1 PROJET-switches

The steering of PROJET is essentially identical to the “pure” version as described in the PRO-
JET manual. However, in order to enable PROJET to calculate transforms, the main program
had to be modified and additional cuts had to be implemented in the function [USERCUT.
These modifications are documented in the code. An overview of the steering parameters is
given in table B.1.

The start of the moment calculation loop is indicated by putting the following line into the
steering file:

-4,0

B.2 Special PROJET-COMMONSs

In PROJET, the integer variable IHAMPEL must be set to 1 by hand to allow for “negative”
parton densities that will occur during moment calculation due to complex transforms. This is
done by the steering parameter 10016:

COMMON /HAMPEL/
& THAMPEL

It should be noted that the standard PDFLIB package tests parton density values returned
from the calculation routine and sets them to zero, if negative values are found. Therefore, the
internal private routine in PROJET has to be used to branch to the moment calculation routine
which is implemented in STRPRIV.

Other COMMON blocks used internally are documented in the code.
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‘ switch # ‘ possible values ‘ default ‘ description
‘ 10016 ‘ 0,1 ‘ 0 ‘ switch for negative allowed pdfs
12001 — 12020 — 0 reserved for PDFLIB steering, not used

12030 0 0 if 0, moment loop can be started by “-4”
12031 -1,0,1 0 internal, determines Re or Zm transform part
12032 0 0 internal
12033 1-32 1 start of loop for moment points
12034 1-32 32 end of loop for moment points
12050 -1-2 0 switch for parton distribution in private routine
12052 -1,0 0 internal, has to be 0
12053 -1,1 1 internal, has to be 1
12053 0-2 2 internal, has to be 2
12054 0,1 0 internal, has to be 0
12055 0,1 0 internal, has to be 0
12056 0,1 0 internal, has to be 0
12057 0,1 0 allows only gluon (0) or quark (1) induced o
12058 0,1 0 if 1, used for the computation of &
12099 0,1 0 select normal PROJET (1) or moment version (0)
12151 0. value @ for moment calculation
12152 0. fixed scale in STRPRIV; if <0, not used
12155 0. z, cut; if <0, no cut
12156 0. 6, cut (in degrees); if < 0, no cut
12157 0. O et min (in degrees) according to 12058
12158 180. O et mar (in degrees) according to 12058
12201 file name to write transforms to
12202 title of fit

Table B.1: Private switches and parameters used for the moment calculation in PROJET. The
numbering scheme of PROJET is used. “Default” denotes the standard setting by the steering
file. Re and Zm represent the real and imaginary part of the transforms, respectively.

B.3 File Formats

To exchange data between the calculation of Mellin transforms in PROJET and the fitting
program which uses the evolution code of [82], two files are needed. The first file contains the
support points, which can be generated by uncommenting the appropriate lines in the evolution
code. Once this file exists, it has to be read by the PROJET main program. The path has to
be hardwired in the present version; unit 41 is used.

The second file contains the Mellin transforms. After the fit title, a reference cross section
is written as an unformatted double precision variable to unit number 42. It is followed by
the error, and subsequently two integer numbers that are set to zero. Then the transforms are
written. Each line contains the transform in double precision, the integration error and two
integer switches, [IUSERPAR(30) and IUSERPAR(31). The first indicates whether the real or
imaginary part was written, which alternates. A “1” stands for the real part, while a “2”7 denotes
the imaginary part.
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After the last transform is written, the file is terminated in the following way:
-1.000000000000000 -1.000000000000000 -1 -1

More details can be found in the code, which is amply commented.

B.4 Support Points for Transform Inversion

The numerical inversion of the Mellin transform in equation 4.15 makes use of fixed support
points, allowing for a non-adaptive 8-point Gaussian quadrature. Since 32 support points are
calculated, four subsequent Gaussian quadratures are computed. The boundaries are listed
in table B.2. The points are spaced more closely for small z, since here the influence on the
integration kernel is largest. Furthermore, z,,,, =9, ¢ = 1.8, and ¢ = /2. The support points
within the Gaussian quadrature can be found in [57]. Of course, the normalization to the lower
and upper boundary has to be applied.

# of boundary point || 1 2 3 4 5
Zin/maz 00]1.5]3.0[6.09.0

Table B.2: Support point boundaries z,,i/mqer for the numerical inversion of equation 4.15 to
calculate cross sections via Mellin transforms.

B.5 The Fitting Program

The fitting program is an independent program that has to be run separately. It essentially
works as a frame around the evolution package of [82] and performs the fit.

The program itself reads the transforms from file and initializes MINUIT and the evolution
package. Once this is done, only the gluon parameters within the routine INPFIT have to be
modified. Then, the cross section can be obtained by calling INV in the fitting procedure.

The modifications that were necessary to calculate the cross section by a product of Mellin
transforms are documented in the routine INV. In the code, also the COMMON blocks to
transfer information between the routines for fitting purposes, are described in detail.
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