Interpretation und Analyse von Testmessungen mit Insert-Modulen und Untersuchungen zur Ortsrekonstruktion des SpaCal im inneren Bereich

Diplomarbeit im Studiengang Physik

am Lehrstuhl für Experimentelle Physik V im Fachbereich Physik der Universität Dortmund

> vorgelegt von Karsten Pfeiffer aus Dortmund

> > Januar 1997

Inhaltsverzeichnis

1	\mathbf{Ein}	leitung	4
	1.1	Geschichte der Elementarteilchenphysik	4
	1.2	Der Speicherring HERA am DESY	5
	1.3	Der H1 Detektor	7
	1.4	Das rückwärtige Kalorimeter bei H1	10
	1.5	Der innere Bereich des rückwärtigen Kalorimeters	14
	1.6	Ziel der vorliegenden Arbeit	15
2	Phy	zsikalische Grundlagen	16
	2.1	Kinematik von Streuprozessen	16
		2.1.1 Beschreibung einer relativistischen Streuung	16
		2.1.2 Elektron - Protonstreuung	18
	2.2	Grundlagen der Kalorimetrie	20
		2.2.1 Wechselwirkung von Photonen mit Materie	20
		2.2.2 Wechselwirkung von geladenen Teilchen mit Materie	23
		2.2.3 Elektromagnetische Schauer	26
		2.2.4 Hadronische Schauer	29
	2.3	Kalorimeter	31
		2.3.1 Bau– und Funktionsweise von Kalorimetern	31
		2.3.2 Energieauflösung von Kalorimetern	34
	2.4	Das elektromagnetische SpaCal bei H1	34
	2.5	Simulation von Teilchenschauern	36
		2.5.1 Das Programmpaket GEANT	37
3	Auf	bau und Durchführung von Testmessungen für die SpaCal-Insert	
	Mo	dule am DESY	40
	3.1	Motivation für den Bau neuer Insertmodulen	40
	3.2	Aufbau und Herstellung der Insert-Modulen	40
	3.3	Aufbau der Teststrahlmessung	44
	3.4	Meßprogramm	48
	3.5	Kalibration des Meßaufbaus	49
		3.5.1 Bestimmung der optimalen Verzögerungszeit der Ausleseelektronik	49
		3.5.2 Festlegen eines absoluten Koordinatensystems	49
		<u> </u>	

		3.5.3 2 5 4	Energiekalibration der Auslesekanäle	51 54
	a c	3.3.4 D	Stabilitat der Energiekalibration	54 50
	3.0		ale der Testmessungen	
		3.0.1	Raumliche Homogenitat der Insertmodule	
		3.6.2	Energieauflosung	61 ca
		3.6.3	Uberprutung des Koordinatensystems	63
4	Ort	srekon	struktion im SpaCal	65
	4.1	Grund	lagen der Ortsrekonstruktion	66
	4.2	Logari	thmische und Wurzelgewichtung	67
	4.3	Die H1	l-Standard Rekonstruktionsmethode	71
		4.3.1	Schwierigkeiten in der Ortsrekonstruktion im inneren Bereich	72
		4.3.2	Die Insert-Zellen in der H1-Standard Rekonstruktionsmethode	72
		4.3.3	Analyse der Schwächen der H1-Standard Rekonstruktionsmethode	76
5	Alt	ernativ	e Methoden der Ortsrekonstruktion	78
	5.1	Theore	etische Vorüberlegungen	78
	5.2	Optim	ierung der alternativen Rekonstruktionsmethode	81
		5.2.1	Beschreibung der verwendeten Simulation und der Schnitte zur Er-	
			eignisselektion	81
		5.2.2	Das Optimierungsverfahren zur Bestimmung optimaler Parameter	82
		5.2.3	Ergebnis der Optimierung	85
	5.3	Verbes	serte Rekonstruktion mit Hilfe der Vetolagen	89
		5.3.1	Theoretische Vorüberlegungen	90
		5.3.2	Zusätzliche Schnitte zur Ereignisselektion	90
		5.3.3	Ergebnis der Optimierung der Methode mit Verwendung Vetolagen	91
	5.4	Weiter	e untersuchte Rekonstruktionsverfahren	93
	5.5	Gewin	n im zugänglichen Bereich der $x-Q^2$ -Ebene \ldots \ldots \ldots	94
6	Ort	srekon	struktion mit den Daten der Teststrahlmessung	97
	6.1	Anwer	dbarkeit der Rekonstruktionsmethoden auf die durchgeführten Test-	
		strahlr	nessung	97
	6.2	Vorunt	tersuchungen an Daten einer Monte-Carlo Simulation	99
	6.3	Vergle	ich der beschriebenen Rekonstruktionsmethoden	101
	6.4	Ergebr	nis der Untersuchungen	102
7	\mathbf{Zus}	ammer	nfassung und Ausblick	105

Kapitel 1

Einleitung

In diesem Kapitel wird ein kurzer Abriß der Geschichte der Hochenergiephysik und eine *beschreibende* Einführung in die experimentellen Methoden der Teilchenphysik gegeben. Im folgenden Kapitel wird dann näher auf die physikalischen Grundlagen der Meßmethoden der Teilchenphysik eingegangen.

1.1 Geschichte der Elementarteilchenphysik

Schon immer untersuchte der Mensch seine Umgebung und versuchte sie zu verstehen, um daraus Nutzen zu ziehen. Aber durch seine Neugier forscht der Mensch auch in Bereichen, die über das zum Überleben Notwendige hinaus gehen. Dabei sind zwei Gebiete der Wissenschaft, die Astronomie und der Mikrokosmos, die Welt des Allerkleinsten, besonders hervorzuheben: Das unvorstellbar Kleine und Große, das Unfaßbare zu verstehen ist eine große Herausforderung, und die Bewältigung dieser Aufgabe eine große Befriedigung für den Forscher.

Schon die griechischen Philosophen [1] spekulierten über den Aufbau der Materie. Bei Aristoteles (384 - 322 v. Chr.) sind die vier Elemente *Feuer*, *Erde*, *Wasser* und *Luft* zu finden, deren unterschiedliche Kombination in Dingen die Komplexität der Welt erklärte. Demokrit (470-380 v. Chr.) entwickelte eine Atomtheorie, derzufolge alle Eigenschaften der Dinge auf Form, Lage und Größe von undurchdringlichen und unveränderlichen Atomen, die sich im leeren Raum bewegen, zurückgeführt werden können. Viele dieser Gedanken und Begriffe sind noch heute in der Chemie und der Physik zu finden. Ausgangspunkt all dieser frühen Modelle der Materie waren aber rein philosophische, also theoretische, Überlegungen.

Erst in diesem Jahrhundert war es durch den technologischen Fortschritt möglich, in die Größenordnung der Atome vorzudringen, um die Materie *experimentell* zu untersuchen. Rutherford [2] wies mit seinem Streuexperiment 1911 zum ersten Mal eine Struktur des Atoms nach: Es setzt sich aus einem kompakten Kern und Elektronen zusammen, die diesen umgeben. Das Atom stellte sich als zum größten Teil leer heraus. Kurze Zeit später wurden die Bausteine des Atomkerns identifiziert: Entdeckung des Protons 1920 durch Rutherford und Entdeckung des Neutrons 1932 durch Chadwick. Seitdem wurden viele weitere "Elementarteilchen" durch Streuexperimente gefunden, und deren innere Struktur durch ihre Zerfallsreaktionen und –produkte und mit spektroskopischen Methoden bestimmt. Dabei wurden schnell eine Reihe von Gesetzmäßigkeiten festgestellt und es wurde offensichtlich, daß alle Zerfälle und Übergänge von Elementarteilchen gewissen Regeln unterworfen sind. Ähnlich der elektrischen Ladung bleiben auch andere abstrakten Größen in Teilchenreaktionen erhalten. Das Konzept der *Erhaltung von "Quantenzahlen"* erlaubt es, Reaktionen qualitativ zu verstehen. Die gesammelten Beobachtungen führten schließlich zum sogenannten *Standardmodell*, in dem zufriedenstellend alle beobachteten Teilchen, sowie deren Wechselwirkungen, quantitativ mit nur 25 Elementarteilchen beschrieben werden können. Dies sind:

- 12 Fermionen, die die Bausteine der Materie bilden: 6 Quarks und 6 Leptonen, welche jeweils paarweise in 3 Familien zusammengefaßt werden.
- 12 Bosonen, die die vier fundamentalen Kräfte vermitteln: Die acht Gluonen der starken Wechselwirkung, das Photon der elektromagnetischen Wechselwirkung und die drei Vektorbosonen der schwachen Wechselwirkung, sowie
- Das Higgs-Teilchen, welches ebenfalls ein Boson ist.

Das Graviton¹, das postulierte Austauschteilchen der Gravitation, und das vorhergesagte Higgs-Teilchen konnten bisher noch nicht nachgewiesen werden.

Es werden jedoch nicht alle Parameter des Standardmodells vorausgesagt. 18 Größen müssen ad hoc eingeführt, das heißt aus einer Messung bestimmt werden, unter ihnen die boabachteten Massen der Teilchen und die Kopplungskonstanten, die die Stärke der Wechselwirkungen beschreiben. Der Erfolg dieser Theorie liegt darin, daß die Fülle der Beobachtungen (hunderte von "Elementarteilchen", deren Substruktur und Tausende von Reaktionen) nicht nur qualitativ sondern auch quantitativ mit diesen wenigen Parametern beschrieben wird.

1.2 Der Speicherring HERA am DESY

Um Abstände im subatomaren Bereich untersuchen zu können, sind hohe Energien notwendig. Aus der Wellenoptik folgt, daß es unmöglich ist, Strukturen von Objekten aufzulösen, die kleiner als die Wellenlänge der zur Beobachtung benutzten Streusonden sind. Die De-Broglie-Wellenlänge $\lambda = \hbar/p$ eines quantenmechanisch beschriebenen Teilchens ist eine Funktion seines Impulses. Daher sind hohe Teilchenimpulse und wegen $E^2 = (m_o c^2)^2 + (\vec{pc})^2$ auch hohe Teilchenenergien nötig, um kleine Strukturen aufzulösen. Hohe Teilchenenergien werden auch benötigt, um Teilchen großer Masse zu erzeugen. In tiefinelastischen Streuprozessen wird dabei ein Teil der kinetischen Energie des

¹Das Austauschteilchen der Gravitation, das *Graviton*, gehört nicht zum Standardmodell, da bis jetzt keine konsistente Quantentheorie der Gravitation entwickelt werden konnte.

Abbildung 1.1: Der HERA - Speicherring am DESY in Hamburg und dessen Vorbeschleuniger

Anfangszustandes in Ruhemasse und kinetische Energie von Teilchen / Antiteilchen umgewandelt².

Daher werden Teilchenbeschleuniger gebraucht, um Teilchen die benötigte hohe Energie zuzuführen. Solche Beschleuniger befinden sich zum Beispiel am Forschungszentrum DESY³ in Hamburg.

Der größte dort installierte Speicherring ist HERA⁴ (siehe Abbildung1.1 und Tabelle 1.1). Dort werden Elektronen⁵ (DESY II) und Protonen (DESY III) durch Zufuhr von Energie in Form elektromagnetischer Wellen in Hohlraumresonatoren auf hohe Impulse beschleunigt, und gegenläufig in den Speicherring PETRA⁶ eingeschossen. In PETRA werden die bereits vorbeschleunigten Teilchen in getrennt geführten Systemen weiterbeschleunigt und dem Speicherring HERA zugeführt. Hier erreichen sie ihre Endenergie und werden gespeichert. Dabei werden Energien von 820 GeV für Protonen , und von 27.7 GeV für Elektronen erreicht. Dies entspricht einer nutzbaren Schwerpunktsenergie von etwa 300 GeV (siehe Kapitel 2). Die mittlere Lebensdauer der Luminosität beträgt

²Die Äquivalenz von Energie E und Ruhemasse m_o wird durch $E = m_o c^2$ beschrieben. Hierbei ist c die Lichtgeschwindigkeit. Diese Relation wird in der Populärwissenschaft häufig "die Einstein-Relation" genannt

 $^{^{3}}$ Deutscher Elektron-SYnchrotron

 $^{{}^{4}}$ Hadron-Elektron Ring-Anlage

⁵Elektronen und Positronen werden im folgenden synonym gebraucht.

⁶**P**ositron-**E**lek**T**ron **R**ing**A**nlage

HERA - Spezifikationen				
Umfang	$6.336 \ km$			
Teilchenpakete pro Ring (,,Bunches")	210 Pakete			
Zeit zwischen Kollision der Pakete	96 ns			
Luminosität $\mathcal L$	$16 \cdot 10^{30} \ cm^{-2} s^{-1}$			
Strahlenergie (e^{\pm})	$27.7 \ GeV$			
Teilchen pro Paket (e^{\pm})	$3.65 \cdot 10^{10} \ (I \approx 58 \ mA)$			
Strahlenergie (p)	$820 \ GeV$			
Teilchen pro Paket (p)	$10^{11} \ (I \approx 158 \ mA)$			
Schwerpunktsenergie \sqrt{s}	300 GeV			

Tabelle 1.1: Die Designwerte von HERA nach [3]

10 Stunden.

Es gibt vier Wechselwirkungspunkte am Speicherring, an denen die vier Detektoren H1, HERA-B⁷, ZEUS und HERMES plaziert sind, um die Reaktions- und Zerfallsprodukte von Streuprozessen nachzuweisen. Dabei nutzt HERMES nur die Elektronen und ein feststehendes Target⁸ und HERA-B nur die Protonen und ein feststehendes Target. Bei ZEUS und H1 durchdringen sich beide Strahlen im Zentrum des Detektors, um die Streuung von Elektronen an Protonen zu untersuchen. Die Untersuchung der Kinematik der auftretenden Reaktionen erlauben ein besseres Verständnis des Aufbaus der "Elementarteilchen" und ihrer Wechselwirkungen untereinander.

1.3 Der H1 Detektor

Eine detaillierte Beschreibung des H1-Detektors findet sich in [4]. Dort werden Aufbau, Funktion und die erreichte Meßgenauigkeit aller seiner Komponenten beschrieben.

Der seit 1991 in Betrieb befindliche H1 Detektor (siehe Abbildung 1.2) besteht aus mehreren Komponenten, die den Wechselwirkungspunkt zwiebelschalenförmig umgeben, um möglichst das gesamte Raumwinkelvolumen um den Wechselwirkungspunkt abzudecken. Da bei HERA das Schwerpunktsystem nicht mit dem Laborsystem übereinstimmt, ist der H1-Detektor asymmetrisch aufgebaut. Die meisten Teilchen werden in einer tiefinelastischen Wechselwirkung in den Vorwärtsbereich des Detektors gestreut⁹.

Aufgabe eines Detektors ist die Teilchenartbestimmung und Orts- und Energierekonstruktion der nachzuweisenden Produkte einer Teilchenreaktion mit hoher Effizienz. Die

⁷HERA-B befindet sich noch im Bau.

⁸Ein Target ist ein makroskopischer Wechselwirkungspartner, wie zum Beispiel ein Gas oder ein Festkörper, welcher im Laborsystem ruht.

⁹Man spricht dabei vom sogenannten *Lorentzboost*, der sich durch die Lorentztransformation vom Schwerpunkts- in das Laborsystem ergibt.

wichtigsten Komponenten des H1-Detektors werden im folgenden kurz beschrieben. Die angegebenen Ziffern beziehen sich auf Abbildung 1.2. Der innere Bereich des Detektors befindet sich in dem homogenen Magnetfeld (B=1.15 T) einer Spule [6], um über die Krümmung der Bahnen geladener Teilchen deren Impuls bestimmen zu können. Dazu sind nahe dem Wechselwirkungspunkt¹⁰ um das Strahlrohr hochauflösende Spurkammern 2 + 3 plaziert, mit deren Hilfe mit großer Genauigkeit ($\Delta x = 170 \mu m$) die Spuren ionisierender Teilchen bestimmt werden können. Durch Extrapolation der Spuren kann der Ort der Wechselwirkung rekonstruiert werden. Die Spurkammern gestatten eine Impulsauflösung von $\sigma_p/p \leq 3 \cdot 10^{-3} p$. Die Impulsauflösung wird also mit zunehmendem Impuls schlechter, Kalorimeter sind daher eine notwendige Ergänzung. Außerhalb der Spurkammern befinden sich zwei Flüssig-Argon Kalorimeter 4 + 5, welche den größten Teil des Raumwinkels (4° $\leq \Theta \leq 153^{\circ}$) umschließen¹¹. Sie dienen zur Energiebestimmung von elektromagnetisch und stark wechselwirkenden Teilchen mit einer Energieauflösung von $\sigma_E/E = 12\%/\sqrt{E} \oplus 1\%$ für elektromagnetische und $\sigma_E/E = 50\%/\sqrt{E} \oplus 2\%$ für hadronische Schauer. Die drei-dimensionale Segmentierung ermöglicht eine gute Trennung von hadronischen und elektromagnetischen Schauern. Zusammen mit Informationen aus den Spurkammern sind so Teilchenidentifikationen möglich.

Im Polarwinkelbereich 152° $\leq \Theta \leq 177.5^{\circ}$, gemessen zur Richtung des einlaufenden Protons – im weiteren als rückwärtiger Bereich bezeichnet – dienen ein elektromagnetisches und ein hadronisches Spaghetti-Kalorimeter (SpaCal) [5] 12 der Energie– und Impulsbestimmung gestreuter Teilchen. Sie haben eine Energieauflösung von $\sigma_E/E =$ $7.1\%/\sqrt{E} \oplus 1\%$ für elektromagnetische und $\sigma_E/E = 13.3\%/\sqrt{E} \oplus 3.6\%$ für hadronische Schauer und sind in der Lage den Ort des Schauers mit einer Ortsauflösung von $\Delta x = 5 mm$ zu rekonstruieren. Stehen Spurinformationen in der unmittelbar vor dem SpaCal befindlichen Driftkammer BDC¹² zur Verfügung, so wird eine Ortsauflösung von $\Delta x = 0.5 mm$ erreicht. Die Elektronen werden vor allem in den rückwärtigen Bereich gestreut, wobei der Nachweis der Elektronen unter möglichst großen Winkeln wünschenswert ist. Diese Detektorkomponenten sind Gegenstand der vorliegenden Arbeit und werden ausführlicher in Kapitel 1.4 beschrieben.

Umschlossen wird dieser Komplex von einem Eisenjoch <u>10</u>, welches zur Rückführung des magnetischen Feldes dient. Es ist mit Streamerröhren zum Nachweis von Myonen und noch nicht vollständig absorbierten hadronischen Schauern bestückt. Ergänzt wird das Myon-Detektor-System durch die Myonkammern <u>9</u> und den Myon-Toroid-Magneten <u>11</u>. Hier können hochenergetische Myonen in Vorwärtsrichtung nachgewiesen werden.

Bei kleinen Polarwinkeln (4° $\geq \Theta \geq 0.6°$) dient ein Cu-Si-Kalorimeter 13 (PLUG¹³) zum Nachweis von Hadronen. Neutrinos werden indirekt durch die Messungen des fehlenden Transversalimpulses nachgewiesen.

Die Detektorinformationen stehen einem mehrstufigen Triggersystem während des Betriebs zur Verfügung. Es dient dazu, den Detektor nur bei Erfüllung bestimmter, vom

¹⁰Der Wechselwirkungspunkt wird häufig auch als Vertex bezeichnet.

 $^{^{11}\}mathrm{Im}$ H1-Detektor werden Winkel immer auf die Protonstrahlrichtung angegeben

¹²**B**ackwards **D**rift Chamber

¹³engl. PLUG=Stöpsel

Abbildung 1.2: 3-dimensionale Aufsicht auf den H1-Detektor und Bezeichnung seiner Komponenten

Abbildung 1.3: Exemplarisches Ereignis, bei dem das Elektron im rückwärtigen Bereich nachgewiesen wird. Protonrichtung in positiver z-Achse

Benutzer wählbarer, topologischer Kriterien auslesen zu lassen. Dies ist zur Reduktion der Datenrate von 10 MHz – dies entspricht etwa einem Ereignis pro kreuzendem Teilchenpaket – auf wenige Hz notwendig. So können bestimmte Klassen von Ereignissen ausgewählt und nicht gewünschte Ereignisse, der sogenannte Untergrund, unterdrückt werden. Die gewonnenen Informationen werden auf Massenspeichermedien zur späteren Analyse gespeichert.

Exemplarisch ist in Abbildung 1.3 ein Ereignis einer tiefinelastischen Streuung im H1-Detektor in einer longitudinalen Projektion dargestellt. Zu sehen sind die Spur eines gestreuten Elektron im rückwärtigen Bereich (rechts), Signale im Vorwärtskalorimeter (links), die von deponierter Energie des Protonrests herrühren und ein "Jet"von Teilchen in den Spurkammern und im Flüssig-Argon Kalorimeter (unten). Jets sind Teilchenschauer, die aus dem gestreuten Parton (siehe Kapitel 2) entstehen und in einem engen Kegel Energie deponieren.

1.4 Das rückwärtige Kalorimeter bei H1

Da die die Kinematik der Reaktion $e + p \rightarrow e + X$ charakterisierenden Größen allein aus der Kenntnis des Endzustandes des gestreuten Leptons und des Anfangszustandes der Reaktion gewonnen werden können, ist eine genaue Energie- und Winkelmessung im rückwärtigen Bereich besonders wichtig. Diese Aufgabe übernehmen im H1-Detektors das rückwärtige Kalorimeter SpaCal und die BDC (Abbildung 1.4).

Die Energiemessung geschieht mit Hilfe des elektromagnetischen und hadronischen Spa-

Abbildung 1.4: Die Position der zwei rückwärtigen Kalorimeter und der BDC im H1-Detektor. *SpaCal elm.:* elektromagnetisches totalabsorbierendes Kalorimeter, *SpaCal hadr.:* Hadronisches Kalorimeter gleicher Bauart, *BDC:* Driftkammer zur Ortsbestimmung.

Cal. Zur Ortsrekonstruktion dient die rückwärtige Driftkammer (BDC), welche den Ort von Ionisationspuren geladener Teilchen mit einer Ortsauflösung von 0.5 mm rekonstruieren kann (Abbildung 1.4). Da auf Grund von Sekundärteilchen die Spurrekonstruktion in der BDC nicht immer eindeutig ist, muß der Ort des Schauers mit Hilfe des transversalen Schauerprofils im elektromagnetischen SpaCal rekonstruiert werden, um die dem Schauer korrespondierende Teilchenspur in der BDC zuzuordnen. Die Ortsrekonstruktion im SpaCal ist auch wichtig zum Nachweis von Photonen aus QED-Compton-Ereignissen und π^{o} -Zerfällen und anderen Teilchen, die keine Spuren in der BDC erzeugen.

Auf die Ortsrekonstruktion im SpaCal wird in Kapitel 4 näher eingegangen.

Das hadronische und das elektromagnetische SpaCal sind prinzipiell gleich aufgebaut, daher soll hier exemplarisch das elektromagnetische Kalorimeter beschrieben werden. Die genauen Abmessungen aller Komponenten können aus Tabelle 1.2 entnommen werden. Eine vollständige Beschreibung des SpaCal ist in [5, 6] zu finden.

Die unterschiedliche Größe der Komponenten beider Kalorimeter wird in Kapitel 2 erläutert. Bei einer Abweichung der Abmessungen des hadronischen SpaCal von der des elektromagnetischen Kalorimeters wird im folgenden die Größe der Komponenten des hadronischen Kalorimeters in Klammern genannt.

Das SpaCal ist ein Samplingkalorimeter¹⁴ aus 0.76 mm (1.9 mm) dicken und 81 mm (120 mm) breiten Bleiplatten von 25 cm Länge als Absorber– und Schauermaterial und 90

¹⁴Im Gegensatz zu homogenen Kalorimetern bestehen Samplingkalorimeter aus einem Gemisch zweier oder mehrerer Materialien, die als Schauermedium und als Nachweismedium dienen

Komponente	Abmessung $(h \cdot b \cdot l)$	Abmessung $(h \cdot b \cdot l)$
	elektromagnetisch	hadronisch
Bleiplatten	$8.1cm\cdot 0.076cm\cdot 25cm$	$12.0cm\cdot 0.190cm\cdot 25cm$
Rillen in Bleiplatten	$0.052cm\cdot 0.054cm\cdot 25cm$	$0.110cm\cdot 0.110cm\cdot 25cm$
szintillierende Fasern	$0.05cm\cdot 0.05cm\cdot 25cm$	$0.10cm\cdot 0.10cm\cdot 25cm$
	$4.05cm$ \cdot $4.05cm$ Faserbündel	$12.0cm\cdot 12.0cm$ Faserbündel
Zelle	$\hat{=}$ 1 Auslesekanal für Sekundär-	$\hat{=}$ 1 Auslesekanal für Sekundär-
	${ m elektronenverviel} { m fachers}$	${ m elektronenverviel} { m fachers}$
Submodule	$8.1cm\cdot 4.05cm\cdot 25cm$	$12.0cm\cdot 12.0cm\cdot 25cm$
	$\hat{=}$ 2 Zellen $\hat{=}$ 52 Platten	$\hat{=}$ 1 Zelle $\hat{=}$ 65 Platten
Supermodul	$16.2cm\cdot 16.2cm\cdot 25cm$	$24.0cm\cdot 24.0cm\cdot 25cm$
	$\hat{=} 8$ Submodulen $\hat{=} 4 \cdot 4$ Zellen	$\hat{=} 4$ Submodulen $\hat{=} 2 \cdot 2$ Zellen
Gesamtzahl der Zellen	1192 Zellen	136 Zellen

Tabelle 1.2: Spezifikationen des H1-Spaghetti-Kalorimeters

Abbildung 1.5: Querschnitt durch das elektromagnetische SpaCal Gezeigt ist die Positionierung und Orientierung der Submodule des elektromagnetischen SpaCal. Die dicken gezeichneten Linien markieren die Grenzen der Supermodule.

Abbildung 1.6: Profil zweier Bleiplatten des elektromagnetischen SpaCal und deren gegenseitige Positionierung. Alle Größenangaben sind in mm.

Abbildung 1.7: Seitliche Ansicht der Sekundärelektronenvervielfacher und des an die Fasern ankoppelnden Lichtmischers

(54) in ihnen eingebetteten szintillierenden Fasern aus Polystyrol (siehe Abbildung 1.6). 52 (65) solcher Platten werden zu einem Submodul gestapelt. Dabei liegen die Fasern einer Platte zwischen den Fasern der umgebenen Platten. So ergibt sich eine gleichmäßige Blei-Faser Matrix mit einem Volumenverhältnis von 2.3:1 (3.4:1). Die große Homogenität dieses Aufbaus ermöglicht eine hohe Energieauflösung, wie in Kapitel 2.3 näher beschrieben wird. Acht (vier) solcher Submodule ergeben ein Supermodul, der Grundbaustein aus dem das SpaCal aufgebaut ist (siehe Abbildung 1.5). Die Fasern sind an der Teilcheneintrittsseite verspiegelt, damit möglichst das gesamte Szintillationslicht an das Ende der Faser gelangt. Von einer Fläche von $4.05 \, cm \, (8.1 \, cm \, \cdot \, 8.1 \, cm)$ laufen die Fasern in Faserführungsrahmen zu Zellen gebündelt auf den Eingang eines Lichtmischers, durch den sie durch einen definierten Luftspalt von $0.3 \, mm$ Breite getrennt sind. (Abbildung 1.7). Der Luftspalt ermöglicht eine homogene Einkoppelung des Szin-

Abbildung 1.8: Ansicht der vier Insertmodule. Sie bestehen aus jeweils vier Zellen, die so geformt sind, daß sie den vorhandenen Raum um das Strahlrohr vollständig ausfüllen. Nahe am Strahlrohr befindet sich die 8 mm dicke Vetolage, welche benutzt werden kann, um Schauerverluste in das Strahlrohr festzustellen. Zwei halbe Vetolagenzellen benachbarter Module bilden dabei einen Auslesekanal, wie farbig angedeutet

tillationslichtes aus den Fasern in die Lichtmischer [7]. Am Ausgang der Lichtmischers befinden sich Sekundärelektronenvervielfacher, welche die entstandenen Photonen in ein elektronisch zu verarbeitendes Signal umwandeln und verstärken. Der Lichtmischer sorgt für eine gleichmäßige Ausleuchtung des Sekundärelektronenvervielfachers unabhängig von der Position der lichtführenden Fasern. Dies ist notwendig, da bei Sekundärelektronenvervielfachern die Verstärkung abhängig vom Eintrittsort der Photonen auf der Elektrode sein kann.

1.5 Der innere Bereich des rückwärtigen Kalorimeters

Im inneren Bereich des SpaCal, dem sogenannten *Insert*-Bereich, befinden sich die vier *Insert-Module*, die das Supermodul im Zentrum des SpaCal bilden, wo das SpaCal vom Strahlrohr durchstoßen wird. Damit ist es möglich, Teilchenschauer auch bei Winkeln bis

zu 177.5° zu messen. Jedes Insert-Modul besteht aus vier Zellen¹⁵, die so geformt sind, daß sie zusammen den vorhandenen Raum um das Strahlrohr vollständig ausfüllen. Wie aus Abbildung 1.8 ersichtlich ist, sind in den Insert-Modulen die szintillierenden Fasern anders zu Zellen zusammengefaßt als in den anderen Supermodulen.

Die vier innersten Zellen, die das Strahlrohr konzentrisch mit einem Innenradius von 57 mm und einer Dicke von 8 mm umgeben, sind die Vetolagen. Aus Platzgründen werden dabei zwei Faserbündel benachbarter Module zu einer Zelle zusammengefaßt. Die Signale der Vetolagen gehen nicht in die Energie- und die Ortsrekonstruktion ein. Man verwendet ihre Signale jedoch als Maß für Leckverluste der Schauer in das Strahlrohr.

Ein Photo eines Insert-Moduls ist in Abbildung 3.2 gezeigt. Dort sind die Faserbündel unterschiedlicher Zellen farbig markiert.

Auf die Folgen der unterschiedlichen Geometrie der Insert-Module für die Ortsrekonstruktion wird in Kapitel 4 näher eingegangen.

1.6 Ziel der vorliegenden Arbeit

Ziel dieser Arbeit ist es, die 1995/1996 im Rahmen dieser Diplomarbeit gebauten Insert-Module des elektromagnetischen SpaCal in einer Teststrahlmessung auf Homogenität, Linearität der Energiemessung und Energie- und Ortsauflösung zu untersuchen. Dazu wurden Messungen am DESY-Speicherring II mit Elektronen der Energie $1 - 6 \ GeV$ durchgeführt, deren Ergebnisse in Kapitel 3 diskutiert werden.

Wie in Kapitel 2 gezeigt wird, ist eine gute Orts- und Energieauflösung im rückwärtigen Bereich besonders bei großen Winkeln (bis $\theta \leq 177.5^{\circ}$) erwünscht. Man beobachtet aber gerade im inneren Bereich in der Ortsrekonstruktion mit den bisherigen Verfahren eine systematische Abweichung des Ortes hin zu kleineren rekonstruierten Polarwinkeln. In Kapitel 4 werden die Ursachen für diese Abweichung untersucht und mögliche Verbesserungen diskutiert. In Kapitel 5 wird eine alternative Methode der Ortsrekonstruktion vorgestellt, die in dieser Arbeit unter Verwendung von Monte-Carlo Simulationen entwickelt wurde und die beobachtete systematische Abweichung nicht zeigt.

In Kapitel 5.3 wird untersucht, ob durch die Auswertung der quantitative Informationen der Vetolagen-Zellen, die systematischen Fehler der Ortsrekonstruktion und die Ortsauflösung im strahlrohrnahen Bereich weiter verbessert werden können.

Abschließend werden die vorgestellten Methoden der Ortsrekonstruktion anhand der aus den Teststrahlmessungen erhaltenen Daten im Insertbereich getestet und verglichen. Das Ergebnis dieser Untersuchungen soll im letzten Kapitel diskutiert werden.

 $^{^{15}3+\}frac{1}{2}+\frac{1}{2}$ Zellen, denn jeweils zwei halbe Vetolagen benachbarter Module bilden eine Vetolagenzelle, wie in Abbildung 1.8 durch die Schattierungen angedeutet wird

Kapitel 2

Physikalische Grundlagen

In diesem Kapitel wird zunächst in die relativistische Beschreibung von Streuprozessen, mit den in der Literatur üblichen Variablenbezeichnungen eingeführt. Dann wird kurz auf die Grundlagen der Kalorimetrie und des Detektorbaus, insbesondere des SpaCals, eingegangen und die Verwendung von Monte-Carlo Simulationen in der Teilchenphysik und in der vorliegenden Arbeit angesprochen.

2.1 Kinematik von Streuprozessen

2.1.1 Beschreibung einer relativistischen Streuung

Ein elastischer Streuprozeß kann durch drei unabhängige Größen eindeutig beschrieben werden. Dazu kann man drei der vier Vierer-Impulse p_1, p_2, p'_1, p'_2 der Teilchens 1 und 2 im Anfangs- und Endzustand wählen¹. Der vierte Impuls ergibt sich aus der Vierer-Impulserhaltung

$$p_1 + p_2 = p_1' + p_2' \tag{2.1}$$

Diese Größen sind jedoch vom gewählten Bezugsystem abhängig. Für allgemeine Betrachtungen von relativistischen Streuprozessen wäre es wünschenswert, invariante, das heißt vom Bezugssystem unabhängige, Größen benutzen zu können. Drei solcher Größen sind zum Beispiel die *Mandelstammvariablen s, t* und u, die definiert sind als:

¹Diese 3 Viererimpulse haben zusammen 12 Komponenten. Durch die gegebenen Massen der Teilchen reduziert sich die Zahl der unabhängigen Parameter um 3, da sich die Energien der Teilchen aus den Impulsen ergibt. Betrachtet man den Anfangszustand im Schwerpunktsystem mit Bewegungen der Teilchen entlang der x-Achse, so sind die vier Parameter $p_{1,y}, p_{1,z}, p_{2,y}, p_{2,z}$ Null und es gilt $p_{1,x} = -p_{2,x}$. Dies vermindert die Zahl der linear unabhängigen Parameter um fünf. Schließlich ergibt sich der Endzustand im Schwerpunktsystem durch nur eine weitere Größe, dem Streuwinkel, so daß zwei Impulskomponenten des Endzustands linear abhängig sind. Dies ergibt drei linear unabhängige Größen.

Abbildung 2.1: Streuprozeß eines Elektrons an einem Parton des Protons

$$s = (p_1 + p_2)^2 = (p'_1 + p'_2)^2$$

$$t = (p_1 - p'_1)^2 = (p_2 - p'_2)^2 = -Q^2$$

$$u = (p'_1 - p_2)^2 = (p_1 - p'_2)^2$$
(2.2)

Die Variablen *s* und *t* können als Quadrat der *Schwerpunktenergie* und als *Vierer-Impulsübertrags* des Streuprozesses im Schwerpunktsystem interpretiert werden. Unter Beachtung der Relationen $p_1 + p_2 = p'_1 + p'_2$, $p_1^2 = p'_1^2 = m_1$ und $p_2^2 = p'^2_2 = m_2$ finden wir die Beziehung:

$$s + t + u = 2m_1^2 + 2m_2^2 \tag{2.3}$$

Für hohe Schwerpunktsenergien $\sqrt{s} \gg m_{ges}$ kann die Masse vernachlässigt werden, und die Formeln vereinfachen sich wegen $E^2 \approx \vec{p}^2$ zu:

$$s + t + u = 2m_1^2 + 2m_2^2 \stackrel{!}{=} 0$$

$$s = \left(\begin{bmatrix} E_* \\ \vec{p_*} \end{bmatrix} + \begin{bmatrix} E_* \\ -\vec{p_*} \end{bmatrix} \right)^2 = 4E_*^2$$

$$t = \left(\begin{bmatrix} E_1 \\ \vec{p_1} \end{bmatrix} - \begin{bmatrix} E_1' \\ \vec{p_1}' \end{bmatrix} \right)^2 = -2E_1E_1'(1 - \cos\theta_e) = -4E_1E_1'\sin^2\left(\frac{\theta_e}{2}\right) = Q^2$$

$$u = -s - t = -4E_*^2 - 4E_1E_1'\sin^2\left(\frac{\theta_e}{2}\right)$$

Hierbei sind E_* die Energie der Teilchen im Schwerpunktsystem und E_1 und E'_1 die Energie des Teilchens 1 im Laborsystem vor und nach der Streuung. θ_e ist der Streuwinkel des Teilchens 1 im Laborsystem. (siehe Abbildung 2.1).

2.1.2 Elektron - Protonstreuung

Das Proton ist selbst kein Elementarteilchen, sondern besteht aus Quarks und Gluonen. Diese Partonen, ein von Feynman 1968 eingeführter Begriff [8], tragen jeweils einen Bruchteil des Protonimpulses. Die Verteilung des Gesamt-Impulses auf diese Partonen wird durch die Strukturfunktionen beschrieben, deren Kenntnis zum Verständnis der Funktionsweise und Eigenschaften der Wechselwirkungen beiträgt.

Eine tiefinelastische Elektron-Proton Streuung kann als *elastische* Streuung behandelt werden, wenn man annimmt, daß das Elektron an einem der Partonen streut und die anderen Partonen den Streuprozeß nur als Zuschauer miterleben. Dadurch können dieselben Formeln angewandt werden wie in Kapitel 2.1.1 beschrieben. Dieses sogenannte *spectator-Modell*² stellt eine gute Näherung dar, falls die Wechselwirkungszeit des Streuprozesses viel kleiner ist, als die Wechselwirkung der Partonen untereinander. Eine Abschätzung zeigt, daß dies in der Tat so ist: *Im Ruhesystem des Elektrons* ist bei einer relativistischen Elektron-Proton Streuung, wie sie bei HERA stattfindet ($\gamma = E_p/m_p \approx 800$), die Zeit t_{ep-ww} , die das Elektron zur Durchquerung des Proton braucht, viel kleiner als die typische Dauer t_{qq-ww} einer Wechselwirkung zweier Partonen im Proton. Die Wechselwirkungszeit zweier Partonen kann über die Heisenbergsche Unschärferelation $\Delta E \cdot \Delta t \geq \hbar$ abgeschätzt werden. ΔE ist dabei die Energie der Bindung der Partonen. Als oberere Grenze für ΔE kann dabei die Protonruhemasse m_p angesehen werden.

$$t_{ep-ww} = \frac{r_{Proton} / \gamma}{c} = \frac{10^{-15} m / 800}{3 \cdot 10^8 m / s} = 4 \cdot 10^{-27} s$$

$$t_{qq-WW} \approx \gamma \frac{\hbar}{m_n} = 800 \cdot \frac{6 \cdot 10^{-22} MeV s}{1000 MeV} = 5 \cdot 10^{-22} s \gg t_{ep-ww}$$
(2.4)

Da die Partonen jeweils nur einen Teil des Gesamtimpulses des Protons tragen, sind zur vollständigen Beschreibung des Streuprozesses weitere Parameter nötig. Dabei sind die einheitenlosen Variablen x (oft als Bjørken-x bezeichnet) und y hilfreich, welche wie folgt definiert sind:

$$Q^{2} = -(p_{1} - p_{1}')^{2} = 4E_{e}E_{e}'\cos^{2}\left(\frac{\theta}{2}\right)$$

$$y_{e} = \frac{(p_{1} - p_{1}')p_{2}}{p_{1}p_{2}} = 1 - \frac{E_{e}'}{E_{e}}\sin^{2}\left(\frac{\theta}{2}\right)$$

$$x = \frac{Q^{2}}{2p_{2}(p_{1} - p_{1}')} = \frac{E_{1}E_{1}'\cos^{2}\left(\frac{\theta}{2}\right)}{E_{2}\left(E_{1} - E_{1}'\sin^{2}\left(\frac{\theta}{2}\right)\right)}$$

$$Q^{2} = xys$$

$$(2.5)$$

²engl. spectator=Zuschauer

Hierbei sind: E_1 (E'_1) und p_1 (p'_1) die Energie und der Impuls des einlaufenden (auslaufenden) Elektrons, θ der Streuwinkel des Elektrons bezogen auf die Protonstrahlrichtung³, und E_2 und p_2 die Energie und der Impuls des einlaufenden Protons.

Die Variablen x und y sind im Wertebereich $0 \le x, y \le 1$ definiert. Ihre anschauliche Bedeutung ist der Impulsanteils des Partons am Gesamtimpuls des Protons im Laborsystem, und der relative Energieübertrag des Elektrons während der Streuung, gemessen im Ruhesystem des Protons.

$$p_{Parton} = x \cdot p_{Proton}$$
 im Laborsystem
 $E_1 - E'_1 = y \cdot E_1$ im Ruhesystem des Protons
$$(2.6)$$

So kann eine Elektron-Protonstreuung durch die vier Variablen x, y, Q^2 und s beschrieben werden, wobei wegen $Q^2 = xys$ wiederum drei Größen zur vollständigen Beschreibung des Streuprozesses ausreichen.

Der Wirkungsquerschnitt der Elektron-Protonstreuung ist durch folgenden Ausdruck gegeben:

$$\frac{d^2 \sigma_{ep}}{dQ^2 dx} = \frac{4\pi \alpha^2}{Q^4 x} \left(2(1-y) + \frac{y^2}{(1+R)} \right) F_2(x,Q^2)$$
(2.7)

Dabei sind R das Verhältnis von logitudinaler zu transversaler Protonstrukturfunktion und $\alpha \approx 1/137$ die elektromagnetische Kopplungskonstante. Durch die Messung des Wirkungsquerschnittes der Elektron-Proton Streuung in Abhängigkeit der kinematischen Variablen x und Q^2 kann der Verlauf der Protonstrukturfunktion $F_2(x, Q^2)$ bestimmt werden, die die Verteilung des Protonimpulses auf die Partonen beschreibt. Die Abhängigkeit der Strukturfunktion von x und Q^2 ist als Skalenverletzung bekannt.

Die Fehler bei der Bestimmung der kinematischen Variablen (siehe Gleichung 2.5) sind direkt mit der Energieauflösung dE'_e des Elektrons und der Winkelauflösung $d\theta$ des Detektors verknüpft. Für die Meßgenauigkeit der kinematischen Variablen bei einer Bestimmung durch den Leptonendzustand gilt [9]:

$$\frac{dQ^2}{Q^2} = \frac{dE'_e}{E'_e} \oplus \tan\left(\frac{\theta}{2}\right) \cdot d\theta$$
(2.8)

$$\frac{dx}{x} = \frac{1}{y} \cdot \frac{dE'_e}{E'_e} \oplus \left[\frac{(1-y)}{y}\cot\left(\frac{\theta}{2}\right) + \tan\left(\frac{\theta}{2}\right)\right] \cdot d\theta$$
(2.9)

$$\frac{dy}{y} = \frac{(y-1)}{y} \cdot \frac{dE'_e}{E'_e} \oplus \frac{(1-y)}{y} \cot\left(\frac{\theta}{2}\right) \cdot d\theta$$
(2.10)

³Es gilt $\sin^2 \theta_e/2 = \cos^2 \theta/2$ mit dem Streuwinkel θ_e zwischen ein und auslaufendem Elektron und dem Winkel θ im H1-Detektor

Aus diesen Gleichungen kann folgendes entnommen werden:

- Der Fehler in der Messung von Q² hängt vom Term tan(θ/2) ab. Bei einem Streuwinkel von θ = 177 ist der relaitve Fehler von Q² um den Faktor 40 größer als die Winkelauflösung dθ.
- Die Auflösungen von x, y und Q^2 sind eine Funktion der Energieauflösung dE'_e/E'_e des Detektors.
- Die Bestimmung von x und y wird bei kleinen y durch den Faktor 1/y erschwert.
- Um eine tolerierbare Auflösung von 20% in y für y > 0.1 zu erhalten, muß die Energieauflösung bei einer Energie von 30 GeV besser als 2% sein.

2.2 Grundlagen der Kalorimetrie

Hier sollen nun die wesentlichen physikalischen Effekte aufgeführt werden, mit deren Hilfe man Teilchendetektoren bauen kann. Letztendlich beruht *jede Messung* auf der elektromagnetischen Wechselwirkung. Einerseits können alle unsere elektronischen Meßgeräte nur elektromagnetische Signale verarbeiten und andererseits kann nur die langreichweitige elektromagnetische Wechselwirkung zu makroskopischen Effekten führen, die geeignet verstärkt werden können. Alle anderen Wechselwirkungen werden mit Hilfe geeigneter Methoden in elektromagnetische Folgereaktionen überführt, deren Auswirkungen dann meßbar sind.

2.2.1 Wechselwirkung von Photonen mit Materie

Photonen haben als Vermittler der elektromagnetischen Wechselwirkung die Eigenschaft, nur *einmal* wechselwirken zu können. Sie werden als *ein* Quant absorbiert, wobei bei Streuprozessen im Endzustand ein *neues* Photon emittiert wird. Dagegen können geladene Teilchen auch Bruchteile ihrer kinetischen Energie an Materie abgeben.

Es sind mehrere Wechselwirkungsprozesse möglich, die alle eine starke Energieabhängigkeit besitzen, so daß in verschiedenen Energiebereichen, verschiedene Prozesse dominieren. In Abbildung 2.2 ist der Wirkungsquerschnitt der möglichen Reaktionen in Abhängigkeit der Photonenergie dargestellt. Dabei sind die folgenden Prozesse relevant:

Der atomarer Photoeffekt τ : Das Photon wird zur Anregung eines Elektrons in ein höheres Energieniveau oder zur Ionisation des Atoms absorbiert. Der Wirkungsquerschnitt nimmt mit Z^4 bis Z^5 zu und fällt für große Energien mit $1/E^{7/2}$ ab. Für kleinen Energien ist der Effekt der Schalenstruktur der Elektronenhülle deutlich zu sehen: bei bestimmten, zur Ionisation des Elektrons benötigten Energien, kommt es zur Resonanzanregung und der Wirkungsquerschnitt nimmt sprunghaft zu. Diese Sprünge werden als K-, L-, M- Kanten des Atoms bezeichnet, da sie sich

Abbildung 2.2: Wechselwirkungsprozesse von Photonen mit Materie als Funktion der Photonenergie. Dabei sind: τ der atomarer Photoeffekt, σ_{coh} die kohärente Streuung, σ_{incoh} die inkohärente Streuung, κ_n die Paarproduktion im Kernfeld, κ_e die Paarproduktion im Elektronfeld, σ_{pn} die Kernabsorption und σ_{tot} der totale Wirkungsquerschnitt.

bei Energien befinden, die zur Ionisation der Elektronen aus der K-, L-, M- oder einer höheren Schale benötigten werden. Die Anzahl der Kanten richtet sich nach der Anzahl der besetzten Elektronenschalen des Atoms.

- Die kohärente Rayleigh-Streuung σ_{coh} : Das Atom wird weder ionisiert noch angeregt, sondern nimmt nur Impuls vom Photon auf. Es handelt sich um eine elastische Streuung des Photons an den Elektronen der Atome, das heißt das Photon verliert keine Energie. Der Wirkungsquerschnitt der Rayleighstreuung nimmt für hohe Energien mit $1/E^4$ ab.
- Die inkohärente Streuung σ_{incoh} : Dieser Effekt wird auch Compton-Streuung genannt. Das Photon wird von einem Elektron absorbiert, seine Energie teilweise in kinetische Energie des Elektrons umgesetzt und ein Photon mit verminderten Energie reemittiert. Dabei unterliegen die möglichen Energie- und Impulsüberträge auf das Elektron und der Streuwinkel des Photons wegen der Energie- und Impulserhaltung engen Begrenzungen. Für die Streuung eines Photons an einem freien,

ruhenden Elektron gilt:

$$E'_{\gamma} = \frac{E_{\gamma}}{1 + \frac{E_{\gamma}}{mc^2}(1 - \cos\theta)}$$
(2.11)

 E_{γ} und E'_{γ} sind die Photonenergie des ein- und auslaufenden Photons und θ der Winkel zwischen ein- und auslaufendem Photon. Der Wirkungsquerschnitt fällt für hohe Energien mit 1/E ab und ist proportional zur Kernladungszahl Z des Mediums.

Die Paarproduktion im Kernfeld κ_n : Hier konvertiert das Photon in ein Elektron-Positron-Paar und überträgt einem Atomkern den zur Energie- und Impulserhaltung notwendigen Impuls. Deshalb ist die Paarbildung im Vakuum nicht möglich.

Der Wirkungquerschnitt der Paarbildung ist proportional zu Z^2 , so daß Materialien mit Atomen schwerer Kerne (z.B. Blei) bessere Absorber für Photonen sind. Die Wahrscheinlichkeit für den Paarbildungseffekt nimmt mit steigender Energie logarithmisch zu. Ab 100 MeV Photonenergie dominiert dieser Effekt den Gesamtwirkungsquerschnitt und geht in eine Sättigung. Deshalb kann die Absorption von Photonen durch Paarerzeugung für hohe Energien durch eine materialspezifische Größe, die Strahlungslänge X_o beschrieben werden:

$$\left. \frac{dI}{dx} \right|_{Paarbildung} = -\frac{7}{9} \frac{I}{X_o} \tag{2.12}$$

 $9/7 X_o$ ist die Tiefe des Mediums, bei der die Intensität eines Photonenstrahls allein auf Grund von Paarproduktion auf 1/e abfällt.

- Die Paarproduktion im Elektronfeld κ_e : Die Paarproduktion ist auch im Elektronfeld möglich, der Wirkungsquerschnitt aber im Vergleich zur Paarproduktion im Kernfeld zu vernachlässigen. Zum einen ist die Ladung des Elektrons nur die einfache Elementarladung (Z = 1), zum anderen ist die Masse des Elektrons ca. 400 000 mal kleiner, als die eines Bleikerns ($206 \cdot m_p \approx 206 \cdot 2000 m_e$). Daher nehmen Elektronen nicht nur Impuls, sondern auch eine Mindestenergie auf. Dadurch ist der Phasenraum kleiner als bei der Paarproduktion im Kernfeld. Der Wirkung-querschnitt in Blei ist um zwei Größenordnungen kleiner als bei Paarproduktion am Bleikern.
- Die Kernabsorption σ_{pn} : Hier handelt es sich um den Kernphotoeffekt, wobei Nukleonen auf ein höheres Energieniveau gehoben werden mit einem relevanten Energiebereich um 8 MeV, der mittleren Bindungsenergie von Nukleonen, und um die Riesenresonanzabsorption von Photonen durch Kerne, die ein Maximum bei 20 MeVaufweist.
- Der totale Wirkungsquerschnitt σ_{tot} : Diese Kurve beschreibt die totale Absorptionswahrscheinlichkeit als Summe aller oben genannten Effekte. Für *eine* Photonenergie ist der totale Wirkungsquerschnitt minimal. Diese Photonen haben daher eine besonders große mittlere Reichweite im Material. Für große Energien $E \geq 100 \ MeV$

Abbildung 2.3: Wechselwirkungsprozesse von Elektronen (Positronen) mit Materie als Funktion der Elektronenergie.

geht der totale Wirkungsquerschnitt in eine Sättigung, mit einer allenfalls logarithmischen Energieabhängigkeit. Dieser Umstand ist für die Beschreibung elektromagnetischer Schauer wichtig.

2.2.2 Wechselwirkung von geladenen Teilchen mit Materie

Anders als Photonen können geladene Teilchen mehrfach mit der Materie wechselwirken, indem sie einen Bruchteil ihrer kinetischen Energie abgeben. In der Regel wird dabei statt des Wirkungsquerschnittes der Wechselwirkung der Energieverlust pro Strecke in Einheiten der Strahlungslänge X_o betrachtet. Folgende Effekte spielen dabei eine Rolle (siehe Abbildung 2.3) :

Ionisation und Anregung: Wie beim Photon kann es auch bei geladenen Teilchen zur Anregung der Elektronen in Atomen kommen, wobei wieder scharfe Resonanzen bei Energien auftreten, die der Bindungsenergie der Elektronen entsprechen.

Der mittleren Energieverlust pro Strecke von schweren, relativistischen Teilchen in Materie wird durch die Bethe-Bloch Formel [3] beschrieben. Sie ist das Ergebnis einer quantenmechanischen Rechnung:

$$\frac{dE}{dx} = \frac{DZ_{med}\rho_{med}}{A_{med}} \left(\frac{z}{\beta}\right)^2 \left[\frac{1}{2}\ln\frac{2m_ec^2\gamma^2\beta^2T_{max}}{I^2} - \beta^2 - \frac{\delta}{2}\right]$$

Dabei sind:

 $D = 4\pi N_A r_e^2 m_e c^2 = 0.3071 \ MeV$: Eine materialunabhängige Konstante.

$$Z_{med}$$
, A_{med} , ρ_{med} : Die Ladungs- und Nukleonenzahl und die Dichte des Mediums.
z: Die Ladung des ionisierenden Teilchens.

- $I(Z_{med})$: Das effektive Ionisationspotential des Mediums. Es kann interpretiert werden als die Bindungsstärke der Hüllenelektronen an die Atome des Mediums. $I(Z_{med})$ ist 10 $eV \pm 1 eV$ für Atome schwerer als Sauerstoff. Genauere Werte sind in [10] zu finden.
- T_{max} ist die maximale kinetische Energie, die einem freien Elektron in einem Wechselwirkungsprozeß übertragen werden kann. Diese Größe ist in erster Näherung nur abhängig von β :

 $T_{max} = 2m_e c^c \beta^2 \gamma^2$ für $2m_e \gamma/M \ll 1$, M=Masse des ionisierenden Teilchens.

 $\delta(\beta)$ repräsentiert den Beitrag des Dichteeffektes, der sich für relativistische Teilchen ($\gamma > 10$) als Sättigung des Energieverlustes bemerkbar macht. Es handelt sich dabei um Polarisationseffekte des Mediums durch das Teilchen, welche zu einer Abschirmung des elektrischen Feldes des Teilchens führen. Für hohe Energien geht $\delta/2$ gegen den Grenzwert $\delta/2 \rightarrow \ln(\hbar\omega_p/I) + \ln\beta\gamma - 1/2$, mit der Plasmafrequenz ω_p des Materials.

Weitere Korrekturfaktoren müssen für quantenelektrodynamische Prozesse höherer Ordnung angebracht werden. Für kosmische Myonen können sie bis zu 1 % zu dem totalen Energieverlust durch Ionisation betragen.

Bremsstrahlung: Dieser Effekt dominiert bei Elektronen für hohen Energien. Das Elektron kann, durch das Kernfeld beschleunigt, ein Photon abstrahlen, wobei es dem Kern den zur Energie- und Impulserhaltung notwendigen Impuls überträgt. Er ist physikalisch eng verwandt mit dem Paarbildungsprozeß und kann durch dieselbe Größe, die Strahlungslänge X_o , materialunabhängig beschrieben werden:

$$\left. \frac{dE}{dx} \right|_{Bremsstr.} = -\frac{E}{X_o} \tag{2.13}$$

Anschaulich ist X_o die Strecke, auf der ein Teilchen im Mittel allein auf Grund von Bremsstrahlung 1/e seiner Energie verlieren würde. Durch eine Anpassung an bekannte Strahlungslängen wurde folgende Parametrisierung gefunden, die besser als 2 % mit den Daten übereinstimmt [3]:

$$X_o = \frac{716.4 \ A}{Z(Z+1)\ln(287/\sqrt{Z})} \left[\frac{g}{cm^2}\right]$$
(2.14)

Z und A sind die Kernladung und die Nukleonenzahl des Mediums. Für Z > 13 gilt mit einer Genauigkeit von $20\% : X_o \approx 180 \ A/Z^2 \left[g/cm^2\right]$

Zu bemerken ist, daß der Wirkungquerschnitt logarithmisch mit der Energie ansteigt und proportional zu $1/m^2$ ist, mit der Teilchenmasse m. Somit wird der Bremsstrahlungsprozeß für Myonen verglichen mit Elektronen um den Faktor 40 000 unterdrückt $(m_{\mu} \approx 200 \ m_e)$, der von Protonen sogar um 4 000 000 $(m_p \approx 2000 \ m_e)$.

Čerenkov-Licht: Ist die Geschwindigkeit eines Teilchens in einem Medium schneller als die Ausbreitungsgeschwindigkeit für Licht in diesem Medium, so verliert das Teilchen durch Abstrahlung von Photonen Energie. Die Intensität der Strahlung ist abhängig vom Brechungsindex n des Materials, der Teilchengeschwindigkeit $\beta = v/c$ und der Wellenlänge. Die Abstrahlung erfolgt auf einem Lichtkegels mit dem Öffnungswinkel θ nach dem folgendem Gesetz:

$$\cos \theta = \frac{(c/n)t}{vt} = \frac{1}{n\beta}$$

Da der Winkel eine Funktion von β ist, läßt sich dieser Effekt beim Bau von Teilchendetektoren nutzen. Der Beitrag für den Gesamtwirkungsquerschnitt ist jedoch zu vernachlässigen. In Wasser beträgt der Energieverlust pro Strecke durch Čerenkov-Licht beispielsweise nur 0.02% des gesamten Energieverlustes pro Strecke [11].

Møller-Streuung: Hierbei handelt es sich um den elastischen Streuprozeß:

$$e^- + e^- \longrightarrow e^- + e^-$$

Der Wirkungsquerschnitt läßt sich in der elektroschwachen Theorie exakt berechnen [12].

Bhabha-Streuung: Hierbei handelt es sich um den Streuprozeß:

$$e^+ + e^- \longrightarrow e^+ + e^-$$

Auch der Wirkungsquerschnitt dieses Prozesses läßt sich in der elektroschwachen Theorie exakt berechnen [12]. Es soll hier angemerkt werden, daß der Wirkungsquerschnitt dieses Prozesses bei kleinen Winkeln groß ist und dazu benutzt werden kann, die Luminosität von e^+e^- -Speicherringen zu messen.

Elektron-Positron-Annihilation: Hierbei handelt es sich um die Teilchen-Antiteilchen Paarvernichtung:

 $e^+ + e^- \longrightarrow \gamma + \gamma$

Dabei werden die Photonen im Schwerpunktsystem back-to-back⁴ abgestrahlt. Dies ist eine Möglichkeit diese Reaktion zu identifizieren.

⁴engl. back-to-back=Rücken an Rücken, d.h. in einem Winkel von 180°

Abbildung 2.4: Das materialunabhängigen Schauermodell kann durch die Strahlungslänge X_o und die kritische Enerige E_c beschrieben werden. Gezeigt ist hier eine vereinfachte Darstellung der Schauerentwicklung.

2.2.3 Elektromagnetische Schauer

Hochenergetische Teilchen erzeugen beim Eintritt in Materie durch inelastische Wechselwirkungen Sekundärteilchen. Diese können ihrerseits weiter mit dem Material wechselwirken. Die so entstehende Kaskade von Sekundärteilchen nennt man Teilchenschauer. Je nachdem, ob der Schauer auf die elektromagnetische Wechselwirkung beschränkt bleibt, oder ob er auch Reaktionen stark-wechselwirkender Teilchen beinhaltet, spricht man von elektromagnetischen oder hadronischen Schauern.

Das materialunabhängige Schauermodell

Im folgenden wird ein vereinfachtes Modell [3] eines elektromagnetischen Schauers mit nur zwei Parametern, der Strahlungslänge X_o und der kritischen Energie E_c , dargestellt. In diesem Modell werden bereits alle wesentlichen Merkmale elektromagnetischer Schauer beschrieben. Die Argumentation für hadronische Schauer ist analog, wobei man dort weitere Parameter zur Beschreibung stark-wechselwirkender Prozesse benötigt. Sie werden in Kapitel 2.2.4 diskutiert.

Die Strahlungslänge X_o wurde bereits in den Gleichung 2.12 und 2.14 definiert und beschreibt den Energieverlust pro Strecke von Teilchen durch Bremsstrahlung und den Intensitätsverlust von Photonen durch Paarerzeugung. Für gemischte Materialien kann die Strahlungslängen aus den Strahlungslängen der Komponenten wie folgt berechnet werden:

$$\frac{1}{X_o} = \sum_i \frac{w_i}{X_{o,i}}$$

 w_i ist der relative Gewichtsanteil der Komponente *i* am Gemisch. Die kritische Energie E_c eines Materials ist als die Energie definiert, bei der der mittlere Energieverlust durch Bremsstrahlung genauso groß ist, wie der durch Ionisation:

$$\left. \frac{dE}{dx} \right|_{Brems} = \left. \frac{dE}{dx} \right|_{ion} \tag{2.15}$$

Eine gute Approximation, besser als 10% im Bereich 13 < Z < 92, ist [3]:

$$E_c = \frac{800 \text{ MeV}}{Z + 1.2} \tag{2.16}$$

In Tabelle 2.1 sind Strahlungslängen und kritische Energien und Moliére Radien für die beiden wichtigsten Materialien aufgeführt, die beim Bau des H1-SpaCals verwendet wurden. Die kritische Energie gemischter Materialien ergibt sich aus der Strahlunslänge X_o und dem Moliére Radius R_M (siehe unten).

Man macht sich im vereinfachten Schauermodell zunutze, daß bei hohen Energien der Intensitätsverlust pro Strecke von Photonen durch Paarbildung, und der Energieverlust pro Strecke von Elektronen und Positronen durch Bremsstrahlung dominiert ist, und die mittleren freien Weglängen von Photonen $(9/7 X_o)$ und Elektronen und Positronen (X_o) bis auf einen Faktor $\frac{9}{7}$ übereinstimmen. In diesem Modell wird nun angenommen, daß die mittlere freie Weglänge sowohl für Elektronen und Positronen als auch für Photonen X_o ist, und daß X_o für hohe Energien keine Energieabhängigkeit besitzt.

Ein in ein homogenes Material eintreffendes Elektron wird daher im Mittel nach einer Strahlungslänge X_o ein Photon durch einen Bremsstrahlungsprozeß emittieren. Dabei ist der Abstrahlungswinkel, durch die Lorentztransformation bedingt, sehr klein. Die Wahrscheinlichkeitsverteilung der Photonenergien des Bremsstrahlungsprozesses ist eine Rechtecksverteilung, so daß im Mittel das Photon die Hälfte der Energie des Elektrons tragen wird. Nach einer weiteren Strahlungslänge wird das Elektron erneut ein Photon abstrahlen und das Photon in ein Elektron-Positron Paar konvertieren. Auch hier kann aus Symmetriegründen angenommen werden, daß im Mittel das Elektron und das Positron gleiche Energien haben werden. Auf diese Weise steigt die Zahl der Teilchen exponentiell an, wobei jedes einzelne nur einen Bruchteil der Anfangsenergie trägt (siehe Abbildung 2.4).

Nach *n* Strahlungslängen ist die Zahl der Teilchen 2^n . Jedes von Ihnen trägt eine Energie $2^{-n} \cdot E_o$. Unterschreiten die Teilchenenergien die kritische Energie E_c , so bricht der Schauer durch Absorptionsprozesse ab. Dies geschieht in einer Tiefe t_{max} , gemessen in Einheiten der Strahlungslänge X_o , wenn gilt:

$$E_o \cdot 2^{-t_{max}} = E_c \longrightarrow t_{max} = \frac{1}{\ln 2} \ln \left(\frac{E_o}{E_c}\right)$$

Die Schauertiefe nimmt logarithmisch mit der Energie des Primärteilchens zu. Bis zu dieser Tiefe wurde der Schauer aus N_{ges} Teilchen gebildet. Nimmt man an, daß in einem Detektor das gemessene Signal durch die Gesamtanzahl der sekundären Schauerteilchen bestimmt wird, so stellt man fest, daß die Anzahl der Teilchen der Einschußenergie des Primärteilchens direkt proportional ist, und diese Größe somit ein gutes Maß für die

Energiemessung darstellt:

$$N_{ges} = \sum_{t=1}^{t_{max}} N(t) = \sum_{t=1}^{t_{max}} 2^t = 2^{t_{max}+1} - 1 \approx 2 \cdot 2^{t_{max}} = 2\frac{E_o}{E_c} \sim E_o$$

Wichtige Aussagen des Schauermodells sind:

- Eine materialunabhängige Beschreibung elektromagnetischer Schauer ist mit Hilfe zweier meßbarer Parameter X_o und E_c möglich.
- Die Schauerlänge steigt logarithmisch mit der Energie des Primärteilchens an.
- Die Gesamtzahl der sekundären Schauerteilchen ist der Energie des eintreffenden Teilchens proportional.

Räumliche Ausdehnung

Die räumliche Energiedeposition eines elektromagnetischen Schauers kann durch ein longitudinales und ein transversales Profil parametrisiert werden.

Longitudinales Schauer-Profil: Das longitudinale Schauerprofil wird durch folgenden empirischen Ansatz gut beschrieben [13]:

$$\frac{dE}{dt} = E_o \ b \ \frac{(bt)^{a-1} \cdot e^{-bt}}{\Gamma(a)} \quad , \quad t = \frac{x}{X_o}$$
(2.17)

Dabei sind a und b Parameter des Modells und Funktionen der Energie des eintreffenden Teilchens und Γ die Gamma-Funktion [14]. Mit dem Term $(bt)^{a-1}$ wird beschrieben, daß zu Beginn die Zahl der Sekundärteilchen im Schauer steigt. Der Term e^{-bt} spiegelt wider, daß für große Tiefen t die Absorption von Teilchen durch Anregung und Ionisationsprozesse überwiegt, und die Teilchenanzahl exponentiell fällt. Das Schauermaximum befindet sich in diesem Modell bei:

$$t_{max} = \frac{a-1}{b}$$

Durch eine Anpassung der Funktion aus Gleichung 2.17 an das Profil gemessener Schauer ergibt sich t_{max} aus der gefundenen Energieabhängigkeit der Konstanten a und b zu:

$$t_{max} = \ln \frac{E_o}{E_c} \pm 0.5$$

Dabei steht das positive Vorzeichen für Elektron- und Positron- induzierte Schauer, und das negative für Photonen-induzierte Schauer. Die Tiefe des Schauers wächst logarithmisch mit der Energie. Dabei wird ca. 98% der Primärenergie in $2.5 \cdot t_{max}$ Tiefe deponiert. In Blei ist für 20 GeV Elektronen $t_{max} = 5$.

Transversales Schauer-Profil: Das transversale Profil kann durch den folgenden Ansatz beschrieben werden [15]:

$$\frac{dE}{dr} = c_1 \cdot e^{-\alpha r} + c_2 \cdot e^{-\beta r} \quad , \quad \alpha > \beta$$

Der enge Kernbereich des Schauers beinhaltet die Schauerteilchen (1. Term). Er ist durch die statistischen Winkelverteilung in den Produktionsprozessen und durch Vielfachstreuung dominiert. Der äußere und niederenergetischere Bereich ist von Photonen einer Energie bestimmt, bei der der Wirkungsquerschnitt minimal ist (2. Term). Diese sind minimalionisierende Teilchen und haben eine hohe Reichweite im Material (siehe Abbildung 2.2). Das transversale Schauerprofil kann durch den Molière-Radius R_M charakterisiert werden, welcher sich aus der kritischen Energie und der Strahlungslänge des Materials ergibt:

$$R_M = \left(\frac{21 \ MeV}{E_c}\right) X_o \tag{2.18}$$

98% der deponierten Energie befindet sich in einem Zylinder des Radius 2 R_M entlang der Schauerachse [16]. Dieser Radius ist in erster Näherung unabhängig von der Energie des schauerinduzierenden Teilchens. Für gemischte Materialien ergibt sich der Molière-Radius aus den Molière-Radien der Komponenten:

$$\frac{1}{R_M} = \frac{1}{21 \ MeV} \sum_i \frac{w_i E_{c,i}}{X_{o,i}}$$
(2.19)

 w_i ist der relative Gewichtsanteil der Komponente i.

Die Größen X_o , E_c , R_M sind in Tabelle 2.1 für einige Materialien gegeben, die beim Bau des SpaCals verwendet wurden.

2.2.4 Hadronische Schauer

Eine detailliertere Betrachtung hadronischer Schauer und hadronischer Kalorimeter findet sich in [17]. Die Beschreibung hadronischer Schauer ist nur mit Hilfe eines weiteren materialspezifischen Parameters, der Wechselwirkunglänge λ_{ww} möglich (siehe Tabelle 2.1). λ_{ww} entspricht der mittleren freien Weglänge zwischen zwei Wechselwirkungen mit Kernen des Mediums und beschreibt die starke Wechselwirkungskomponente der Teilchen. Die Wechselwirkunglänge ist näherungsweise gegeben durch [3]:

$$\lambda_{ww} = \frac{35 \ [g/cm^2]}{\rho_{med}} \cdot A^{1/3} \tag{2.20}$$

mit der Nukleonenzahl A und der Dichte ρ_{med} des Mediums. Die longitudinale Ausdehnung hadronischer Schauer ist proportional zu λ_{ww} und wächst logarithmisch mit der Energie: $L \sim \lambda_{ww} \ln(E/1 \, GeV)$. In einer Tiefe von $L = 6 - 10 \, \lambda_{ww}$ werden 98% der Schauerenergie deponiert. Da bei den meisten Materialien $\lambda_{ww} \gg X_o$ und die Masse der

Material	Strahlungs-	kritische	Molière	Wechselwirkungs-
	länge X_o	Energie E_c	Radius R_M	länge λ_{ww}
Blei	$0.56\ cm$	7.07 MeV	$1.67 \ cm$	17.1cm
szintillierende Fasern	$42 \ cm$	$78 \ MeV$	$11.48\ cm$	80cm
elektrom. SpaCal-Module	0.90~cm	$7.44 \ MeV$	$2.54 \ cm$	27cm

Tabelle 2.1: Strahlungslängen X_o , kritische Energien E_c , Molière Radius R_M und Wechselwirkungslänge von Materialien, die im SpaCal verwendet werden [3].

wechselwirkenden Teilchen größer als in elektromagnetischen Schauern ist, und Bremsstrahlungsprozesse für $m > m_e$ vernachlässigbar sind, dringen hadronische Schauer bei gleicher Energie *tiefer* in das Medium ein, als elektromagnetische Schauer. Wegen inelastischer Kernwechselwirkungen mit großem Transversalimpuls p_T sind die Schauer bei gleicher Energie der Primärteilchen auch *breiter* als elektromagnetische Schauer. Somit können hadronische Schauer durch ihre longitudinalen und lateralen Profile identifiziert werden.

Die Energieauflösung hadronischer Kalorimeter ist in der Regel schlechter als die von elektromagnetischen Kalorimetern. Das liegt daran, daß sich die deponierte Energie des hadronischen Schauers aus verschiedene Komponenten zusammensetzt. Nach [18] teilt sich zum Beispiel die Energie eines $5 \, GeV$ Protons in einem Blei-Szintillator Hadronkalorimeter in folgende Komponenten auf:

Ionisationsenergie geladener Teilchen (primäre und sekundäre p, π^{\pm}, μ^{\pm})	1980 MeV
elektrom. Schauer $(\pi^{\circ}, \eta,)$	760MeV
Neutronen	520MeV
Photonen aus Kernreaktionen	310MeV
Nicht nachweisbare Energie	1430MeV
(Kernbindungen, ν ,)	

Wie der Tabelle zu entnehmen ist, gibt es einen hohen Anteil nicht nachweisbarer Energie. In hadronischen Schauern werden langlebige, schwach wechselwirkende Teilchen (K_L , Neutronen, Neutrinos) erzeugt, die den Detektor verlassen können und etwa 20% der Schauerenergie geht verloren, um Kernbindungen aufzubrechen. Da die Kernfragmente kurzreichweitig sind, werden sie noch im Schauermedium absorbiert. Fluktuationen der Energieaufteilung zwischen den verschiedenen Komponenten führen zu Schwankungen der Energiedeposition im Schauermaterial und beeinflussen so die Energieauffösung.

Durch den Anteil nicht detektierbarer Energie ist das Signal, das in einem Detektor von einem Pion erzeugt wird, kleiner als das Signal eines Elektrons gleicher Energie.

Eine Möglichkeit, um die nachweisbare deponierte Energie eines Elektrons und eines Hadrons gleicher Energie anzugleichen, ist den Anteil nicht detektierbarer Energie in hadronischen Schauern zu kompensieren, indem man dem Absorbermaterial Uran beimischt. Die durch den Schauer induzierte Spaltung der Kerne setzt Energie frei, die den Anteil der nicht detektierten Energie aufwiegt. Man spricht dabei von *kompensierenden Kalorimetern*. So kann erreicht werden, daß das Verhältnis der gemessenen Energien von elektromagnetischen und hadronischen Schauern bei gleicher Energie der Primärteilchen nahezu eins ist [18].

Wegen $c\tau(\pi^{\circ}) \approx 24 \, nm$ löst der Zerfall $\pi^{\circ} \to \gamma\gamma$ praktisch am Entstehungsort der neutralen Pionen elektromagnetische Unterschauer aus. Dies führt zu einer hohen lokalen Energiedeposition. In einem dreidimensional segmentierten Kalorimeter, wie dem H1 Flüssig-Argon Kalorimeter, in dem die Energiedeposition mit hoher Ortsauflösung gemessen werden kann, läßt sich leicht feststellen, ob lokal hohe elektromagnetische Energie deponiert wurde. Indem man diese Komponente durch eine Gewichtung dämpft, kann man die Energieauflösung verbessern, da die Energiemessung weniger sensibel auf Fluktuationen zwischen dieser und anderer Komponenten ist. [19].

2.3 Kalorimeter

2.3.1 Bau- und Funktionsweise von Kalorimetern

In einem komplexen Detektor wie dem H1–Detektor sind Kalorimeter wichtige Detektorkomponenten. Ihnen fällt die Aufgabe zu, die Energie der Teilchen zu bestimmen, die in den Elektron-Proton-Wechselwirkungen entstehen. Während die Auflösung der Impulsmessung über die Krümmungsradien von Teilchenspuren in Magnetfelder mit zunehmendem Impuls immer schlechter wird $(\sigma_p/p \sim p)$, wird die Energiemessung in Kalorimetern mit zunehmender Teilchenenergie besser $(\sigma_E/E \sim 1/\sqrt{E})$. Daher sind in Hochenergieexperimenten Kalorimeter unersetzlich.

Man kann Kalorimeter in zwei Klassen einteilen: homogene Kalorimeter und Samplingkalorimeter.

Homogene Kalorimeter bestehen aus nur einem Material, welches gleichzeitig Schauermedium ist und zum Nachweis der ionisierenden Schauerteilchen dient. Einige Beispiele sind:

- Pb-Glas, PbF-Kristalle und Lösungen von Stoffen mit hohen Kernladungszahlen (Dichte 3-4 kg/m³ und Brechungsindex 1.6-1.7). In ihnen werden Teilchen durch Čerenkov-Licht nachgewiesen. Die Lichtausbeute ist zwar nur gering, aber diese Materialien sind extrem strahlungshart.
- Eine weitere Möglichkeit ist der Nachweis durch Szintillationslicht. Hier ist der Szintillator gleichzeitig Schauermedium. Beispiele sind NaJ(Tl)-Kristalle und BGO-Kristalle⁵. Ihre Dichten sind jedoch geringer und die Kalorimeter dadurch größer. Dafür haben Szintillatoren aber eine gute Quantenausbeute.

⁵BGO steht für Bismuth-Germanat $(Bi_4Ge_3O_{12})$

Samplingkalorimeter bestehen aus einem Gemisch zweier Materialien mit alternierender Anordnung: Einem Schauermedium mit großem Z (meist Blei), und einem Nachweismedium. Dabei haben sich zwei Bauweisen besonders bewährt:

- Blei-Szintillator Samplingkalorimeter. Bei ihnen wird das erzeugte Szintillationslicht mit Hilfe von Sekundärelektronenvervielfachern in elektrisches Signale verwandelt und verstärkt.
- In Blei eingebettete Ionisationskammern mit flüssigem Argon. In ihnen werden die in den Ionisationsprozessen erzeugten freien Ladungen gesammelt und das resultierende elektrische Signal verstärkt.

Diese Konstruktionen sind wegen der verwendeten Schauermaterialien erheblich kompakter als homogene Kalorimeter und die Segmentierung ermöglicht es, hadronische und elektromagnetische Schauer durch ihr laterales oder longitudinales Schauerprofil zu identifizieren. Allerdings ist die longitudinale (laterale) Verteilung des Schauers länger (breiter) als im reinen Absorbermedium, da die Teilchen im Nachweismedium wegen der niedrigeren Kernladung Z nicht aufschauern.

Da jedoch nur im Absorbermaterial aufgeschauert und im Nachweismedium gemessen wird, erfolgt die Energiemessung stichprobenhaft und weil die auftretenden Wechselwirkungen statistische Prozesse sind, führen statistische Schwankungen der Teilchenzahl Nim Nachweismedium nach Poisson zu einer schlechteren relativen Energieauflösung. Hat die Absorberschicht die Dicke d, so ist das Energieauflösungsvermögen:

$$\sigma_E/E = \sqrt{N}/N = 1/\sqrt{N} \sim \sqrt{d/E}$$

Diese aus der Segmentierung des Kalorimeters resultierenden Schwankungen in der Energiemessung werden als Samplingfluktuationen bezeichnet. Sie sind bei elektromagnetischen Samplingkalorimetern für die theoretisch erreichbare Energieauflösung der dominierende Faktor.

Da hadronische Schauer tiefer in Materie eindringen als elektromagnetische Schauer, bietet sich für den Bau eines Kalorimeters eine Anordnung an, bei der sich ein hadronisches Kalorimeter hinter einem elektromagnetisch-totalabsorbierenden Kalorimeter befindet. Ein solcher Aufbau ermöglicht eine gute Teilchenidentifikation, denn hadronische Schauer können das elektromagnetische Kalorimeter häufig durchdringen und ihre Restenergie im hadronischen Kalorimeter deponieren. Ein Signal in der hadronischen Komponente stellt also einen Hinweis für einen hadronischen Schauer dar. Die elektromagnetische Komponente sollte deshalb lang genug sein, um elektromagnetische Schauer vollständig absorbieren zu können. Das elektromagnetische SpaCal bei H1 hat eine Länge von etwa $25 X_o$.

Samplingkalorimeter kann man auf drei verschiedene Arten segmentieren: longitudinal, transversal und dreidimensional. Das Spaghettikalorimeter bei H1 ist ein transversal segmentiertes Kalorimeter.

Dabei sind folgende Vor- und Nachteile einer transversalen Segmentierung im Gegensatz zu einer longitudinalen Segmentierung zu nennen:

Vorteile:

- Durch die transversale Segmentierung kann der Schwerpunkt aller am Schauer beteiligten Zellen bestimmt werden. Kennt man den Vertex des Ereignisses, so kann man den Eintrittsort des Primärteilchens in das Kalorimeter durch Rückprojektion des Schauerschwerpunktes auf die Oberfläche ermitteln.
- Der Konstruktionsaufwand ist unabhängig von der Tiefe des Kalorimeters.

Nachteile:

- Eine Teilchenidentifikation ist mit Hilfe des lateralen Schauerprofils schlechter möglich, da sich das Transversalprofil durch frühzeitiges Aufschauern des primären Schauerteilchens *vor* dem Detektor verbreitern kann. Daher können auch elektromagnetische Schauer zu breiten Transversalprofilen wie in hadronischen Schauern führen.
- Da in transversal segmentierten Kalorimetern die Bündelebenen des Szintillatormaterials in der Richtung der Teilchenbahnen liegen, kann unter bestimmten Winkel ein *Channeling*-Effekt auftreten: Teilchen bewegen sich entlang von Symmetrieachsen in der Absorber-Szintillator Matrix, so daß das Mischungsverhältnis von Absorber zu Szintillator verschoben scheint. So können sich überhöhte oder erniedrigte Energiedepositionen im Szintillator ergeben und die Signale verfälschen [20].

Eine weitere Bauweise ist eine dreidimensionale Segmentierung, wie sie im H1 Flüssig-Argon Kalorimeter realisiert ist. Sie beruht auf der Messung von gesammelter Ladungen in mit flüssigem Argon gefüllten Ionisationskammern, die in einem Absorbermedium (Blei) eingebettet sind. Die Hauptvorteile sind:

- Ein sehr homogener Aufbau.
- Die Vielzahl der Kanäle, die eine hohe dreidimensionale Segmentierung und so differentielle Informationen über die Schauerentwicklung ermöglichen.
- Einfache elektronische Erfassung der Signale.
- Die Stabilität der Auslesekanäle kann elektronisch einfach überprüft werden.

Dies gestattet eine gute dreidimensionale Ortsauflösung des Schauers und somit eine gute Elektron-Pion Trennung. Nachteile sind jedoch die aufwendige Kryotechnik und die relative lange Auslesezeit von etwa $0.5\,\mu s$, die für das Sammeln der Ladung gebraucht wird. Das macht ihre Verwendung als instantanen Trigger für das Triggersystem zur Auslese des Detektors nicht möglich.

2.3.2 Energieauflösung von Kalorimetern

Die Energieauflösung von Kalorimetern kann beschrieben werden durch [21]:

$$\frac{\sigma_E}{E} = \frac{a}{\sqrt{E}} \oplus \frac{b}{E} \oplus c \tag{2.21}$$

Dabei ist $a \oplus b$ definiert als $\sqrt{a^2 + b^2}$. Die einzelnen Terme können dabei auf folgende Effekte zurückgeführt werden:

$\frac{a}{\sqrt{E}}$	Samplingfluktuationen und statistische Schauerfluktuationen.	$\frac{\sigma_E}{E} \sim \frac{\sqrt{N_{ges}}}{N_{ges}} \sim \frac{\sqrt{E}}{E} \sim \frac{1}{\sqrt{E}}$
$\frac{b}{E}$	konstantes energieunabhängiges Rauschen des Detektors.	$\sigma_E = b = const$
С	Fehlkalibration der Auslesekanäle untereinander.	$\sigma_E \sim E$

Der Einfluß von passivem Material vor dem Kalorimeter und der Einfluß longitudinaler Leckverluste liefern nach [22] zusätzlich einen zur Energie des Teilchens proportionalen Beitrag. Beispiele für typische Energieauflösungen verschiedener Detektortypen sind in Tabelle 2.2 zusammengestellt [3]. Das elektromagnetische SpaCal bei H1 erreicht eine absolute Energiekalibration von $c = \pm 0.5\%$ [23]. Somit ist die Energieauflösung des SpaCal nur durch die Samplingfluktuationen und durch das thermische Rauschen der Auslesekanäle dominiert.

2.4 Das elektromagnetische SpaCal bei H1

Ein Ziel des H1-Detektors ist die Untersuchung der Strukturfunktion des Protons bei kleinen x und Q^2 . In diesen Ereignissen wechselwirkt das Elektron mit Partonen sehr kleiner Impulse und wird daher unter besonders großen Winkeln (gemessen zur Richtung des Protonenstrahls) gestreut. Es existieren verschiedene Modelle, die das Proton bei kleinen x und Q^2 beschreiben. Da dieser Bereich bisher experimentell nicht zugänglich war, bietet er eine gute Möglichkeit die verschiedenen Modelle zu überprüfen und so zum Verständnis des Aufbaus der Materie beizutragen.

In diesem Winkelbereich ist das elektromagnetische Spaghetti-Kalorimeter die wichtigste Detektorkomponente. Es erlaubt die Energie des gestreuten Elektrons bei großen Winkeln zu messen und zusammen mit der BDC den Streuwinkel des Elektrons zu rekonstruieren. Das Spaghetti-Kalorimeter bei H1 wurde als Nachfolger des vorhergehenden Kalorimeter *BEMC* entworfen. Es soll folgenden Anforderungen genügen: [5, 24]:

• Es soll Messungen im inneren Bereich bis zu einem Winkel von 177.5° ermöglichen. Dazu wurde der Insert-Bereich speziell modifiziert (siehe Kapitel 1.5). Dies erlaubt Messungen der Protonstrukturfunktion bei sehr kleinen x und Q^2 .

elektromagnetisch				
Detektortyp	Auflösung σ_E/E			
NaJ(Tl)	$2.7\%/E^{1/4}$			
Pb-Glas	$5\%/\sqrt{E}$			
Pb-Szintillator (Sandwich)	$9\%/\sqrt{E}$			
Pb-Szintillator (Spaghetti)	$13\%/\sqrt{E}$			
Flüßig-Argon	$7.5\%/\sqrt{E}$			
Drahtkammern	$23\%/\sqrt{E}$			
hadronisch	1			
Detektortyp	Auflösung σ_E/E			
Pb-Sz-Sampling	$50\%\cdots 80\%/\sqrt{E}$			
fl. Argon	$45\%/\sqrt{E}$			

Tabelle 2.2: Typische Energieauflösung von Kalorimetern verschiedener Bauart. Energieaugaben in GeV [3].

- Zur Unterdrückung von sogenannten Upstream-events soll das rückwärtige Kalorimeter als Trigger fungieren. Upstream-events sind Wechselwirkungen der Protonen mit Restgas oder der Wand des Strahlrohrs, bevor die Teilchenpakete des Protonstrahls den Wechselwirkungspunkt passieren. Die Bruchstücke des Proton werden dabei von außen in den rückwärtigen Bereich des SpaCal gestreut. Da der H1-Detektor den Wechselwirkungspunkt bei diesen Ereignissen nicht vollständig umgibt, ist hier eine Rekonstruktion des Ereignisses aus den Detektorinformationen nicht möglich. Die Auslese dieser Ereignisse ist unerwünscht und soll daher unterdrückt werden. Dazu ist eine extrem kurze Ansprechzeit des Schauersignals in der Größenordnung von Nanosekunden notwendig. Durch Vergleich des Zeitpunktes des Schauersignals mit dem HERA-Taktgeber⁶, kann so durch das Triggersystem zur Laufzeit der Messung entschieden werden, ob bei einem Signal im Detektor das Ereignis ausgelesen werden soll.
- Durch seine transversale Segmentierung soll das SpaCal die Rekonstruktion des Eintreffortes der primären Schauerteilchen ermöglichen. Dies ist wichtig für die Messung von Photonen, die keine Spuren in der *BDC* hinterlassen.
- Die Vorbestimmung des Schauerschwerpunktes mit einer Ortsauflösung von wenigen Millimetern in radialer und in azimutaler Richtung soll zusammen mit den Spurinformationen aus der *BDC* eine genauere Ortsbestimmung ($\sigma_{Ort} = 0.5 mm$) geladener Teilchen bis zu einem Abstand von 6 cm vom Zentrum des Strahlrohrs ermöglichen. Aus dem Leptonendzustand und dem Anfangszustand kann so die Ki-

 $^{^6 \}mathrm{Der}$ HERA-Taktgeber gibt alle 96nse
in Signal, wenn Protonen- und Elektronenpakete den Wechselwirkungspunkt passieren
nematik eines inklusiven Ereignisses allein mit Hilfe Informationen des SpaCal und der BDC rekonstruiert werden.

- Eine möglichst gute Elektron-Pion-Trennung soll erzielt werden. Dabei soll bei einer Nachweiseffizienz für Elektronen ϵ_e und gleichzeitiger Pionunterdrückung $1 - \epsilon_{\pi}$ eine Elektron-Pion-Trennung von $\epsilon_e/(1 - \epsilon_{\pi}) > 100$ erreicht werden, um das Pion-Spektrum um mehr als zwei Größenordnungen zu unterdrücken.
- Da sich das Kalorimeter innerhalb der Magnetspule des H1-Detektors befindet, muß es zuverlässig in einem Magnetfeld von B = 1.15 T arbeiten können.

In Tabelle 2.3 sind alle relevanten Größen des H1- SpaCals zusammengestellt.

Der Durchmesser der beim H1-SpaCal in Blei eingelegten szintilliernden Fasern und das Verhältnis von Blei zu Szintillator bestimmen maßgeblich die theoretisch erreichbare Energieauflösung. Da das Kalorimeter möglichst kompakt sein sollte, ist das Volumenverhältnis von Blei zu Szintillator ein Kompromis zwischen erreichbarer Energieauflösung und Größe des Detektors. Bei gegebenem Volumenverhältnis werden die Samplingfluktuationen mit dünner werdenden Fasern geringer, da die Materialien homogener gemischt werden, aber das Kalorimeter auch aufwendiger herzustellen und somit teurer. In [26] wurde folgender Zusammenhang zwischen dem Blei-Szintillatorverhältnis (Pb : Sz), dem Faserdurchmesser und der erreichbaren Energieauflösung gefunden, die auch beim SpaCal erreicht werden sollte:

$$\left(\frac{\sigma_E}{E}\right)_{theor.} = 6.5\% \frac{\sqrt{(Pb:Sz)} \cdot \text{Durchmesser Faser}[mm]}{\sqrt{E \ [GeV]}}$$

Die Zellgröße ergibt sich aus Überlegungen zur transversalen Schauerbreite: Die Segmentierung sollte so klein gewählt werden, daß durch Zusammenfassen der zum Schauer gehörigen Zellen der Schauerschwerpunkt gut bestimmbar ist. Dabei ist wegen der inhärenten Schauerfluktuationen eine zu feine Aufteilung jedoch nicht sinnvoll und eine minimale Zellgröße durch den Moliére-Radius R_M gegeben. Schließlich setzt auch die Größe der verwendeten Sekundärelektronenvervielfacher eine untere Grenze. Da hadronische Schauer im allgemeinen breiter sind, wurden im hadronischen Kalorimeter auch die Zellen größer gewählt.

2.5 Simulation von Teilchenschauern

In dieser Arbeit wurden Simulationsrechnungen zum Verständnis des SpaCal durchgeführt. Diese sogenannten Monte-Carlo Simulationen haben den Vorteil, daß die Teilchenparameter Energie, Ort und Art der Wechselwirkungen zu jeder Zeit bekannt sind. So ist ein detailliertes Studium von Schauern und Detektoren möglich.

In Monte-Carlo Simulationen werden Ereignisse von hochenergetischen Teilchen einschließlich Teilchenschauern in Detektorkomponenten simuliert. Hierbei wird jedes Teilchen in einem Schauer verfolgt, und für jeden möglichen Wechselwirkungsprozeß mit Hilfe

	elektromagnetisch	hadronisch	
Anzahl der Zellen	1192	136	
Zellgröße (Querschnitt)	$4.05~cm\cdot 4.05~cm$	$8.1\ cm\cdot 8.1\ cm$	
Verhältnis Blei:Szintillator	2.3:1	3.4:1	
Faserdurchmesser	$\phi = 0.5 \ mm$	$\phi = 1 mm$	
Energieauflösung (theor.)	$6.5\%/\sqrt{E}$	$10\%/\sqrt{E}$	
Energieauflösung (exp.)	$7\%/\sqrt{E} \oplus 1\%$	$13.3\%/\sqrt{E}\oplus 3.6\%$	
Absolute Energiekalibration	0.5~%	0.5%	
Moli'ere Radius R_m	25.5 mm	$\approx 20.0 \ mm$	
Wechselwirkungslänge λ_{ww}	$270 \ mm$	200 mm	
Kollisionslänge λ_{koll}	$160 \ mm$	120 mm	
Strahlungslänge X_o	$9.1 \ mm$	$7.24 \ mm$	
Kritische Energie E_c	$7.45 \ MeV$	5.9 MeV	
Zeitauflösung	$\tau \ll 1 \ ns$	$\tau \ll 1 \ ns$	
e/π -Trennung	$\epsilon_e/(1-\epsilon_\pi) > 100$		
Radiale Ortsauflösung	wenige mm		
Winkelauflösung	2 mrad		

Tabelle 2.3: Spezifikationen des elektromagnetischen und hadronischen SpaCal. [5, 6, 27]

eines Zufallszahlengenerators bestimmt, an welchem Ort dieser Prozeß stattfindet. Dabei wird die Eintrittswahrscheinlichkeit jedes Prozesses durch den entsprechenden Wirkungsquerschnitt festgelegt. Wegen der hohen Anzahl der in einem Schauer stattfindenden Wechselwirkungen liefert dieses statistische Verfahren zuverlässige Ergebnisse.

Ein anerkanntes und weit verbreitetes Programm zur Simulation elektromagnetischer Schauer ist das Programmpaket EGS4 [28]. Allerdings ist die Gestaltung komplexer geometrischer Anordnungen sehr aufwendig und somit fehleranfällig. Deshalb wurde auf diesem Programm basierend GEANT [29] entwickelt, welches eine einfache Programmierung komplexer Geometrien gestattet und außerdem die Simulation hadronischer Schauer erlaubt. Dieses Programmpaket wird bei H1 verwendet und soll deshalb näher beschrieben werden.

2.5.1 Das Programmpaket GEANT

GEANT gestattet die Simulation elektromagnetischer und hadronischer Schauer in verschiedenen Materialien für Teilchenenergien zwischen 10 keV und 10 TeV.

Zur Simulation von komplexen Geometrien besitzt GEANT eine Datenbank mit 13 verschieden geformten Basisvolumina, welche für verschiedene Materialien in beliebigen Abmessungen und Orientierungen ineinander verschachtelt werden können, um das gewünschte Detektorelement zu beschrieben. Intern existiert bereits eine Datenbank mit der Beschreibung von 14 chemischen Elementen. Andere können unter Angabe von Dichte, Kernladungszahl, Nukleonenzahl und Strahlungslänge hinzugefügt werden. Samplingkalorimeter können detailliert oder als homogene Mischungen der verwendeten Materialien simuliert werden. In homogenen Mischungen ist es nur erforderlich, die verwendeten Materialien und deren Mischungverhältnis anzugeben; die resultierenden Wirkungsquerschnitte werden automatisch berechnet. Dies ist sinnvoll bei einem Detektor wie dem SpaCal bei H1, da es bei vertretbarem Rechenaufwand nicht möglich ist, alle Fasern⁷ einzeln zu simulieren [16].

Nach Definition des Detektors können Teilchenart, Energie, Startpunkt und Richtung der zu simulierenden Primärteilchen bestimmt werden. GEANT berechnet nun alle stattfindenden Prozesse und stellt dem Benutzer nach jeder Wechselwirkung alle Informationen über diesen Prozeß zur Verfügung. Der Benutzer kann zum Beispiel Art und Ort der Wechselwirkung erfragen, wieviel Energie in welchem Volumen deponiert wurde, ob neue Teilchen und wenn ja, mit welchen Parametern erzeugt wurden.

Da der Wirkungsquerschnitt für Reaktionen von Teilchen kleiner Energien stark ansteigt und somit der Rechenaufwand enorm wächst, ist es sinnvoll, Abschneideparameter einzuführen, die die kinetische Energien der Sekundärteilchen begrenzen. Unterschreitet ein Teilchen diese Energie, so wird die kinetische Energie des Teilchens lokal deponiert und das Teilchen aus der Simulation genommen. Dies ist auch physikalisch sinnvoll, denn die Reichweite von Teilchen nimmt mit kleiner werdenden Energien ab, so daß eine Abschneideenergie von etwa 200 keV für Photonen und 1 MeV für Elektronen einen Schauer bei vertretbarem Rechenaufwand immer noch gut beschreibt. Der optimale Abschneideparameter muß im allgemeinen jedoch durch detaillierte Simulationen ermittelt werden. Der Parameter ist dann optimal, wenn sich auch bei Wahl eines noch kleineren Parameters das Ergebnis der Simulation nicht mehr ändert und nur noch innerhalb der statistischen Schwankungen variiert.

In den Analysen dieser Arbeit (siehe Kapitel 5.2.2) wurde mit einem GEANT-Datensatz von 80000 Ereignissen des simulierten H1-Detektors gearbeitet, die im elektromagnetischen SpaCal zu Schauern mit einer Energie größer als 5*GeV* geführt haben. Der Vertex war dabei um 70*cm* in Protonstrahlrichtung entlang des Strahlrohres gegenüber dem nominellen Vertex verschoben, wie es bei der Messung im H1-Detektor geschieht, wenn im SpaCal größere Winkel zugänglich gemacht werden sollen. Diese Einstellungen wurden vorgenommen, um Ergebnisse der Simulation mit gleichwertigen shifted vertex H1-Daten des Jahres 1995 vergleichen zu können, der mir zur Analyse zur Verfügung stand. Im weiteren soll der GEANT-Datensatz mit Shifted-Vertex Monte-Carlo Daten bezeichnet werden.

Zur Erstellung eines solchen Datensatzes wird das Programm DJANGO benutzt. DJAN-GO ist ein Ereignisgenerator, der Elektron-Proton Streuung simuliert und Art, Ort und Impuls der Teilchen generiert, die bei Wechselwirkungen im HERA-Speicherring entstehen. Die Informationen aus diesen generierten Ereignissen werden dem Programm H1SIM übergeben, wo mit Hilfe von GEANT die Wechselwirkungen der Teilchen mit dem H1-Detektor simuliert werden. Alle für die Analysen dieser Arbeit relevanten Detektorin-

⁷Das SpaCal besitzt etwa 3 000 000 szintillierende Fasern.

formationen dieses Datensatzes wurden in ein PAW-NTUPEL gefüllt, wo sie mit dem Programm PAW [30] untersucht werden konnten.

Kapitel 3

Aufbau und Durchführung von Testmessungen für die SpaCal-Insert Module am DESY

3.1 Motivation für den Bau neuer Insertmodulen

Am H1-Detektor werden in jedem Jahr am Ende der Meßperiode Wartungsarbeiten durchgeführt. Insbesondere die Insert-Module des SpaCal werden dabei einer hohen mechanischen Belastung ausgesetzt, da sie als erste entfernt und zuletzt wieder eingebaut werden müssen, um das SpaCal aus dem H1-Detektor über das Strahlrohr ziehen zu können. Dies ist notwendig, da sich das Strahlrohr nahe dem Wechselwirkungspunkt verjüngt (siehe Abbildung 3.1). Durch den geringen Platz treten beim Ein- und Ausbau hohe mechanische Spannungen auf, die die Module stark beanspruchen. Weiterhin kann nicht ausgeschlossen werden, daß wegen der hohen Ereignisrate im inneren Bereich die große Strahlenbelastung langfristig zu Strahlenschäden im Szintillatormaterial führt. Auf Grund der Materialermüdung ist es deshalb notwendig, neue Insert-Module zu bauen, um die gealterten zu ersetzen.

3.2 Aufbau und Herstellung der Insert-Modulen

Im Rahmen dieser Diplomarbeit wurden drei neue Insert-Module gebaut, deren Herstellung hier kurz beschrieben werden soll. Der Aufbau von Submodulen außerhalb des Insertbereichs wurde bereits in Kapitel 1.4 beschrieben. Da eine optimale räumliche Anpassung an das Strahlrohr gewünscht ist, unterscheidet sich der Aufbau der *Insert-Module* von denen normaler Module. Ein Bild eines fast fertiggestellten Insert-Moduls ist in Abbildung 3.2 gezeigt.

Zum Bau der Insertmodule sind die in Tabelle 3.1 beschriebenen Schritte nötig.

Abbildung 3.1: Ausbau des SpaCal aus dem H1-Detektor. Zuerst müssen die Insert-Module entfernt werden, ehe das SpaCal über das Strahlrohr nach außen gezogen werden kann.

Abbildung 3.2: Foto eines fertigen Insertmoduls. Die Fasern der Auslesekanäle sind farbig gekennzeichnet. Die Fasern der Vetolagen werden mit dem jeweils benachbarten Modul zu einer Zelle zusammengefaßt.

Abbildung 3.3:

Links: Orientierung der Bleiplatten der Insert-Module im H1-Detektor mit Blick aus der Protonstrahlrichtung.

Rechts: Stapelanordnung der Bleiplatten in Insert-Modulen. Es wurden nur 101 der vorgesehenen 104 Platten gestapelt, um sich dem verringerten Platz im Insert-Bereich des Detektors anzupassen. Die gestrichelten Linien markieren die Zellgrenzen.

Ein Insertmodul ist aus 101 Blei-Platten¹ unterschiedlicher Breite zusammengesetzt, welche so gestapelt werden, daß sie das Strahlrohr lückenlos umgeben (siehe Abbildung 3.3 und Abbildung 1.8). Zunächst werden 0.52 mm breite Rillen im Abstand von 0.9 mm in Bleibleche gewalzt (siehe Abbildung 1.6). Dazu wird ein am DESY entworfenes Walzwerk [31] benutzt, dessen zulässige Toleranz in der Höhe der Bleibleche wenige μm beträgt. Dann werden aus diesen Bleiblechen Platten unterschiedlicher Breite geschnitten, um beim Stapeln der Platten eine zylinderförmige Aussparung für das Strahlrohr zu erreichen (siehe Abbildung 3.3). In die Rillen werden szintillierende Fasern² eingelegt, die auf der den Sekundärelektronenvervielfachern abgewandten Seite verspiegelt sind, um Lichtverluste und Absortption zu minimieren. Nahe der Frontseite werden die Fasern mit Acryl-Lack in einer wenige Millimeter breiten Zone mit den Bleiplatten verklebt. Dieser Lack besitzt den gleichen Brechungsindex wie der Fasermantel. Um die Fasern besser zu Zellen bündeln zu können, markiert man nun die Fasernden nach Zellen geordnet, wie auf Abbildung 3.2 zu erkennen ist. Die Bleiplatten werden alternierend auf der den

¹Für die Insert-Module waren 104 Platten Bauhöhe vorgesehen. Die Geometrie mußte jedoch auf 101 Platten abgeändert werden, da sich der zu Verfügung stehende Raum im Insert-Bereich des SpaCal nach Wartungsarbeiten am Detektor durch plastische Verformung verkleinert hatte.

²Es handelt sich um Fasern der Firma BICRON des Typs BCF-12 aus Polystyrol

Arbeitsgang	Arbeitszeit in Manntagen
Vorlauf (Durchnumerierung, Aufbau)	2
Blei-Platten-Profil walzen (3 Leute)	4.5
Schneiden auf notwendige Breite	1
Fasern in Blei-Platten einlegen	3
Fasern bündig legen und einkleben	2
Markierung der Fasern nach Zellen	1
Blei-Platten stapeln, verkleben und pressen	$3 \ge 0.5$
Bündeln der Fasern und vergießen	0.5
Abschlagen der Fasern und Umkleben des Moduls	2.5
insgesamt pro Viertel:	18 Manntage

Tabelle 3.1: Notwendige Arbeitsschritte zur Herstellung eines Insertmoduls (101 Lagen belegter Bleiplatten) und ungefährer Arbeitsaufwand [32].

Sekundärelektronenvervielfachern zugewandten und abgewandten Seite mit einer 1 mmbreiten Schicht schwarzen Epoxyd-Harzes versehen, um die Platten untereinander mechanisch zu stabilisieren und Streulicht aus den Fasermänteln zu absorbieren. Nach dieser Vorbereitung werden die Platten in drei Arbeitsgängen in einer Aluminiumform gestapelt, wobei der Form jedes Mal ein Drittel der Platten hinzugefügt werden. Das Modul wird dabei jeweils 12 Stunden lang mit einem Gewicht von 1.5t horizontal und vertikal gepreßt, um spätere Deformationen im Detektor zu vermeiden.

Um die fertig gestapelten Module zu stabilisieren, umklebt man sie mit einer $60 \,\mu m$ dicken Schicht Klebeband. Schließlich werden die Faserenden zu Zellen gebündelt, in einen Faserführungsrahmen eingefaßt und in schwarzem Epoxyd-Harz vergossen. Das Insert-Modul auf dem Foto in Abbildung 3.2 ist in diesem Stadium des Zusammenbaus.

Die dem Strahlrohr zugewandte Seite des Moduls wird zur Abschirmung gegen Strahlung mit einem 2 mm dicken Tantalmantel umgeben. Dieser soll die Module gegen Synchrotronstrahlung aus dem Strahlrohr schützen.

Die Enden der Fasern werden nun bis an die Faserführungsrahmen abgeschlagen, um eine optisch einwandfreie Fläche zu erhalten. An dieser Stelle werden die Lichtmischer über einen 0.3 mm breiten Luftspalt angekoppelt. Die Lichtmischer sind an Sekundärelektronenvervielfacher geklebt und dienen dazu, eine gleichmäßige Ausleuchtung der Elektrode unabhängig vom Ort der lichtführenden Fasern zu erreichen. In die Lichtmischer führen zwei Glasfasern, um Licht von außen einzukoppeln, und so Kalibrationen der Sekundärelektronenvervielfacher vornehmen zu können [33]. Die Orientierung der Bleiplatten der Insert-Module im Detektor ist aus Abbildung 3.3 ersichtlich.

Es wurden insgesamt vier Ersatzmodule gebaut, wovon drei zum Testbeginn fertiggestellt waren. Die Teststrahlmessungen fanden im November und Dezember 1995 am DESY-Teststrahl 22 in Hamburg statt. Die Messungen und deren Ergebnisse sollen im folgenden näher beschrieben werden.

3.3 Aufbau der Teststrahlmessung

Der Aufbau des Meßplatzes ist Abbildung 3.4 und Abbildung 3.5 zu entnehmen. Die Elektronen werden durch Photon-Konversion an einem Targetdraht durch die in einem primären Target induzierte Bremsstrahlung von DESY II erzeugt. Als Targetdraht stehen unterschiedlich dicke Drähte verschiedener Materialien zur Verfügung. Es wurde ein 5 mm dicker Kupferdraht gewählt, da dieser eine genügend hohe Ereignisrate lieferte. Mit Hilfe eines Dipolmagneten und eines Blendensystems kann man eine Elektronenenergie von 1 GeV $\leq E \leq 6$ GeV auswählen, indem Elektronen anderer Energie ausgeblendet werden. Dabei wird eine Energieauflösung von $\sigma_p = 150$ MeV erreicht [34]. Die Elektronen werden durch ein evakuiertes Strahlrohr bis zum Meßplatz geführt. Das Strahlrohr wird durch eine Kaptonfolie abgeschlossen, um das Vakuum des Strahlrohrs zu begrenzen, das dazu dient den Energieverlust und die Strahlaufweitung durch Vielfachstreuung zu minimieren. Die mittlere freie Wegstrecke für hochenergetische Elektronen in Luft ist 300 m [3]. Da die Wegstrecke der Elektronen an Luft in diesem Meßaufbau zwischen Strahlrohr und Meßbox nur etwa 7 m beträgt, kann der Einfluß von Absorption und Vielfachstreuung vernachlässigt werden.

Zwischen der Meßbox und dem Strahlrohr befinden sich ein Eisenkollimator und drei Szintillationszähler. Ein dünner, stabförmiger Szintillationszähler und ein großflächiger Szintillationszähler ermöglichen durch eine Koinzidenzschaltung ein Ereignis zur Auslese zu triggern. So wird der Untergrund durch Höhenstrahlung und anderen natürlichen Strahlungsquellen unterdrückt. Diese zwei Szintillationszähler sind in Antikoinzidenz zu einem großflächigem Szintillationszähler mit einem 3 mm großem Loch geschaltet. Nur, wenn ein Elektron durch den ersten und zweiten Szintillationszähler und das Loch des dritten Szintillationszählers fliegt, wird die Auslese des Detektors gestartet. Durch den kleinen Lochdurchmesser, die geringe Breite des stabförmigen Szintillationszählers und den langen Hebelarm zwischen beiden und dem Eisenkollimator kann eine maximale Strahldivergenz von 0.1° auftreten und es wird eine Ortsauflösung von etwa 3mm erreicht. Die Meßbox (siehe Abbildung 3.6) ist auf einem fahrbaren Tisch, um einem Winkel von 3° horizontal und vertikal gegen den Elektronenstrahl geneigt, befestigt. Damit soll der Auftreffwinkel von Elektronen simuliert werden, die im H1-Detektor aus einem etwa 1.5 mentfernten Vertex im Zentrum des Strahlrohres kommen. Solche Elektronen treffen unter einem Winkel zwischen 2.5° und 4.3° in den Insertbereich des SpaCal ein. Durch Schrittmotoren kann der Meßtisch in 0.1 mm Schritten horizontal und vertikal gefahren werden, damit der Strahl verschiedene Punkte der Meßbox überstreicht. Die Bestimmung der Position geschieht durch Ortssensoren, die die Schrittmotoren überwachen und die Position des Meßtisches aus den gefahrenen Schritten errechnen.

Bei der Meßbox handelt sich um eine lichtdicht verschlossene Aluminiumkiste, welche dazu dient, die Sekundärelektronenvervielfacher der Auslesekanäle vor Streulicht zu schützen und die Module mechanisch zu stabilisieren. Sie enthält die Insertmodule, die an-

Abbildung 3.4: Aufbau der Teststrahlmessung am Teststrahl 22 am Speicherring DESY II. Die Meßbox ist, um 3° in horizontaler und vertikaler Richtung geneigt, auf einem fahrbaren Tisch montiert. Der Elektronenstrahl des Teststrahl 22 wird durch einen Eisenkollimator begrenzt. Als Trigger zur Detektorauslese dienen zwei in Koinzidenz geschaltete Szintillationszähler und ein in Antikoinzidenz geschalteter Szintillationszähler mit einem Loch von 3 mm Durchmesser. Durch diesen Aufbau wird das Rauschen unterdrückt und eine Ortsauflösung der Elektronenstrahl von 3 mm erreicht.

Abbildung 3.5: Blick auf den Testaufbau aus Richtung des fahrbaren Meßtisches. Der Eisenkollimator und die drei Szintillationszähler sind weiß hervorgehoben.

Abbildung 3.6: Ansicht der Meßbox (schematisch) aus Richtung der Sekundärelektronenvervielfacher gegen die Strahlrichtung (links) und von oben (rechts). Gezeigt sind die Zellaufteilung und die angeschlossenen Sekundärelektronenvervielfacher. Die Ansteuerung der CAM-Module und der Hochspannungsmodule geschieht von außerhalb durch einen Rechner. Die das Lichtsignal tragenden Glasfasern der CAM-Module sind an die mit den Lichtmischern verbundenen Glasfasern in Hülsen verklebt. Da diese Verbindungen sehr störanfällig sind, ist die Ankopplung an die CAM-Module für jeden Lichtmischer doppelt vorhanden.

geschlossenen Sekundärelektronenvervielfacher, die HV-Module³ und die CAM-Module⁴. Die Ausleseelektronik zur rechnergestützten Datennahme und die externe Spannungsversorgung befinden sich außerhalb der Meßbox am Meßplatz. Die drei zum Meßbeginn fertiggestellten Insert-Module und zwei Zellreihen der angrenzenden Supermodule wurden mit 31 Sekundärelektronenvervielfachern bestückt (siehe Abbildung 3.7). Im weiteren werden die dort angegebenen Zellnumerierung verwendet.

Nun soll der Aufbau eines Auslesekanals beschrieben werden:

- Wie aus Abbildung 1.7 ersichtlich, sind an den abgeschlagenen Enden der szintillierenden Fasern, die Faserbündel jeder Zelle über einen definierten Luftspalt der Breite 0.3 mm an Lichtmischer gekoppelt. Diese sind mit den Eingängen von Sekundärelektronenvervielfachers verbunden.
- Dem Lichtmischer werden über die zwei Glasfasern die Signale zweier LED's eingespeist (siehe Abbildung 3.6). Diese dienen als Referenzsignal zur Kalibration der Auslesekanäle, da ihre Signale zeitlich stabil sind. Die LED's befinden sich in den sogenannten *CAM-Modulen* und senden durch ein Triggersignal aktiviert einen Lichtimpuls definierter Länge aus. An jede LED sind acht Sekundärelektronenvervielfacher angeschlossen. Beim Einbau der Module werden die Glasfaserenden der Lichtmischer und der *CAM-Module* mit einer Klebeverbindung in Kabelhülsen verklebt. Diese Klebeverbindung ist eine sehr kritische Komponente des Aufbaus, da es schwierig ist eine stabile Lichteinkopplung mit einer solchen Klebeverbindung zu erhalten. Um den Ausfall einer LED vorzubeugen, sind die Kalibrations-LED's für jeden Sekundärelektronenvervielfacher doppelt ausgelegt.
- Uber eine Datenleitung zu den HV-Modulen kann die Hochspannungsversorgung der Sekundärelektronenvervielfacher jedes Kanals in 255 Schritten innerhalb eines vorgewählten Spannungsintervalles gewählt werden. Dies ist nötig, da die Verstärkung von Sekundärelektronenvervielfacher exemplarabhängig sehr schwanken kann, und es notwendig ist, die Verstärkung der Kanäle im Betrieb des Detektors nachkalibrieren zu können. Darauf wird in Kapitel 3.5 näher eingegangen.
- Uber die Ausleseelektronik außerhalb der Meßbox können die Sekundärelektronenvervielfacher ausgelesen und die Signale zu einem Computer geschickt werden, wo sie mit Hilfe von ADC-Wandlern⁵ digitalisiert und zur späteren Auswertung abgespeichert werden. Dabei ist dem Signal-Nullpunkt ein endlicher ADC-Wert, der sogenannte *Pedestal* Wert, zugeordnet, um Unterläufe zu vermeiden.

³HV=High Voltage. Die HV-Module sind die Steuereinheiten der interner Hochspannungsversorgung der Sekundärelektronenvervielfacher [35].

⁴CAM=Calibration and Monitoring. Die LED-Lichtimpulse aus den CAM-Modulen dienen als Referenzlichtsignal, um Sekundärelektronenvervielfacher während der Messung zu überwachen, damit die Verstärkung gegebenenfalls nachkalibriert werden kann [33].

⁵ADC=Analog-Digital-Converter = Analog-Digital-Wandler, übersetzt ein analoge Spannungsignal in ein digitales Ausgangssignal – in diesem Fall eine 12-bit Zahl (0...4095)

Messung	Meßpunkte	Ereignisse	Insgesamt
Verzögerungszeit zur Auslese	2 x 6 Mp.	500 x	6000
Bestimmung abs. Koordinatensystem	2 x 23 Mp.	300 x	13800
Kalibration der Auslesekanäle	31 Zellen	500 x	15000
Nachkalibration der Auslesekanäle $(2x)$	2 x 31 Zellen	1000 x	62000
Oberflächenabtastung horizontal $(3x)$	19+43+43 Mp.	1000 x	105000
Oberflächenabtastung vertikal $(2x)$	20+44 Mp.	1000 x	64000
Oberflächenabtastung diagonal	30 Mp.	1000 x	30000
Energiemessung in 2 Zellen mit 6 Energien	6 x 2 Mp.	1000 x	12000
Pedestal- und CAM-Läufe	$2 \ge 10$ Läufe	500 x	10 000
Insgesamt			≈ 300000

Tabelle 3.2: Geplantes Meßprogramm zum Testen der Insert-Module. Die Messungen dauerten 10 Tage.

3.4 Meßprogramm

Das Meßprogramm umfaßte die in Tabelle 3.2 aufgeführten Punkte. In den Testmessungen sollten die räumliche Homogenität der Insert-Module, die Linearität und die Auflösung der Energiemessung untersucht werden.

Zunächst müssen die Verzögerungszeit zwischen Triggersignal und der Ausleseelektronik ermittelt, ein absolutes Koordinatensystem bestimmt und alle Auslesekanäle kalibriert werden. Diese Vorbereitungen nehmen eine Vorlaufzeit von 4 Tage in Anspruch. Danach kann mit der Datennahme begonnen werden.

Mit dem Elektronenstrahl werden drei horizontale, zwei vertikale und eine diagonale Abtastungen der Oberfläche des Insert-Bereiches durchgeführt, um die räumliche Homogenität der Module zu überprüfen. Diese sind in Abbildung 3.7 als gepunktete Linien eingezeichnet. Dafür werden alle 5 mm 1000 Ereignisse mit Elektronen von 3 GeV Energie aufgezeichnet. Bei dieser Energie ist die Ergeignisrate am höchsten.

Zur Bestimmung der Linearität und Auflösung der Energiemessung werden je 1000 Elektronen mit einer Energie von 1 GeV bis 6 GeV in 1 GeV Schritten in das Zentrum von Zelle 26 und Zelle 7 geschossen. So kann die Energiemessung an zwei Stellen im inneren Bereich überprüft werden.

Schließlich werden Pedestal-Läufe⁶ und CAM-Läufe während der gesamten Meßdauer durchgeführt. Mit Hilfe der Pedestal-Läufe werden Ereignisse ohne Elektronenstrahl ausgelesen. So kann man das Untergrundrauschen untersuchen und die Stabilität der ADC-Nullpunkts überwachen. CAM-Läufe erfolgen durch Aktivieren der CAM-Module und gleichzeitiger Auslese aller Kanäle. Sie dienen zur Online-Kalibration⁷ der Sekundärelek-

⁶Der Pedestal ist der *Nullwert* eines ADC-Wandlers, dem ein endlicher ADC-Wert entspricht, um Unterläufe zu vermeiden

⁷Online bezieht sich auf den Zeitraum während der Messung

tronenvervielfacher und zur Offline-Überprüfung⁸ der Stabilität der einzelnen Kanäle. Wegen Problemen in der Ausleseelektronik konnten die Pedestal-Läufe und die CAM-Läufe nicht während einer Messung gemacht werden, es waren separate Läufe ohne Elektron-Triggersignal nötig.

Abschließend wurde das Koordinatensystem erneut bestimmt, um systematische Fehler abschätzen zu können.

Die Ereignisrate betrug 5 Hz. Dies entspricht bei den geplanten 300 000 Ereignissen einer Gesamt-Meßdauer von ca. 17 Stunden reiner Meßzeit. Für Neupositionierungen des Detektors, Nachkalibrationen und Datensicherung ist eine um den Faktor drei längere Meßzeit erforderlich, so daß etwa eine Meßzeit von 50 Stunden benötigt wird. Allerdings ist zu beachten, daß während DESY II zur Füllung neuer Teilchenpakete in HERA benutzt wurde, kein Elektronenstrahl zur Verfügung stand. Es wurden pro Tag zwei achtstündige Meßschichten mit zwei Personen durchgeführt. Die Testmessungen erstreckten sich über 11 Tage.

3.5 Kalibration des Meßaufbaus

3.5.1 Bestimmung der optimalen Verzögerungszeit der Ausleseelektronik

Das Ausgangssignal eines Sekundärelektronenvervielfachers hat eine endliche Anstiegszeit. Deshalb wurde eine Meßreihe für sechs verschiedene Verzögerungszeiten mit jeweils 500 Ereignissen durchgeführt, um die optimale Verzögerungszeit zwischen Trigger und Ausleseelektronik zu ermitteln. Diese ist erreicht, wenn die Auslese im Maximum des Signals der Sekundärelektronenvervielfacher erfolgt, da hier geringe Zeitabweichungen der Auslese zu keiner Änderung der gemessenen Signalhöhe führen. In Abbildung 3.8 ist das Ausgangssignal eines Kanals als Funktion der gewählten Verzögerungszeiten aufgetragen. Das Maximum wurde numerisch durch Anpassen eines Polynoms 2. Grades bestimmt. Die optimale Verzögerungszeit wurde mit $\Delta t = 1.925 \ \mu s$ ermittelt (Siehe Abbildung 3.8).

3.5.2 Festlegen eines absoluten Koordinatensystems

Um für die späteren Messungen Punkte der Oberfläche der Testmodule anfahren zu können, muß ein absolutes Koordinatensystem definiert werden. Zunächst wird ein beliebiger Koordinatenursprung festgelegt und der Elektronenstrahl nahe einer Zellmitte positioniert. Dort ist das Signal einer Zelle am höchsten. Dann wird mit dem Elektronenstrahl bei noch nicht kalibrierten Sekundärelektronenvervielfachern eine horizontale und eine vertikale Oberflächenabtastung der Insert-Module über mehrere Zellgrenzen hinweg durchgeführt. Die auf ihr Maximum normierten Signale aller abgetasteten Zellen werden

⁸Offline bezieht sich auf den Zeitraum nach der Messung

Abbildung 3.7: Aufsicht auf die Meßbox aus Richtung des Elektronenstrahls. Die numerierten Zellen wurden mit Sekundärelektronenvervielfacher bestückt. Die Pfeile markieren die durchgeführten Abtastungen der Oberfläche in horizontaler, vertikaler und diagonler Richtung. Die Achsen geben die Koordinaten des gewählten Koordinatensystems wider.

Abbildung 3.8: Signalhöhe eines Auslesekanals als Funktion der Verzögerungszeit zwischen der Auslese der Sekundärelektronenvervielfacher und des Triggersignals. Den Fehlerbalken entsprechen die Standardabweichungen der Verteilung jeder Messung.

gegen die eingestellten Koordinaten aufgetragen. In Abbildung 3.10 sind die normierten Signale der Zellen 3, 5, 7 und 9 als Funktion der eingestellten y-Koordinate und die Zellen 9, 13, 15 und 17 als Funktion der eingestellten x-Koordinate gezeigt. Dort, wo die normierten Signale zweier benachbarten Zellen gleich hoch sind, befindet sich das Maximum des Schauers genau auf der Zellgrenze. Die Lage des willkürlich gewählten Koordinatensystems kann so aus der Position der Zellgrenzen abgeleitet werden. Nun kann der Koordinatenursprung neu gewählt werden, um ein geeignetes, absolutes Koordinatensystem zu definieren. Der Koordinatenursprung wurde am Berührungspunkt der Zellen 7, 9, 13 und 26 neu festgesetzt, wie aus Abbildung 3.7 ersichtlich ist. Dies ist die Position im SpaCal, wo Elektronen aus dem nominellen Vertex unter einem Winkel von 3° horizontal und vertikal geneigt auf den Detektor treffen. Das gewählte Koordinatensystem beschreibt die Lage der Schauermaxima und bezieht sich nicht auf den Einschußort der Elektronen.

Alle folgenden Ortsangaben beziehen sich auf dieses Koordinatensystem.

3.5.3 Energiekalibration der Auslesekanäle

Nach der Bestimmung des Koordinatensystems müssen die Signale der Auslesekanäle absolut kalibriert werden. In Voruntersuchungen mit Monte-Carlo Simulationen wurden für allen Zellen die Koordinaten des Einschußortes bestimmt, bei denen die deponierte Energie für die jeweilige Zelle maximal ist, also nur minimale Leckverluste in umliegende Zellen auftreten. Wie aus Abbildung 3.9 ersichtlich ist, ist dies ein breiter Bereich in Nähe der Zellmitte, jedoch diagonal verschoben entlang der 3°-Neigungsachse des Testaufbaus. Innerhalb des innersten gezeigten Bereichs werden 98% der maximal in der Einschußzelle deponierten Energie gemessen. Zur Kalibration der Auslesekanäle der Insertmodule und für die Energiemessung mit sechs Elektronenergien wurden die Koordinaten⁹ im Zentrum dieser Bereiche angefahren.

Für die Kalibration der Sekundärelektronenvervielfacher zur Energiemessung sind die folgende Schritte notwendig:

- Der Nullpunkt der ADCs jedes Kanals wird durch eine Messung ohne Elektronenstrahl bestimmt. Dieser *Pedestal*-Wert des Kanals *i* wird im weiteren mit *PED_i* bezeichnet. Er lag für alle Zellen bei etwa 210. Diese Werte werden während der gesamten Messung überprüft, indem man in Pedestal-Läufen zufällig ausgewählte Ereignisse protokolliert, ohne daß der Trigger die Auslese ausgelöst hat. Hieraus können später Abschätzungen über das Rauchen der Sekundärelektronenvervielfacher und die Stabilität des Pedestal gemacht werden.
- Die an die Sekundärelektronenvervielfacher angelegten Hochspannungen können in den HV-Modulen innerhalb eines frei wählbaren Spannungsintervalles in 255

⁹Da sich das gewählte Koordinatensystem im Testaufbau auf die Lage des Schauermaximums bezieht, wurde der Einschußort um 4 mm gegenüber des aus der Simulation ermittelten, optimalen Einschußortes in Richtung des Neigungswinkels des Testaufbaus verschoben

Abbildung 3.9: Verhältnis der deponierten Energie *in der Einschußzelle* zur Einschußenergie des Elektrons im Insert-Bereich. Die Zahlenangaben in den Zellen entsprechen dem maximalem Bruchteil der dort deponierten Gesamtenergie. Die Höhenlinien umschließen Bereiche von 98%, 96%, 94%, 92%, 90%, 80%, 70%, 60%, 50%, 40%, 30%, 20%, 10% der deponierten Maximalenergie.

Abbildung 3.10: Ermitteln eines absoluten Koordinatensystems. Zu sehen sind die Ortsabtastungen entlang der y-Achse durch die Zellen 3, 5, 7 und 9 (oben) und entlang der x-Achse durch die Zellen 9, 13, 15 und 17 (unten). An den Schnittpunkten der Signalkurven befindet sich das Schauermaximum genau auf der Zellgrenze zweier benachbarter Zellen. Das Koordinatensystem wurde so gewählt, daß sich diese Schnittpunkte bei $x_m = m \cdot 4.05 \ cm$, $y_n = n \cdot 4.05 \ cm$, $m, n = 0, \pm 1, \pm 2...$ befinden. Der Ursprung wurde im Berührungspunkt der Zellen 7, 9, 13 und 26 neu festgesetzt.

Schritten gewählt werden. Die Intervallgrenzen werden nach den Herstellerangaben zur Verstärkung jedes Sekundärelektronenvervielfachers voreingestellt. Nun wird die Hochspannung der Sekundärelektronenvervielfacher innerhalb dieses Intervalls iterativ in drei Meßreihen zu jeder Zelle so geändert, daß bei maximaler Einschußenergie (6 GeV), jede Zelle dasselbe ADC-Signal liefert. Dazu wird jede Zelle einzeln angefahren und 1000 Ereignisse aufgezeichnet, die Hochspannungsversorgung nachgeregelt, um die Verstärkung der Sekundärelektronenvervielfacher anzupassen, und eine neue Messung begonnen. Das gemessene, digitalisierte Signal des Auslesekanals *i* wird im weiteren mit ADC_i bezeichnet. Der Mittelwert der ADC-Werte bei 6 GeV Elektronen wird bei $ADC_i = 3500$ eingestellt, damit es nicht zum Überlauf von ADC-Werten kommt. Dies ist etwa drei Standardabweichungen der gemessenen Energieverteilung von 6 GeV-Elektronen unterhalb des ADC-Maximalwertes von 4095. So können auch Schwankungen zu höheren Energien richtig wiedergegeben werden. Die Insert-Zellen mit geringerem Volumen werden, wie in Abbildung 3.9 aufgeführt, mit einem Faktor 0.91 = 0.79/0.87 berücksichtigt und auf $ADC_i = 3200$ kalibriert. Auf Grund technischer Schwierigkeiten im Computer-Netzwerk mußte die dritte Meßreihe blind erfolgen, das heißt, es konnten Messungen durchgeführt, diese jedoch nicht sofort ausgewertet werden. Deshalb wurde die Kalibration nach der Messung überprüft, als die Daten zur Verfügung standen und Korrekturfaktoren (nahe 1) ermittelt, um die noch bestehenden Fehlkalibrationen auszugleichen. Diese Korrekturfaktoren, im weiteren mit *calib_i* bezeichnet, wurden in der Analyse berücksichtigt.

- Wegen der besonderen Zellform ist es schwierig die Vetolagen absolut zu kalibrieren. Bereits ein um wenige *mm* verschobener Einschußort führt zu starken Schwankungen der deponierten und rekonstruierten Energie. Bei ihnen ist die Hochspannung der Sekundärelektronenvervielfacher auf den maximal möglichen Wert gesetzt worden. Bei dieser Verstärkung befinden sich die Signale nicht im Überlauf und der Mittelwert der Verteilungen lag für alle Meßpunkte um mehr als zwei Standardabweichungen unter dem ADC-Maximalwert von 4095.
- LEDs liefern ein zeitlich stabiles Lichtsignal [33]. Daher können Lichtpulse von LEDs als zuverlässige Referenzsignale benutzt werden, um die Stabilität der Verstärkung der Sekundärelektronenvervielfacher zu überwachen. Die von den LED-Lichtpulsen der CAM-Module erzeugten Ausgangsignale der Sekundärelektronenvervielfacher werden für alle Kanäle bestimmt und die ADC-Werte als Referenz für spätere Messungen gespeichert. Während der ganzen Messung werden weitere solcher *CAM*-*Läufe* durchgeführt, um nach der Messung die Verstärkung der Sekundärelektronenvervielfachers korrigieren zu können, falls einzelne Exemplare während der Messung driften sollten.

Trotz der redundant ausgelegten Anbindung von zwei LED-Leitungen konnte nicht bei allen Kanälen eine optimale Überwachung durch die CAM-Module erfolgen. Einige Kanäle reagierten nicht auf die CAM-Pulse, was ein Zeichen für mangelhafte Hülsenanbindungen der Glasfasern sein kann. Die Signale anderer Kanäle befanden sich mit der für die Sekundärelektronenvervielfacher voreingestellten Hochspannung bei LED-Pulsen bereits im Überlauf. Hier wird der LED-Lichtimpuls zu stark eingekoppelt. 16 Auslesekanäle zeigten stabile Signale. Für sie können CAM-Läufe durchgeführt werden

3.5.4 Stabilität der Energiekalibration

Um die Stabilität der Energiekalibration der Auslesekanäle zu überprüfen und den Anteil des Rauschens abschätzen zu können, werden zwei Methoden angewandt: Durch die *Pedestal*-Läufe, bei welchen die Apparatur ohne Triggersignal zufällig ausgelesen wird, kann die Stabilität der Nullpunkte der ADCs und der Sekundärelektronenvervielfacherüberprüft und das Rauschen der Ausleseelektronik abgeschätzt werden. Bei den *CAM*-Läufen wird ein LED-Lichtpuls auf die Auslesekanäle gegeben, um die Stabilität der Verstärkung der Sekundärelektronenvervielfacher zu überwachen.

Abbildung 3.11: Gezeigt ist links die Verteilung der Pedestal-Werte eines typischen Kanals und rechts das Summensignal aller Kanäle. Folgende Größen wurden aus der Breite der Verteilungen ermittelt, wie in Gleichung 3.1–3.3 angegeben: Aus den Standardabweichungen: $S_1 = 19.8$, $S_2 = 3.56$, $S_3 = 10.5$.

Aus der Breite der Gaußkurven: $S_1 = 19.8$, $S_2 = 3.56$, $S_3 = 9.95$.

Pedestal-Läufe:

In Abbildung 3.11 ist die Häufigkeitsverteilung der gemessenen Pedestalwerte für den ADC-Wandler eines Kanals exemplarisch gezeigt. Die Schwankung um den Mittelwert beträgt nur einen ADC-Kanal. Man vergleiche diese Breite mit der Energieauflösung einer typischen Messung (siehe Abbildung 3.16a). Das Untergrundrauschen des Pedestal-Wertes, der Sekundärelektronenvervielfacher und der Ausleseelektronik kann also in der Analyse vernachlässigt werden.

Um Rückschlüsse auf die Korrelation des Rauschens der einzelnen Kanäle zu ziehen, können folgende drei Größen verglichen werden:

(a) Die Summe der Standardabweichungen σ_i des Signals aller Kanäle:

$$S_1 = \sigma_1 + \sigma_2 + \dots + \sigma_{31} \tag{3.1}$$

(b) Die quadratisch addierten Standardabweichungen σ_i des Signals aller Kanäle:

$$S_2 = \sqrt{\sigma_1^2 + \sigma_2^2 + \dots + \sigma_{31}^2}$$
(3.2)

(c) Die Standardabweichung des Summensignals aller Kanäle:

$$S_3 = \sigma_{\Sigma_i} \tag{3.3}$$

Ist das Rauschen aller Kanäle 100% korreliert, so werden die beschriebenen Größen S_1 und S_3 gleich sein, da Fluktuationen der einzelnen Kanäle immer gleichgerichtet sind. Dies ist der Fall bei Schwankungen der alle ADC's versorgenden Referenzspannung oder der nachfolgenden Elektronik. Ist das Rauschen jedoch nicht korreliert, so werden die beschriebenen Größen S_2 und S_3 gleich sein, da sich Fluktuationen im Summensignal auslöschen können. Die Breite des Summensignals wird nur mit der Wurzel der Anzahl der Kanäle zunehmen. Dieses Rauschen ist vor allem auf thermisches Rauschen der Elektronik zurückzuführen und somit ein lokales Phänomen.

Es zeigt sich wegen $S_1 > S_3 > S_2$, wie aus Abbildung 3.11 zu entnehmen ist, daß das Rauschen sowohl korrelierte auch unkorrelierte Komponenten besitzt.

CAM-Läufe:

Durch CAM-Läufe kann die Verstärkung der Sekundärelektronenvervielfacher überprüft werden. Es hat sich gezeigt, daß bei zwei Kanälen die Verstärkung sprunghaft abgefallen ist, bei den anderen jedoch wie angestrebt zeitlich konstant blieb. (siehe Abbildung 3.12). Die Ursache dieses Sprunges ist nicht bekannt. Da beide Kanäle von unterschiedlichen LED's versorgt werden, ist ein elektronisches Problem der CAM-Versorgung eher unwahrscheinlich. Möglich wären der Ausfall jeweils einer Hülsenverbindung zur LED, ausgelöst durch ein gemeinsames Ereignis, wie etwa einer Erschütterung nahe des Meßaufbaus. In diesem Fall muß die Verstärkung nicht nachkalibriert werden, da die Verstärkung des Sekundärelektronenvervielfachers nicht beeinträchtigt wird. Eine andere Ursache könnte ein kurzzeitiges "Erblinden" eines Sekundärelektronenvervielfachers sein, ausgelöst durch einen starken Lichtpuls [36]. Dabei geht kurzzeitig die Verstärkung des Sekundärelektronenvervielfacher zurück, erholt sich jedoch nach einiger Zeit wieder. In diesem Fall wäre eine Nachkalibration der Verstärkung in der Analyse um den beobachteten Faktor sinnvoll. In der Auswertung der Meßdaten der Diagonalabtastung und der Horizontalabtastung 1 (siehe Abbildung 3.7) hat sich gezeigt, daß die Verstärkung für diese Kanäle tatsächlich abgefallen war. Dies ist für den entsprechenden Zeitraum in der Analyse durch Korrekturfaktoren berücksichtigt worden.

Auch bei CAM-Läufen kann das Rauschen der Verstärkung in den Auslesekanäle auf Korrelation der Fluktuationen untersucht werden. Dazu wurden mit den 16 stabilen CAM-Kanälen die Größen S_1, S_2 und S_3 gebildet und verglichen. Ist das Rauschen korreliert, so deutet dies auf gemeinsame, nicht stabile Pulshöhen oder –längen der LEDs oder Schwankungen in der alle Sekundärelektronenvervielfacher versorgenden Hochspannung und der Ausleseelektronik hin. Nicht korreliertes Rauschen wird vor allem durch statistische Fluktuationen in den einzelnen LED-Pulsen und durch thermisches Rauschen der Sekundärelektronenvervielfacher hervorgerufen. Es zeigt sich, daß beide Arten des Rauschens vorzufinden sind (siehe Abbildung 3.13). Betrachtet man nur CAM-Signale, die eine Standardabweichung von der iterativ angepassten Gaußkurve entfernt liegen, so finden wir eine gute Übereinstimmung mit der Annahme, das Rauschen sei nur durch thermische Fluktuationen dominiert. Die Verteilung ist gaußförmig, wie man es bei statistischen Fluktuationen erwartet. Siehe dazu die an die Maxima der Verteilungen angepaßten Gaußkurven und deren Breite.

Betrachtet man jedoch die Gesamtheit der Signale (siehe RMS-Breiten in Abbildung 3.13), so stellt man fest, daß ein hoher Anteil korrelierten Rauschens auftritt. Dies ist

Abbildung 3.12: Stabilität der Auslese-Sekundärelektronenvervielfacher. Aufgetragen sind die Mittelwerte der Kanäle für verschiedene CAM-Läufe. Die CAM-Läufe wurden jeden Tag durchgeführt. Man beobachtet, daß die meisten Kanäle eine zeitlich stabile Verstärkung (links), zwei Kanäle jedoch einen Abfall um mehr als 50% erlitten haben (rechts). Der Abfall der Verstärkung der beiden Kanäle ist ab den angegebenen Datum in den Analysen berücksichtigt worden.

Abbildung 3.13: Gezeigt ist links die Verteilung der ADC-Werte eines typischen Kanals und rechts das Summensignal aller Kanäle bei CAM-Läufen. Folgende Größen wurden aus der Breite der Verteilungen ermittelt, wie in Gleichung 3.1–3.3 angegeben: : Aus den Standardabweichungen: $S_1 = 1085$, $S_2 = 328$, $S_3 = 997$. Aus der Breite der Gaußkurven: $S_1 = 1074$, $S_2 = 258$, $S_3 = 265$.

besonders bei LED-Pulsen geringer Intensität zu beobachten. Eine mögliche Erklärung ist, daß die Pulsdauer der LEDs schwankt. Dies führt bei fest gewählter Verzögerungszeit zwischen LED-Puls (hier das Triggersignal) und Auslese zu geringeren Auslesesignalen, da die Messung nicht immer im Signalmaximum stattfindet. Dieser Effekt betrifft alle Zellen in gleichem Maße.

3.6 Resultate der Testmessungen

3.6.1 Räumliche Homogenität der Insertmodule

Um die räumliche Homogenität der Module zu testen, werden mit dem Elektronenstrahl sechs Oberflächenabtastungen im Insert-Bereich des Testaufbaus durchgeführt, wobei alle 5 mm, entlang der in Abbildung 3.7 gezeigten Strecken, Meßpunkte angefahren und 1000 Elektronen der Energie 3 GeV aufgezeichnet wurden.

Als Maß für die räumliche Homogenität der Energiemessung kann das Summensignal aller an einer Abtastung beteiligten Zellen als Funktion des Ortes betracht werden. Dieses Summensignal sollte keine Ortsabhängigkeiten zeigen. In Abbildung 3.14 sind für die sechs Oberflächenabtastungen die gemessenen Signale der jeweils beteiligten Zellen, sowie ihr Summensignal als Funktion des Ortes aufgetragen. Die Zahlen unterhalb der Signale geben die zugehörige Zellen an. Das Summensignal und der Mittelwert des Summensignals sind ebenfalls eingetragen. Die Vetolagen werden dabei nicht berücksichtigt. Oberhalb von 7 cm Abstand zum Zentrum des Strahlrohrs schwankt das Summensignal um weniger als 3% um den Mittelwert. Die 3% Abweichung vom Mittelwert ist für Abstände kleiner als 7 cm zum Zentrum des Strahlrohrs durch die horizontalen Linien markiert. Es ist deutlich zu erkennen, daß unterhalb eines Abstandes von 7 cm zum Zentrum des Strahlrohrs Leckverluste auftreten, durch die das Summensignal vermindert ist. Diese Ergebnisse sind aber nicht ohne weiteres auf die Energiemessung des SpaCal übertragbar, da weder Richtung noch Größe des Eintreffwinkels der Elektronen im Testaufbau für das H1-SpaCal realistisch sind.

Besonders an den Zellgrenzen treten Schwankungen der Summensignale zu kleineren Werten auf. Diese rühren von der Lücke in der Blei-Faser-Matrix her, die an den Grenzen zweier Module entsteht. Außerdem wird das Lichtsignal der in den Zellen außen liegenden Fasern durch den kleinen Biegeradius (siehe Abbildung 1.7) der Fasern beeinträchtigt, der beim Bündeln der Fasern zu Zellen entsteht. Die Totalreflektion einiger Wellenmoden in den Fasern wird durch einen zu kleinen Krümmungsradius gestört [20].

Werden die Vetolagen mit einer geeigneten Gewichtung zum Summensignal hinzugenommen (siehe Abbildung 3.15), so ist auch unterhalb eines Abstandes von 7*cm* zum Zentrum des Strahlrohrs das Summensignal konstant und schwankt um nur etwa 7% um den Mittelwert. Die vorgenommene Gewichtung des Vetolagensignals ist rein willkürlich, da die Vetolagen im Testaufbau nicht absolut kalibriert sind. Die Gewichte sind so gewählt worden, daß die maximale Abweichung der Summensignale aller Zellen vom Mittelwert minimal ist.

Abbildung 3.14: Signale der an den Oberflächenabtastungen beteiligten Zellen ohne Vetolagen und ihr Summensignal aus (a) Horizontalabtastung 1, (b) Vertikalabtastung 2, (c) Horizontalabtastung 3,(d) Vertikalabtastung 1, (e) Horizontalabtastung 2 und (f) Diagonalabtastung, wie in Abbildung 3.7 beschrieben. Die horizontalen Linien entsprechen Abweichungen von 3% zum Mittelwert des Summensignals für Einschußorte in einem Abstand von mehr als 7 cm zum Zentrum des Strahlrohrs.

Abbildung 3.15: Signale der an den Oberflächenabtastungen beteiligten Zellen und ihr Summensignal aus (a) Horizontalabtastung 1, (b) Vertikalabtastung 2, (c) Horizontalabtastung 3,(d) Vertikalabtastung 1, (e) Horizontalabtastung 2 und (f) Diagonalabtastung, wie in Abbildung 3.7 ersichtlich. Die horizontalen Linien entsprechen Abweichungen von 3% zum Mittelwert des Summensignals für Einschußorte in einem Abstand von mehr als 7 cm zum Zentrum des Strahlrohrs . Für Einschußorte in Abständen darunter ist eine horizontale Markierung mit 7% Abweichung gezeigt.

Abbildung 3.16: Gezeigt ist für die Energiemessung in Zelle 7: (a) Die Häufigkeitsverteilung der rekonstruierten Energien 1 GeV-6 GeV in willkürlichen Einheiten. (b) Die rekonstruierten Energie E_{rek} als Funktion der Strahlenergie E_{ein} . Die Gerade wurde mittels einer linearen Regression bestimmt. (c) Die relative Abweichung der rekonstruierten Energie von der Geraden. Die horizontalen Linien markieren relative Abweichungen um 1%. (d) Hier wird die ermittelte Energieauflösung durch Anpassen der Funktion $f_1(E, a, b, c) = a/\sqrt{E} \oplus b/E \oplus c$ bestimmt. Alle Fehlerbalken entsprechen den Breiten der angepaßten Gaußfunktionen an die Verteilungen.

Die beobachteten Inhomogenitäten sind bis zu einem Abstand von 7*cm* zum Zentrum des Strahlrohrs kleiner als 3% und mit denen früher gebauter Module vergleichbar [34]. Im Insert-Bereich nahe der Vetolagen sind die Inhomogenitäten kleiner als 7%.

3.6.2 Energieauflösung

Um die Meßsignale der Insertmodule bei verschiedenen Energien zu untersuchen, wurden je 1000 Elektronen mit einer Energie von 1 GeV bis 6 GeV in 1 GeV Schritten in das Zentrum von Zelle 7 und 26 geschossen. So kann die Linearität und die Auflösung der Energiemessung im inneren Bereich überprüft werden (Abbildung 3.16 und 3.17). Dazu werden an die Häufigkeitsverteilung der rekonstruierten Energien¹⁰ Gaußfunktionen

¹⁰In den Testmessungen wurde zur Energiemessung das Summensignal aller Zellen gebildet: $E_{rek} = \sum_i (ADC_i - PED_i) \cdot calib_i$

Abbildung 3.17: Gezeigt ist für die Energiemessung in Zelle 26: (a) Die Häufigkeitsverteilung der rekonstruierten Energien 1 GeV-6 GeV in willkürlichen Einheiten. (b) Die rekonstruierten Energie E_{rek} als Funktion der Strahlenergie E_{ein} . Die Gerade wurde mittels einer linearen Regression bestimmt. (c) Die relative Abweichung der rekonstruierten Energie von der Geraden. Die horizontalen Linien markieren relative Abweichungen um 1%. (d) Hier wird die ermittelte Energieauflösung durch Anpassen der Funktion $f_1(E, a, b, c) = a/\sqrt{E} \oplus b/E \oplus c$ bestimmt. Alle Fehlerbalken entsprechen den Breiten der angepaßten Gaußfunktionen an die Verteilungen.

angepaßt und die Mittelwerte und Breiten der Verteilungen sowie deren Fehler bestimmt, wie in Abbildung 3.16a gezeigt. Die Anpassung erfolgte dabei iterativ in einer Umgebung von zwei Standardabweichungen um den in der vorhergehenden Anpassung gefundenen Mittelwert, bis sich das Ergebnis durch weitere Iterationen nur noch im Promillebereich änderte.

In Abbildung3.16b sind die Mittelwerte dieser Verteilungen gegen die Strahlenergie der Elektronen aufgetragen, um die Linearität der Energierekonstruktion zu untersuchen. Die gezeigte Ausgleichsgerade wurde mit Hilfe einer linearen Regression bestimmt.

Die relative Abweichung $(E_{rek} - E_{lin})/E_{lin}$ der rekonstruierten Energie der Elektronen E_{rek} von der aus dieser Geraden ermittelten Energie E_{lin} ist für alle untersuchten Energien kleiner als 1% und somit gut erfüllt (Abbildung 3.16c). Den Fehlerbalken entsprechen die durch die Gaußschen Fehlerfortpflanzung berechneten Fehler mit den Fehlern aus der linearen Regression und den Fehlern von E_{rek} .

In Abbildung 3.16d wurde die Energieauflösung σ_E/E der Messungen ermittelt. Dazu wurde die Energieauflösung als Funktion der Strahlenergie aufgetragen und an die gemessenen Punkte die Funktion

$$\frac{\sigma_E}{E} = f_1(E, a, b, c) = \frac{a}{\sqrt{E}} \oplus \frac{b}{E} \oplus c$$

angepaßt. Die für die einzelnen Terme verantwortlichen Effekte sind in Kapitel 2.3.2 beschrieben worden.

Konstante	Zelle 7	Zelle 26
a	7.6%	9.5%
b	13.1%	13.2%
с	3.5%	2.9%
$\chi^2/(N-3)$, N=6	0.53	0.35

Die Anpassung ergab die folgenden Werte für die Parameter a, b und c:

Die Energieauflösung a im Insert-Bereich liegt innerhalb der erwarteten Grenzen. Sie ist etwas schlechter in Zelle 26, da hier Schauerfluktuationen zu stärkeren Leckverlusten als in Zelle 7 führen und diese die Energieauflösung verschlechtern. Die Energieunschärfe c wurde mit 3% ermittelt. Sie kann hervorgerufen werden durch Fehlkalibration der Auslesekanäle untereinander und transversale Leckverluste des Schauers. Diese Effekte führen zu einer der Energie des Elektrons proportionalen Abweichung der gemessenen Energie. Eine noch bestehende Fehlkalibration ist durchaus möglich, da in zwei Auslesekanäle durch Abfall der Verstärkung nachgewiesen wurde, jedoch nur 16 der 31 Auslesekanäle durch CAM-Läufe überwacht werden konnten. Daher ist es nicht unwahrscheinlich, daß nicht alle Fehlkalibrationen entdeckt worden sind. Die Strahlunschärfe b ist mit 13%/E in guter Übereinstimmung zu der in [34] angegebenen Strahlunschärfe von 15%/E mit der Energie E in GeV.

3.6.3 Überprüfung des Koordinatensystems

Abschließend wurde mit Hilfe aller durchgeführten vertikalen und horizontalen Abtastungen der Oberfläche das Koordinatensystem erneut überprüft (Abbildung 3.18). Gezeigt sind die normierten Signale aller Zellen der jeweils zuletzt durchgeführten horizontalen und vertikalen Oberflächenabtastung. Für diese Abtastungen waren die Abweichungen am größten. Es stellte sich bei allen Abtastungen heraus, daß sich das Koordinatensystem im Laufe der Messung systematisch verschoben hat. Das wird deutlich, wenn man die Ortsbestimmung anhand der an verschiedenen Tagen aufgenommenen Oberflächenabtastungen vergleicht.

Eine Verrückung der Meßbox auf dem Meßtisch ist unwahrscheinlich, da sie durch Bleiklötze in ihrer Position fixiert wurde. Denkbar ist jedoch, daß durch einen Totgang im Antrieb der Schrittmotoren eine Neupositionierung vorgetäuscht wurde. Die Oberflächenabtastungen wurden in vielen kleinen 5 mm Schritten durchgeführt, und der Meßtisch nach

Abbildung 3.18: Zur Überprüfung des Koordinatensystems wurden die normierten Signale aller an den Ortsabtastungen beteiligten Zellen gegen den Ort aufgetragen. Die gestrichelten Linien zeigen, wo man die Zellgrenzen aufgrund der ersten Bestimmung des Koordinatensystems erwartet hätte. Die Schnittpunkte der Signalkurven geben an, wo sie tatsächlich liegen. Exemplarisch sind hier die zuletzt gemessene vertikale (oben) und horizontale (unten) Abtastung der Oberfläche dargestellt, für die die Abweichung maximal war. Vergleiche Abbildung 3.10

einer Meßreihe in *einer durchgängigen* Fahrt auf die neue Anfangsposition der nächsten Abtastung ausgerichtet. Da alle Abtastungen in gleicher Richtung erfolgt sind, können sich so die Effekte addieren.

In Kapitel 6 wird mit den Testdaten die Ortsrekonstruktion im Insert-Bereich untersucht und die Ergebnisse der H1-Standard Rekonstruktionsmethode sowie einiger verbesserter Methoden diskutiert. Die dort verwendeten Koordinaten der Meßpunkte in den Oberflächenabtastungen wurden bereits auf die gezeigte systematische Verschiebung des Koordinatensystems korrigiert.

Kapitel 4

Ortsrekonstruktion im SpaCal

In einem tiefinelastischen Elektron-Proton-Streuprozeß bei kleinem Q^2 werden die Elektronen in den rückwärtigen Bereich des H1-Detektors gestreut. Da aus dem Leptonendzustand allein bereits die Kinematik eines inklusiven Ereignisses berechnet werden kann, ist die genaue Kenntnis der Leptonenergie und des Streuwinkels von besonderem Interesse. Dabei sind, wie bereits in Gleichung 2.7 gezeigt, die Fehler der kinematischen Größen, die das Ereignis beschreiben, durch das Auflösungsvermögen der Winkel- und der Energierekonstruktion gegeben.

Im rückwärtigen Bereich übernehmen diese Messungen das elektromagnetische und das hadronische *SpaCal* und die *BDC*, eine Driftkammer, die mit hoher Präzision (0.5 mm) den Orts von Spuren geladener Teilchen rekonstruieren kann. Dafür werden im SpaCal mit Hilfe eines *Clusteralgorithmus* [37, 38] alle am Schauer beteiligten Zellen zu einem sogenannten *Cluster* zusammengefaßt und der Schwerpunkt des Schauers berechnet. Durch Rückprojektion¹ des Schauerschwerpunktes auf den Vertex in die *BDC*-Ebene kann die dem Schauer zugehörige *BDC*-Spur zugeordnet werden. Dafür wird die jeweils nächstliegende BDC-Spur ermittelt.

Die Messung des Elektrons wird jedoch durch konkurrierende Prozesse erschwert, die im elektromagnetischen SpaCal den Schauer eines Elektrons vortäuschen. Durch geeignete Kriterien können diese Prozesse jedoch identifiziert werden. Einige Prozeße, die dem Untergrund zugerechnet werden können sind:

- Geladene Pionen: Sie können durch ihr breiteres transversales Schauerprofil identifiziert werden und gegebenenfalls durch ein Signal im hadronischen SpaCal [40].
- Neutrale Pionen²: Sie zerfallen mit einer Lebensdauer von $8 \cdot 10^{-17} s$ in zwei Photonen. Diese erzeugen in der *BDC* keine Teilchenspuren. Durch Bestimmen der

¹Für eine Rückprojektion muß die Tiefe t des Schauerschwerpunktes im SpaCal bekannt sein. In dieser Arbeit wurde folgende Parametrisierung [39] benutzt: $t = 0.0426 \, cm \cdot E_{rek} + 0.8337 \, cm \cdot \ln (427.9 \cdot E_{rek})$. Dabei ist E_{rek} die rekonstruierte Schauerenergie in GeV

²Bei Lichtgeschwindigkeit legt ein π° im Mittel einer Strecke von $d = 8 \cdot 10^{-17} \text{ s} \cdot c = 24 nm$ zurück. Neutrale Pionen zerfallen also praktisch am Entstehungsort.

Position der Photon-induzierten Schauer im SpaCal kann der Öffnungswinkel der Photonen berechnet und die Pionmasse rekonstruiert werden. So kann ein π° mit einer Energie kleiner als 2 GeV durch die rekonstruierte Masse und das Fehlen einer BDC-Spur identifiziert werden [44].

• Ein Teilchenpaar, bestehend aus einem geladenen Pion und einem Photon: Es kann ein typisches Elektronsignal vortäuschen, wenn das Pion eine Spur in der BDC erzeugt und das Photon einen elektromagnetischen Schauer auslöst. Daher muß eine gute Übereinstimmung zwischen Ort des Schauers und der BDC-Spur gefordert werden, um möglichst viele dieser Ereignisse zu identifizieren.

Auch aus anderen Gründen ist eine gute Ortsbestimmung im SpaCal wichtig:

- Vor dem SpaCal und der BDC befindet sich passives Material [41], so daß die Teilchen schon vorher aufzuschauern beginnen. Dies verursacht eine Vielzahl von Teilchenspuren in der *BDC*. Daher muß mit Hilfe des SpaCals versucht werden die Schauerposition vorzubestimmen, um die korrespondierende Spur des primären Schauerteilchens zu ermitteln.
- QED-Compton Photonen sind vom Elektron im Anfangs- oder Endzustand emittierte Photonen einer elastischen oder inelastischen Elektron-Proton-Streuung, bei der der Viererimpulsübertrag Q² des ausgetauschten Photons ungefähr gleich Null ist (siehe Abb. 4.1). Bei elastischer Streuung kann man dieselben Formeln anwenden, wie beim Compton-Effekt (siehe Gleichung 2.11), das heißt Winkel und Energien des Elektrons und Photons sind korreliert. Dieser Effekt kann zur Energie-Kalibration des SpaCal benutzt werden, wenn der Ort des Photons und des Elektrons bekannt sind. [42]

4.1 Grundlagen der Ortsrekonstruktion

In Abbildung 4.2 ist schematisch ein elektromagnetischer Schauer im SpaCal dargestellt. Da nur die in einer Zelle integrierte Energie des Schauers gemessen werden kann, ist nur das auf die Oberfläche projizierte Schauerprofil für die Ortsrekonstruktion nutzbar. Ziel einer Ortsrekonstruktion ist es, den Schwerpunkt eines Schauers mit Hilfe der rekonstruierten Energien der am Schauer beteiligten Zellen zu berechnen. Mit Hilfe des Vertex kann so durch Rückprojektion entlang der Schauerachse der Auftreffort des primären Schauerteilchens auf der SpaCal-Oberfläche ermittelt werden.

Um verschiedene Rekonstruktionsmethoden untersuchen zu können, wurden mit Hilfe des Simulationsprogramms GEANT im SpaCal 10000 Elektronschauer mit einer Energie von $10 \ GeV$ simuliert. Dabei wurde der Vertex in 1.5 m Entfernung von der SpaCal-Oberfläche in das Zentrum des Strahlrohrs gesetzt und die Elektronen auf der Oberfläche an den in Abbildung 4.3a gezeigten Punkten eingeschossen.

Abbildung 4.1: QED-Compton-Prozeß. (a) Das Elektron strahlt ein Photon nach der Streuung ab. (b) Das Elektron strahlt ein Photon vor der Streuung ab. Das ausgetauschte Photon hat ein Viererimpulsquadrat Q^2 ungefähr gleich Null. Für elastische Streuung am Proton können dieselben Formel wie für den Compton-Effekt benutzt werden.

Ein erster Ansatz zur Bestimmung des Schwerpunktes \vec{r}_{sp} des Schauers ist, den Schwerpunkt aller am Schauer beteiligten Zellen direkt zu berechnen. Dazu wird jede Zelle des Schauers mit dem relativen Anteil der rekonstruierten Energie an der Schauerenergie w_i gewichtet und der Ortsvektor einer Zelle in deren geometrischem Zentrum \vec{r}_i gewählt. Diese Gewichtung der Zellen wird als *lineare* Gewichtung [43] bezeichnet.

$$\vec{r}_{sp} = \frac{\sum w_i \vec{r}_i}{\sum w_i} \quad ; \quad w_i = \frac{E_i}{E_{cluster}} \tag{4.1}$$

In Abbildung 4.3b wurden die Schwerpunkte der Schauer mit dieser Methode berechnet und auf den Vertex in die Oberfläche des SpaCal zurückprojiziert. Wie ersichtlich, führt diese Vorgehensweise jedoch nicht zum gewünschten Ziel. Fast immer ist der Schauerschwerpunkt durch die Energie einer Zelle dominiert, und somit der rekonstruierte Ort nahe deren Zellzentrums zu finden. Das liegt darin begründet, daß der Zelldurchmesser (4.05 cm) viel größer ist als der Molière-Radius R_M (2.5 cm) der SpaCal-Module, und daher weit über 90% der Schauerenergie in einer oder wenigen Zellen deponiert wird [16]. Es ist also eine stärkere Gewichtung der Zellen nötig, die weit vom Schwerpunkt entfernt liegen und in denen nur wenig Energie rekonstruiert wurde, um den Einfluß der Zelle mit der größten deponierten Energie zu mindern.

4.2 Logarithmische und Wurzelgewichtung

Da der Schauer ein exponentiell abfallendes transversales Schauerprofil hat, scheint eine logarithmische Gewichtung der Zellenergien sinnvoll. Dabei wird implizit über die Gewichte w_i mit Hilfe eines Parameters W_o eine Mindestenergie eingeführt, die nötig ist,

Abbildung 4.2:

Oben: Energiedeposition eines elektromagnetischen Schauers von der Seite (links) und aus Strahlrichtung (rechts).

Unten: Da im Detektor nur das für eine Zelle integrierte Energiesignal gemessen werden kann, stellt sich ein Schauer im Detektor von der Seite (links) und aus Strahlrichtung (rechts) wie gezeigt dar. damit ein Zelle zur Schwerpunktsbestimmung beitragen kann. So wird der Schwerpunkt nicht durch Zellen sehr kleiner Energien dominiert, für die die Samplingfluktuationen groß sind. Der Wert für W_o wird in [20] mit 4.2 angegeben. Eine detaillierte Betrachtung zur Wahl des Parameters W_o ist in [45] zu finden.

$$\vec{r}_{sp} = \frac{\sum w_i \vec{r}_i}{\sum w_i} \quad ; \quad w_i = max \left\{ 0 \; ; \; \ln \frac{E_i}{E_{cluster}} + W_o \right\} \tag{4.2}$$

Dabei sind r_i die in den Zellzentren gelegenen Ortsvektoren und w_i die Gewichte der Zellen in der Ortsrekonstruktion.

Wie in Abbildung 4.3d gezeigt, liefert diese Gewichtung weitaus bessere Ergebnisse als die lineare Gewichtung. Die rekonstruierten Orte der Elektronen befinden sich alle nahe der Einschußorte. Doch diese Gewichtungsmethode hat den Nachteil, daß sie unterschiedlich gut in verschiedenen Bereichen des SpaCal funktioniert. Dies soll an Hand Abbildung 4.4 gezeigt werden. Dazu wurden mit GEANT 10000 Elektronen einer Energie von 10 GeV simuliert und homogen verteilt auf die Oberfläche des SpaCal geschossen. Dabei befanden sich die Einschußorte der Elektronen in einem Abstand zwischen 5 cm und 40 cm zum Zentrum des Strahlrohrs und der Vertex in 1.5 m Entfernung im Zentrum des Strahlrohrs. Gezeigt ist die radiale Abweichung $|r_{sp} - r_{ein}|$ des rekonstruierten und rückprojizierten Ortes r_{sp} vom Einschußort r_{ein} der Elektronen als Funktion des Abstandes vom Zentrum des Strahlrohrs. Für weit vom Strahlrohr entfernte Einschußorte, wo Teilchen unter großem Winkel zur Oberflächensenkrechten eintreffen und der Schauer stark geneigt ist, liefert die logarithmische Gewichtung keine sehr guten Ergebnisse. Die Ortsauflösung verschlechtert sich und systematischen Verschiebungen des rekonstruierten Ortes machen sich bemerkbar (siehe Abbildung 4.4b).

Deshalb wurde eine weitere Gewichtung gesucht, welche eine räumlich homogene Auflösung besitzt. Das Ergebnis ist die im H1 verwendete Wurzelgewichtungsmethode [46]. Hier werden alle Zellen des Schauers mit der Quadratwurzel aus dem relativen Anteil der Zellenergien an der Schauerenergie gewichtet. Als Mindestenergie für den Beitrag einer Zelle wird 0.1% der rekonstruierten Schauerenergie gewählt. Dies stellt sicher, daß das Ergebnis nicht von Zellen kleiner Energien verfälscht wird.

$$\vec{r}_{cg} = \frac{\sum w_i \vec{r}_i}{\sum w_i} \quad ; \quad w_i = \sqrt{\frac{E_i}{E_{cluster}}} \tag{4.3}$$

Wie in Abbildung 4.3c zu sehen ist, erzielt auch diese Methode gute Ergebnisse in der Ortsrekonstruktion. Der rekonstruierte Ort befindet sich wie in der logarithmischen Gewichtung immer nahe des Einschußortes. Diese Rekonstruktionsmethode hat jedoch gegenüber der logarithmischen Gewichtung den Vorteil, daß sie eine räumlich homogene Ortauflösung besitzt (siehe Abbildung 4.4a). Ein detaillierter Vergleich der Wurzel- und der logarithmischen Gewichtung findet sich in [45, 47].

An dieser Stelle soll bereits angemerkt werden, daß sich im Insert-Bereich in allen vorgestellten Methoden Schwierigkeiten in der Ortsrekonstruktion ergeben, wie schon qualitativ aus Abbildung 4.3b-d entnommen werden kann. Im Insertbereich ist eine systematische Abweichung des rekonstruierten Ortes zu größeren Abständen vom Strahlrohr festzustellen.

Abbildung 4.3: Monte-Carlo Simulation zur Veranschaulichung der Leistung verschiedener Rekonstruktionsverfahren im H1-SpaCal. Links unten ist ein Viertel des Strahlrohrs zu sehen. (a) Einschußort der Elektronen in der Simulation. (b) Rekonstruierter Schauerschwerpunkt mit linearer Gewichtung. (c) Rekonstruierter Schauerschwerpunkt mit Wurzelgewichtung. (d) Rekonstruierter Schauerschwerpunkt mit logarithmischer Gewichtung.

Abbildung 4.4: Abweichung des rekonstruierten Ortes vom Einschußort aus einer Monte-Carlo Simulation für verschiedene Abstände zum Zentrum des Strahlrohrs bei (a) der Wurzelgewichtung und (b) der logarithmischen Gewichtung. Die gezeigten Fehlerbalken sind die Standardabweichungen der Verteilungen in den Intervallen. Die horizontalen Linien entsprechen Abweichungen um 5 mm.

4.3 Die H1-Standard Rekonstruktionsmethode

Die H1-Standard Rekonstruktionsmethode benutzt auf Grund der in Kapitel 4.2 genannten Gründe die dort dargestellte Wurzelgewichtung. Sie liefert für Teilchenenergien von 5 $GeV - 30 \ GeV$ in allen Bereichen des Detektors eine räumlich homogene Ortsauflösung von 5 mm. Allerdings treten im Insert-Bereich systematische Abweichungen des rekonstruierten Ortes auf.

Diese systematische Abweichung wurde mit Hilfe von H1-Daten³ und einer ihnen entsprechenden Simulation⁴ mit 80000 Ereignissen weiter untersucht.

³Zur Analyse der Rekonstruktionsmethoden werden die Shifted-Vertex Daten 1995 benutzt. Bei Shifted-Vertex-Daten ist der Wechselwirkungspunkt im Strahlrohr um etwa 70*cm* in Protonstrahlrichtung verschoben, um so im rückwärtigen Bereich größere Streuwinkeln zugänglich zu machen

⁴Es wird der schon in Kapitel 2.5.1 beschriebene DJANGO-Datensatz von 80000 Shifted-Vertex Ereignissen benutzt.
4.3.1 Schwierigkeiten in der Ortsrekonstruktion im inneren Bereich des SpaCal

In Abbildung 4.5 ist die Abweichung des mit der H1-Standard Rekonstruktionsmethode rekonstruierten Ortes vom Eintrittsort des Teilchens als Funktion des Abstandes vom Zentrum des Strahlrohres gezeigt. Dabei ist der Eintrittsort gegeben durch den aus der Simulation exakt bekannten Einschußort (Abbildung 4.5a), durch die dem Schauer in der Simulation zugeordnete BDC-Spur (Abbildung 4.5b) und durch die BDC-Spur aus den H1-Daten, die dem gemessenen Schauer zugeordnet wurde. (Abbildung 4.5c). Die vertikale Linie markiert die Grenze zum Insert-Bereich bei 8.1 cm Abstand vom Zentrum des Strahlrohrs. Den horizontalen Linien entsprechen Abweichungen um 5 mm.

Die Analyse der Simulation zeigt, daß die systematische Abweichung des rekonstruierten Ortes zum Einschußort geringer ist, wenn BDC-Spuren als Referenz verwendet werden. Dies liegt daran, daß durch eine Abweichung des rekonstruierten Ortes vom Einschußort, falsche BDC-Spuren zugeordnet werden können. Dies soll ein Ereignis aus den gemessenen H1-Daten mit mehreren BDC-Spuren verdeutlichen (siehe Abbildung 4.6). Alle auf die SpaCal-Oberfläche projizierten BDC-Spuren dieses Ereignisses sind als Sterne eingezeichnet. Die Kreuze markieren den aus den SpaCal-Daten rekonstruierten Ort, wie er mit der H1-Standard Rekonstruktionsmethode ermittelt wird, und die zugeordnete, nächstliegende BDC-Spur. Die Kreise stellen den rekonstruierten Ort und die nächstliegende BDC-Spur dar, wie sie mit einer verbesserten Methode rekonstruiert werden (siehe Kapitel 5). Da der Ort in der H1-Standard Rekonstruktionsmethode zu weit vom Strahlrohr entfernt rekonstruiert wird, wird eine falsche BDC-Spur zugeordnet, welche dem rekonstruierten Ort näher ist als die wahre Spur. Dadurch wird die systematische Abweichung des rekonstruierten Ortes in vielen Fällen geringer scheinen, als sie eigentlich ist. Dieser Effekt ist in der Monte-Carlo Simulation deutlich zu sehen und stimmt mit dem beobachteten Resultat in den H1-Daten überein.

Es ist anzunehmen, daß die systematische Abweichung des rekonstruierten Ortes in der Behandlung der Insert-Zellen in der H1-Standard Rekonstruktionsmethode begründet liegt, da diese Zellen in ihrer Geometrie von der der übrigen Zellen abweichen. Der Insert-Bereich ist in Abbildung 4.7 gezeigt. Im folgenden werden die dort eingeführten Zellbezeichnungen Eckzellen, Randzellen und Vetolagen für die unterschiedlich geformten Insert-Zellen benutzt. Alle anderen Zellen werden als normale Zellen oder Quadratzellen bezeichnet.

4.3.2 Die Insert-Zellen in der H1-Standard Rekonstruktionsmethode

Die Insert-Zellen werden in der H1-Standard Rekonstruktionsmethode wie folgt behandelt:

• Die Gewichte w_i der Insert-Zellen, die in die Rekonstruktion des Schauerschwerpunkts einfließen, ergeben sich aus den in ihnen rekonstruierten Energien:

Abbildung 4.5: Abweichung des rekonstruierten Ortes aus der H1-Standard Rekonstruktionsmethode zu dem aus der Monte-Carlo Simulation bekannten exakten Einschußort (a), zu der in der Simulation zugeordneten BDC-Spur (b) und zu der BDC-Spur aus den H1-Daten, die dem gemessenen Schauer zugeordnet wurde (c) als Funktion des Abstandes zum Zentrum des Strahlrohrs. Die Fehlerbalken entsprechen den Standardabweichungen jedes Intervalls. Die vertikale Linie markiert einen Abstand von 8.1 cm zum Zentrum des Strahlrohrs. Die horizontalen Linien markieren Abweichungen um 5 mm.

Abbildung 4.6: Bild eines typischen Ereignisses im innerer Bereich des H1-SpaCal aus den H1-Daten. Die Energieeinträge der SpaCal-Zellen sind als gepunktete Quadrate eingezeichnet. Der Flächeninhalt eines Quadrates entspricht dabei der gemessenen Energie in der Zelle. Alle gefundenen BDC-Spuren sind als Sterne, auf die Oberfläche des SpaCals projiziert, eingezeichnet. Die Kreuze markieren den rekonstruierten Ort und die zugeordnete BDC-Spur, wie sie mit der H1-Standard Rekonstruktionsmethode ermittelt werden. Die Kreise markieren den rekonstruierten Ort und die zugeordnete BDC-Spur, wie sie mit einer verbesserten Methode ermittelt werden (siehe Kapitel 5).

Abbildung 4.7: Der Insertbereich besteht aus 16 Zellen, welche als *Eckzellen* (E), *Randzellen* (R) und *Vetolagen* (V) bezeichnet werden. Die Kreuze entsprechen den Ortvektoren für die H1-Standard Rekonstruktionsmethode und die Kreise den optimierten Ortsvektoren, wie sie im nächsten Kapitel eingeführt werden.

$$w_i = \sqrt{E_i/E_{ges}}$$

- Die Koordinaten $\vec{r_i}$ der Ortsvektoren der *Randzellen* befinden sich in deren geometrischem Zentrum (siehe Tab. 5.2).
- Die *Eckzellen* werden in der H1-Standard Rekonstruktionsmethode durch *normale* Zellen approximiert, folglich befinden sich die Koordinaten ihrer Ortsvektoren im Zentrum der quadratischen Fläche, die eine *normale* Zelle am selbem Platz einnehmen würde (siehe Tab. 5.2).
- Der im H1 verwendete Clusteralgorithmus bildet aus den vier Vetolagen einen eigenen Zellcluster. Da die Vetolagen nicht Teil des Schauerclusters sind, gehen sie nicht in die Ortsrekontruktion ein.

Die Koordinaten der Ortsvektoren der *Insert-Zellen* sind in Abbildung 4.7 als Kreuze eingezeichnet.

Im weiteren wird versucht, die Gründe für die systematische Abweichung des rekonstruierten Ortes im inneren Bereich zu bestimmen.

4.3.3 Analyse der Schwächen der H1-Standard Rekonstruktionsmethode

Die Insert-Zellen wurden offensichtlich nicht optimal in der H1-Standard Rekonstruktionsmethode implementiert: Die Wahl der Ortsvektoren und Gewichte der Insert-Zellen in der Ortsrekonstruktion führen bei der Berechnung des Schauerschwerpunktes \vec{r}_{sp} zwangsläufig zu einer systematischen Abweichung, wie anhand eines eindimensionalen Modells gezeigt werden soll (siehe Abbildung 4.8).

- Das Strahlrohr befinde sich links. In Abbildung 4.8a ist als Referenz die Ortsrekonstruktion mit normalen Zellen gezeigt. Die in den drei Zellen deponierten Energien seien 10 GeV, 20 GeV und 10 GeV. Aus Symmetriegründen wird der Schwerpunkt $\vec{r_{sp}}$ des rekonstruierten Schauers im Zentrum der mittleren Zelle zu finden sein.
- Im Insert-Bereich sind die Ortsvektoren $\vec{r_i}$ der innersten, am Strahlrohr gelegenen Zellen gegenüber dem Zentrum normaler Zellen, die an gleicher Stelle liegen würden, nach außen (hier rechts) verschoben. Dies führt für diesen Zelle zu kürzeren Hebelarmen $|\vec{r_{sp}} - \vec{r_i}|$ in der Ortsrekonstruktion und somit zu einem geringeren Beitrag in der Schwerpunktsbestimmung des Schauers. Dadurch wird der Schwerpunkt des Schauers nach außen, vom Strahlrohr entfernt (hier rechts) verschoben. (Abbildung4.8b).
- Weiterhin ist durch das geringere Volumen der Insert-Zellen gegenüber normalen Zellen die in ihnen deponierte und rekonstruierte Energie geringer, und es kommt zu Leckverlusten der Energie in das Strahlrohr. Dadurch sind die Gewichte w_i der Insert-Zellen in der Ortsrekonstruktion kleiner und ihr Beitrag in der Schwerpunktsbestimmung des Schauers wird geringer. Am Strahlrohr befinden sich keine Zellen weiter innen, die diesen Verlust auffangen könnten. Dies bewirkt eine weitere Verschiebung des Schwerpunktes nach außen (hier rechts) (Abbildung 4.8c).

Die Wahl der Ortsvektoren und der Gewichte der Insert-Zellen führen also dazu, daß unterhalb eines Eintrittsortes von 10 cm Abstand vom Zentrum des Strahlrohrs der rekonstruierte Schauerschwerpunkt etwa 5 mm gegenüber dem Eintrittsort des Teilchens nach außen verschoben wird. Diese systematische Abweichung ist größer als die Ortsauflösung der Rekonstruktionsmethode. Nun soll eine Rekonstruktionsmethode entwickelt werden, die diese Abweichung nicht zeigt.

Abbildung 4.8: Eindimensionales Modell zur Ortsrekonstruktion im inneren Bereich. Das Strahlrohr befinde sich links. Dargestellt sind drei *normale* Zellen mit 10, 20 und 10 GeV deponierter Energie. Der Schauerschwerpunkt, als Kreuz markiert, wird im Zentrum der mittleren Zelle rekonstruiert (a). Für die linke Zelle ist der in die Rekonstruktion einfließende Ortsvektor r_i nach rechts (außen) verschoben. Dadurch weicht der rekonstruierte Schauerschwerpunkt in dieselbe Richtung ab (b). Das Volumen der linken Zelle ist kleiner, der Schauerschwerpunkt wird noch weiter nach außen verschoben (c).

Kapitel 5

Alternative Methoden der Ortsrekonstruktion

Wie bereits gezeigt wurde, führt die H1-Standard Rekonstruktionsmethode im Insert-Bereich zu einer systematischen Abweichung des rekonstruierten Ortes zu kleineren Winkeln. Im inneren Bereich verfälscht dies die Messung des Ortes von Photonen und anderen Teilchen, die keine Spur in der BDC auslösen. Bei geladenen Teilchen kann die Ortsrekonstruktion zu einer Fehlzuordnung der dem Schauer zugehörigen BDC-Spur führen, und damit auch zu einer systematischen Abweichung des rekonstruierten Ortes zu kleineren Winkeln. Dieses Problem soll durch eine Neubehandlung der Insert-Zellen in der Ortsrekonstruktion behoben werden.

5.1 Theoretische Vorüberlegungen

Wie in Kapitel 4.3.3 untersucht wurde, ist der Grund für die Verschiebung des rekonstruierten Ortes im inneren Bereich in der abweichenden Geometrie der Insert-Zellen zu suchen. Nun wird ein naives Modell konstruiert, in dem die Insert-Zellen in der Ortsrekonstruktion nicht anders als *normale* Zellen behandelt werden sollen.

Um die Unterschiede zwischen Insert-Zellen und normalen Zellen auszugleichen, sind für den Beitrag der Insert-Zellen in der Ortsrekonstruktion die folgenden Änderungen nötig:

• Da Insert-Zellen ein geringeres Volumen als normale Zellen besitzen, sollen die in die Ortsrekonstruktion eingehenden Gewichte w_i der Insert-Zellen zusätzlich mit einem Faktor g_i gewichtet werden, um die durch Leckverluste verursachte, geringere Energiedeposition auszugleichen. Folgende Substitution ist also nötig:

$$w_i = \sqrt{\frac{E_i}{E_{cluster}}} \longrightarrow w'_i = g_i \cdot \sqrt{\frac{E_i}{E_{cluster}}}$$

Es ist zu erwarten, daß diese Faktoren g_i ungefähr dem Verhältnis der Volumina

von normalen Zellen zu den Insert-Zellen V_i/V_{normal} entsprechen, also ca. 1.73 für Randzellen¹ und 1.04 für Eckzellen.

• Da die vom Strahlrohr nach außen verschobenen Koordinaten der Ortsvektoren $\vec{r_i}$ für die Insert-Zellen zu einer Verschiebung des berechneten Schauerschwerpunktes in gleicher Richtung führen, sollten die Ortsvektoren näher zum Zentrum des Strahlrohres gewählt werden. Eine naive Annahme ist, die Koordinaten der in die Ortsrekonstruktion eingehenden Ortsvektoren der Insert-Zellen dort zu wählen, wo eine *normale* Zelle am gleichen Ort ihren Zellmittelpunkt haben würde. Dies entspricht der Substitution:

$$\vec{r_i} \longrightarrow \vec{r_i}' = \begin{pmatrix} 2.025 \ cm \\ 2.025 \ cm \end{pmatrix} + \begin{pmatrix} n \cdot 4.05 \ cm \\ m \cdot 4.05 \ cm \end{pmatrix} , n, m = 0, \pm 1, \pm 2, \dots$$

Diese Vorüberlegungen lassen jedoch unberücksichtigt, daß das transversale Schauerprofil exponentiell abnimmt und somit ein Gradient in der Energiedeposition vorliegt. Daher werden sich die Gewichte g_i der Insert-Zellen in einer optimierten Rekonstruktionsmethode von der naiven Annahme unterscheiden.

Ferner gibt es keine weiter innen liegende Zellen, um größere Leckverluste in das Strahlrohr von Schauern aufzufangen, durch die in mehreren Zellreihen Energie deponiert worden wäre. Um die genannten Effekte implizit zu berücksichtigen, werden die optimalen Koordinaten und Gewichte der Insert-Zellen von denen des naiven Modells abweichen. Diese Parameter müssen numerisch optimiert werden.

Dabei haben die Neuwahl von Koordinaten und die Einführung von Gewichten für die Insert-Zellen unterschiedliche Auswirkungen auf die Ortsrekonstruktion:

- Die Einführung von Gewichten erhöht den Beitrag der *Insert*-Zellen in der Ortsrekonstruktion für alle Bereiche des SpaCals unabhängig vom Einschußortes des Elektrons um den gleichen Faktor. Sie gewichtet die Insert-Zellen also ortsunabhängig für *alle* Schauer, die im Insert-Bereich Energie deponieren.
- Die Verschiebung der Zellkoordinaten $\vec{r_i}$ in Richtung des Strahlrohrzentrums hat einen relativ großen Effekt für Einschußorte nahe am Strahlrohr, jedoch fast keine Auswirkung auf die Rekonstruktion von Schauern in großer Entfernung zum Strahlrohr. Für Schauer nahe am Strahlrohr werden die in die Bestimmung des Schwerpunktes $\vec{r_{sp}}$ eingehenden Hebelarme $|\vec{r_{sp}} - \vec{r_{Zelle}}|$ der Insert-Zellen, *relativ* stark verlängert, und so der Beitrag der Insert-Zellen in der Ortsrekonstruktion erheblich erhöht. In größerer Entfernung zum Strahlrohr ändert sich durch eine Verschiebung der Ortsvektoren der Insert-Zellen die Länge des Hebelarms $|\vec{r_{sp}} - \vec{r_{Zelle}}|$ nur um einige wenige Prozent. Dies wirkt sich wenig auf die Bestimmung des Schwerpunkts aus. Der Einfluß neuer Koordinaten auf die Ortsrekonstruktion nimmt für große Abstände r zum Strahlrohr wie 1/r ab (siehe Abbildung 5.1).

¹Zur Definition von Randzellen, Eckzellen und Vetolagen siehe Abbildung 4.7

Relative Verl'angerung des Hebelarms durch eine Verschiebung der Zellkoordinaten r_ium ∆r zum Zentrum des Strahlrohrs:

$$\frac{|\vec{R}_{sp}\vec{r}| |\vec{R}_{sp}\vec{r}|}{|\vec{R}_{sp}\vec{r}|} = \frac{\Delta r}{|\vec{R}_{sp}\vec{r}|} \checkmark \frac{1}{|\vec{R}_{sp}\vec{r}|}$$

Abbildung 5.1: Schematische Darstellung des Einflusses der Zellkoordinaten in der Ortsrekonstruktion. Der Kreis markiert den rekonstruierten Schauerschwerpunkt im Abstand rzum Insertbereich. Die Sterne markieren die Koordinaten der Ortsvektoren $\vec{r_i}$ der Insert-Zelle in der H1-Standard Rekonstruktionsmethode und $\vec{r_j}$ in einer optimierten Methode. Die relative Verlängerung der Hebelarme der Insert-Zellen zum Schauerschwerpunkt ist proportional zu 1/r und somit eine Funktion des Schauerabstandes zum Strahlrohrs.

Für die vier Eckzellen und acht Randzellen sind insgesamt 12 Gewichte und 12 Koordinatenpaare zu optimieren. Aus Symmetriegründen sind jedoch nur fünf dieser Parameter linear unabhängig (siehe Abbildung 5.2) und bestimmen alle anderen Parameter eindeutig. Diese fünf Parameter sind:

- Ein Gewicht g_R für alle Randzellen und ein Gewicht g_E für alle Eckzellen
- x- und y-Koordinaten des Ortsvektors einer Randzelle $\vec{r}_R = \begin{pmatrix} x \\ y \end{pmatrix}$
- x- und y-Koordinaten des Ortsvektors einer *Eckzelle*. Diese sind aus Symmetrieüberlegungen gleich: $\vec{r_E} = \begin{pmatrix} r \\ r \end{pmatrix}$.

Exemplarisch werden die Koordinaten der Ortsvektoren \vec{r}_R und \vec{r}_E der Insert-Zellen im weiteren immer für die in Abbildung 5.2 markierte Eckzelle (rechts oben) und die Randzelle (links daneben) angegeben. Die Koordinaten aller anderen Zellen ergeben sich aus diesen wie in der Abbildung angegeben.

Abbildung 5.2: Aus Symmetriegründen, können die Koordinaten aller Insertzellen mit nur drei Parametern beschrieben werden. Dies sind die Koordinaten des Ortsvektors $\vec{r}_R = [x, y]$ einer Randzellen und die Koordinaten des Ortsvektors $\vec{r}_E = [r, r]$ einer Eckzelle, die durch einen Parameter r gegeben sind. Für alle Zellen i ist angegeben, wie sich die Koordinaten $[X_i, Y_i]$ aus den Parametern x, y, r ergeben.

5.2 Optimierung der alternativen Rekonstruktionsmethode

5.2.1 Beschreibung der verwendeten Simulation und der Schnitte zur Ereignisselektion

Die optimalen Koordinaten und Gewichte wurden mit Hilfe einer Monte-Carlo Simulation bestimmt². Die Ergebnisse wurden dann anhand der H1-Daten (siehe Kapitel 4.3) überprüft.

Die Ortsrekonstruktion soll für Elektronen mit einer Energie größer als $5 \, GeV$ optimiert werden. Daher werden folgende Forderungen an die Ereignisse gestellt, um den Untergrund durch andere Ereignisse zu unterdrücken:

 $^{^2 {\}rm Zur}$ Optimierung wurde der in Kapitel 2.5.1 beschriebene Datensatz von 80 000 Shifted-Vertex Ereignissen benutzt.

- Es muß mindestens ein Schauer im elektromagnetischen SpaCal mit mehr als 5 GeV rekonstruierter Energie gefunden worden sein. Die Rekonstruktion des Ortes soll nur für Elektronen optimiert werden, die mehr als 5 GeV Energie deponieren.
- Es muß mindestens ein rekonstruierter Vertex gefunden worden sein. Diesee Forderung wurde gestellt, um eine Rückprojektion des Schauermaximums in die BDC-Ebene in der Simulation *und* in den gemessenen Daten zu ermöglichen und so die Ergebnisse vergleichen zu können.
- Es muß mindestens eine rekonstruierte BDC-Spur gefunden worden sein, die maximal 2 cm vom rekonstruierten Schauerschwerpunkt entfernt ist. Durch diese Forderung können in der Simulation und in den gemessenen Daten die systematische Abweichung des rekonstruierten Schauerschwerpunktes zur BDC-Spur untersucht und Photon-induzierte Schauer unterdrückt werden. Die Maximalabweichung von 2 cm soll einerseits Fehlzuordnungen, wie zum Beispiel Spuren von niederenergetischen Pionen zu Photon-induzierten Schauern vermeiden helfen, andererseits aber das Studium von Abweichungen erlauben, die durch die Rekonstruktionsmethoden bedingt sind. Die auftretenden Abweichungen im Insert-Bereich waren innerhalb von zwei Standardabweichungen vom Mittelwert in der H1-Standard Rekonstruktionsmethode immer kleiner als 2 cm (siehe Abbildung 4.5).
- Es darf keine Energie im hadronischen SpaCal deponiert worden sein und der Clusterradius³ im elektromagnetischen SpaCal muß kleiner als 3*cm* sein. Diese Schnitte dienen zur Unterdrückung hadronischer Schauer.

In allen Ereignissen wurde jeweils der Ort des Schauer mit der höchsten rekonstruierten Energie betrachtet.

5.2.2 Das Optimierungsverfahren zur Bestimmung optimaler Parameter

Wichtig für ein Optimierungsproblem ist die Wahl des Kriteriums, nach dem ein Parametersatz beurteilt wird. Da der Wirkungsquerschnitt der Elektron-Proton Streuung näherungsweise proportional zu $1/Q^4$ ist (siehe Gleichung 2.7) sind Ereignisse, die Schauer in geringem Abstand vom Zentrum des Strahlrohrs auslösen häufiger als Ereignisse in großen Abständen. Daher ist es in der Optimierung der Ortsrekonstruktion nötig, die

$$R_{Schauer} = \sqrt{\frac{\sum_{i} E_{i} (\vec{r_{i}} - \vec{r_{sp}})^{2}}{\sum_{i} E_{i}}}$$

³Der Clusterradius ist wie folgt definiert:

Dabei ist E_i die rekonstruierte Energie und $\vec{r_i}$ der Ortsvektor der Zelle *i*. $\vec{r_{sp}}$ ist der mit der H1-Standard Rekonstruktionsmethode bestimmte Schauerschwerpunkt. Der Clusterradius dient zur Identifikation der hadronischen Schauer durch ihr breiteres Transversalprofil.

Abbildung 5.3: Gezeigt ist ein Viertel des inneren Bereichs des SpaCal. Für die Optimierung wird das SpaCal zwischen 5.5 cm und 20 cm Abstand zum Zentrum des Strahlrohrs in N konzentrische Zonen á 5 mm Breite unterteilt. Die Ortsrekonstruktion wird für die 4.-N. Zone $(r = 7 cm \dots 20 cm)$ optimiert.

Abweichung des rekonstruierten Ortes vom Einschußort der Elektronen in verschiedenen Abständen zum Strahlrohr nicht mit der *Häufigkeit* der Ereignisse zu gewichten. Deshalb wird der Insert-Bereich zwischen 5.5 cm und 20 cm Abstand zum Zentrums des Strahlrohrs in N konzentrische Zonen von 5 mm Breite unterteilt, die für die Optimierung alle das gleiche Gewicht erhalten, unabhängig von der Anzahl der in ihnen rekonstruierten Ereignisse (siehe Abbildung 5.3). Für jede dieser Zonen z werden die folgenden Größen berechnet, wie aus Abbildung 5.4 ersichtlich ist:

• Die *mittlere radiale Abweichung* des aus der Simulation bekannten Einschußortes r_{in} zum rekonstruierten und rückprojizierten Schauerschwerpunkt r_{sp} :

$$<\Delta r>_{z} = < r_{sp_{i}} - r_{in_{i}}>_{z} = \sum_{i=1}^{\#Ereignisse} \frac{(r_{sp_{i}} - r_{in_{i}})}{\#Ereignisse} \bigg|_{z}$$

Parameter	g_R	g_E	$x \ [cm]$	$y \ [cm]$	$r \ [cm]$
untersuchtes Intervall	[1.0, 2.0]	[1.0, 1.5]	[2.0, 3.0]	[5.9, 6.6]	[5.0, 6.1]
Genauigkeit in der 1. Iteration	0.05	0.05	0.05	0.05	0.05
Genauigkeit in der 2. Iteration	0.025	0.025	0.025	0.025	0.025
Genauigkeit in der 3. Iteration	0.01	0.01	0.025	0.025	0.025

Tabelle 5.1: In der Optimierung untersuchter, fünfdimensionaler Parameterraum.

• Die Standardabweichung dieser Verteilung:

$$(\sigma_{\Delta r})_z = \left(\sqrt{\sum_{i=1}^{\# Ereignisse} \frac{\left[\Delta r_i - \langle \Delta r \rangle \right]^2}{\# Ereignisse - 1}} \right)_z$$

Das Kriterium, nach welchem ein Parametersatz beurteilt wird, ist:

$$K = \sum_{z=4}^{N} \sqrt{\langle \Delta r \rangle_z^2 + (\sigma_{\Delta r}^2)_z}$$

Khat die Bedeutung der Summe der Standardabweichungen über alle Zonen bezogen auf $\Delta r=0$:

$$K = \sum_{z=4}^{N} \sqrt{\langle \Delta r_i^2 \rangle_z}$$

Ziel der Optimierung ist es einen Parametersatz zu finden, für den das Kriterium K minimal ist.

Die Analyse bleibt auf den Bereich zwischen 7 cm und 20 cm radialem Abstand zum Zentrum des Strahlrohrs beschränkt⁴, da bei größeren Abständen eine andere Wahl der Parameter zu keiner Ortsverschiebung des rekonstruierten Ortes führt und somit keine Auswirkung auf das Ergebnis der Optimierung hat, und weiter innen eine weitere Verbesserung des rekonstruierten Ortes nur noch durch einen Verlust an Ortsauflösung im Bereich $r_{sp} = 7 \text{ cm}...20 \text{ cm}$ erkauft werden kann.

Wegen der geringen Anzahl der zu optimierenden Parameter war es mit einem vertretbaren Rechenaufwand möglich, den gesamten fünfdimensionalen Parameterraum abzutasten, um den optimalen Parametersatz zu finden. Daher wurde dieser, wie in Tabelle 5.1 gezeigt, iterativ in immer feineren Intervallschritten abgetastet und das Optimum bestimmt. Da mehrere verschiedene Parametersätze zu demselben Kriterium K führen wie das gefundene Optimum, wurde aus der Vielzahl gleichwertiger Parametersätze derjenige ausgewählt, der die geringste maximale systematische Abweichung $| < \Delta r >_{max} |$ für alle Zonen zeigte.

⁴dies entspricht der 4.-N. Zone

5.2.3 Ergebnis der Optimierung

Das Ergebnis der Optimierung ist in Abbildung 5.4 gezeigt. Wie in Abbildung 4.5, ist hier für verschiedene Abstände zum Zentrum des Strahlrohrs die radiale Abweichung des rekonstruierten und rückprojizierten Schauerschwerpunktes zum Einschußort dargestellt. Der Einschußort ist dabei der aus der Simulation bekannte exakte Einschußort (a), die in der Simulation zugeordnete BDC-Spur (b) und die BDC-Spur aus den H1-Daten, die dem gemessenen Schauer zugeordnet wurde (c).

Bis hinab zu einem Abstand von 7 cm vom Zentrum des Strahlrohrs ist keine systematische Abweichung des rekonstruierten Ortes zum Einschußort des Elektrons zu beobachten. Abbildung 4.5a und Abbildung 4.5b unterscheiden sich in dieser Rekonstruktionsmethode kaum, da keine systematischen Abweichungen in der Ortsrekonstruktion zu Fehlzuordnungen von BDC-Spuren führen können. Die Ergebnisse der Monte-Carlo Simulation und der H1-Daten stimmen in allen Bereichen gut überein. Die Ortsauflösung in radialer Richtung ist im gesamten Insertbereich besser als 5 mm. Unterhalb von 7 cm Abstand zum Zentrum des Strahlrohrs konnte die systematische Abweichung des rekonstruierten Ortes zu kleineren Winkeln jedoch nicht korrigiert werden. Sie beträgt in einem Abstand von 6.5 cm zum Zentrum des Strahlrohres etwa 4 mm.

In Abbildung 5.5a und 5.5b ist die azimutale Ortsauflösung der untersuchten Rekonstruktionsmethoden als Funktion des Abstandes zum Zentrum des Strahlrohrs (oben) und für verschiedene Azimutalwinkel (unten) dargestellt. Der Azimutalwinkel ist definiert als:

$$\phi = \arctan\left(\frac{y}{x}\right)$$

Um unabhängig vom Abstand R_{bdc} des Schauers vom Zentrum des Strahlrohrs Ereignisse vergleichen zu können, ist die Ortsauflösung $\Delta d(R_{bdc})$ in *cm* angegeben. Dabei besteht folgender Zusammenhang zur *Winkelauflösung* $\Delta \phi(R_{bdc})$, gemessen in *rad*:

$$\Delta d(R_{bdc}) = R_{bdc} \cdot \Delta \phi(R_{bdc})$$

Die azimutale Ortsauflösung ist im Insertbereich bei alle untersuchten Methoden für alle Winkel und für Abstände zum Zentrum des Strahlrohrs größer als 7 cm besser als 5 mm. Systematische Abweichungen konnten nicht beobachtet werden. Wegen des achsensymmetrischen Aufbaus des SpaCals und der BDC könnte eine systematische Winkelabweichung nicht durch die gewählte Rekonstruktionsmethode bedingt sein. Sie ist nur möglich, wenn die BDC und das SpaCal gegeneinander verdreht stehen.

Die in der Optimierung gefundenen Parameter sind in Tabelle 5.2 aufgelistet. Die Koordinaten der Ortsvektoren aller Insert-Zellen ergeben sich aus den in dieser Tabelle aufgeführten Parametern, wie in Abbildung 5.2 demonstriert wird. Die optimalen Faktoren g_i zur Umgewichtung der Zellbeiträge in der Ortsrekonstruktion entsprechen fast der Vorhersage aus Kapitel 5.1, wo diese Faktoren durch die Volumenverhältnisse von Insert- und normalen Zellen abgeschätzt wurden. Wie erwartet befinden sich die Ortsvektoren der Insertzellen \vec{r}_E und \vec{r}_R weiter innen als in der H1-Methode. Beide sind zum Vergleich in Abbildung 4.7 als Kreuze und Kreise eingezeichnet. Sie liegen jedoch weiter vom Strahlrohr entfernt als im naiven Modell angenommen.

Abbildung 5.4: Abweichung des rekonstruieren Orts aus der optimierten Rekonstruktionsmethode zu dem aus der Monte-Carlo Simulation bekannten exakten Einschußort (a), der besten in der Monte-Carlo Simulation ermittelten BDC-Spur (b) und zu der BDC-Spur aus den H1-Daten, die dem gemessenen Schauer zugeordnet wurde (c) als Funktion des Abstandes zum Zentrum des Strahlrohrs. Den Fehlerbalken entsprechen die Standardabweichungen jedes Intervalls. Die vertikale Linie markiert einen Abstand von 8.1 cm zum Zentrum des Strahlrohrs. Die horizontale Linien markieren Abweichungen um 5 mm.

Abbildung 5.5: Abweichung der Azimutalwinkelrichtung der zugeordneten BDC-Spur zur Azimutalwinkelrichtung des rekonstruieren Orts aus der H1-Standard Rekonstruktionsmethode (a), aus der alternativen Methode ohne Vetolagen (b) und aus der alternativen Methode unter Verwendung der Vetolagen (siehe Kapitel 5.3) (c) in cm als Funktion des Abstands vom Zentrum des Strahlrohrs (oben) und als Funktion des Azimutalwinkels des rekonstruierten Ortes (unten). Die vertikalen Linien markieren einen Abstand von 8.1 cm zum Zentrum des Strahlrohrs, die horizontalen Linien eine Abweichung um 5 mm.

Für die Rekonstruktion eines Ereignisses ist jedoch nicht nur der Ort, sondern auch die Energie des Teilchens eine wichtige Größe. Da es im Insert-Bereich zu Leckverlusten des Schauers in das Strahlrohr kommt, die die Energieauflösung verschlechtern, wird auch die Energierekonstruktion im Insertbereich mit Hilfe der beschriebenen Monte-Carlo Simulation untersucht. Es werden die gleichen Schnitte zur Ereignisselektion gemacht, die schon in Kapitel 5.2.2 beschrieben wurden. Das Ergebnis dieser Analyse ist in Abbildung 5.6 zu sehen. Gezeigt ist das Verhältnis der rekonstruierten Energie zu der Energie des simulierten primären Schauerteilchens als Funktion des Abstands vom Zentrum des Strahlrohrs für alle Energien größer 5 GeV und für fünf verschiedene Energieintervalle.

Es zeigt sich, daß für Abstände zum Zentrum des Strahlrohrs größer als 7 cm nur weniger als 5% der Schauerenergie durch Leckverluste verloren gehen. Die Energieauflösung ist in einem Abstand von 7 cm zum Zentrum des Strahlrohrs um einen Faktor 1.5 schlechter als oberhalb von 11 cm, wo Leckverluste zu vernachlässigen sind. Die Verteilung des Verhältnisses E_{rek}/E_{ein} der rekonstruierten Energie der Elektronen E_{rek} zur Einschußenergie E_{ein} aus der Monte-Carlo Simulation ist für Energien größer als 25 GeV für drei Abstandintervalle in Abbildung 5.7 gezeigt. Eine Messung des Ortes bei gleichzeitiger Messung der Energie ist mit tolerierbaren Fehlern bis hinab zu 7 cm radialem Abstand

Abbildung 5.6: Verhältnis von rekonstruierter Energie zur Energie des primären Schauerteilchens für verschiedenen Abständen zum Zentrum des Strahlrohrs. In (a) werden alle Teilchenenergien größer als 5 GeV betrachtet. In (b)-(f) werden nur Elektronen mit einer Energie im angegeben 4 GeV-Energieintervalle berücksichtigt. Die horizontale Markierung entspricht 95% der Energie des primären Schauerteilchens. Die vertikale Markierung liegt bei einem Abstand von 7 cm zum Zentrum des Strahlrohrs.

Abbildung 5.7: Verhältnis von rekonstruierter Energie zur Energie des primären Schauerteilchens für Energien größer als $25 \ GeV$ für folgende Abstandsintervalle zum Zentrum des Strahlrohrs: (a) $r = [6.3 \ cm, 6.5 \ cm]$, (b) $r = [6.8 \ cm, 7.0 \ cm]$, (c) $r = [11.0 \ cm, 12.0 \ cm]$. Die Mittelwerten und Standardabweichungen können aus der Tabelle der Abbildung entnommen werden.

möglich. Detailliertere Betrachtungen zur Energierekonstruktion im inneren Bereich sind in [20] zu finden.

5.3 Verbesserte Rekonstruktion mit Hilfe der Vetolagen

Trotz der Einführung neuer Koordinaten und Gewichte für die Insert-Zellen ist unterhalb von 7 cm Abstand vom Zentrum des Strahlrohrs weiterhin eine Abweichung des rekonstruierten Ortes zu kleineren Winkeln zu beobachten. Das liegt daran, daß der rekonstruierte Schauerschwerpunkt eines Zellclusters nicht näher am Zentrum des Strahlrohrs liegen kann als die direkt am Strahlrohr gelegenen Zellen⁵. Die optimierten Ortsvektoren der Randzellen [2.4 cm, 6.4 cm] haben einen Betrag von 6.8 cm, der Betrag der Ortsvektoren der Eckzellen [5.7 cm, 5.7 cm] ist 8.1 cm.

Um die beobachtete Abweichung des rekonstruierten Ortes unterhalb eines Abstandes von 7 cm zum Zentrum des Strahlrohrs zu beheben, können entweder die Ortsvektoren von Rand- und Eckzellen weiter zum Zentrum des Strahlrohrs verschoben oder die Vetolagen als zusätzliche, dem Strahlrohr näherliegende Zellen dem Zellcluster hinzugefügt

⁵Dies ist nur richtig unter der Annahme, daß der Schauer nur auf einer Seite des Strahlrohrs liegt und der Zellcluster das Strahlrohr nicht umschließt, was für typische Schauer die Regel ist.

werden. Eine andere Wahl der Ortsvektoren von Rand- und Eckzellen führt jedoch zu einer schlechteren Ortsauflösung oberhalb von 7 cm. Daher soll nun versucht werden, die Vetolagen als zusätzliche Zellen für die Ortsrekonstruktion zu benutzen.

5.3.1 Theoretische Vorüberlegungen

Der naheliegendste Weg dies zu tun, ist die Vetolagen dem Zellcluster eines Schauers als *feste* Zellen unterhalb von 7 cm hinzuzufügen. Dabei müssen wie bei Rand- und Eckzellen Gewichte und Koordinaten für die Vetolagen eingeführt werden, um die von den normalen Zellen abweichende Geometrie der Vetolagen zu berücksichtigen. Es sind drei neue Parameter nötig, die die Vetolagen beschreiben:

• Die Gewichte g_{veto} , die die Gewichte w_{veto} korrigieren, die sich auf Grund der in den Vetolagen rekonstruierten Energien ergeben:

$$w_{veto} = \sqrt{\frac{E_{veto}}{E_{cluster}}} \longrightarrow w'_{veto} = g_{veto} \cdot \sqrt{\frac{E_{veto}}{E_{cluster}}}$$

• Die x- und y-Koordinaten der Ortsvektoren einer Vetolage. Aus Symmetriegründen ist eine der Koordinaten x und y immer Null:

$$\vec{r}_{veto} = \begin{pmatrix} 0 \\ \pm R_{veto} \end{pmatrix} \quad oder \quad \vec{r}_{veto} = \begin{pmatrix} \pm R_{veto} \\ 0 \end{pmatrix}$$

Die Parameter für die *Eck*- und *Randzellen* werden sich durch die Einführung der Vetolagen ändern, da sie nun einen Teil der impliziten Korrektur an die Vetolagen abtreten können. Es ist zu erwarten, daß dadurch die Gewichte von *Eck*- und *Randzellen* kleiner ausfallen werden, als in dem Parametersatz der bereits beschriebenen Methode ohne Einbezug der Vetolagen und die Ortsvektoren wieder weiter außen liegen.

Das optimale Gewicht der Vetolage wurde iterativ im Intervall [0.0, 1.0] bestimmt und der Ortsvektor der Vetolagen im Intervall [3.0 cm, 6.5 cm].

5.3.2 Zusätzliche Schnitte zur Ereignisselektion

Da zum Zeitpunkt der Datenanalyse keine Simulationsdaten zur Verfügung standen, die die Vetolagen angemessen beschreiben, wurde die Optimierung dieser Methode anhand der H1-Daten⁶ durchgeführt. Dies ist auch sinnvoll, da die absolute Kalibration der Vetolagen im H1-Detektor nicht genau bekannt ist, und daher Ergebnisse der Simulation nicht ohne weiteres auf den H1-Detektor übertragbar sind.

Die Optimierung der Methode geschah auf dieselbe Weise wie in Kapitel 5.2.2 beschrieben, mit den folgenden Änderungen:

⁶Es handelt sich dabei um die schon beschriebenen 1995 Shifted Vertex-Daten

Das Optimierungskriterium wird dahingehend abgeändert, daß auch weiter innen liegende Zonen bis 6.0 cm Abstand zum Zentrum des Strahlrohrs für das Kriterium K (siehe Gleichung 5.2.2) berücksichtigt werden. Da für Einschußorte oberhalb von 15 cm zum Strahlrohr keine Energie in den Vetolagen deponiert wird, wird die Optimierung nur bis 15 cm radialen Abstand durchgeführt. Daher wird der Bereich r = 6.0 cm-15 cm in Nkonzentrische Zonen neu eingeteilt. Für die Vetolagen gelten dabei dieselben Kriterien wie für alle anderen Clusterzellen des Schauers: Es ist eine rekonstruierte Mindestenergie von 0.1% der Schauerenergie erforderlich, um die Zelle in der Rekonstruktion zu berücksichtigen. Zusätzlich werden noch folgende Forderungen an die Ereignisse gestellt.

- Es gibt keinen zweiten Schauer im SpaCal unterhalb von 12 cm. Dieser Schnitt stellt sicher, daß die Vetolage nur die Energie eines Schauers enthält.
- Die Summe der Energien aller Vetolagen beträgt maximal 50% der Schauerenergie. Dies stellt sicher, daß die Vetolagen nur als Korrektur zur Ortsrekonstruktion dienen und nicht den Schauerschwerpunkt dominieren⁷.

5.3.3 Ergebnis der Optimierung der Methode mit Verwendung Vetolagen

In Abbildung 5.8 ist die radiale Abweichung des rekonstruierten Ortes im SpaCal zur nächstliegenden BDC-Spur für die H1-Standard Methode (a), die alternative Methode ohne Vetolage (b) und die Rekonstruktionsmethode mit Verwendung der Vetolagen als Funktion des Abstandes zum Zentrum des Strahlrohrs dargestellt. Wie ersichtlich, konnte eine weitere Verbesserung der Ortsrekonstruktion im inneren Bereich erreicht werden. Bis zu einem Abstand von $6.5 \, cm$ zum Zentrum des Strahlrohrs ist eine Rekonstruktion ohne systematische Abweichungen des rekonstruierten Orts möglich. Die radiale Ortsauflösung ist besser als $5 \, mm$.

In Abbildung 5.5 ist die azimutale Winkelauflösung dieser Methode im Vergleich zu anderen Methoden gezeigt. Sie ist besser als 5 mm für alle Winkel und Abstände zum Zentrum des Strahlrohrs und liegt in der gleichen Größenordnung wie die azimutale Ortsauflösung von Rekonstruktionsmethoden, welche nicht die Vetolage benutzen.

In Tabelle 5.2 sind die gefundenen Parameter für diese und alle anderen Methoden aufgeführt. Die Koordinaten und Gewichte der Insert-Zellen unterscheiden sich von denen der Methode ohne Verwendung der Vetolage, da nun die Vetolagen einen Teil der Aufgabe in der Ortsrekonstruktion übernehmen, die sonst die *Rand-* und *Eckzellen* bewerkstelligen mußten. Die Koordinaten liegen wieder etwas weiter außen und die Gewichte der *Randzellen* sind etwas kleiner als in der beschriebenen Methode ohne Verwendung der Vetolagen.

Die Gewichte der *Eckzellen* sind jedoch größer als zuvor. Eine *Vermutung*, die diese Tatsache plausibel macht ist, daß die Eckzellen so ein Gegengewicht zu den zwischen ihnen

⁷Zu beachten ist, daß das Gewicht g_{veto} der Vetolagen nur etwa 0.3 beträgt, der Beitrag der Vetolagen zur Ortsrekonstruktion also maximal 15% betragen kann.

Abbildung 5.8: Abweichung des rekonstruierten Orts aus der H1-Standard Rekonstruktionsmethode (a), der alternativen Methode ohne Vetolagen (b) und der weiter verbesserten Methode mit festen Vetolagen (c) zu der aus den H1-Daten zugeordneten BDC-Spur als Funktion des Abstandes vom Zentrum der Strahlrohrs. Den Fehlerbalken entsprechen die Standardabweichungen jeder Zone vom Mittelwert. Die vertikale Linie markiert einen Abstand von 7 cm zum Zentrum des Strahlrohrs. Die horizontale Linien markieren Abweichungen um 5 mm.

	Randzellen			Eckzellen		Vetolagen	
Methode	g_1	x	y	g_2	r	g_{veto}	R_{veto}
H1-Standard Methode	1	2.239	6.624	1	6.0975	-	-
Naive Annahme	1.73	2.025	6.075	1.04	6.0975	-	-
Alternative Methode	1.707	2.40	6.30	1.10	5.70	-	-
Alt. Methode mit Vetolagen	1.55	2.40	6.40	1.30	5.85	0.32	4.0
Methode A	1.59	2.35	6.40	1.26	5.70	0.34	-
Methode B	1.57	2.40	6.40	1.22	5.70	0.33	4.0

Tabelle 5.2: Gewichte g_R, g_E und g_{veto} und Koordinaten der Insertzellen in verschiedenen Rekonstruktionsmethoden. Die Koordinaten sind gegeben für die in Abbildung 5.2 markierte *Eckzelle* [x, y], die *Randzelle* [r, r] und die Vetolage $[0, R_{veto}]$. Die Koordinaten für alle anderen Zellen ergeben sich aus ihnen wie in Abbildung 5.2 angegeben

liegenden Vetolagen schaffen, die einen Azimutalwinkelbereich von 90° umspannen und somit die Azimutalwinkelauflösung verschlechtern können. Da die in den Vetolagen deponierten Energien von Schauern aus einem 90° weitem Einzugsgebiet stammen können, die Vetolagen aber nur *einen festen* Ortsvektor haben, würde die radiale Korrektur zwar erreicht, aber die Azimutalwinkelauflösung verschlechtert. Der Schauerschwerpunkt wird durch die Vetolagen über die Maßen in Richtung der Koordinatenachse gezogen, die die Vetolage schneidet. Durch die höheren Gewichte der *Eckzellen*, die sich an beiden Enden der Vetolage befinden, kann diese Verschiebung korrigiert werden.

Wie bereits gezeigt, ist unterhab eines Abstandes von 7 cm die rekonstruierte Energie die den Fehler dominierende Größe. In 6.5 cm Abstand zum Zentrum des Strahlrohrs betragen die Leckverluste bereits über 33% und die Energieauflösung ist um einen Faktor vier schlechter als in einem Abstand von 11 cm (siehe Abbildung 5.6). Das liegt daran, daß in diesem Bereich schon kleine Schauerfluktuationen in der örtlichen Energiedeposition zu stark schwankenden Leckverlusten des Schauers in das Strahlrohr führen können.

Allerdings kann eine verbesserte Ortrekonstruktion dazu beitragen, Ereignisse zu identifizieren, bei denen die primären Schauerteilchen unterhalb von 7 cm Abstand zum Strahlrohr in den Detektor eintreffen. Mit den anderen vorgestellten Rekonstruktionsmethoden wären diese Ereignisse nach außen in Zonen oberhalb von 7 cm verschoben worden, wo sie sich mit anderen Ereignissen vermischen. Die hier beschriebene Methode bietet somit eine verbesserte Möglichkeit der Ereignisselektion.

5.4 Weitere untersuchte Rekonstruktionsverfahren

Es wurden noch zwei weitere Rekonstruktionsmethoden untersucht, die die Vetolagen so in die Bestimmung des Schauerschwerpunktes einbeziehen, daß sie nur in die *radiale* Ortsrekonstruktion einfließen, und der rekonstruierte Azimutalwinkel nur von den *normalen*, Rand-und Eckzellen bestimmt ist.

Es wurden folgende zwei Methoden untersucht:

Methode A: Die Vetolagen erhalten die Koordinaten (0,0). Damit können sie keinen Einfluß auf die Winkelauflösung nehmen. Es ist nur die Optimierung eines weiteren Parameters, des Gewichts g_{veto} , nötig:

$$\vec{r_{veto}} = \begin{pmatrix} 0\\0 \end{pmatrix}$$
, $w_{veto} = g_{veto} \cdot \sqrt{\frac{\sum (E_{veto})_{veto}}{E_{cluster}}}$

Methode B: In einem iterativen Rekonstruktionsverfahren bestimmt man zunächst den Ort allein mit Hilfe der Schauerzellen *ohne* die Vetolagen und errechnet den Azimutalwinkel ϕ dieses rekonstruierten Ortes. Dann wiederholt man die Rekonstruktion *mit* den Vetolagen, *alle* an der Position $\vec{r_{veto}}$

$$\vec{r_{veto}} = \begin{pmatrix} R_{veto} \cdot \cos \phi \\ R_{veto} \cdot \sin \phi \end{pmatrix} , \quad w_{veto} = g_{veto} \cdot \sqrt{\frac{\sum (E_{veto})_{veto}}{E_{cluster}}}$$

Auch in dieser Rekonstruktionsmethode beeinflussen die Vetolagen die Winkelauflösung nicht. Es müssen die zwei Parameter R_{veto} und g_{veto} optimiert werden,

Die Ergebnisse dieser Untersuchungen sind ebenfalls in Tabelle 5.2 aufgeführt. Die Gewichte und Koordinaten der Insert-Zellen in diesen Methoden unterscheiden sich von den Parametern der Rekonstruktionsmethode mit festen Vetolagen. Den *Rand-* und *Eckzellen* fällt die Aufgabe zu den Winkel zu optimieren, wobei die Vetolagen die bestehende radiale Abweichung korrigieren kann.

Es zeigt sich, daß die hier vorgeschlagenen Methoden **A** und **B** nicht so gute Ergebnisse liefern wie die Rekonstruktionsmethode mit fest fixierten Vetolagen, obwohl alle untersuchten Methoden die systematischen Abweichungen des im SpaCal rekonstruierten Ortes zur zugeordneten BDC-Spur bis zu einem Abstand von $6.5 \, cm$ zum Zentrum des Strahlrohrs verringern können. Die Winkelauflösung konnte nicht weiter verbessert werden. Somit ist die praktische Anwendung der letztgenannten Methoden nicht sinnvoll, zumal die iterative Methode auch einen vergleichsweise höheren Rechenaufwand bedeutet.

5.5 Gewinn im zugänglichen Bereich der $x-Q^2-$ Ebene

Bisher wurde bei allen Messungen mit dem H1-Detektor zur Ereignisselektion ein Schnitt bei 8 cm bis 10 cm Abstand des im SpaCal rekonstruierten Schauers zum Zentrum des Strahlrohrs gemacht (zum Beispiel 8.7 cm in [49]). Alle Ereignisse mit dem Strahlrohr näher gelegenen Schauern, wurden verworfen. Doch selbst bei 10 cm Abstand zum Zentrum des Strahlrohrs ($\theta = 176.2^{\circ}$) ist in der H1-Standard Rekonstruktionsmethode eine systematische Abweichung des rekonstruierten Ortes um 2.5 mm zu größeren Abständen zum Zentrum des Strahlrohres ($d\theta = 0.1^{\circ} = 1.75 mrad$) festzustellen (siehe Abbildung 4.5a). Diese Abweichungen wurden in den Analysen die durch beobachteten Abweichungen aus Monte-Varlo Simulationen korrigiert. Allein auf Grund dieser systematische Verschiebung des Ortes würde sich für die Bestimmung von Q^2 nach Gleichung 2.8 ein relativer Fehler dQ^2/Q^2 von 5.3% ergeben. Dieser führt nach Gleichung 2.7 zu einem systematischen relativen Fehler in der Bestimmung des Elektron-Proton Wirkungsquerschnittes von $d\sigma/\sigma = 10.6\%$. In einem Abstand von 8 cm ($\theta = 176.9^{\circ}$) beträgt die systematische Abweichung des rekonstruierten Ortes in der H1-Standard Rekonstruktionsmethode 5 mm ($d\theta = 0.2^{\circ} = 3.5 mrad$) zu kleineren Winkeln. Dadurch ergibt sich ohne weitere Korrekturen ein relativer Fehler in der Bestimmung des Elektron-Proton Wirkungsquerschnittes von $d\sigma/\sigma = 25.6\%$.

Durch die in Kapitel 5.2 vorgestellte alternative Rekonstruktionsmethode ist es möglich den Winkel ohne systematische Abweichungen bis zu einem Abstand von 7 cm zum Zentrum des Strahlrohrs zu rekonstruieren. Hier sind die Energieleckverluste immer noch klein genug (< 5%), um die Kinematik des Ereignisses mit tolerierbaren Fehlern rekonstruieren zu können. Durch den nun größeren, zugänglichen Winkelbereich in θ können nun Messungen von Ereignissen durchgeführt werden, die durch kleinere Werte von Q^2 und x charakterisiert sind.

In Abbildung 5.9 ist der neue, zugängliche Bereich in der $x - Q^2$ -Ebene gezeigt. Insbesondere die Messung der Proton-Strukturfunktion wird von dem Zuwachs des zugänglichen Bereichs profitieren [48]. BEMC markiert den zugänglichen Bereich des gleichnamigen Vorgängerdetektors des SpaCal. Mit **SpaCal** ist der zugängliche Winkelbereich angegeben, der in Messungen mit dem 1.5 m entfernten, nominellen Wechselwirkungspunkt erreichbar war. Der durch den Pfeil markierte, erweiterte linke Bereich wird durch die verbesserte Methode (ohne Vetolagen) zugänglich gemacht. Gleiches gilt auch für den mit **SpaCal (Shifted Vertex)** bezeichneten Bereich, der zugänglich ist, wenn der Wechselwirkungspunkt um 70 cm in Protonstrahlrichtung verschoben wird. Ereignisse, die durch die kinematischen Variablen x und Q^2 in diesen Bereichen charakterisiert sind, sind nun ohne systematische Fehler meßbar, die durch die Ortsrekonstruktion hervorgerufenen werden.

Die verbesserte Rekonstruktionsmethode ist bereits für die Analyse der Protonstrukturfunktion in den 1995 am H1-Detektor genommenen Daten benutzt worden und wird zur Zeit in die H1-Software als neue Standard Rekonstruktionsmethode implementiert.

Abbildung 5.9: Zugängliche Bereiche der $x-Q^2$ Ebene mit der alten Detektorkomponente BEMC und dem SpaCal mit einem Schnitt bei 8.0 cm und bei 7.0 cm radialem Abstand zum Zentrum des Strahlrohrs. Winkelangaben beziehen sich dabei auf einen 1.5 m entfernten Vertex im Falle des nominellen Wechselwirkungspunkt, und auf einen 2.3 m entfernten Wechselwirkungspunkt bei Shifted-Vertex Daten. Der Pfeil markiert den Gewinn in der $x-Q^2$ Ebene durch die verbesserte Rekonstruktionsmethode.

Kapitel 6

Ortsrekonstruktion mit den Daten der Teststrahlmessung

Da es sich bei einer Teststrahlmessung nicht um eine Simulation mit ihren Unzulänglichkeiten handelt, erlauben Untersuchungen an den Daten einer Teststrahlmessung Aussagen über die Qualität von Rekonstruktionsverfahren in der Praxis.

In diesem Kapitel sollen die unterschiedlichen, in dieser Diplomarbeit vorgestellten Rekonstruktionsmethoden anhand der Daten der am DESY II durchgeführten Teststrahlmessungen (siehe Kapitel 3) verglichen werden.

6.1 Anwendbarkeit der Rekonstruktionsmethoden auf die durchgeführten Teststrahlmessung

Untersuchungen an den Daten der durchgeführten Teststrahlmessung haben gegenüber Messungen im H1-Detektor und Simulationen einige Vorteile, unterliegen aber auch einigen Einschränkungen. Vor- und Nachteile von Analysen mit den Daten der durchgeführten Teststrahlmessung sollen deshalb kurz erläutert werden:

In der Teststrahlmessung sind die Primärteilchenenergie und der Auftreffort der Elektronen auf die Detektoroberfläche beliebig wählbar. Diese Information stehen bei der Auswertung zur Verfügung. Somit kennt man wie in Simulationen die wichtigsten Teilchenparameter, um sie mit den rekonstruierten vergleichen zu können. Allerdings betrug die Ortsunschärfe des Elektronenstrahl in dem benutzten Meßaufbau 3 mm und ist somit schlechter als die Spurinformation der BDC (0.5 mm) oder der simulierte Auftreffort in einer Monte-Carlo Simulation (exakt). Dies führt zu einer Verschlechterung der Ortsauflösung und ist in der Interpretation der Daten zu berücksichtigen.

Da in den Teststrahlmessungen nur Teilchen geringer Energien (max. 6 GeV) verwendet wurden, sind die Samplingfluktuationen besonders groß. Ferner wurden die in Kapitel 5 vorgestellten verbesserten Rekonstruktionsmethoden nur für Teilchen einer Energie größer

Abbildung 6.1: Mit Hilfe der H1-Standard Rekonstruktionsmethode rekonstruierte Orte der Schauermaxima in einer Monte-Carlo Simulation, wenn man alle Zellen des SpaCal berücksichtigt (a) und wenn nur die gezeigten, im Testaufbau vorhandenen Zellen in die Ortsrekonstruktion einfließen (b). Kreise stellen die Einschußorte der Elektronen auf der Oberfläche dar, Punkte sind die rückprojizierten rekonstruierten Schauerschwerpunkte von je 20 Elektronen pro Einschußort.

 $5 \, GeV$ optimiert. Daher können die Rekonstruktionmethoden in den Teststrahlmessungen schlechtere Auflösungen besitzen, als bei den bisher untersuchten höheren Energien. Ereignisse mit Schauerenergien kleiner als $10 \, GeV$ werden bei Messungen im H1-Detektor meist verworfen, da die Rate des Untergrunds durch Pionen aus Photoproduktionsereignissen in diesem Energiebereich stark ansteigt.

Der Einschußwinkel der Teilchen in der Messung ist fest gegeben. Er ist in Größe und Richtung nur für einen Punkt realistisch. In unserem Testaufbau entspricht die Neigung von 3° entlang beider Achsen dem Winkel von Elektronen, die aus einem 1.5 m entfernten Vertex im Zentrum des Strahlrohrs in die Koordinaten [8 cm, -8 cm] des SpaCal eintreffen. Dort wurde für die durchgeführten Messungen der Koordinatenursprung gewählt. Fernab dieses Punktes sind Abweichungen im rekonstruierten Ort zu erwarten.

Aufgrund der geringen Ereignisrate von 4 Hz im Teststrahl 22 werden nur Schauer einzelner Elektronen gemessen. Daher ist der Untergrund durch Vielteilchen-Ereignisse klein (siehe hierzu auch Abbildung 4.6, als Beispiel für den Untergrund im H1-Detektor). Insbesondere gibt es keinen Untergrund durch hadronische Schauer.

Wegen der geringen Ausstattung des Testaufbaus mit wenigen Modulen kann nur ein kleiner Teil der Detektoroberfläche untersucht werden. Fast immer treten Leckverluste auch außerhalb des Insertbereichs in den Randbereichen des Testaufbaus auf. Die fehlenden Zellen führen dort zu systematischen Abweichungen in der Energie- und Ortsrekonstruktion. Dies wird in Abbildung 6.1 qualitativ anhand einer Simulation verdeutlicht durch die Ortsrekonstruktion von 1200 Elektronen in zwei Oberflächenabtastungen mit einer Energie von 3 GeV. Als Kreise sind dort die Einschußorte der Elektronen markiert, die Punkte stellen den Ort von jeweils 20 Elektronen pro Einschußort dar, die mit der H1-Standard Rekonstruktionsmethode rekonstruiert wurden, wenn man alle Zellen des SpaCal zur Ortsrekonstruktion benutzt (Abbildung 6.1a) und wenn man nur die 31 dargestellten, im Testaufbau verwendeten Zellen zur Ortsrekonstruktion benutzt (Abbildung 6.1b). Für im Randbereich des Testaufbaus eingeschossene Elektronen wird der Ort systematisch zu weiter innen liegende Zellen verschoben rekonstruiert. Für diese systematischen Abweichungen des rekonstruierten Ortes gelten dieselben Überlegungen, die schon in Kapitel 4.3.3 zur Ortsrekontruktion für den Insert-Bereich angestellt wurden (siehe eindimensionales Modell der Ortsrekonstruktion Abbildung 4.8). Leckverluste und das Fehlen von Zellen führen zu systematischen Abweichungen des rekonstruierten Ortes.

Um die Ergebnisse der Teststrahluntersuchungen für die Ortsrekonstruktion beurteilen zu können, muß eine Monte-Carlo Simulation zum Vergleich herangezogen werden, um zu quantifizieren, wie sich der gewählte Testaufbau auf die Rekonstruktionsmethoden auswirkt.

6.2 Voruntersuchungen an Daten einer Monte-Carlo Simulation

Mit Hilfe einer Monte-Carlo Simulation¹ wurden 50000 Elektron-induzierte Schauer im SpaCal simuliert. Dazu wurden $3 \, GeV$ Elektronen mit einem Neigungswinkel von jeweils 3° zur x- und y- Koordinate der Oberfläche, homogen verteilt in die im Testaufbau benutzten 31 Zellen eingeschossen. Dabei standen auch die Informationen aus den im Testaufbau nicht vorhandenen Zellen des SpaCal zur Verfügung, um die Auswirkungen von Leckverlusten in den äußeren Bereiche untersuchen zu können.

In Abbildung 6.2d ist das Verhältnis E_{rek}/E_{sp} der rekonstruierten Energie E_{rek} im Testaufbau zur rekonstruierten Energie E_{sp} für alle Zellen des SpaCal für verschiedene Einschußpunkte auf der Oberfläche gezeigt. Dieses Verhältnis ist aufgrund von Leckverlusten, die nur im Testaufbau auftreten, in den äußeren Bereichen des Testaufbaus kleiner als 100%. Die Linien umschließen dabei Bereiche gleicher Leckverluste.

In Abbildung 6.2a-c sind die Abweichungen des im Testaufbau rekonstruierten Ortes zum rekonstruierten Ort mit allen Zellen im SpaCal in x, y und in r als Funktion des Einschußortes auf der Oberfläche des Testaufbaus gezeigt. Liegt der Einschußort weniger als 8 cm vom äußeren Rand des Testaufbaus entfernt, so machen sich die reduzierten Ausmaße des Testaufbaus bemerkbar. Fehlende Zellen im äußeren Bereich führen zu einer systematischen radialen Abweichung $|r_{sp} - r_{rek}|$ des rekonstruierten Schauermaximums zum Zentrum des Strahlrohrs um mehr als 0.2 cm. Außerhalb dieses Bereichs weicht der im

¹Das zur Simulation verwendete Programm ist GEANT

Abbildung 6.2: Gezeigt sind für verschiedene Einschußbereiche des Testaufbaus die simulierten Abweichungen $x_{rek}-x_{sp}$ (a), $y_{rek}-y_{sp}$ (b) und $|\vec{r}_{rek}|-|\vec{r}_{sp}|$ (c) des im Testaufbau rekonstruierten Ortes $\vec{r}_{rek} = [x_{rek}, y_{rek}]$ zum rekonstruierten Ort $\vec{r}_{sp} = [x_{sp}, y_{sp}]$, wenn man alle Zellen des SpaCal berücksichtigt. Diese treten auf wegen Leckverlusten im Testaufbau in den äußeren Bereichen. Den gezeigten Höhenlinien entsprechen von innen nach außen Abweichungen von 2, 3, 4, 5, 7.5, 10, 12.5, 15, 20 mm. In (d) ist das Verhältnis E_{rek}/E_{sp} der rekonstruierten Energie E_{rek} im Testaufbau zur rekonstruierten Energie E_{sp} mit Hilfe aller Zellen des SpaCal aufgetragen. Den gezeigten Höhenlinien entsprechen von außen nach innen die Verhältnisse 75%, 80%, 85%, 90%, 95%, 97%, 98%, 99%, 100%.

Testaufbau rekonstruierte Ort \vec{r}_{rek} zum rekonstruierten Ort im SpaCal r_{sp} deutlich mehr ab: 0.75 cm in einem Abstand von 4 cm zum Rand des Meßaufbaus und mehr als 1.5 cm im Zentrum der äußersten Zellreihen. Die eingezeichneten Linien umschließen Bereiche gleich großer systematischer Abweichungen.

Deshalb wurde die Rekonstruktion nur für die Punkte $[x_{ein}, y_{ein}]$ der Oberflächenabtastungen untersucht, die folgenden Schnitten genügen:

$$-2 \, cm \le x_{ein} \le 8 \, cm$$
 und $-8 \, cm \le y_{ein} \le 2 \, cm$

In diesem Bereich sind die Abweichungen des im Testaufbau rekonstruierten Ortes und dem mit allen Zellen des SpaCal rekonstruierten Ort kleiner als 0.2 cm und der gesamte Insert-Bereich kann untersucht werden, da alle Zellen eines kompletten Insert-Viertels in dieser Zone eingeschlossen sind.

6.3 Vergleich der beschriebenen Rekonstruktionsmethoden

Das Ergebnis dieser Untersuchung ist in Abbildung 6.3 gezeigt (vergleiche hierzu Abbildung 4.5, Abbildung 5.4 und Abbildung 5.8). Aufgetragen als Funktion des Abstandes zum Zentrum des Strahlrohres ist die radiale Abweichung des rekonstruierten Ortes zu dem in den Ortsabtastungen eingestellten Ort. Um den Ort zu ermitteln wurde in (a) die H1-Standard Rekonstruktionsmethode , in (b) die alternative Rekonstruktionsmethode ohne Verwendung der Vetolagen und in (c) die alternative Rekonstruktionsmethode unter Verwendung der Vetolage benutzt.

Da sich das gewählte Koordinatensystem nicht auf den Einschußort auf der Oberfläche, sondern auf die Schauermaxima bezieht, können die bei der Oberflächenabtastung eingestellten Koordinaten direkt mit den rekonstruierten Koordinaten verglichen werden. Eine Rückprojektion ist nicht erforderlich. Die systematischen Abweichungen des Koordinatensystems, wie sie in Kapitel 3.6.3 beschrieben wurden, sind in den folgenden Untersuchungen bereits berücksichtigt worden.

Bei der H1-Standard Rekonstruktionsmethode (Abbildung 6.3a) sind systematische Abweichungen des rekonstruierten Ortes zu größeren Abständen zum Zentrum des Strahlrohrs zu beobachten. Diese werden durch die alternativen Rekonstruktionsmethoden (Abbildung 6.3b und Abbildung 6.3c) nahe am Strahlrohr behoben. Oberhalb von $r_{ein} = 8 \ cm$ ist jedoch eine systematische Abweichung des rekonstruierten Ortes zum Strahlrohr zu beobachten, das heißt $r_{rek} - r_{in} < 0$. Diese ergibt sich, wie bereits gezeigt, aus den geringen Ausmaßen des Testaufbaus. Das leere Intervall bei $r = 10 \ cm$ resultiert aus der Wahl der Intervallbreite² des Histogramms und den diskreten Einschußorten der Oberflächenabtastungen. Mit der getroffenen Wahl fällt in dieses Intervall kein Einschußort.

Korrigiert man die ortsabhängige radiale Abweichung zwischen der Ortsrekonstruktion im Testaufbau und der Ortsrekonstruktion im SpaCal mit den aus der Monte-Carlo Si-

²Dieser Effekt wird im Englischen als binning-effect bezeichnet

mulation gewonnenen mittleren Abweichungen (siehe Abbildung 6.2c), so erhält man die in Abbildung 6.4 gezeigten Verteilungen. In Abbildung 6.4a ist das Ergebnis der H1-Standard Rekonstruktionsmethode dargestellt. Diese Methode zeigt eine systematische Abweichung zu größeren Abständen zum Strahlrohr für alle untersuchten Abstände, wie sie bereits in Kapitel 4.5 beobachtet wurde. Die alternativen Rekonstruktionsmethoden (Abbildung 6.4b und Abbildung 6.4c) beheben diese systematische Abweichung für alle gezeigten Punkte im Bereich zwischen 7 cm und 11 cm Abstand zum Zentrum des Strahlrohrs, wobei die aus der Simulation gewonnenen Korrekturen im äußeren Bereich das Fehlen der Zellen am Rand des Testaufbaus berücksichtigen.

Durch Verwendung der Vetolagen ist keine weitere Verbesserung zu beobachten. Dies liegt daran, daß eine absolute Kalibration der Vetolagen im Testaufbau nicht möglich war und somit die Gewichte und die Koordinaten der Vetolagen nicht auf den Testaufbau optimiert sind. Allerdings zeigt auch diese Rekonstruktionsmethode gute Ergebnisse.

Alle Rekonstruktionsmethoden haben eine Ortsauflösung von 6 mm. Die etwas schlechtere Ortsauflösung liegt in der Unkenntnis des Einschußortes des Elektronenstrahls begründet. Entfaltet man die Ortsauflösung des Elektronenstrahls von 3 mm aus den Verteilungen des rekonstruierten Ortes, so ergibt sich eine Ortsauflösung von 5 mm, in guter Übereinstimmung mit der aus der Simulation bestimmten Ortsauflösung.

6.4 Ergebnis der Untersuchungen

Die verschiedenen Rekonstruktionsverfahren konnten mit den Daten der Teststrahlmessungen verglichen werden und es zeigten sich die schon in den Monte-Carlo Simulationen beobachteten systematischen Abweichungen in der Ortsrekonstruktion bei Verwendung des H1-Standard Rekonstruktionsmethode. Mit den in dieser Arbeit entwickelten alternativen Rekonstruktionsmethoden der Ortsrekonstruktion treten bis zu einem Abstand von $6.5 \, cm$ zum Zentrum des Strahlrohrs keine systematischen Abweichungen auf. Dabei liefert die Rekonstruktion auch für Energien von $3 \, GeV$ gute Ergebnisse. Die Ortsauflösung aller Rekonstruktionsmethoden ist $5 \, mm$ in guter Übereinstimmung mit den Messungen am H1-Detektor und in den Simulationen.

Abbildung 6.3: Abweichung des bekannten Einschußortes der Oberflächenabtastungen zum rekonstruieren Orts mit Hilfe der H1-Standard Rekonstruktionsmethode (a), dem alternativen Algorithmus ohne Vetolagen (b) und dem alternativen Algorithmus mit Verwendung der Vetolagen (c) als Funktion des Einschußortes. Den Fehlerbalken entsprechen die Standardabweichungen jeder Zone vom Mittelwert. Die vertikale Linie markiert die 8.1 cm Grenze, die horizontale Linien eine 5 mm Abweichung

Abbildung 6.4: Abweichung des bekannten Einschußortes der Oberflächenabtastungen zum rekonstruieren Orts mit Hilfe der H1-Standard Rekonstruktionsmethode (a), dem alternativen Algorithmus ohne Vetolagen (b) und dem alternativen Algorithmus mit Verwendung der Vetolagen (c) als Funktion des Einschußortes. Im Randbereich des Testaufbaus ist die radiale Ortsabweichung auf Leckverluste korrigiert worden (vergleiche Abbildung 6.3). Den Fehlerbalken entsprechen die Standardabweichungen jeder Zone vom Mittelwert. Die vertikale Linie markiert die 8.1 *cm* Grenze, die horizontale Linien eine 5 *mm* Abweichung

Kapitel 7

Zusammenfassung und Ausblick

In der Zeit von Oktober 1995 bis Januar 1996 sind vier Insert-Module gebaut worden, von denen drei im November 1995 für Teststrahlmessungen zur Verfügung standen. In den Teststrahlmessungen wurde mit Elektronen der Energie 1 GeV-6 GeV die räumliche Homogenität, die Linearität und Auflösung der Energiemessung und die Ortsauflösung für die Insert-Module getestet.

Diese Teststrahlmessungen haben gezeigt (siehe Kapitel 3.6), daß die Insert-Module den gestellten Anforderungen an räumlicher Homogenität genügen. Die Inhomogenitäten sind oberhalb eines Abstandes von 7 cm zum Zentrum des Strahlrohrs kleiner als 3%, unterhalb kleiner als 7%. Die Anforderungen an die Energiemessung sind ebenfalls erfüllt. Die Abweichung von der Linearität der Meßsignale ist für alle untersuchten Energien kleiner als 1%. Die Messungen ergaben eine Energieauflösung von 7.6% im Zentrum einer normalen Zelle nahe dem Insert-Bereich und 9.6% im Zentrum einer Eckzelle.

Die H1-Standard Rekonstruktionsmethode zur Berechnung des Schwerpunktes von Schauern im elektromagnetischen SpaCal wurde mit Hilfe von Monte-Carlo Simulationen untersucht und im inneren Bereich des SpaCal eine systematische Abweichung des rekonstruierten Ortes zu kleineren Winkeln festgestellt. Diese führen zu einem systematischen relativen Fehler in der Bestimmung von Q^2 von 5.3% für einen Winkel von $\theta = 176.2^{\circ}$ und somit zu einem systematischen Fehler von 10.6% in der Bestimmung des Elektron-Proton Wirkungsquerschnittes und der Protonstrukturfunktion $F_2(x, Q^2)$.

Die Ursachen hierfür liegen in der zu normalen Zellen abweichenden Geometrie der Insert-Zellen begründet, die in der H1-Standard Rekonstruktionsmethode nicht berücksichtigt wurde. Es wurde eine verbesserte Methode der Ortsrekonstruktion entwickelt, bei der durch Umgewichten der Zellbeiträge und einer Optimierung der Zellpositionen für die Insert-Zellen die beobachteten systematischen Abweichungen behoben werden können. Die verbesserte Rekonstruktionsmethode erlaubt den Ort ohne systematische Abweichungen bis zu einem Abstand von 7 cm zum Zentrum des Strahlrohrs zu rekonstruieren. Ist der Vertex 1.5 m (2.2 m) vom SpaCal entfernt, so entspricht dies einem Winkel von 177.3° (178.2°). Die Ortsauflösung dieser Rekonstruktionsmethode beträgt 5 mm in radialer und azimutaler Richtung. Eine Energiemessung ist bis zu einem Abstand von 7 cm zum Zentrum des Strahlrohres mit Leckverlusten von weniger als 5% möglich, wobei die Energieauflösung dort um einen Faktor 1.5 schlechter ist. Durch den nun größeren zugänglichen Winkelbereich sind Ereignisse meßbar, die durch einen Faktor 2 kleinere Werte von x und Q^2 charakterisiert sind.

Diese Rekonstruktionsmethode ist bereits in die Analysen zur Protonstrukturfunktion $F_2(x, Q^2)$ mit den 1995er H1-Daten eingeflossen [50] und wird zur Zeit in die H1-Software als neue Standard Rekonstruktionsmethode implementiert [51].

Eine weitere Verbesserung in der Ortsrekonstruktion kann erzielt werden, wenn man die quantitative Information der Vetolagen für die Ortsrekonstruktion nutzt. So ist eine Messung ohne systematische Abweichung bis zu einem Abstand von 6.5 cm zum Zentrum des Strahlrohrs möglich. Die Ortsauflösung in radialer und polarer Richtung dieser Methode beträgt 5 mm. Hier betragen die Leckverluste der Energie in das Strahlrohr jedoch bereits 40 %. Eine Ereignisrekonstruktion mit tolerierbarem Fehler ist somit nicht möglich. Aber die genaue Kenntnis des Ortes ermöglicht es nun zumindest Ereignisse mit strahlrohrnahen Schauern zu identifizieren und gegebenenfalls zu verwerfen. Diese Methode bietet also eine verbesserte Möglichkeit der Ereignisselektion.

Schließlich wurden die dargestellten Methoden zur Ortsrekonstruktion mit den Daten der Testmessung erfolgreich getestet. Die alternativen Rekonstruktionsverfahren zeigten im Gegensatz zu der H1-Standard Rekonstruktionsmethode keine systematische Abweichung des rekonstruierten Ortes vom Einschußort nach außen. Die Ortsauflösung war besser als 5 mm.

Es ist anzunehmen, daß ähnliche systematische Abweichungen in der Ortsrekonstruktion auch in den Randbereichen des SpaCal bei kleinen Winkeln ($\theta < 160^{\circ}$) auftreten, da auch hier starke Leckverluste auftreten. Diese werden auf Grund der starken Neigung der Schauer erheblich größer sein als im Insert-Bereich. Weitere Untersuchungen in dieser Richtung sollten in Zukunft angestellt werden, um die Elektron-Rekonstruktion im SpaCal weiter zu verbessern.

Danksagung

- An dieser Stelle möchte ich Herrn Prof. Dr. D. Wegener für die lehrreiche Betreuung und das interessante Thema danken.
- Herrn Prof. H. Schröder danke ich für die Übernahme der Aufgabe des Zweitgutachters dieser Diplomarbeit.
- Michael Dirkmann bin ich f
 ür seinen ∞ Einsatz und seine große Hilfsbereitschaft zu
 großem Dank verpflichtet. Er war immer ein guter Zuh
 örer, hatte gute Anregungen,
 Denkanst
 öße, Lob, Tadel, manchmal so seine Bedenken und am Ende meistens recht.
- Dieter Lüke möchte ich danken für seine Hilfsbereitschaft. Er hatte immer ein offenes Ohr für mich und stand mir mit Rat und Tat zur Seite, wenn ich mal nicht mehr weiter kam. Außerdem hatte er immer die *CT* für mich parat ;-)
- Klaus Wacker möchte ich danken für 1001 Hilfen im Umgang mit UNIX, PAW und FORTRAN. Bei ihm habe ich gelernt, daß es zu jedem Problem immer "irgendwo" ein altes Shellskript gibt, das es löst. Leider habe ich nie das DIPLOM.KUMAC gefunden, das einem eine Diplomarbeit schreibt. Vielen Dank auch für die Endkorrektur meiner Arbeit.
- Ich möchte mich recht herzlich bei A. Walther, M. Dirkmann, G. Contreras, G. Falley, J. Kurzhöfer, P. Smirnov, Ç Işsever und R.Pöschl bedanken, die mir bei den Testmessungen geholfen haben und sich so manche Nacht durchgemessen haben.
- Carsten Cruse muß ich danken dafür, daß er die Kaffeekasse übernommen hat ;-) und für all den Spaß, den wir auf unserem Büro hatten.
- Matthias Grewe und Thomas Wenk haben mich in schwerer Stunde immer getröstet und mich bei einem Pott Kaffee oft auf gute Ideen gebracht.
- Martin Höppner, bei dem immer seine Tür für mich offen stand, für interessante Diskussionen über genetische Algorithmen, neuronale Netzwerke, Linux-Distributionen, T_EX-Layout und Gott und die Welt.
- Martin Hütte und Thomas Krämerkämper, die geduldig die Druckerqueue ertrugen und so manchen Tip in PAW parat hatten.
- Einen herzlichen Dank besonders an alle meine Korrektoren in der "heißen" Phase meiner Diplomarbeit Michael Dirkmann, Martin Höppner, Matthias Grewe, Björn Heismann, Sebastian Küstermann, Roman Pöschl und Klaus Wacker.
- Nicht zuletzt möchte ich meinem Vater für seine Unterstützung danken, die ich während des gesamten Studiums von ihm erhalten habe, und der mir dieses Studium ermöglicht hat. Ihm ist diese Diplomarbeit in allererster Linie gewidmet.
 ¡ Muchas Gracias !

Diese Arbeit wurde mit Mitteln des Bundesministeriums für Bildung und Forschung unter der Nummer 056DO57P gefördert.

Literaturverzeichnis

[1]	Bibliografisches Institut AG, Farbiges großes Volkslexikon in 12 Bänden, Mannheim 1984
[2]	E. Rutherford, The Scattering of α and β Particles by Matter and the Structure of the Atom, Phil. Mag. 21 (1911) 669
[3]	The American Physical Society, Particles and fields, Volume 54 Physical Review D, Part I, July 1996
[4]	The H1-Collaboration , The H1-Detector at HERA, DESY H1-96-01
[5]	The H1-SPACAL Group, The H1 Lead/Scintillating-Fibre Calorimeter, DESY Report 96-171
[6]	The H1-SPACAL Group, H1 backward upgrade with a SPACAL Calorimeter: The Hadronic Section. DESY Report 96-013
[7]	T. Deckers Untersuchungen zum Nachweis von Teilchen in Bleifluorid- und Spaghetti- Kalorimetern Diplomarbeit, Universität Dortmund, März 1993
[8]	R.P. Feynman Photon-Hadron Interactions Benjamin, New York, 1972
[9]	 M. Klein On the Q², x Range at HERA Proceedings of the HERA-Workshop, p.71-76 Editoren: W. Buchmüller und G. Ingelmann, DESY 1991
[10]	International Comission on Radiation Units and Measurements, ICRU-Report 37, Stopping Powers for Elektrons ans Positrons, Washington DC (1984)

[11]	D.	H. Perkins Introduction to high energy physics Addison Wesley, 1987
[12]	F.	Halzen, A.D. Martin, Quarks and Leptons, John Wiley & Sons , 1984
[13]	Е.	Longo, I. Sestili Monte Carlo Calculation of Photon-initiated electromagnetic Showers in Lead Gass NIM A128 (1975) 283-307
[14]	Ι. Ι	Bronstein, K. Semendjajew Taschenbuch der Mathematik BSB B.G. Teubner Verlagsgesellschaft, Leipzig 1989
[15]	L.	Bugge On the Determination of Shower Central Positions from Lateral Samplings NIM A242 (1986) 228
[16]	К.	Bogusch Untersuchungen zum Aufbau eines rückwärtigen Kalorimeters am H1-Detektor Diplomarbeit, Universität Dortmund, 1993
[17]	D.	Wegener Hadronkalorimeter - Entwicklung und Anwendung Physikalische Blätter, 45 (1989) 358
[18]	С.	W. Fabjan et al. Iron liquid Argon and Uranium liquid Argon Calorimeters for Hadron-Energy measurements NIM 141 (1977) 61
[19]	Ç.	Işsever Entwicklung eines alternativen Gewichtsverfahrens für das H1-Kalorimeter Diplomarbeit, Dortmund, März 1996
[20]	М.	. Dirkmann, Untersuchungen an einem Spaghetti-Kalorimeter unter besonderer Berücksichti- gung des inneren Randbereiches und des Nachweis von π -Mesonen, Diplomarbeit, Universität Dortmund, Januar 1995.
[21]	С.	Grupen Teilchendetektoren Mannheim, Wissenschaftsverlag, 1993
[22]	Α.	Drescher et al. The ARGUS Electron / Photon Calorimeter

NIM 216 (1983) 35

[23] M. Weber The new Spaghetti Calorimeter of the H1-Experiment '94 Beijing Calorimetry Symposium [24] The H1-Collaboration, Technical proposal to Uprgrade the Backward Region of the H1 Detector, DESY H1-93-02 [25] The H1 Collaboration Measurement of the Proton-Structure function $F_2(x, Q^2)$ in the low x region at HERA Nucl. Phys. B 407(1993)515 [26] RDI collaboration Status report to the DRDC **CERN / DRDC 91-50** [27] The H1-SPACAL Group Performance of an electromagnetic lead/scintillating-fibre calorimeter for the H1 detector, NIM, A374 (1996) 1994 [28] W.R. Nelson, H. Hirayama, D.W.O. Rogers, The EGS4-Code system, SLAC-report-265, Stanford Linear Accelerator Center (1985) [29] R. Brun et. al., GEANT 3 Manual, CERN DD / EE /84-1 (1987) [30] Olivier Couet et al. PAW, Physics Analysis Workstation, An Introductory tutorial **CERN** Program library [31] Die Walze für die Produktion aller Bleiplatten des H1-SpaCal wurde von Carsten Gardow entworfen. [32] M. Grewe persönliche Mitteilung [33] J. Janoth Das Kalibrationssystem CAM fr das neue Kalorimeter SpaCal des Detektors H1 bei HERA und Analyse erster Daten Doktorarbeit, Universität Heidelberg, Dezember 1996 [34] H. Hutter, Teststrahluntersuchungen an einem Spaghetti-Kalorimeter für den H1-Detektor, Diplomarbeit, Universität Dortmund, Februar 1995 [35] Die HV-Module wurden von P. Smirnov entwickelt

[36]	G.F. Knoll Radiation Detection ans Measurement John Wiley and sons, New York, 1979
[37]	S. Schleif, SPACAL reconstruction, H1 internal note 56-3-96
[38]	S. Schleif, Reconstruction basics, WWW: http://dice2.desy.de/h1/iww/idet/icalo/spacal/spnote02.rec.06
[39]	S. Schleif persönliche Mitteilung
[40]	The H1-SpaCal group Hadronic response and e/π Separation with the H1 lead/fibre Calorimeter DESY 95-250
[41]	F. Lehner, R. Barschke Some results on dead material Minutes of the Technical SpaCal Meeting (4/5/95)
[42]	R. Stamen persönliche Mitteilung
[43]	 A. Drescher et. al. Lateral shower profiles in a lead/scintillating fibre calorimeter NIM A316 (1992) 184
[44]	M. Swart π° 's in the SpaCal Minutes of the SpaCal Meeting (18/10/95)
[45]	R. Pöschl, Untersuchung der Ortsauflösung des H1-Spaghetti-Kalorimeters unter besonderer Berücksichtigung großer Einschußwinkel der Primärteilchen. Diplomarbeit, Universität Dortmund, April 1996
[46]	Die Wurzelgewichtungsmethode wurde von Vladimir Shekelyan vorgeschlagen.
[47]	P.Murin, R.Poeschl, Monte-Carlo studies of the spatial resolution of the new electromagnetic SpaCal- calorimeter, H1-11/95-461,
[48]	M. Hütte Messung der Protonstrukturfunktion $F_2(x, Q^2)$ in radiativer ep-Streuung mit dem H1- Detektor bei HERA Doktorarbeit, Universität Dortmund, Dezember 1996
[49]	The H1-Collaboration, A Measurement of the Proton-Structure-Function $F_2(Q^2, x)$ at low x and low Q^2

at HERA

Proc. 28th International Conference on High Energy Physics (ICHEP) 1996, Warschau, Polen

- [50] V. Shekelyan verwendete die optimierte Methode für seine Analyse.
- [51] R. Pöschl Persönliche Mitteilung