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Abstract

A measurement is presented of the diffractive proton structure function describing the

process ep → eXY , where X and Y represent the hadronic final states into which the

exchanged virtual photon and the proton dissociate respectively. The data, with an

integrated luminosity of 3.74 pb−1, were collected with unbiased triggers using the H1

detector at the HERA positron proton collider in 1999. The measurement is presented in

the form of a 3-dimensional structure function F
D(3)
2 (β,Q2, x

IP
), integrated over the region

MY < 1.6 GeV and |t| < 1 GeV2. The kinematic range covered is 1.5 GeV2 < Q2 < 45

GeV2, 0.001 < β < 0.9 and 10−4 � x
IP
< 0.05. Previous published H1 results for

F
D(3)
2 (β,Q2, x

IP
) only exist for Q2 ≥ 4.5 GeV2 and β ≥ 0.01 hence not only does this

analysis provide a new high precision measurement of F
D(3)
2 (β,Q2, x

IP
) but it also provides

kinematic coverage at lowerQ2 and β values than has previously been possible. The results

were extracted with full statistical and systematic errors and a good agreement is generally

observed in the region of overlap with previous H1 measurements. The Q2 dependence at

fixed values of x
IP

exhibits rising scaling violations for most of the β range, which start to

fall only at the highest values of β. This behaviour is expected for the exchange of a gluon-

dominated pomeron which evolves according to the DGLAP equations. Comparisons with

different models of diffraction were made and a value for the effective pomeron intercept

αIP(0) = 1.107 ± 0.026 (stat.) was obtained from a Regge-motivated fit.
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Introduction

The Standard Model [1] of high energy physics describes the fundamental particles, quarks

and leptons, and the way in which they interact with each other through the exchange of

gauge bosons. The unified electroweak theory precisely describes the interactions between

these point-like quarks and leptons as mediated by photons (in electromagnetic interac-

tions via Quantum Electrodynamics (QED)) and W±, Z0 bosons (in weak interactions).

These point-like particles can therefore be used to probe the structure of complex hadrons

such as protons, in order to gain knowledge of their internal structure and the dynamics

that govern them.

The first evidence for proton sub-structure came from inelastic scattering experiments at

SLAC [2] where high energy electrons were directed towards fixed nuclear targets. This

process is referred to as deep-inelastic scattering (DIS). The reaction can be summarised as

ep→ e′X where X denotes a final state system of hadrons and a photon is exchanged. The

measured inelastic cross section exhibited very little dependence on the four momentum

transfer squared (Q2). This behaviour, known as scaling, indicated the electron was

scattering off point-like particles in the proton. These target particles, partons, were

later identified as being the same quarks as those of the Standard Model with fractional

charges and spin values of 1
2
. This is the Quark Parton Model (QPM) [3]. Experiments

soon showed deviations from perfect scaling. The theory of Quantum Chromodynamics

(QCD) [4] [5] is used to extend the QPM by taking into account strong interactions which

are occurring between the quarks inside the proton. The strong force is mediated by

gluons, which couple not only to the quarks but also to themselves (unlike QED photons).

The world’s first lepton-proton collider, HERA, is situated at the DESY laboratory in

Hamburg, Germany and has been operational since 1992. This thesis describes a mea-

surement performed on a sample of DIS events collected in 1999 by H1, a multi-purpose

detector located at one of the beam interaction points on the HERA ring. The first chap-

ter provides an overview of the individual H1 detector components and the triggering

system. A brief description of the recent upgrade procedure undertaken by HERA is also
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presented. Results from HERA have proved invaluable in the understanding of DIS and

QCD by accessing kinematic regions unavailable to other experiments and the upgraded

detectors will continue to extend this further. A description of DIS at HERA is presented

in chapter 2 and the measurement of the proton structure function F2 is also discussed.

The structure functions of the proton can be used to extract parton densities so the results

from HERA provide detailed information on the quark and gluon content of the proton.

Structure function measurements at HERA [6] [7] [8] have also exhibited a sustained rapid

rise as x→ 0 (where x is the Bjorken scaling variable). Theoretical predictions had been

ambiguous about the behaviour at small x so this was to a degree surprising. Ultimately

at low enough x values the parton densities are expected to saturate but to date no firm

evidence for this has been observed at HERA.

A subset of DIS events exhibit a very distinctive structure: the final state is well separated

into proton remnant (Y ) and photon dissociation (X) hadronic systems (ep→ e′XY ). In

these events a large rapidity gap is observed in the H1 detector in which no hadrons are

present. Events of this kind, where the proton remains intact, or dissociates into a low

mass object in spite of the violent nature of the interaction, are described as being diffrac-

tive in nature. The exchanged particle is known as the pomeron. In analogy to standard

DIS, a diffractive structure function F
D(3)
2 can be defined where the partonic structure

of the pomeron can be investigated rather than that of the whole proton. Chapter 3

reviews diffractive DIS at HERA and the extraction of the diffractive structure function

and parton densities. An overview of models describing diffraction and the pomeron is

also presented, with an emphasis on diffraction at low x and Q2 - a kinematic region

where few measurements of F
D(3)
2 have previously been performed. Chapter 4 details the

experimental techniques employed in the selection and kinematic reconstruction of stan-

dard and diffractive DIS events at low x and Q2. Results for the structure function F
D(3)
2

in this region of phase space, as extracted via the measurement of a triple differential

cross section, are discussed and presented in chapter 5. Measurements of F
D(3)
2 in this

kinematic range have not been published by H1 before and the measurement presented

here represents the most statistically significant measurement of F
D(3)
2 in this region of

low Q2.
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Chapter 1

The H1 Detector

1.1 Introduction

In 1992, particle physics experiments began at HERA (Hadron Electron Ring Accelerator),

based at DESY (Deutsches Elektronen Synchrotron) in Hamburg. Proton and lepton

beams are accelerated and stored in separate rings with circumference 6336 m. Figure 1.1

shows the experimental layout of HERA on the left with an enlarged view of the PETRA

pre-accelerator ring (in the dotted box) on the right. The cross section for e−p interactions

is small, hence the beam currents must be high. Therefore, bunches of ∼ 25 mA positrons1

are collided every 96 ns with proton bunches of ∼ 80 mA. The final energy of the protons

(Ep) after acceleration is 920 GeV, and the electrons acquire an energy Ee = 27.5 GeV.

Hence, the centre of mass energy available in the interaction (
√
s) is given by:

√
s � √

4EpEe ∼ 320 GeV. (1.1)

The proton and lepton beams collide at north and south interaction points on the ring,

where the H1 and ZEUS experiments are respectively located. These are the multi-

purpose detectors used to study the products of the interaction between the high energy

positron and proton beams provided by HERA. The H1 detector, with dimensions 12 m×
10 m× 15 m and a mass of 2800 tonnes, is used to identify particles originating from the

e − p collision and also to determine their momenta and energy. A full description of

the detector is given in [9]. Fixed target experiments are situated at the east and west

interaction points - the HERMES and HERA-B experiments respectively. HERMES,

1HERA can run with either electrons or positrons. For the period under analysis in this thesis HERA
ran with positrons, and the term ‘positron’ will be used to generically describe the lepton beam.
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Figure 1.1: The left figure shows the HERA accelerator with the PETRA pre-accelerator
in the dotted box, an enlarged view of which is given on the right.

which has been running since 1995, utilises the longitudinally polarised positron beam

with polarised targets. By measuring the gluon contribution to the proton and neutron

structure functions at low values of the Bjorken scaling variable, the origin of nuclear

spin, about which very little is known, has been investigated. The aim of the HERA-

B experiment, which became operational in 1998, was to study CP violation through

the golden decay channel B → J/ψK0. This is achieved through studying interactions

between the protons and nuclei of tungsten wires which are inserted into the beam halo.

H1 is used to investigate all outcomes of e − p interactions, although the principal aim

is the study of deep-inelastic scattering (DIS) events, described in chapter 2. This objec-

tive imposes important experimental requirements on the detector and accelerator. The

asymmetric beam conditions mean that finer granularity, deeper absorbers and extended

tracking detectors are required in the forward direction, which is defined as that of the

outgoing proton beam. These forward detectors perform an important role in diffractive

analyses, the theory of which is described in detail in chapter 3. The resolution and effi-

ciency for the detection and measurement of positrons must be high over a large angular

range in order to reconstruct the inclusive kinematic variables from the energy and angle

of the scattered positron. The calorimeters are required to be hermetic, in order to mea-

sure as well as possible the missing transverse momentum in charged current DIS, and

have a high granularity for accurate positron and hadronic final state reconstruction. For

particle identification and measurement of charged particle momenta and multiplicities,

a large angular coverage is required by the tracking detectors. In order to study heavy

flavour processes and to make searches for signatures of exotic particle production, muon

detection is required over as much of the entire 4π solid angle as possible. Finally a so-
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phisticated and fast multi-level triggering system is required because the detector readout

time of ∼ 800 μs is much greater than the bunch crossing time (96 ns).

1.2 Overview of H1

The positron and proton beams interact at a nominal vertex position in the H1 detector

after acceleration. This interaction point is made the origin of the coordinate system. The

z-axis lies along the outgoing proton (forward) direction and the y-axis points vertically

upward. The x-axis then completes the right-handed coordinate system. In spherical

polar coordinates, the outward radial distance is denoted r, the polar angle θ is defined

relative to the z-axis and φ is the azimuthal angle which is referenced to the y-axis. In

comparison to the z = 0 cm nominal vertex position, the e−p collision point is sometimes

moved to +70 cm in the detector which is known as a “shifted vertex” configuration. Such

an arrangement allows larger (smaller) values of θ (Q2) to be accessed.

Figure 1.2 shows an isometric projection of the H1 detector. Each sub-detector is cylin-

drically symmetric and centred on the beam-pipe 1 which runs along the centre of the

detector. The innermost layer comprises silicon micro-vertex detectors in the central and

backward regions (CST and BST respectively). Further out lie the central tracking de-

tector (CTD) 2 and the forward tracking detector (FTD) 3 . Next, the Liquid Argon

Calorimeter (LAr) comprises electromagnetic 4 and hadronic 5 sections. A lead-fibre

electromagnetic and hadronic calorimeter (Spacal) 12 and the Backward Drift Chamber

(BDC) cover the backward direction whilst the Plug calorimeter 13 extends the mea-

surement range for hadrons in the forward direction. Outside the LAr calorimeter is the

super-conducting solenoid 6 . The muon detection system consists of the instrumented

iron yoke of the solenoidal magnet 10 in the central region 9 whilst coverage in the

forward region is enhanced by the Forward Muon Detector (FMD) 9 11 . For detection

of the residue of hadronic showers, the Tail Catcher (TC) also uses a subset of the in-

strumentation of the iron yoke. The forward tagger system (FTS) (not shown) is used in

diffractive studies and comprises five scintillator arrays positioned in the forward direc-

tion at 9, 16, 24 (known as the Proton Remnant Tagger), 53 and 92 m. Also positioned

at intervals along the beam-pipe in the forward direction are Roman pots, which are

sealed inside the beam-pipe allowing measurements very close to the proton beam to take

place. These constitute the Forward Proton Spectrometer (FPS). The Forward Neutron

Calorimeter (FNC) is situated at a distance of +107 m. Lepton and photon taggers (ET

and PD respectively) are positioned alongside the beam-pipe in the −z direction for the
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Figure 1.2: Sectional view of the H1 Detector illustrating the individual detector compo-
nents.

determination of the luminosity (see section 1.7). The ET is also used to tag photopro-

duction (Q2 ∼ 0) events. The Very Low Q2 spectrometer (VLQ) is situated immediately

around the beam-pipe at z = −2.95 m. The entire detector is encased in concrete 14

shielding.
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1.3 Tracking in the H1 Detector

Figure 1.3: Side view of the H1 Tracking Detectors.

Figure 1.3 shows in detail the tracking detectors in H1. Their purpose is to reconstruct

the tracks that charged particles produce as they pass through the detector and to assist

measurement of their momenta. The CTD which covers the angular region 15◦ < θ <

165◦ and the FTD (7◦ < θ < 25◦) consist of drift chambers with embedded multi-wire

proportional chambers (MWPCs). The angular region of 135◦ < θ < 177.5◦ is covered

by the backward drift chambers (BDC) which are used in conjunction with the Spacal to

identify positrons.

MWPCs, used for measuring particle positions, are instrumented with planes of anode

wires positioned between cathode plates in a gas-filled detector. Charged particles travers-

ing the MWPC cause the gas to ionise in the strong electric field around the anode, initi-

ating charge multiplication. As an electron moves towards the anode, it gains energy in

the electric field. Hence, collisions with the gas particles in the detector yield secondary

electrons, and the process continues and so an avalanche of electrons is formed which also

moves towards the anode. A charge proportional to the original ionisation is measured on

the anode wire, hence knowledge of which wire produces the corresponding signal allows

position determination. The electrostatic forces around the anode wires limit the mini-
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mum anode wire spacing and hence the detector resolution, but their fast response times

promote their use as triggering devices.

Drift chambers are tracking devices with a higher resolution than MWPCs. The anode

(sense) wires are widely spaced and lie between two parallel rows of cathode (drift) wires

enclosed by screening electrode plates. Unlike MWPCs, the electrons drift toward the

anode wires in a uniform field and hence have a constant drift velocity. The charge

division method is used to acquire the co-ordinate in the direction of the sense wire which

is resistive. Readout of the signal at each end of the wire determines the avalanche position

due to different amounts of resistance between the signal and the wire ends. Hence,

together with the bunch crossing time and the time of arrival of the signal at the anode,

the drift velocity can be used to determine the track position. Particle momenta can be

inferred from the degree of track curvature observed in the detector, as the ionisation is

detected at successive anode wires, due to the magnetic field. Identification of particles

can be accomplished at low momentum via the determination of the total ionisation

observed, that is the energy loss over the distance travelled (dE
dx

).

1.3.1 The Central Tracking Detector (CTD)

As shown in figure 1.3 the sub-systems of the central tracker are, moving radially out-

wards, the Silicon Trackers, Central Inner Proportional Chamber (CIP), Central Inner

Z-Chamber (CIZ), Central Jet Chamber 1 (CJC1), Central Outer Z-Chamber (COZ),

Central Outer Proportional Chamber (COP) and Central Jet Chamber 2 (CJC2).

Silicon Trackers

The central and backward silicon trackers (CST [10] and BST [11] respectively), used in

conjunction with the CJC information, aid the identification of primary and secondary

vertices [12] as well as rejecting photoproduction background by the matching of a track

with a cluster in the Spacal. The CST provides information on the vertex by accurately

measuring the tracks of charged particles close to the vertex as well as detecting secondary

vertices in their decays. It consists of two layers of silicon strip detectors covering the

range 30◦ < θ < 150◦. The BST comprises eight planes of single-sided silicon discs, each

with a 16-fold segmentation in φ, with an angular range of 162◦ < θ < 176◦ corresponding

to a Q2 range between 2 GeV2 and 100 GeV2. It is used in the reconstruction of tracks

from backward scattered positrons and is important for precision measurements of low-x

DIS events.
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Central Jet Chambers

The most important central detectors are the co-axial drift chambers CJC1 and CJC2 [13].

Their sense wires lie parallel to the beam direction and, with a single hit r− φ resolution

of 170 μm and z resolution of 22 mm, obtained from charge division, a reasonable overall

measurement can be performed. CJC1 comprises 30 cells, each of which accommodates

24 sense wires, whereas CJC2 has 60 cells, with 32 sense wires each.

Central Z Chambers (Inner and Outer)

The CIZ [14] and COZ [15] comprise 4 layers of drift chamber in which the sense wires

are oriented perpendicular to the beam-pipe, so the ionisation drifts parallel to the +z

axis. Hence, the CIZ and COZ improve the z-measurements with a resolution of 260

μm. The CIP and COP are double layered MWPCs with wires running parallel to the

+z axis. Their time resolution is much smaller than the bunch crossing time interval,

and they provide information on the origin of tracks. Together with the first layer of the

FPC, they form the z-vertex trigger, which labels tracks from the vertex region and plays

an important role in background rejection. Combining the track measurements of CJC1,

CJC2, CIZ and COZ, a charged track momentum resolution of σ(p)
p
< 0.01p

GeV
is obtained.

1.3.2 The Forward Tracking Detector (FTD)

The highly asymmetric H1 beam conditions dictate the need for enhanced tracking equip-

ment in the forward direction. The FTD [16], with an angular coverage of approximately

7◦ to 25◦, comprises three identical super-modules each consisting of planar drift cham-

bers, MWPCs, and radial drift chambers.

The planar detectors consist of three separate sets of drift chamber planes mutually offset

by 60◦ in azimuthal angle φ. Each set is divided up into 32 lateral cells, each of which

contains 4 sense wires spaced uniformly in the z co-ordinate. Readout is performed at one

end only, hence just the drift time is measurable. The MWPCs mounted directly in front

of the planar chambers constitute the Forward Proportional Counter (FPC). The radial

chambers comprise 48 wedge-shaped cells, each of size 7.5◦ in azimuthal angle housing

12 radially strung sense wires. Readout, from pairs of wires, is achieved from both ends

providing two coordinate measurements via the ionisation drift time and charge division.

The single hit resolutions of the planar and radial drift chambers are 170 μm and 200 μm
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respectively.

1.3.3 The Backward Drift Chamber (BDC)

The purpose of the BDC [17] is to accurately measure the scattering angle of the positron

for low x, low Q2 DIS events. It comprises eight layers in z of drift chambers, divided

octagonally in φ, housing sense wires which lie normal to the radial line through the centre

of each segment. The single hit resolution of the BDC is 0.3 mm providing a resolution in

θ better than 0.5 mrad. Each layer is divided into eight sectors providing a measurement

of φ, although this is inferior to that measured in the Spacal calorimeter (described in

section 1.4.2). Positron identification and measurement is achieved using the combination

of BDC and Spacal information.

1.4 Calorimetry in the H1 Detector

The calorimetry system shown in figure 1.4 plays a central role in particle detection and

measurement in H1. Not only can the calorimeters detect neutral particles, unlike track-

ers, but they can be used to distinguish between the signatures of electromagnetic and

hadronic particles. The calorimeter structure comprises alternating layers of dense absorb-

ing and sparse sampling material, the latter of which allows measurement of the energy

deposition. Incident electromagnetic particles lose energy by undergoing Bremsstrahlung

(ep → epγ) and pair production (γp → e+e−p) reactions in the Coulomb field of the ab-

sorbing layers. The resulting particles experience the same reactions, producing particle

showers or cascades, until a threshold energy is reached and the cascade diminishes. The

total number of particles produced is proportional to the original energy of the incident

particle which is therefore measurable in the sampling layers for a fully contained shower.

The interactions of electromagnetic particles, in any given material, have a characteristic

radiation length, X0, defined as the distance travelled by the particle before only 1/e of

its initial energy remains.

In analogy to the radiation length for electromagnetic particles, an interaction length, λ,

is defined for strongly interacting particles, where λ is typically much larger than X0.

The hadronic calorimeter detects showers caused by strong hadronic interactions with

nuclei in the layers of absorber. Due to the larger range in the number of interactions

and thus final state particles possible in the case of hadronic showers, large fluctuations

can be observed in cluster sizes and rates of energy deposition. Other complications arise
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Figure 1.4: Side view of the H1 calorimetry system.

because electromagnetic particles can be produced in a shower resulting from a hadronic

decay. Hadronic energy measurement is therefore less precise.

1.4.1 The Liquid Argon (LAr) Calorimeter

In order to measure high Q2 scattered positrons and hadronic final states with minimal

losses, a large calorimeter is required. The use of liquid argon provides a calorimeter with

good homogeneity, fine granularity and good stability. Providing an angular acceptance

between 4◦ < θ < 154◦, the LAr calorimeter provides calorimetry in the forward and

central regions of H1 [18]. Along the (z) beam direction, it comprises eight wheels, each

of which is further segmented into φ octants. The LAr calorimeter consists of an inner

electromagnetic (EMC) and an outer hadronic (HAC) calorimetry system. In the EMC

plates of 2.4 mm thick lead absorber are alternated with layers of liquid Argon sampling
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material of comparable thickness in which, because of its high atomic density, positrons

produce high ionisation. Although positrons and photons are stopped in this section of the

calorimeter, the majority of hadrons pass through and are detected in the HAC. In this

section the 5 mm thick layers of sampler are alternated with layers of stainless steel plates

of width 16 mm. The total thickness of the LAr calorimeter varies between 30 radiation

lengths in the forward region and 20 radiation lengths in the central and backward region

due to the asymmetric beam conditions. Considering the EMC and HAC together provides

a variation from 4.5 to 8 interaction lengths. The energy resolutions for the EMC and

HAC are σ(E)
E

∼ 0.12√
E(GeV )

⊕ 0.01 and σ(E)
E

∼ 0.50√
E(GeV )

⊕ 0.02 respectively.

1.4.2 The Spacal Calorimeter

Figure 1.5: x− y view of the electromagnetic section of the Spacal showing the positions
of individual cells and their grouping into modules.

Providing calorimetry in the backward region of H1, the Spacal is used to measure the

energy and angle of the scattered positron [19]. The angular coverage is 153◦ < θ < 177◦

which implies a coverage in photon virtuality of 1 GeV2 < Q2 < 100 GeV2. The Spacal

has a diameter of 1.6 m and consists of electromagnetic and hadronic sections in which

scintillating fibres are embedded into lead sheets. The scintillation light is collected by

photo-multiplier tubes. The electromagnetic section comprises 1192 cells each of dimen-

sions 40.25 mm × 40.25 mm which is larger than the average cluster size of 25.5 mm.
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These cells are grouped together into larger modules, whose positions and orientations

are shown in figure 1.5. The thickness of the cells is 250 mm and they have a lead-fibre

ratio of 2.3:1 which amounts to approximately 28 radiation lengths (and correspondingly

one interaction length for strongly interacting particles). Hence, there is negligible leakage

beyond the calorimeter of the incident positrons. The hadronic part is similar but uses fi-

bres of greater diameter, and there are 136 cells each of dimensions 119.3 mm×119.3 mm.

The lead-fibre ratio in this part of the detector is 3.4:1 which amounts to one interaction

length, doubling that from the electromagnetic section. Experiments with test beams

have shown the resolutions to be σ(E)
E

∼ 0.07√
E(GeV )

⊕ 0.04 and σ(E)
E

∼ 0.30√
E(GeV )

⊕ 0.20 for

positrons and hadrons respectively.

1.4.3 PLUG Calorimeter

The PLUG calorimeter [20] minimises missing transverse momentum in the forward direc-

tion from hadrons emitted near to the beam-pipe. Since it measures the forward energy

flow it can also be used to discriminate between standard and diffractive DIS and pho-

toproduction events. The angular range of the PLUG covers the region between the

LAr calorimeter and the beam-pipe, hence providing acceptance over 0.6◦ < θ < 4◦.

The PLUG comprises eight layers (16 modules) of copper absorber of thickness 7.5 cm,

each comprising 84 detector elements [21]. The layers of absorber are alternated with

layers of silicon sampling sheets. The energy resolution of the PLUG is approximately
σ(E)

E
∼ 1.5√

E (GeV)
.

1.4.4 The Tail Catcher (TC)

11 of the 16 layers of limited streamer chambers in the instrumented iron provide a mea-

surement of the hadronic energy leakage from the LAr calorimeter and the Spacal [22].

This calorimeter provides acceptance for hadrons in the backward regions of H1, where

there are fewer interaction lengths, and so enhances the performance of the entire calorime-

try system. The energy resolution is σ(E)
E

∼ 1.0√
E (GeV)

with a scale uncertainty of 35%

(determined from cosmic muon data).
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1.4.5 The Very Low Q2 Spectrometer (VLQ)

The VLQ provides acceptance between 177.3◦ and 179.4◦, which corresponds to 0.02

GeV2 < Q2 < 1 GeV2. It is valuable in studies of the transition region between the

photoproduction and DIS regimes. It comprises two identical modules each housing a

calorimeter and a tracking detector. The spatial resolution of the calorimeter is 2.1mm√
E/GeV

whilst the tracker resolution is 18 μm. These modules are situated above and below the

beam-pipe at a z position of −2.95 m [23].

1.5 Muon Detection

1.5.1 The Forward Muon Detector (FMD)

Figure 1.6: The Forward Muon Detector illustrating the pre- and post-toroid layers on
the left and the double layer structure on the right.

The purpose of the FMD [24] is to identify high energy muons and measure their momenta

as well as provide signals for muon triggering in the forward direction. Figure 1.6 shows

the toroidal magnet and the six double layers of drift chambers which provide an angular

acceptance region of 3◦ < θ < 17◦. The toroid produces a field which varies from 1.75 T

at the inner radius (r = 0.65 m) to 1.5 T at the outer radius (r = 2.90 m). Each layer

is divided into octants comprising drift cells, where the total number of cells is 1520. In

the planes that measure the azimuthal angle, φ, the wires are strung radially while those
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in the θ layers (measuring the polar angle) are strung orthogonally. The use of double

layers, with each of the single layers being staggered with respect to each other by half

a cell (as shown on the right in fig 1.6), removes any ambiguities over which side of the

sense wire the particle passed.

The FMD is capable of measuring muons in the momentum range 5 GeV/c < p <

100 GeV/c, the lower bound of which is set by the losses experienced in the main de-

tector due to ionisation losses, and the upper by the minimum detectable curvature in

the toroidal field. In this analysis the FMD is used to aid in the selection of diffractive

events as discussed in chapter 4. However only the pre-toroid layers are used because

synchrotron radiation from the positron beam causes high noise levels in the post-toroid

layers.

1.5.2 Central Muon Detection

The instrumented iron return yoke of the solenoidal magnet surrounding the LAr calorime-

ter, comprising forward and backward end-caps and a central barrel, is used for muon

detection and for measuring leakage of hadronic energy from the LAr calorimeter (see

above). It covers a large angular range (4◦ < θ < 172◦) and the instrumentation takes

the form of limited streamer tubes (LSTs)2. Cosmic muon studies have shown that the

reconstruction efficiency for muons with a momentum greater than 2 GeV is ∼ 90%.

However the tracks from the instrumented iron alone are often not enough to distinguish

muons from the comparatively high hadronic background levels in the high activity for-

ward direction. Therefore, the Forward Muon Detector (FMD) is also utilised. As well as

the secondary hadronic activity from the e− p interaction there are also non-e− p back-

grounds present. These arise from cosmic muons and the halo of muons that accompanies

the proton beam.

1.6 Beam-line Instrumentation

There are three sets of detectors situated in the very forward region of the H1 detector,

used to detect the particles close to the proton beam direction. They are very useful in

diffractive studies as they can act as a veto if there is activity around the direction of the

2LSTs are tubes containing wires where the resistivity is low on three sides and higher on the fourth,
the electric field being such that an avalanche (streamer) is produced across the wires when a charged
particle passes through them.
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outgoing proton. Although neither the FPS or FNC are used in this analysis, the FTS is

important for the diffractive selection in this thesis.

1.6.1 The Forward Tagger System (FTS)

The FTS comprises five sets of scintillator surrounding the beam-pipe at z = 9 m, 16 m,

24 m, 53 m and 92 m in the forward direction. The particles are detected either directly or

indirectly from secondary scattering arising from interactions between the proton remnant

and the beam-pipe or other material in the forward region. The +24 m Proton Remnant

Tagger (PRT) station detects particles produced in the range 0.06◦ < θ < 0.17◦. It

comprises seven scintillators, each of which consists of two parallel plastic scintillator

sheets. The other stations, which were added at a later date, consist of four counters of

the same nature. The readout is performed via photo-multipliers, and the time registered

for the signal must coincide with that expected on the basis of the interaction in the main

detector.

1.6.2 The Forward Proton Spectrometer (FPS)

The FPS consists of Roman pots situated 63 m, 80 m, 81 m and 90 m in front of the in-

teraction vertex position and their purpose is the detection of intact protons at low angles

(θ � 0.5 mrad) which emerge down the beam-pipe unobserved in the main detector [25].

The pots contain scintillating fibre hodoscopes3 mounted inside an evacuated container.

They have a concertina structure sealed inside the beam-pipe itself and are able to be

brought very close to the proton beam in order to detect and measure the energy of the

scattered protons at very small angles.

1.6.3 The Forward Neutron Calorimeter (FNC)

Situated 107 m forward of the nominal vertex position, the FNC covers the very forward

region θ � 0.6 mrad for neutral particles which are not affected by the beam optics. It

is used to detect neutrons from the reaction ep→ e′nX, in the measurement of the pion

structure function F π
2 [26] [27], where the reaction is dominated by pion exchange.

3A hodoscope is a counter which detects the scintillation light produced when a fast charged particle
traverses it.
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1.7 The H1 Luminosity System

The Electron Tagger (ET) and Photon Detector (PD) constitute the H1 Luminosity sys-

tem [28]. Their respective acceptances are 0 − 5 mrad and 0 − 0.45 mrad. Coincident

events in the taggers arise from the Bethe-Heitler process (ep → epγ). The luminosity

is calculated from the rate of the Bethe-Heitler process which has a large and calculable

QED cross section [29]. In addition to this however, it allows the tagging of very low

Q2(< 10−2) GeV2 positrons for photoproduction analyses. Both taggers are C̆erenkov

calorimeters which contain an array of rectangular crystals. The ET has 7×7 cells and is

positioned at z = −33.4 m whilst the PD consists of 5×5 cells situated at z = −103.1 m.

There is also a counter in front of the PD, used to veto charged particles, placed at

z = −102.8 m.

In 1999 a total e+p luminosity of 27.3 pb−1 was delivered by HERA, out of which 20.9

pb−1 was saved to tape by H1. From this total, 5.81 pb−1 was delivered by HERA during

a period of running that H1 dedicated to low Q2 physics, a so called minimum bias run.

During this period 4.61 pb−1 of data were recorded by H1, from which 3.74 pb−1 were

selected for this analysis (see section 4.4). The total integrated luminosity produced by

HERA developing over the period 1992-2000 is shown in figure 1.7 [30].

INTEGRATED   LUMINOSITY (24.08.00)

Figure 1.7: The integrated luminosity produced by HERA for the period 1992-2000.

17



1.8 Triggering

The triggering system is required to select interesting physics events and exclude non-e−p
background events. The system consists of four levels, three of which were operative in

1999: L1, L2 and L4. Most of the sub-detectors have associated trigger components and,

in the first level of triggering (L1), information is passed from them to the central trigger

(CTL1) [31]. In total 256 trigger elements are collected at CTL1 around 2.1 μs after

the interaction. This corresponds to 22 bunch crossings after the event occurred, after

which the CTL1 makes a decision taking two bunch crossings on whether the event is kept

or rejected. All information from each sub-detector, from all pending bunch crossings,

is stored in memory, or pipelined, whilst the decision is being made. This procedure

eliminates dead-time at L1. The decision on whether to accept an event (L1KEEP) is

based on 128 sub-triggers, built up from the 256 trigger elements. Providing the correct

bunch crossing can be assigned the pipelines are then stopped and the dead time starts.

Higher trigger levels then reject the L1KEEP signal, possibly interrupting the dead-time,

or verify it. The L2 decision is performed by the Topological Trigger (L2TT) [32] and

Neural Network (L2NN) [33] trigger by correlating information from different sub-triggers.

If the event acquires the L2KEEP signal, full event information is then passed to level

4 (L4) where the entire event information is read into a Central Event Builder (CEB)

within approximately 800 μs, after which the pipelines are cleared and the dead-time

ceases. Asynchronously, a limited event reconstruction is performed using several parallel

processors comprising the filter farm. If the event passes the L4 selection, where basic

cuts are applied to reject remaining background events, it is written permanently to disk.

Off-line the events are then fully reconstructed and further cuts applied, although not for

minimum bias runs, before being written to data storage tapes (DSTs) ready for analysis.

The procedure adopted for the analysis of the 1999 minimum bias data is described in

chapter 4.

1.9 HERA and H1 Upgrades

In September 2000, HERA and H1 began an upgrade procedure which produced the first

luminosity of HERA II, which will run with longitudinally polarised lepton beams, in

October 2001 - ten years after the first collisions at HERA. The primary purpose of the

upgrade was to increase the instantaneous luminosity by a factor of five from a previous

peak value of 1.5 × 1031 cm−2 s−1 to 7.4 × 1031 cm−2 s−1. To adapt HERA for this

higher luminosity, super-conducting magnets have been installed in the H1 detector, one
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in the forward and one in the backward direction [34], in order to reduce the size of the

beams at the bunch crossing point. This required upgrades in the PD, ET, electronics

and data acquisition (DAq) system [35]. In order to accommodate the magnets and to

improve overall performance, a large number of changes to the H1 sub-detectors was

simultaneously made.

A forward silicon tracker (FST) has been built, partially from existing components of the

BST and VLQ. It comprises five planes of silicon strip detectors to be used as tracking

detectors in the forward region 8◦ ≤ θ ≤ 16◦ and to enhance positron identification [36].

The CIZ and two planes of the CIP have been replaced with five planes of cylindrical

proportional chamber [37]. Additional layers of MWPCs will aid in distinguishing e − p

collisions from background events and improve triggering capabilities. Additional planar

chambers have been inserted into the FTD to improve track determination in a region

of high primary and secondary track activity. The MWPCs and transition radiators

were replaced by three planar chambers [38]. The FNC response had degraded over

time and was therefore replaced with a new lead-scintillation sandwich calorimeter [39]

and the PLUG calorimeter, the quality of which also degraded, has been replaced with

copper absorbing plates and plastic scintillators [40]. This will improve the energy flow

measurement in the forward direction.

Changes will also be made that will improve the triggering system. A new fast track trigger

(FTT) will be implemented into the triggering system to allow charged particle momenta

to be measured with high precision at the trigger level in the central detectors [41] and to

select exclusive final states, for example D∗ → ππ, with high efficiency. A new L1 “jet”

trigger will, when used in union with the current LAr trigger, extend the capabilities

of low energy deposition triggering [42]. This also aids in the rejection of backgrounds.

Finally the L4 trigger and off-line reconstruction will be merged into a single system,

improved to handle the increased luminosity induced data rate and reconstruct on-line

the data more efficiently [43].
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Chapter 2

Deep-Inelastic Scattering (DIS)

2.1 Introduction

This chapter introduces positron-proton scattering at HERA and reviews the fundamental

properties of deep-inelastic scattering. The inclusive cross section is defined and the proton

structure function is also presented, together with the current theories describing the data.

Finally the low x, low Q2 region of phase space is also discussed as this is relevant to the

data sample under analysis in this thesis.

2.2 DIS at HERA

2.2.1 Kinematics

Figure 2.1(a) illustrates the generic deep-inelastic scattering process. Neutral current

interactions proceed via the exchange of photons (γ) or Z0 gauge bosons and follow the

form ep → e′X, where X denotes the final state system of particles. Charged current

interactions are of the form ep→ νeX where a W± gauge boson is exchanged.

The gauge bosons have the 4-vector momentum, q (q2 < 0), and

Q2 = −q2 (2.1)

defines the virtuality. The boson propagator contribution (T ) to the amplitude is given

in equation 2.2. If Mb represents the mass of the exchanged vector boson, then
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Figure 2.1: (a) NC and CC deep-inelastic scattering processes. The kinematics of NC
DIS are illustrated in (b).

T ∼ 1

Q2 +M2
b

. (2.2)

Hence, photon exchange dominates the DIS cross section at low values of Q2. If Q2 ∼ 0 the

photon is almost real and the interaction is called photoproduction, but if Q2 ∼ MZ0,W±

the massive gauge bosons also contribute to the cross section. The data analysed in this

thesis are in the low virtuality region 1.5 GeV2 < Q2 < 45 GeV2 where only virtual

photon exchange is important. Hence, the exchange via massive bosons shall not be given

further mention.

The value of Q2 also determines the scale on which the proton can be probed, Δx. From

the uncertainty principle,

QΔx ∼ �. (2.3)

At the HERA kinematic limit of Q2 = s � (320 GeV)2 the proton is probed with a spatial

resolution of ∼ 10−3 fm.

Deep-inelastic e− p scattering involves γ∗ − p scattering and figure 2.1(b) highlights the

relevant kinematic variables. The 4-vectors of the incoming and outgoing positrons are

denoted by k and k′ respectively and that of the incoming proton and final state system
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by p and X respectively. Their individual components, as observed in the laboratory

frame, are detailed in equations 2.4 - 2.7 below,

k = (Ee, 0, 0,−Ee) (2.4)

k′ = (E ′
e, E

′
e sin θe, 0, E

′
e cos θe) (2.5)

p = (Ep, 0, 0, Ep) (2.6)

X = (Eh, pT,h, 0, pz,h), (2.7)

which are valid for the case where the positron is scattered in the (x, z) plane. The

4-vector of the photon is given by,

q = k − k′. (2.8)

It is convenient to express variables in terms of Lorentz invariant quantities and in addition

to Q2, the following variables can be defined:

s = (k + p)2 ≈ 4EeEp (2.9)

x =
Q2

2p · q (0 ≤ x ≤ 1) (2.10)

y =
p · q
p · k , (0 ≤ y ≤ 1) (2.11)

W 2 = (q + p)2 ≈ Q2
(1 − x

x

)
(2.12)

with

Q2 ≈ sxy, (2.13)

where s is the centre of mass energy (CME) squared of the e − p system, x the Bjorken

scaling variable, y the inelasticity parameter and W 2 the γ∗−p CME squared. In the infi-

nite momentum frame of the proton, x represents the fraction of the proton’s longitudinal

momentum transferred to the struck quark and is equal to unity for elastic collisions. In

the rest frame of the proton, y is simply the fraction of the positron energy taken by the

virtual photon.
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2.2.2 Inclusive Proton Measurements

The probability for the inelastic process ep→ e′X to occur increases relative to the elastic

process as Q2 increases. Assuming that single virtual photon exchange is dominant, the

inelastic cross section in terms of Lorentz invariant variables can be written as

d2σ(x,Q2)

dxdQ2
=

4πα2
em

xQ4

[(
1 − y +

y2

2

)
F2(x,Q

2) − y2

2
FL(x,Q2)

]
, (2.14)

where αem is the electromagnetic coupling constant and F2(x,Q
2) and FL(x,Q2) are

structure functions which provide information on the quark and gluon content of the

proton. For completeness terms involving the parity violating structure function F3 due

to Z0 exchange and γ −Z0 interference should also be included, but for Q2 
 M2
Z0 these

effects are negligible and hence are not included here. The structure functions are related

to cross sections (σT , σL) for transversely and longitudinally polarised photons according

to

F2(x,Q
2) =

Q2

4π2αem

[
σT (x,Q2) + σL(x,Q2)

]
, (2.15)

and

FL(x,Q2) =
Q2

4π2αem
σL(x,Q2). (2.16)

The quantity R(x,Q2) can be defined as the ratio of longitudinally to transversely po-

larised photon cross sections and is given by,

R(x,Q2) =
σL(x,Q2)

σT (x,Q2)
=

F2(x,Q
2)

F2(x,Q2) − FL(x,Q2)
. (2.17)

It can be seen from equations 2.15 and 2.16 that the condition that the transverse and

longitudinal photon induced cross sections must be positive leads to

0 ≤ FL ≤ F2. (2.18)

From equation 2.18 and the fact that the FL term is proportional to y2 in equation 2.14, it

can be seen that the F2 term is dominant in regions of low y, with the FL term increasing
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in importance as y increases. Therefore, as the FL contribution to the total e − p cross

section increases as y2 it need only be taken into account at the highest y values. The

FL contribution to the total e − p cross section can safely be ignored in the following

discussions as the majority of the data resides at low y 1. Therefore, the equation for the

cross section can be taken to be

d2σ

dxdQ2
=

4πα2
em

xQ4

(
1 − y +

y2

2

)
F2(x,Q

2). (2.19)

Detailed derivations of the cross section and structure function equations can be found

for example in [44], [45] and [46].

2.2.3 The Quark Parton Model (QPM) and Bjorken Scaling

The QPM [47] assumes the proton to consist of point-like charged quarks (partons) [48]

taken to be non-interacting at large values of Q2. Under this assumption, Bjorken [49]

predicted that in the limit Q2 → ∞,

F2(x,Q
2) → F2(x), (2.20)

so at a given value of x the F2 dependence on Q2 is flat, which is the Bjorken Scaling

Hypothesis. The first DIS data from SLAC [2] provided experimental evidence of this

property of scale invariance demonstrating the existence of point-like charged partons in

the proton, identifiable as quarks.

In the Quark Parton Model (QPM) the parton momentum distribution, fi(x), defines the

probability of finding a parton of species i (u,ū etc.) carrying a fraction x of the proton

momentum. Therefore, it is predicted that

∑
i

∫
xfi(x)dx = 1, (2.21)

where the summation is over all species of charged partons. The structure function can

now be written as

1Strictly the measured quantity is the reduced cross section, σr = F2(x, Q2) − y2

1+(1−y)2 FL(x, Q2).
Assuming FL(x, Q2) only contributes at large values of y, for most of the kinematic range σr = F2(x, Q2)
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F2(x) =
∑

i

e2ixfi(x), (2.22)

where ei is the electric charge of parton i.

From helicity conservation arguments, it can be shown that σT and σL are dependent

upon the partonic spin values. For Q2 � M2
p (the mass of the proton squared), it is

expected that σT = 0 if the partons carry spin 0, and that σL = 0 for spin- 1
2

partons.

Hence, the QPM predicts σL(x) = FL(x) = 0 for spin-1
2

partons, which is one form of the

Callan-Gross relation [50].

Observations at fixed target experiments [51] [52] [53], later verified by HERA [54], how-

ever showed FL = 0, implying the existence of physics beyond the QPM. Experimental

results have also provided the important observation that summing over the momenta

of all the charged partons accounts for only ∼ 50% of the proton’s momentum (that is

equation 2.21 equates to ∼ 0.5 instead of 1) [55]. A review of this can be found in refer-

ence [56]. This led to the discovery that the rest of the proton momentum is carried by

electrically neutral particles called gluons. The inclusion of gluons, and the corresponding

gauge theory QCD, are described in the next section.

2.2.4 QCD and Gluons

The QPM in the form of equation 2.20 is successful in describing the flat structure func-

tion dependence on Q2 as observed in [2]. However, studies soon showed that a weak

logarithmic dependence on Q2 exists and also that the structure function FL is non-zero,

signifying the breakdown of the QPM. The QPM assumes the non-interaction of quarks

yet it is known that they exist bound inside the proton thus implying the existence of

inter-quark forces. Hence, a more detailed theory is required to explain these discrepan-

cies.

All of the above observations are explainable by the gauge field theory of Quantum Chro-

modynamics (QCD), one component of the Standard Model. This describes the strong

interactions between quarks, mediated by vector gluons. These are the gauge bosons of

the strong interaction and are massless with a spin value of 1. The strong force involves

a new quantum number called the colour charge. Quarks carry colour (or anti-colour)

which can either be red(r), blue(b) or green(g) and gluons carry combinations of colour

(for example rḡ). Both quarks and gluons are described as partons in QCD. The gluons
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are not only able to couple to the quarks, but also to themselves (a portrayal of the

non-Abelian nature of the theory), with a coupling αs (analogous to the fine structure

constant αem in QED). Hence, the QPM can in fact be considered to be the lowest order

process of QCD at high Q2, O(α0
s). QCD can thus not only explain the successes of the

QPM, but also its failures.

A simple comparison between QED and QCD can be made which illustrates the funda-

mental differences between them. Through vacuum fluctuations, an electron can emit

a photon which can then produce an e+e− pair in QED. Therefore, the original electric

charge will be surrounded by a cloud of electrons and positrons, with the positrons being

attracted to the electrons and hence nearer to the electron. A high energy (short dis-

tance) probe will therefore “see” a high value for the coupling αem because it penetrates

the positron cloud. However, a low energy probe does not penetrate to such a distance

and detects the smaller screened charge, hence the coupling is observed to be lower. This

is depicted in figure 2.2(a). For the case of QCD a quark is considered, with a QCD

“charge”: colour. In addition to the quark being able to emit a gluon which can then

produce a qq̄ pair, the gluons can also produce gg pairs, due to their ability to self-interact

(unlike QED photons). Hence, the coloured quark will be surrounded by both coloured

and anti-coloured charges, but the presence of colour-carrying gluons enhances the overall

colour observed. Hence, a high energy test colour charge probing to small distances “ob-

serves” less charge the nearer to the coloured quark it probes, implying a low coupling.

Thus, for Q2 → ∞ quarks can be considered to be free, non-interacting particles - a

property known as asymptotic freedom. If instead a low-energy colour probe is used to

examine the original quark at a large distance, more charge is observed. This is shown

in figure 2.2(b). Hence, attempts to separate qq̄ pairs by increasing the distance between

them results in an increased coupling between them and they can never exist in isolation.

This is known as infrared slavery.

2.2.5 QCD Evolution

Figures 2.3(a) and (b) show the dependence of F2(x,Q
2) on Q2 [57] for low and high x

regions respectively. Deviations from the QPM-expected behaviour of Bjorken scaling are

observed for values away from x ∼ 0.13 as shown in figure 2.3(b). These scaling violations

show a Q2 evolution which is explainable in QCD. The DGLAP [58] [59] and BFKL [60]

approximations, applicable in different regions of phase space, model the evolution of

F2(x,Q
2) with Q2 and x respectively by taking appropriate terms from a full perturbative

QCD expansion and they are discussed in the following sections.
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α≅1/137

(a) QED charge screening

α ≅1

(b) QCD charge screening

Figure 2.2: Charge screening processes in QED(a) and QCD(b).

As explained above the scaling violations of figure 2.3(b) can be physically pictured in

QCD: as Q2 increases, the virtual photon probes the proton to a smaller distance. If

the proton were simply three valence quarks, without the sea of quarks, anti-quarks and

gluons that is known to be present, further increases in Q2 would not reveal any finer

structure and exact scaling would be observed. However QCD predicts that higher values

of Q2 resolve more partons, with each having a lower fraction of the proton momentum

x, which leads to the observed logarithmic dependence on Q2.

Within the double leading log (DLLA) approximation, all leading terms in the QCD

expansion describing the inclusive structure function are taken into account. The full QCD

expansion contains leading powers of the type αs ln(Q2/Q2
0), αs ln(1/x), and the mixed

terms αs ln(Q2/Q2
0) ln(1/x). The DGLAP formalism contains the αs ln(Q2/Q2

0) expansion

terms and in the BFKL approximation terms of the type αs ln(1/x) are considered. The

F2(x,Q
2) data from HERA are well described by the DGLAP equations, without the

inclusion of any BFKL (low x) terms. These fundamental QCD predictions are presented

in the following sections and figure 2.4 shows the kinematic plane in x and Q2 illustrating
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Figure 2.3: F2(x,Q
2) as measured by H1 (red circles), together with NMC [51] (green

triangles) and BCDMS [52] (blue squares) fixed target data, as a function of Q2 for
different values of x for low x (a) and high x (b). The parameterisation shown is the
result of a QCD fit.

28



the regions of validity for each. Also shown in this figure is the region of applicability of the

GLR (Gribov, Levin, Ryskin) [61] approximation. This attempts to describe the damping

of F2(x,Q
2) via the recombination process gg → g in this region of high parton densities

within the DLLA framework. Not shown on figure 2.4 is the CCFM approximation,

developed by Ciafaloni, Catani, Fiorani and Marchesini [62]. This attempts to combine

features from both the DGLAP and BFKL approximations and it provides a satisfactory

description of many aspects of the data.

GLR
R

eg
g

e 
R

eg
io

n

ln(Q )
2

ln(  )1
x

Bound
States

BFKL

DGLAP

Figure 2.4: The kinematic plane in x and Q2 showing where the DGLAP and BFKL
approximations are theoretically valid.

DGLAP Evolution

In the DGLAP(Dokshitzer, Gibov, Lipatov, Altarelli and Parisi) [58] [59] approximation,

only powers of αs ln(Q2/Q2
0) from the perturbative QCD expansion are considered in the

leading logarithm approximation (LLA). Hence, this approach is valid where perturbative

calculations are applicable, that is where Q2 is not too small and where the x terms

are unimportant. The evolution with Q2 of the quark and gluon distributions are given

respectively by equations 2.23 and 2.24,

dq(x,Q2)

d lnQ2
=
αs(Q

2)

2π

∫ 1

x

dy

y

[
q(y,Q2)Pqq

(x
y

)
+ g(y,Q2)Pqg

(x
y

)]
, (2.23)
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dg(x,Q2)

d lnQ2
=
αs(Q

2)

2π

∫ 1

x

dy

y

[
q(y,Q2)Pgq

(x
y

)
+ g(y,Q2)Pgg

(x
y

)]
, (2.24)

where y is the momentum of the emitting parton and x is the fractional momentum of the

resulting parton as illustrated in figure 2.5. q(x,Q2) and g(x,Q2) are the quark and gluon

distribution functions respectively and Pij(x/y) are the splitting functions which give

the probability for the original parton splitting into two further partons (see figure 2.5).

Hence, for the valence quarks only the first term in equation 2.23 is needed, but for the

sea partons both equations are needed in full.

g
y

x

y-x

q

q

(a) g → qq̄

q

q'

g

y

x

y-x

(b) q → q′g

g

g

g

y

x

y-x

(c) g → gg

Figure 2.5: Depictions of the leading order DGLAP splitting functions. Figure (a) shows
g → qq̄ for the splitting function Pqg, (b) shows q → q′g for Pgq and (c) shows g → gg for
Pgg.

In fits to structure function measurements, the parton density functions qi(x,Q
2) and

g(x,Q2), which are inherently non-perturbative, can be parameterised at a starting scale

Q2
0. Then equations 2.23 and 2.24 can be used to predict the parton distributions at

any other value of Q2. An example of the gluon distribution obtained is shown for three

different values of Q2 in figure 2.6 taken from a recent H1 publication [63]. The gluon

contribution is dominant at the lowest values of x.

An essential feature of the DGLAP formalism is that there is a strong ordering in trans-

verse momenta, as shown in figure 2.7, and detailed in equation 2.25,
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Figure 2.6: The gluon distribution from next-to-leading order (NLO) DGLAP fits with
starting scale Q2

0 = 4.0 GeV2.

Q2 � k2
T,n � k2

T,n−1 � ...� k2
T,1 � Q2

0, (2.25)

and also weaker ordering of longitudinal momenta,

x < xn < xn−1 < ... < x1, (2.26)

which can both be considered as time-ordering in the rest frame of the proton.

BFKL Evolution

An evolution scheme expected to be applicable in a different kinematic region is the

BFKL (Balitsky, Fadin, Kuraev, Lipatov) [60] formalism. Here powers of the αs ln(1/x)
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xn

xn-1

x1

kT,n

kT,n-1

kT,1

.

.

.

p p'

Figure 2.7: Ladder diagram illustrating the ordering in transverse and longitudinal mo-
menta (kT and x respectively).

terms are taken into account and the αs ln(Q2/Q2
0) terms are ignored in the leading

logarithm approximation. Hence, this formalism is valid in the very low x kinematic

region, although Q2 must still be large enough to ensure that αs is small and that the

series is convergent. In contrast to the DGLAP approximation there is a strong ordering

of longitudinal momentum fractions,

x
 xn 
 xn−1 
 ...
 x1, (2.27)

which again is time-ordering in the proton rest frame, and no ordering of kT . Hence,

whereas in the DGLAP equations 2.23 and 2.24 there was an integration over the longitu-

dinal momentum fractions, an analogous process for the transverse momentum fractions

is not needed here and an unintegrated gluon distribution f(x, k2
T ) can be defined, for

gluons with an arbitrary kT = 0,

xg(x,Q2) =

∫ Q2

0

dk2
T

k2
T

f(x, k2
T ). (2.28)

The BFKL equation is written as,

32



df(x, k2
T )

d ln(1/x)
=

∫
dk′2TKL(k2

T , k
′2
T )f(k2

T , k
′2
T ) = KL ⊗ f = λf, (2.29)

where ⊗ symbolises the integration of KL (the Lipatov kernel) and f . KL represents the

sum over powers of the αs ln(1/x) terms. The resulting integrated gluon distribution,

xg(x,Q2) ∼ f(Q2)x−λ, (2.30)

leads to F2(x,Q
2) ∝ x−λ for a fixed value of Q2 (for a dominant gluon contribution). The

value of λ is found to be λ = 12 ln 2
π
αs ∼ 0.5 at leading logarithm [60] and next to leading

logarithm calculations yield λ ∼ 0.17 [64]. Hence, the x-dependence of the structure

function F2 is predicted at low x, although the value of λ is not well constrained as can be

seen from the difference between the leading and next to leading logarithm calculations.

Nor does it match measurements at HERA particularly well, where λ depends strongly

on Q2 (see figure 2.9).

To date the DGLAP evolution scheme alone can describe structure function data through-

out the entire HERA phase space. Hence, so far there is no unambiguous evidence for

the need for BFKL contributions.

2.2.6 Photoproduction

For Q2 ∼ 0, the emitted photon is almost real and since the e− p cross section contains a
1

Q4 term in the propagator it is dominated by these photoproduction events. Due to the

fact that the majority of interactions occurring in this region are soft, where the transverse

momentum pT of the final state is low, perturbative calculations are not valid and another

model must be used to describe the data. Regge [65] developed a formalism to describe

scattering processes which is applicable to the kinematic region of photoproduction, and

is also valid for soft low Q2 DIS processes. This model, and it’s application to diffractive

deep-inelastic scattering is discussed in chapter 3.

Low pT photoproduction interactions can be described by the Vector Dominance Model

(VDM) in which the photon fluctuates into vector mesons (comparisons with experimental

data are discussed in [66]). High pT interactions are also possible in photoproduction but

are not explainable in the VDM. Generally they can be classified as either direct or resolved

interactions, the difference arising from the way in which the photon interacts with the
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proton. Direct processes, such as QCD-Compton scattering or boson gluon fusion (BGF),

involve the entire photon interacting with the proton. In the resolved case the interaction

occurs between partons in the photon and proton. Figure 2.8 illustrates the difference

between the two types of reaction.

( a )

p

e
( b )

p

e

Figure 2.8: Examples of (a) direct and (b) resolved photoproduction processes.

2.2.7 Saturation in Deep-Inelastic Scattering

The first measurements of the inclusive proton structure function made by H1 [6] and

ZEUS [7] revealed the existence of a rapid rise in F2(x,Q
2) at small values of x. The

rate of the rise (∂F2/∂ ln x) is similar for all x � 10−2. Such behaviour, as well as the

observation that the rate of growth increases with increasing Q2, is well described above

Q2 ∼ 1 GeV2 using the perturbative DGLAP evolution. The gluon density increases

rapidly as x → 0, implying an ever increasing number of gluons. This density cannot

however continue to rise indefinitely as this would lead to a violation of unitarity, and

a better understanding of high density QCD is required to explain what is theoretically

expected to happen. Figure 2.9 shows the derivative of the structure function, λ, which

is defined in equation 2.31,

−λ(x,Q2) =
(∂ lnF2(x,Q

2)

∂ lnx

)
Q2
. (2.31)

These results, from the recent H1 publication [8], show that λ does not depend on x for

x � 0.01, and that the behaviour of F2(x,Q
2) can be described by F2 ∝ x−λ (which is the

same form as for the BFKL approximation of section 2.2.5 though the increase of λ with

Q2 is not predicted). Hence, even for the lowest values of x measured here, x ≤ 5× 10−5,
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Figure 2.9: H1 measurement of the structure function derivative λ(x,Q2). The solid lines
indicate NLO QCD fits to the data and the dotted lines represent predictions evolved
from 3.5 GeV2 to lower Q2.

no deviation away from this power law behaviour is observed. This implies that there is

no evidence for damping of the rise of F2(x,Q
2) as x→ 0.

As mentioned in section 2.2.6, structure function results in the very low Q2, low x region

can be described by Regge Theory. Figure 2.10, taken from [67], illustrates the Q2 de-

pendence of the structure function F2(x,Q
2) and the success of Regge and QCD fits at

low and high Q2 respectively. It can be observed that neither theory can be extrapolated

into the other region of Q2, although it is desirable for the structure function behaviour

to be described over all available phase space.

The saturation model is based upon a colour dipole model approach. The incident virtual

photon can be described in the proton rest frame as fluctuating into a qq̄ pair before inter-

acting with the proton. The basis of the saturation model is that the cross section between

the qq̄ dipole and the proton “saturates” at large separation of the dipole elements. This

can happen either because parton saturation occurs as x → 0 (and particle recombination

takes place), or, as is the case at HERA, because the proton structure function F2(x,Q
2)

must tend to zero as Q2 decreases. This model was developed to describe the physics of
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Figure 2.10: ZEUS measurement of F2(x,Q
2) as a function of Q2 for fixed values of y.

the very low x region in particular but has been applied to all x � 10−2 and higher values

of Q2. The cross section for the interaction can be expressed in terms of an effective dipole

wave-function φ and the effective dipole cross section σ̂,

σγ∗p
T,L =

∫
dz d2r|φT,L

γ |2σ̂(Q2, r, z), (2.32)

where r ∼ 1/Q2 is the transverse size of the dipole and z is the momentum fraction of

the photon carried by the quark as depicted in figure 2.11.

The effective dipole cross section is expressed as,
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γ
σdipole

ψ(r,z,Q2)

Figure 2.11: Dipole picture of γ∗p scattering.

σ̂(x, r2) = σ0

[
1 − exp

(
− r2

R2
0(x)

)]
, (2.33)

which interpreted in the framework of the saturation model gives the saturation radius,

as given in equation 2.34 where Q2
0 = 1 GeV2, which is dependent upon x,

R0(x) =
1

Q0

( x

x0

)λ
2

. (2.34)

Hence, there are just three free parameters to be determined from fits to data: x0, λ and

σ0. From a recent publication [68], for x < 0.01 the values for these three parameters

were found to be,

σ0 = 23 mb, λ = 0.29, x0 = 3 × 10−4. (2.35)

The value obtained for the cross section σ0 has a value similar in magnitude to that

of a typical soft hadronic cross section and the value for λ can be compared with that

from hadron-hadron experiments where λ was observed to be much smaller (∼ 0.08). An

extrapolation of the results from [8] to a comparable low Q2 value also yields a value of

λ ∼ 0.08.
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Chapter 3

Diffractive Physics

3.1 Diffraction at HERA

Hadron-hadron scattering is mediated by the strong force and such interactions predom-

inantly involve low momentum transfers. In this case, the coupling αs is large and per-

turbative QCD approaches are inappropriate. Therefore, phenomenological models such

as Regge Theory (discussed in section 3.4.1) must be invoked. Regge Theory is able to

describe the observed rising nature of total cross sections through the introduction of a

diffractive exchange 1 which is colourless and has the quantum numbers of the vacuum

(C=P=+1).

Since the beginning of the operation of HERA, events have been observed where there

is an absence of hadronic activity in the forward direction. These events contribute

approximately 10% to the total inclusive cross section and can be identified as being

diffractive in nature. Events of this kind are still not fully understood but measurements

of the diffractive structure function (analogous to F2(x,Q
2)) allow the structure of the

colourless exchange to be investigated. This chapter describes diffractive deep-inelastic

scattering at HERA and the theories which are used in the modelling of such processes.

The diffractive structure function is also introduced, a measurement of which will be

detailed in chapters 4 and 5.

1Diffractive events are so-called because in the early experiments the observed dependence of the cross
section on t resembled optical diffraction patterns at high energies.
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3.2 Kinematics of Deep-Inelastic Diffraction

Diffractive events at HERA involve a virtual photon dissociating into a hadronic final

state system whilst the proton remains intact or dissociates into a low mass hadronic

final state that continues undetected down the beam-pipe. In inclusive DIS processes

the struck parton in the proton carries colour charge. Hence, the final state particles

are connected by a colour string and a continuum of particles is produced over the full

range of the detector. In diffractive DIS however the absence of hadronic activity around

the direction of the proton in the forward region of the detector is consistent with the

exchange of a colourless object between the proton and photon. This can be identified as

the same colourless exchange seen in high energy hadron-hadron processes, namely the

pomeron, IP. In pomeron exchange events there is no colour string connecting the final

state particles to the outgoing proton. Figure 3.1 illustrates the colour flow properties of

standard (a) and diffractive (b) DIS processes.

p

q

q'

e

e'

colour
string

γ

(a) Standard DIS

p

q

q'

e

e'

colour
string

γ

Y

no colour flow

q

IP

(b) Diffractive DIS

Figure 3.1: Comparison between the colour flow properties of (a) standard and (b) diffrac-
tive DIS.

Figure 3.2 shows the kinematic quantities relevant in diffractive deep-inelastic scattering

ep → e′XY , in addition to which the variables in equations 2.4 - 2.13 are still valid.

X denotes the hadronic final state produced with an invariant mass MX , and Y is the

outgoing proton state of mass MY (= Mp or represents a low mass excitation). The

systems X and Y are typically produced in the central and very forward directions in the

laboratory frame respectively. Their masses are much smaller than the γ∗p centre of mass

energy, W :
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Figure 3.2: Kinematics of diffractive DIS.

MX ,MY 
W (3.1)

The separation of X and Y can be quantified in Lorentz invariant variables in terms of

the rapidity of a final state particle,

y =
1

2
ln
E + pz

E − pz
, (3.2)

which reduces to pseudorapidity where the mass of the particle is unimportant:

η = − ln tan
θ

2
. (3.3)

Diffractive events are characterised by the presence of (pseudo)rapidity gaps where the

forward region of the detector, in the large positive region of pseudorapidity, is empty.

Rapidity gaps are not however unique to diffractive scattering as small rapidity gaps may

be created via random fluctuations during fragmentation in standard DIS processes.

The 4-momentum transfer squared, t, at the pIPY vertex is defined by,

t = (p− Y )2, (3.4)

where p and Y are the 4-momenta of the proton initial and final states respectively.

Two further variables can be introduced, as given in equations 3.5 and 3.6,
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x
IP

=
q · (p− Y )

q · p , (3.5)

β =
−q2

2q · (p− Y )
, (3.6)

where x
IP

and β are related to the scaling variable, x as in equations 2.9 - 2.12, by

x = x
IP
β, (3.7)

where x
IP

is the fraction of the 4-momentum of the proton transferred to the pomeron

and β is the fraction of the 4-momentum of the pomeron carried by the struck quark.

The equations for x
IP

and β (analogous to x in DIS) can be written as,

x
IP

=
Q2 +M2

X
− t

Q2 +W 2 −M2
p

, (3.8)

and,

β =
Q2

Q2 +M2
X
− t

. (3.9)

For the limits appropriate to this analysis where M2
p 
 Q2, W 2 and |t| 
 Q2, M2

X ,

equations 3.8 and 3.9 simplify to

x
IP

=
M2

X
+Q2

W 2 +Q2
, (3.10)

and

β =
Q2

M2
X

+Q2
. (3.11)
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3.3 The Diffractive Structure Function

The equation relating the diffractive DIS cross section to the general diffractive structure

function is given in equation 3.12 and is analogous to the inclusive cross section given in

equation 2.19,

d4σ(ep→ eXY )

dβdQ2dx
IP
dt

=
4πα2

em

βQ4

(
1 − y +

y2

2

)
F

D(4)
2 (β,Q2, x

IP
, t). (3.12)

For the data analysed in this thesis the system Y is not measured directly, hence an

integration is performed over |t| < 1 GeV2 and MY < 1.6 GeV and a three dimensional

structure function is extracted. From arguments similar to those used for the inclusive

cross section, the longitudinal contribution to the diffractive structure function, FD
L , is

neglected. Figure 3.3 shows the results for the extracted diffractive structure function

F
D(3)
2 (β,Q2, x

IP
) obtained from combining the nominal vertex H1 1994 data, with a lumi-

nosity of 1.96 pb−1, and shifted vertex data of luminosity 0.06 pb−1 [69].

The general trend observed is of x
IP
F

D(3)
2 decreasing or remaining constant as x

IP
increases

at fixed β and Q2, except at the lowest values of β where a rise is seen at the highest

values of x
IP

. Two bins, one taken at a low value of β, and the other at a high value of β

are shown together in figure 3.4 to illustrate this contrasting behaviour. As discussed in

section 3.4.2 this behaviour is due to the existence of a reggeon (meson) component, at

low β values in addition to the pomeron contribution.

3.4 Models of Diffraction

3.4.1 Regge Models

At low Q2 interactions between hadrons do not resolve the underlying quark structure,

but the hadrons themselves interact in their entirety. For these soft interactions αs is

large and the equations of perturbative QCD are not valid. In this region of phase space,

a good description of the cross section is provided by Regge Theory.

For a reaction AB → CD, Mandelstam variables are defined as s = (A+B)2 = (C +D)2

and t = (A − C)2 = (B − D)2 where A, B, C and D represent the 4-vectors of the

initial and final state particles. Figure 3.5 shows how the same particle may contribute to

processes either as (a) a t-channel exchange or (b) an s-channel resonance in the crossed
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Figure 3.3: xIPF
D
2 (β,Q2, x

IP
), where FD

2 (β,Q2, x
IP

) is the diffractive structure function,
shown as a function of x

IP
in Q2 and β bins.

channel AC̄ → B̄D. The essence of Regge Theory is that the same amplitude describes

both processes. The particles exchanged in Regge Theory are called Regge Poles where

in the high energy limit, s � |t|, for a dominant single particle exchange the angular

momentum J and mass squared M2 of the exchanged particles are related by a linear

Regge Trajectory. This is illustrated in the Chew-Frautschi plot [70] for the ρ trajectory

in figure 3.6 where the angular momentum is plotted against the corresponding mass
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Figure 3.5: Corresponding (a) t-channel (AB → CD) and (b) s-channel (AC̄ → B̄D)
processes.

squared (or virtuality in the t-channel). For positive values of the particle 4-momentum

squared the particle manifests itself as a resonance with integral or half integral values

of angular momentum (spin). This is the s-channel resonance region. For negative 4-

momentum squared the particle is an exchange lying on the same trajectory with a linear

slope,

α(t) = α(0) + α′t, (3.13)

where α(t) is a complex variable but the s-channel resonances are observed at real integer

or half-integer values of spin. α(0) gives the intercept of the trajectory and α′ describes

the slope, which is found to be ∼ 1 GeV−2 for all mesons.

In the limits s→ ∞ and |t| 
 s, the Regge amplitude for an exchange α(t) for the reaction
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AB → CD is proportional to sα(t) and thus the elastic cross section is proportional to

dσ

dt
∼ f(t)

( s

s0

)2α(t)−2

, (3.14)

which via the optical theorem 2 leads to

σtotal ∝ sα(0)−1. (3.15)

The above model based on meson exchange universally describes all hadron-hadron scat-

tering processes in the same way (equations 3.14 and 3.15). For mesons with α(0) ≤ 0.5

it successfully describes the decrease of total and elastic cross sections as the centre of

mass energy
√
s increases, for low values of

√
s. However, observations showed that as√

s increases above a few GeV, the cross section flattens and rises gently [71]. Figure 3.6

shows that the highest intercept mesons have an intercept of α(0) ∼ 0.5 and a universal

slope α′ ∼ 1 GeV−2. In order to explain the gentle rising of the cross section, an exchange

with a higher intercept is needed. Hence, the pomeron, an exchange with vacuum quan-

tum numbers and an intercept close to unity, was postulated to mediate elastic scattering.

The cross section is then described by dominant meson exchange at low
√
s which dies

2The optical theorem relates the elastic cross section (AB → AB) to the total cross section (AB → X)
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off at high
√
s leaving the pomeron exchange. Results from Regge fits to hadron-hadron

data [72] determined the value of the pomeron trajectory to be

αIP(t) = 1.085 + 0.25t. (3.16)

Equation 3.14 can be rewritten, using equation 3.13, as

dσ

dt
∼ f(t)

( s

s0

)2α(0)−2( s

s0

)2α′t
(3.17)

∼ f(t)
( s

s0

)2α(0)−2

e2α′ ln(s/s0)t (3.18)

∼
(dσ
dt

)
t=0
ebt, (3.19)

where b is the slope parameter,

b ∼ b0 + 2α′ ln
( s

s0

)
, (3.20)

and the constant b0 arises from the t-dependence of f(t) which is approximately eb0t. If

s increases b increases logarithmically which implies that the slope of the t-distribution

gets steeper. Such behaviour is known as shrinkage.

3.4.2 Hard Scattering Factorisation

The recently proven QCD hard scattering factorisation theorem [73] for diffraction sepa-

rates diffractive hard scattering processes in DIS into a long range soft non-perturbative

contribution factorised into diffractive parton densities in the same way as for the inclusive

cross section, and a short range hard scattering matrix element which is fully calculable.

For the diffractive cross section this factorisation can be represented by,

d2σ(x,Q2, x
IP
, t)γ∗p→XY

dx
IP
dt

=
∑

i

∫ x
IP

0

dξ σ̂γ∗i(x,Q2, ξ)fD
i (ξ, Q2, x

IP
, t), (3.21)

where ξ is the fraction of the proton momentum carried by a diffractive parton i, σ̂γ∗i

represents the universal partonic cross sections and fD
i the diffractive parton distributions
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for a parton i. This hard scattering factorisation is valid for fixed x, x
IP

and t for large

enough values of Q2. For fixed values of x
IP

and t the DGLAP equations are applicable

in the diffractive case with evolution in β and Q2 being equivalent to evolution in x and

Q2 for standard DIS. Hence, although not known from first principles, diffractive parton

distributions can be evolved from a starting scale to higher Q2 and lower x using the

DGLAP equations.

Ingelman-Schlein Model

The diffractive proton structure function, as discussed in section 3.3, was defined by

equation 3.12. A universal dependence on x
IP

and t as β and Q2 change is expected if the

pIPY vertex is factorisable, as expected in Regge Theory and represented in figure 3.7.

As a further constraint in addition to QCD factorisation, Regge factorisation states that

the process can be separated into a Q2, β dependent part and an x
IP

, t dependent part.

As employed in the Ingelman-Schlein model [74] this decomposes F
D(3)
2 into pomeron flux

and structure function terms.

γ

Y
p

IP
IP

q

qγ

Y
p

IP= x

Figure 3.7: Representation of the Regge vertex factorisation hypothesis.

The pIPY vertex factor expressed in terms of the variables x
IP

and t factorises from the

γ∗IP vertex that is expressed in terms of β and Q2. The x
IP

dependence can be modelled

in terms of Regge theory [65] [75], where the factorisation hypothesis allows the structure

function to be expressed as

F
D(3)
2 (β,Q2, x

IP
, t) = fIP/p(xIP

, t)F IP
2 (β,Q2). (3.22)

F IP
2 (β,Q2) is the structure function of the pomeron and the universal flux factor, which

describes the probability of a pomeron being present in the proton, is expressed in terms

of x
IP

and t by,
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fIP/p(xIP
, t) ∼ ebIPt

x
2α(t)−1
IP

. (3.23)

Regge theory with just pomeron exchange adequately describes the majority of diffractive

data, including the first measurement of F
D(3)
2 at HERA [76], via the factorisable pIPY

vertex hypothesis. However, the upturn of x
IP
F

D(3)
2 at low β and high x

IP
is not described

(see figure 3.4) and requires the introduction of a secondary Regge trajectory. There-

fore, a reggeon component (IR), corresponding to the exchange-degenerate leading meson

trajectory in the Chew-Frautschi plot of figure 3.6, was incorporated into the Ingelman-

Schlein model to produce an H1 parameterisation so that the cross section includes terms

for both the leading pomeron and sub-leading meson components,

FD
2 = fIP/p(xIP

, t)F IP
2 (β,Q2) + fIR/p(xIP

, t)F IR
2 (β,Q2), (3.24)

where,

fIP,IR/p(xIP
, t) ∼ ebIP,IRt

x
2αIP,IR(t)−1
IP

, (3.25)

and

αIP,IR = αIP,IR(0) + α′
IP,IRt, (3.26)

in analogy to equation 3.13. The deep-inelastic structures of the pomeron and meson

exchanges are described respectively by the structure functions F IP
2 (β,Q2) and F IR

2 (β,Q2)

in equation 3.24. Hence, associated parton density functions fi(β,Q
2), for all types of

parton (i), can be defined for the pomeron and meson exchanges. This is analogous to

the case of standard DIS.

The results of fits to H1 data [69] yield values of

αIP(0) = 1.203 ± 0.020(stat.) ± 0.013(syst.)+0.030
−0.035(model), (3.27)

and
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αIR(0) = 0.50 ± 0.11(stat.) ± 0.11(syst.)+0.09
−0.10(model). (3.28)

The effective pomeron intercept determined here (equation 3.27) is not consistent with

that of the soft pomeron (α(0) ∼ 1.08 [72]). The value for αIP(0) can also be compared with

that from predictions from the hard pomeron model [77] which give αIP(0) ∼ 1.4. From

section 2.2.5 it was seen that leading order and next to leading order BFKL calculations

yielded predictions of αIP(0) = 1+λ ∼ 1.4 [60] and ∼ 1.17 [64] respectively. The Saturation

model predicted αIP(0) = 1.29 [68].

The value of α′ = 0.25 GeV−2 is very different to that observed for meson Regge trajec-

tories, implying a different QCD interpretation. Whilst meson exchanges involve quarks,

pomeron exchanges can most easily be pictured as being a gluon-gluon pair in an overall

colour singlet state. So far the associated s-channel resonances (glueballs) have not been

convincingly detected.

A summary of results from H1 and ZEUS inclusive and diffractive data on the effective

pomeron intercept, as defined in equation 3.13, are shown as a function of Q2 in figure 3.8.

The Regge theory expectations are given by equations 3.29 - 3.30,

x
IP
F

D(3)
2 ∼ A(β,Q2)x2−2αIP(t≈0), (3.29)

F2 ∼ B(Q2)x−αIP(0). (3.30)

There is evidence for a rise of α
IP
(0) with Q2 in the diffractive case which is unexpected

from simple Regge pole theory. The diffractive and inclusive results are observed to be

compatible at low Q2 but inconsistent at higher values. Away from Q2 � 1 GeV2 the

physical process involves a hard scale and QCD effects may modify the simple Regge

predictions. The value of αIP is observed to be much larger at high Q2 for inclusive DIS

than for diffractive DIS. The ratio of diffractive to inclusive cross sections was presented

in [78] and is defined as,

ρD(3)(β,Q2, x
IP

) =
M2

Xx

Q2
· F

D(3)
2 (β,Q2, x

IP
)

F2(x,Q2)
, (3.31)

which is shown as a function of W at fixed values of Q2 and β in figure 3.9. The ratio

is observed to be relatively flat over the entire phase space except for large β (low MX)
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Figure 3.8: Q2 dependence of the effective pomeron trajectory α
IP
(0) for inclusive and

diffractive ep processes. The squares correspond to αIP(0) = 1 + λ extracted from a fit to
inclusive data [63] of the form F2 = cx−λ(Q2) for x < 0.01.

where the diffractive structure function is suppressed by a factor of around 5 and low W

(high x
IP

) where the sub-leading exchanges contribute. This flatness is in contrast to the

naive expectation of Regge Theory. The same dependence for diffractive and total cross

sections on W was however predicted in the semi-classical model [79], which is described

in section 3.4.4.

Assuming Regge factorisation the structure functions F IP
2 (β,Q2) and F IR

2 (β,Q2) describe

the structure of the pomeron and meson exchanges respectively. This structure can be

obtained from the data by assuming a parameterisation of the parton distributions of the

pomeron and meson exchanges at a starting scale Q2
0 = 3 GeV2, which evolve via the

DGLAP [58] [59] evolution equations with increasing Q2.

The Q2 dependence of F
D(3)
2 as measured from 1994-1995 low Q2 data [80] is shown in fig-

ure 3.10(a). The low value of x
IP

(= 0.005) at which the measurement is performed implies

that sub-leading contributions are negligible, hence the pomeron exchange dependence on

Q2 is directly visible. Figure 3.10(b) shows x
IP
F

D(3)
2 (β,Q2, x

IP
) as a function of Q2 for

the most recent H1 F
D(3)
2 measurement [78]. Rising scaling violations are visible which
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Figure 3.9: The ratio of the diffractive to the inclusive cross section, ρD(3), shown as a
function of W for fixed values of β and Q2.

persist to high β values. At fixed values of x
IP

the β dependence therefore evolves from

high to low β as Q2 increases which is expected for gluon radiation dominated DGLAP

evolution. Hence, a large gluonic component exists even at high values of β. Figure 3.11

shows the beta dependence of F
D(3)
2 for H1 1997 data which is observed to be relatively

flat with large contributions at high values of β.

Figure 3.12 shows the parton distributions which result from a QCD fit to the 1994 H1

data involving both light quarks and gluons with Q2
0 = 3.0 GeV2, where f(z) is the parton

distribution function and z is the fraction of the momentum of the pomeron carried by the

parton. It is observed that the momentum fraction carried by the gluon decreases with

increasing Q2, from approximately 90% at Q2 = 4.5 GeV2 to about 80% at Q2 = 75 GeV2.

Hence, boson-gluon fusion from the diffractive gluon density is the dominant mechanism
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Figure 3.10: H1 measurement of x
IP
F

D(3)
2 (β,Q2, x

IP
) as a function of Q2 illustrating the

presence of scaling violations for (a) H1 1994 and 1995 data and (b) H1 1997 data.
The 1995 data on figure (a) were measured in a similar kinematic region to the analysis
presented in this thesis. The results presented in (b) represent a measurement of superior
precision in comparison.

in diffractive DIS, depicted in figure 3.13.

3.4.3 Two Gluon Exchange Models

Diffractive DIS can also be considered in terms of the elastic scattering of partonic fluctu-

ations of the virtual photon. The simplest and dominant configurations occur when the
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Figure 3.11: Measurement of x
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D(3)
2 (β,Q2, x
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) at fixed x

IP
= 0.003 in bins of Q2 as a

function of β for H1 1997 data.

photon fluctuates into a qq̄ pair, or with an additional gluon producing a qq̄g state. In

both cases the fluctuations are usually treated as colour dipoles (triplet-antitriplet for the

qq̄ and octet-octet for the qq̄g case). Figures 3.14 (a) and (b) show these configurations

in the proton rest frame on the left hand side compared with the infinite momentum

frame depictions on the right hand side. It is possible to have other more complicated

states, but these are believed to be less important and hence are neglected in the following

discussion. A standard DIS event can then be considered as the interaction between the
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Figure 3.13: The dominant mechanism in diffractive DIS, Boson-Gluon Fusion.

proton and the qq̄ dipole (or higher multiplicity). A diffractive process occurs when the

dipole scatters elastically.

Viewed in the proton rest frame, the photon fluctuates into the partonic system a long

time before the interaction with the proton occurs. The diffractive cross section for

longitudinally (L) and transversely (T) polarised photons can be written as,

σγ∗p
T,L =

∫
dz d2r|φT,L

γ |2σ̂2(Q2, r, z), (3.32)
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momentum frame interpretation is shown on the right.

which is analogous to the inclusive photon cross section in equation 2.32. Equation 3.32

contains a σ̂2 term whereas the inclusive equation 2.32 contained a σ̂ term. Hence, given

that the dipole cross section σ̂ is largest at large dipole sizes, this bigger contribution from

large (soft) dipole sizes in diffraction may explain the different effective αIP(0) observed

compared with inclusive DIS (see figure 3.8). Colour dipole model approaches also offer an

opportunity to study the longitudinal contribution to the diffractive structure function.

It can be seen in equation 2.32 that there is a factorisation into terms containing the effec-

tive dipole wave-function and the dipole cross section. In the model for F
D(3)
2 prescribed

by Bartels, Ellis, Kowalski and Wüsthoff [81] longitudinally polarised photon contribu-

tions to F
D(3)
2 are dominated by fluctuations into qq̄ pairs, whereas a transversely polarised

photon can fluctuate into either a qq̄ pair or a qq̄g state. The dependence of the various

polarisation cross sections on β are summarised in equations 3.33 - 3.35 below,

σT,qq̄ ∼ β(1 − β) (3.33)

σT,qq̄g ∼ (1 − β)γ (3.34)

σL,qq̄ ∼ β3(1 − 2β)2, (3.35)

where γ is a free parameter and the longitudinal contribution represents a higher twist

contribution and is suppressed by 1/Q2. The qq̄L term dominates at high β, qq̄T at medium
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β and qq̄gT at low β. The diffractive structure function F
D(3)
2 (β,Q2, x

IP
) is shown as a

function of β for fixed x
IP

= 0.001 in figure 3.15 with the separate distributions of the

longitudinal and transverse components indicated.

Figure 3.15: The diffractive structure function F
D(3)
2 , parameterised by H1 using the

BEKW model [81], as a function of β at fixed x
IP

=0.001. The dotted line gives the qq̄g
contribution, the dashed and dotted-dashed lines show the qq̄ transverse and longitudinal
components respectively, and the sum total is represented by the solid line.

Saturation in Diffractive DIS

The saturation model, introduced in section 2.2.7, was originally devised for inclusive

proton measurements but can be extended to apply to diffractive physics [82]. In this

case the dipole interacts with two gluons from the proton, which can be identified with

the pomeron. The same dipole cross section parameterisation can be used to predict

the diffractive cross section for t = 0, or an additional parameter, b, to describe the t-

dependence (ebt) can be introduced to describe the diffractive structure function data.

Figure 3.16 shows the Q2 dependence of F
D(3)
2 (β,Q2, x

IP
) at low Q2 [83]. The qualitative

features of the data are described, although there are normalisation problems at the

lowest values of Q2, and a clear transition is observed at Q2 ≈ 1 GeV2. Figures 3.17(a)

and (b) show the β and Q2 dependences at fixed x
IP

= 0.003 of x
IP
F

D(3)
2 (β,Q2, x

IP
) (as in

figures 3.11 and 3.10(b)) compared with predictions from the saturation model of Golec-

Biernat and Wüsthoff [68] [78]. A good description off the data is observed, except for

small values of β and Q2.
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Figure 3.16: Q2 dependence of F
D(3)
2 showing the transition at low Q2. The triangles

are from a ZEUS analysis [83], the stars are Leading Proton Spectrometer data from the
same publication and the circles are from a higher Q2 analysis [84]. The dashed and solid
curves show the saturation model predictions with qq̄ and combined qq̄ and qq̄g terms
respectively.

3.4.4 Soft Colour Models

Edin, Ingelman and Rathsman formulated an alternative model for diffraction [86] which

describes the diffractive process in terms of Soft Colour Interactions (SCIs). The ini-

tial assumption is that diffractive and non-diffractive reactions are identical in the hard

subprocess, and it is the rearrangement of colour in the fragmentation process that gives

rise to either inclusive or diffractive DIS events. Figure 3.18 depicts the deep-inelastic

scattering process. Soft interactions occur between pairs of outgoing partons with colour

exchange, but no momentum exchange. Figure 3.18(a) illustrates a standard Boson-Gluon

Fusion (BGF) DIS interaction in which all the final state particles are connected by colour

strings, and figures (b) and (c) show possible situations where there is a large rapidity

gap in the final state, which is diffractive in nature.
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Figure 3.17: Measurement of x
IP
F

D(3)
2 (β,Q2, x

IP
) as a function of (a) β and (b) Q2 for

H1 1997 data (red points) [78]. The curves represent two versions of the colour dipole
model of [68] [82] (dashed) and an alternative model with QCD evolution taken from [85]
(solid)).

Semi-Classical Model

Similar to the SCI model, Buchmüller, Gehrmann and Hebecker [87] postulated the semi-

classical model. Viewed in the proton rest frame, the virtual photon fluctuates into either

qq̄ or qq̄g states which then scatter off the soft colour fields of the proton. This is an

example of another colour dipole model, but the dipole cross section is modelled non-
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Figure 3.18: Soft colour interactions in diffractive scattering. (a) shows the colour strings
(dashed lines) which exist between the final state particles, (b) and (c) illustrate how the
rapidity gaps characteristic of diffractive interactions can be formed in the final state.

perturbatively in this case. The qq̄ and qq̄g states undergo colour rotations as they pass

through the soft colour field of the proton with a finite chance that the particle will emerge

as a colour singlet state (that is be diffractive in nature). Figures 3.19(a) and (b) show

x
IP
F

D(3)
2 (β,Q2, x

IP
) for the H1 1997 data [78] as a function of β and Q2 respectively for

fixed x
IP

= 0.003. The general features of the data are reproduced by the model although

not at small β and Q2.

59



0

0.05

0

0.05

0

0.05

0

0.05

0

0.05

0

0.05

0

0.05

0

0.05

0

0.05

0 0.2 0.4 0.6 0.8 1

x IP
 F

2D
(3

) xIP=0.003 H1 preliminary Q2

[GeV2]

6.5

8.5

12

15

20

25

35

45

β

60

H1 (prel.)
Semi-cl. model (BGH)
M2

X<4 GeV2

(a)

0

0.05

0

0.05

0

0.05

0

0.05

0

0.05

10 10
2

x IP
 F

2D
(3

) xIP = 0.003 H1 preliminary
x=0.0003 , β=0.1

x=0.0006 , β=0.2

x=0.0012 , β=0.4

x=0.00195 , β=0.65

Q2 [GeV2]

x=0.0027 , β=0.9

H1 (prel.)
Semi-cl. model (BGH)
M2

X<4 GeV2

(b)

Figure 3.19: Measurement of x
IP
F

D(3)
2 (β,Q2, x

IP
) as a function of (a) β and (b) Q2 for

H1 1997 data (red points) [78]. The data are compared with semi-classical model predic-
tions [87] (solid curves). An extension to the model for M2

X < 4 GeV2, where the model
is not expected to be valid, is represented by the dotted curves.
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Chapter 4

Event Selection

4.1 Introduction

This chapter details the methods used in the selection of diffractive deep-inelastic scatter-

ing events which are used in the measurement of the structure function F
D(3)
2 (β,Q2, x

IP
)

presented in chapter 5. Firstly an introduction to the Monte Carlo models used in the

structure function extraction are outlined in section 4.2. Then the event selection pro-

cedure is presented in sections 4.3 and 4.4, along with the reconstruction methods used

in section 4.5. After this the specific requirements relating to the selection of standard

and diffractive deep-inelastic scattering events are discussed in sections 4.6 and 4.7 re-

spectively. The final diffractive DIS selection is summarised in section 4.8.

4.2 Monte Carlo Models

The extraction of the diffractive structure function can only proceed once the necessary

tools are in place to correct the data for experimental bias. Monte Carlo generators are

used to model the physics process being studied and to predict the kinematic dependence

of events according to theoretical expectations. The detector simulation stage, and re-

construction using the same tools as for the data, provides the modelling of experimental

resolutions, efficiencies and acceptances. In order to describe all aspects of the data, a

combination of several different Monte Carlo models may be needed to match the actual

physical processes including backgrounds. The inclusive and diffractive components of

deep inelastic scattering are modelled separately by the DJANGO [88] and RAPGAP [89]

Monte Carlo generators respectively. DJANGO describes the inclusive positron-proton
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DIS interaction ep → eX. An interface to HERACLES [90] provides the O(αem) QED

radiative corrections, whilst those for QCD are simulated, through the parton shower

approach [91], using LEPTO [92]. The fragmentation and hadronisation of quarks is sim-

ulated in JETSET [93] using the Lund String Model. RAPGAP, which also provides a full

ep → eXY description, models diffraction according to the Saturation Model prescrip-

tion described in sections 2.2.7 and 3.4.3. Hence, inclusive DIS events, described using

DJANGO for x
IP
> 0.1 or MY > 5 GeV, and diffractive events, modelled using RAPGAP

for x
IP
< 0.1, are combined to provide a complete Monte Carlo description over the full

range of phase space.

Although RAPGAP and DJANGO alone are able to provide a reasonable description

of the data there are also background effects which must be considered. The back-

ground at low Q2, arising from hadrons produced in photoproduction being misidenti-

fied as electrons, is described by PHOJET [94]: a Monte Carlo able to describe both

elastic and inelastic processes to fully model high energy photon-proton interactions. Al-

though no single exclusive particles are explicitly selected from the hadronic final state

in this analysis, the presence of vector mesons is still observable in the data. Hence, the

DIFFVM [95] Monte Carlo generator is used to model these channels, where the vector

mesons (ρ, ω, φ, J/ψ) are simulated in the framework of Regge phenomenology and the

Vector Meson Dominance Model [96]. As described in section 4.7.5 a separate sample of

this Monte Carlo is also used for MY < 5 GeV. This is needed for the correction applied

to account for background arising from diffractive dissociation of the proton, due to the

fact that RAPGAP does not model such events well. For this study the J/ψ is chosen for

the simulation, it is assumed that the proton and photon vertices can be factorised, and

the hadronisation is again modelled in JETSET.

Events of the type ep→ eγX can also enter the selected data sample and hence must also

be modelled by Monte Carlo. The important contributions are QED-Compton scattering

and Initial State Radiation (ISR). In the QED-Compton scattering reactions, both the

positron and photon are observed in the detector but the final state system X escapes

undetected down the beam-pipe. The COMPTON [97] Monte Carlo generator is used to

model events of this kind. In ISR events, the photon is not detected in the main detector

but the positron and X-system are detected. Corrections calculated from RAPGAP

interfaced to HERACLES for ISR, Final State Radiation (FSR) and QED virtual e+e−

loop events are applied to the measurement of F
D(3)
2 so that it is quoted at the QED-Born

level. The application of these corrections in described in the next chapter in section 5.2.4.

After the generation stage, Monte Carlo events are subjected to a full simulation of the
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detector response in order that they can be compared with the data. The response of the

generated particles to the H1 detector is modelled including the geometrical acceptance

of the detectors and allowing for dead or inefficient detector regions. This is done using

the H1SIM [98] program package which is based on the software of GEANT [99].

4.3 Event Selection

When events are selected for a physics analysis the aim is to reject as much background

contamination as possible whilst retaining the channel of interest with high efficiency. At

low Q2 the cross section for DIS is very high. Hence, these relatively soft processes are

usually down-scaled at level four of the triggering process so that the data-taking rate is

not too high. This down-scaling is not applied during minimum bias running periods and

therefore a detailed study of the low Q2 region can be performed on data taken at such

times.

The level one trigger elements (see section 1.8) used in this analysis are the inclusive

electron trigger (IET) of the Spacal, the z-vertex trigger and the forward ray trigger.

These were combined with further L2 and L4 conditions to form three sub-triggers which

were used together to select events from the minimum bias running period at the end of

1999. The requirements at each trigger level are presented below.

4.3.1 Level 1 Trigger Conditions

The IET Spacal trigger is used in the triggering of low Q2 DIS events. It makes a decision

based purely on the presence of an electromagnetic cluster in the Spacal. Combinations

of 4 × 4 cells are taken together in order to contain as much of the shower as possible, and

overlapping groups are considered to avoid inefficiencies. These are compared with three

preset thresholds which yield three trigger elements. The trigger elements are further

divided into inner and outer Spacal regions with the inner region corresponding to the

region −16 < x < 8 cm and −8 < y < 16 cm. Table 4.1 summarises the energy thresholds

for each trigger element as they were programmed for the 1999 minimum bias period.

The z-vertex trigger, as mentioned in section 1.3.1, comprises the CIZ, COZ and the

first layer of the FPC. 16 segments in φ are defined for the trigger and if coincident

hits in the r − z plane are observed in the detectors then a ray is defined. A z-vertex

histogram is constructed, with 16 bins of width 5.4 cm each, which contains all possible
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Trigger Element (Inner Region) Trigger Element (Outer Region) Energy Threshold
SPCLe IET cen1 SPCLe IET>0 2 GeV
SPCLe IET cen2 SPCLe IET>1 5 GeV
SPCLe IET cen3 SPCLe IET>2 10 GeV

Table 4.1: Spacal IET trigger element definitions for the 1999 minimum bias running
period.

rays extrapolated to r = 0. The bin with the most entries above the background from

random coincidences is identifiable as that of the interaction vertex. The zVtx T0 trigger

element is used in this analysis and it demands that at least one ray is present. This

trigger level requirement of a reconstructed vertex is successful in rejecting most of the

non-e− p induced background. The zVtx mul<7 requirement, which demands less than

200 entries in the z-vertex histogram, is also used to veto background events which have

many tracks in the detector. The CIP and FPC form the forward ray trigger and are used

to detect rays in the forward direction originating from the nominal vertex position. Hits

are required to be observed in all but one of the detector chambers. Again there are 16 φ

sectors and the Fwd Ray T0 condition accepts tracks of any multiplicity in any φ sector.

4.3.2 Sub-triggers for the 1999 Minimum Bias Run

Table 4.2 summarises the L1 trigger element combinations for the three sub-triggers used

in this analysis: s0, s3 and s9. s0 is the principal trigger for low Q2 DIS events. The

L2 topological trigger requirements on the radial distance of the centre of the positron

cluster in the Spacal from the beam-pipe (RSPACAL) are also shown in table 4.2. The

absence of a restriction on RSPACAL for s3 allows very low Q2 events to be detected. In

s9 the lower energy threshold imposed in the SPCLe IET cen1(IET>0) condition allows

high y events to be accessed. The L4 requirements are also shown for each sub-trigger,

where rCLUS represents the transverse size of the electromagnetic cluster observed in the

Spacal and E ′
e is the energy of the scattered positron measured in the Spacal.

The sub-triggers s0, s3 and s9 also include other trigger elements which are used for

timing and background rejection purposes. These are assumed to be 100% efficient and

are not included here for clarity. A combination of s0, s3 and s9 was used in the selection

of data and Monte Carlo events. The efficiencies of s0, s3 and s9 are shown for data in

figure 4.1 as a function of scattered positron energy E ′
e. The data sample was selected for

E ′
e > 5 GeV hence the lowest energy threshold of table 4.1 for s9 is not visible. Due to

prescaling (discussed in section 4.3.3), s9 triggered the most infrequently leading to the
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Sub-trigger L1 L2 L4
s0 SPCLe IET>1 or SPCLe IET cen2 RSPACAL > 10 cm rCLUS < 4 cm

Q2 > 0.5 GeV2

E ′
e > 4 GeV

s3 SPCLe IET>2 or SPCLe IET cen3 No requirement rCLUS < 4 cm
Q2 > 0.5 GeV2

E ′
e > 4 GeV

s9 SPCLe IET>0 or SPCLe IET cen1 RSPACAL > 16 cm rCLUS < 5 cm
and zVtx mul<7 RSPACAL > 15 cm

and (zVtx T0 or FwdRay T0) E ′
e > 2 GeV

Table 4.2: L1, L2 and L4 conditions for the s0, s3 and s9 sub-triggers during the minimum
bias 1999 running period.

greater statistical fluctuations seen in figure 4.1. The combination of the three trigger

elements is consistent with being 100% efficient above the final measurement cut of E ′
e = 6

GeV.

Figure 4.1: Efficiencies for the three sub-triggers used in the 1999 minimum bias analysis:
s0 (red triangles), s3(blue squares) and s9(purple circles), shown as a function of scattered
positron energy E ′

e.
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4.3.3 Trigger Phases and Prescale Factors

There are four phases of triggering corresponding to the different stages of a luminosity

fill. Phase 1 is initiated when luminosity is declared and typically only the calorimeters

are switched on at this stage, with phase 2 not being attained until all of the tracking

detectors can be made operational. There are prescale factors associated with each phase

of triggering which typically decrease with increasing phase. Revised appropriate prescale

factors are calculated regularly and their values determine when phases 3 and 4 begin. Due

to the fact that some detectors are not operational, and high prescale factors are applied,

data recorded during phase 1 are not used in this analysis. Events from all higher phases

are accepted. During data runs there are sometimes periods when an important detector

is not available, for example due to trips in tracking detectors or readout crashes. Hence,

runs are classified according to which major and minor systems are operational. Good

and medium quality runs are selected for analysis and poor runs are rejected in which

both CJC1, CJC2 and the CST are not functional, or if the LAr or Spacal calorimeters

or the luminosity system are out of operation.

4.4 Preliminary Data Selection

After the data has been collected according to the criteria described previously, cuts are

applied to specific variables to provide a data sample which is then recorded in files for

personal analysis. For present purposes an inclusive deep-inelastic scattering selection

is first performed, followed by a diffractive selection. The inclusive selection demands

three Spacal conditions: the positron energy E ′
e must be in the range 5 to 32 GeV, the

electromagnetic cluster radius rCLUS must be ≤ 5 cm and the polar angle of the scattered

positron θe must be > 150◦. The diffractive condition states that if the most forward

energy deposit in the LAr calorimeter has a pseudorapidity ηMAX ≤ 3.3, and the number

of reconstructed pairs of hits in the two layers of the FMD nearest to the interaction region

(NFMD(1,2)) is < 2 and the number of pairs in the third layer NFMD(3) is < 3, then all

events are saved. Otherwise a down-scaling factor of 10 is applied, a correction for which

is applied in the measurement extraction. Together these conditions select a sample of

low Q2 DIS events with a down-scaling of non-diffractive events to reduce the sample size.

The luminosity of the final data sample selected for the measurement of F
D(3)
2 (β,Q2, x

IP
)

for the 1999 minimum bias running period is 3.74 pb−1. This corresponds to a total of

382 runs, taken from 31 HERA luminosity fills.
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4.5 Reconstruction methods

The H1 detector was designed for the detection and measurement of both the positron and

the hadronic final state. Therefore, there are several methods via which the reconstruction

of the kinematic variables x, y and Q2 (the relationship between which was given in

equation 2.13) can be performed. Hence, the kinematic variables are over-constrained.

The reconstruction methods relevant to the analysis presented in this thesis are described

in sections 4.5.1 - 4.5.4.

4.5.1 Electron Method

As its name suggests the Electron Method uses only variables from the incident and

scattered leptons and is the simplest reconstruction method. However, it is highly sensitive

to the case where the incident positron emits initial state QED radiation, as described at

the end of section 4.2. At high y, the Electron Method gives very good resolution, but

this degrades as y decreases. The kinematic variables as given by the Electron Method

are summarised in equations 4.1 - 4.3:

ye = 1 − E ′
e

Ee
sin2 θe

2
, (4.1)

Q2
e = 4EeE

′
e cos

θe

2
, (4.2)

xe =
Q2

e

sye
. (4.3)

4.5.2 Hadron Method

In contrast to the Electron Method, the Hadron Method uses only variables from the

hadronic final state in the reconstruction of the kinematic variables. This method is

therefore completely independent of the Electron Method and demonstrates the fact that

the reconstruction at H1 is over-constrained. Equations 4.4 - 4.6 detail the reconstruction

of y, Q2 and x in this case:

yh =
Eh − pz,h

2Ee

, (4.4)
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Q2
h =

√
(p2

x,h + p2
y,h)

1 − yh
, (4.5)

xh =
Q2

h

syh
, (4.6)

where Eh, pT,h =
√
p2

x,h + p2
y,h and pz,h are the 4-vector components of the reconstructed

hadrons, as defined in equation 2.7 in section 2.2.1.

4.5.3 Double Angle Method

As the formulae in equations 4.7 - 4.10 indicate, the Double Angle Method does not

rely on any energy measurements - just those of the positron and hadronic angles. The

resolution at low values of y is therefore good. This is a useful reconstruction method for

detectors with poor calorimetry systems. The angle of the final state hadrons γ can be

defined as,

cos γ =
p2

x,h + p2
y,h − (Eh − pz,h)

2

p2
x,h + p2

y,h + (Eh − pz,h)2
, (4.7)

from which the following kinematic variables can be obtained:

yDA =
sin γ(1 + cos θe)

sin γ + sin θe + sin(θe + γ)
, (4.8)

Q2
DA =

4E2
e

tan( θe

2
)(tan( θe

2
) + tan(γ

2
))
, (4.9)

xDA =
Q2

DA

syDA
. (4.10)

4.5.4 Electron-Double Angle Method

In [69] the Electron and Double Angle Reconstruction Methods were combined to obtain

the benefit of their superior resolutions at high and low y respectively. This is the main

reconstruction method adopted in this analysis, and equations 4.11 - 4.13, which represent

an empirical reconstruction method optimised for the H1 detector kinematic coverage,

provide the details:
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yeDA = y2
e + yDA(1 − yDA), (4.11)

Q2
eDA =

4E2
e (1 − yeDA)

tan( θe

2
)2

, (4.12)

xeDA =
Q2

eDA

syeDA
. (4.13)

4.5.5 Resolutions in x and Q2

For the measurement of both F2(x,Q
2) and F

D(3)
2 (β,Q2, x

IP
), the size chosen for each x

and Q2 bin must be larger than the detector resolution in order for sensible results to

be extracted. The quality of the reconstruction can be determined using Monte Carlo

samples from the function δ of any variable v which is defined as,

δ(v) =
v(g) − v(r)

v(g)
, (4.14)

where g and r represent the generator and reconstructed level variables respectively. Fig-

ures 4.2(a) and (b) show δ(x) and δ(Q2) respectively together with the values of the

resolution (the root-mean squared of the Gaussian fit to the data) and bias (mean posi-

tion). Both distributions are observed to have small resolutions and biases for the chosen

reconstruction method, the Electron-Double Angle method defined in section 4.5.4, with

the Q2 distribution having a smaller resolution and bias than the x distribution.

4.6 DIS Event Selection

After the preliminary event selection described in section 4.4 was performed, further

selections were then applied to ensure a pure sample was available for analysis. Hence,

tighter cuts were applied at this stage to improve the selection as outlined below:

Spacal Cuts:

• E ′
e > 6 GeV:

The scattered positron energy cut is chosen to select electromagnetic clusters in

a region of the Spacal with high trigger efficiency. A lower cut would lead to an
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(a) δ(x) (b) δ(Q2)

Figure 4.2: The quality of the kinematic reconstruction illustrated by the function δ de-
fined in equation 4.14, for x(a) and Q2(b), using the Electron-Double Angle reconstruction
method.

increased photoproduction background arising from misidentified hadrons in the

Spacal.

• rCLUS < 4 cm:

Requiring the cluster size observed in the Spacal to be small reduces the chance of

contamination from hadronic showers. Typically, hadronic candidates have a much

larger transverse size than those arising from electromagnetic showers.

• 153◦ < θe < 176.5◦:

The polar angle of the scattered positron is required to be within the angular accep-

tance of the Spacal and BDC for all interaction vertices. θe is reconstructed from

the BDC instead of the Spacal because of the superior resolution in polar angle

measurement, as described in section 1.3.3.

• EV ETO < 1 GeV:

The veto layer of the Spacal is positioned adjacent to the beam-pipe. It is therefore

sensitive to leakage from the Spacal which is required to be small in order to achieve

precise energy measurement. Hence, the total energy observed in the veto detector

is required to be low.
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• EHADR < 0.5 GeV:

The electromagnetic Spacal should fully contain the incident positron showers since

it is many radiation lengths deep (see section 1.4.2). Therefore, energy deposits

observed in the hadronic part of the Spacal, behind an observed electromagnetic

cluster, indicate the possibility of a hadron faking a positron signal. The variable

EHADR represents the total energy that is detected within a cone behind the electro-

magnetic cluster. This cone is defined with respect to the direction of the positron

candidate and has an opening angle of 4◦.

• 11 cm < RSPACAL < 67 cm:

RSPACAL is the radial distance of the cluster from the beam-pipe, calculated as√
x2

SPACAL + y2
SPACAL. The low RSPACAL region corresponds to low Q2 events.

Hence, the inner cut is required to be as low as possible in order not to reject large

numbers of events. This innermost region however corresponds to a region of very

high background rates. The higher limit corresponds to the outer limit of the BDC

detector.

• 0 cm <BDC-SPACAL< 3 cm:

This cut acts on the distance between the centres of a cluster observed in the Spacal

and the extrapolation of the BDC track into the Spacal r − z plane. It there-

fore reduces contamination from neutral particle background events where photons,

produced from pion decays (π0 → γγ), deposit energy in the Spacal but leave no

charged track signature in the BDC.

• Fiducial cuts:

The Spacal cell efficiencies determined from the data vary due to dead or inefficient

cells, inefficient trigger channels and varying high voltage conditions. Therefore,

inefficient regions are rejected in order that the sample is based on a high quality

positron selection with high efficiency. The regions of the Spacal from which events

were rejected from the sample are [100]:

• −12.5 cm < x < 8.5 cm and −4.5 cm < y < 4.5 cm

• −12.5 cm < x < −8.4 cm and −8.5 cm < y < −4.0 cm

• −53.0 cm < x < −40.0 cm and −24.5 cm < y < −20.0 cm

• −57.0 cm < x < −44.0 cm and −29.0 cm < y < −24.0 cm

• −8.5 cm < x < −4.0 cm and −12.5 cm < y < −8.0 cm

• 8.0 cm < x < 12.5 cm and −4.5 cm < y < 4.5 cm

• −8.5 cm < x < −4.0 cm and −8.5 cm < y < 4.0 cm

71



• 0.0 cm < x < 4.5 cm and 4.0 cm < y < 12.0 cm

In addition to the above cuts, the region −8.5 cm < x < 8.5 cm and −8.5 cm

< y < 8.5 cm was also rejected for E ′
e > 10 GeV because this is a region of low

efficiency for the SPCLe IET>2 trigger element. As described in section 4.6.2,

additional cells were also excluded as part of the Spacal calibration procedure.

Overall Final State Cuts:

• E − pz > 35 GeV:

For a perfectly measured event the total E − pz of the positron and hadronic final

state is expected to be 2Ee ≈ 55 GeV from energy and momentum conservation

arguments1. Due to detector efficiency effects the actual values observed are dis-

tributed around this value. In photoproduction a fake positron signal can be ob-

served in the Spacal from a final state hadron. The E − pz in this case will be

much lower due to the undetected positron. Hence, such a cut dramatically reduces

this background. This cut also reduces initial state QED radiation (ISR) correc-

tions which originate when the positron emits a photon, which escapes down the

beam-pipe in the backward direction, before the interaction with the proton.

Vertex and Track Cuts:

• −30 cm < zV TX < 30 cm:

The vertex position is nominally at z = 0 cm and has an approximately Gaussian

distribution of width ∼ 10 cm. Such a cut reduces the background arising from

interactions of one of the beams with residual gas in the beam-pipe or off-momentum

beam particles interacting with the beam-pipe walls. These are respectively called

beam-gas and beam-wall interactions.

• Vertex Type:

Vertices calculated from tracks in both the central and the forward tracking detectors

were selected. Vertex efficiency studies (presented in section 4.6.1) in this analysis

showed that requiring forward vertices in addition to central vertices led to an

improved efficiency at low y.

1Note: E + pz is expected to show a peak at 2Ep ≈ 1840 GeV. However, the outgoing proton or
its remnants carry large E + pz and are not detected. By contrast these losses have negligible effect on
E − pz.
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• NTRACKS +NLAR +NSPACAL > 1:

At least two hadronic objects are required to be observed in the detector. This cut

helps reduce the QED Compton background present in the sample.

Kinematic Cuts:

• yeDA > 0.05:

The low y region of phase space has to be excluded because of the low vertex

and trigger efficiencies observed in that region, which are poorly described in the

simulation.

• Q2
eDA > 1.25 GeV2:

The limiting value of Q2 is chosen to be as low as possible whilst remaining in a

region of high acceptance in the Spacal for most values of y.

4.6.1 Vertex Efficiency

The vertex efficiency is defined as the probability of detecting an event that passes the

standard DIS selection described above, except for the cuts on zvtx and vertex type, with

a vertex in either the central or forward tracking detectors. Figure 4.3 shows the vertex

efficiency for data which is represented by the red points and Monte Carlo (DJANGO

and PHOJET), the blue points, as a function of yeDA
2. Agreement within a few percent

between data and Monte Carlo is observed and a high efficiency is observed at high

values of y. The efficiency at low y is improved when both central and forward vertices

are included, as shown here, compared with just using central vertices. The efficiency

is observed to steadily decrease as y decreases. No correction was made for this in the

analysis but the yeDA cut presented in section 4.6 above was chosen to ensure that events

with very low vertex efficiencies were excluded from the data and Monte Carlo samples.

4.6.2 Spacal Calibration

In order to make precise measurements of the DIS cross section, and hence of F2(x,Q
2) and

F
D(3)
2 (β,Q2, x

IP
), the scattered positron must be precisely measured. Hence, the response

of the Spacal calorimeter needs to be well understood. A calibration of the positron energy

2No cut was applied to yeDA for this investigation in order that the vertex efficiency over the entire y
range may be studied.
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Figure 4.3: Vertex efficiency shown as a function of yeDA for data (red points) and com-
bined DJANGO and PHOJET Monte Carlo (blue points).

measured in the Spacal was performed using the Kinematic Peak method [101], [102], [103]

and this is described in detail below.

The positron energy distribution as observed at HERA has a characteristic shape at low

and moderate Q2, with a kinematic peak at the positron beam energy and asymmetric

tails. Imposing the selection 0.005 < yh < 0.05, in addition to the standard DIS selection

presented in section 4.6 and without applying the yeDA cut, primarily selects positrons in

a small, background free range around the kinematic peak position. In tracing the origin

of the kinematic peak, the inclusive cross section, given in equation 2.19 can be rewritten

as,

d2σ

dydQ2
=

4πα2
em

yQ4

(
1 − y +

y2

2

)
F2(y,Q

2). (4.15)

For fixed Q2 the differential cross section is then proportional to 1−y+y2/2
y

because the

structure function is relatively flat over all phase space. The kinematic peak calibration is
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performed in a region of very low y hence, using equation 4.1, the cross section increases

approximately as,

1

y
=

Ee

Ee −E ′
esin

2( θe

2
)
. (4.16)

Therefore, the cross section is largest where Ee ∼ E ′
e sin2(θe/2) so this is where a peak

is observed in the distribution corresponding to Ee ∼ E ′
e for θe ∼ π. The lower limit on

the yh selection cut is imposed to avoid uncertainties in describing the inclusive structure

function in the Monte Carlo as y → 0. The upper yh limit at 0.05 corresponds to the

cut applied in the selection of inclusive DIS events. Therefore, the sample chosen for the

calibration studies is independent to that used in the measurement of the inclusive and

diffractive structure functions.

Since the peak position is determined mainly by kinematic factors, the positron energy

distribution generated in the Monte Carlo represents the true distribution that should

be observed. Hence, the reconstructed Monte Carlo and the data were corrected to

this generator level distribution in order that the Spacal is well modelled. The Spacal

comprises many cells and the high voltages in each can vary as can the gains of the photo-

multiplier tubes. In addition some cells are inoperative or inefficient implying the energy

resolution is not constant. Therefore, the calibration was carried out on an individual cell

by cell basis where possible.

The structure of the Spacal was discussed in section 1.4.2. The electromagnetic part com-

prises 1192 cells of size 40.25 mm ×40.25 mm. For the calibration corrections calculated in

this analysis, a cell by cell kinematic peak calibration was performed for the “inner” region

of the Spacal (−32 cm < x < 32 cm and −32 cm < y < 32 cm) but outside of this region

the sample was more statistically limited. Hence, groups of four cells (outer sections) in

each direction were treated together. The inner region calibration was performed over

16×16 = 256 cells and the outer region calibration was used for the “sections” outside of

this region. The calibration procedure is outlined below. The calibration was performed

using all low Q2 events to make use of the superior statistics available for the inclusive

compared with the diffractive sample. The nature of the final state system is irrelevant

so the calibration performed here is equally applicable to diffractive events as it is to

inclusive events. Small corrections were first applied to the nominal x (−0.095 cm) and

y (−0.42 cm) positions in the Spacal to correct a misalignment between the Spacal and

the rest of the H1 detector. At each stage cells where the positron energy distributions

could not be fitted, or where the disagreement between data and Monte Carlo was very
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significant, were cut out and not used in the analysis. The three phases of the calibration

are:

1. Correct the reconstructed Monte Carlo energy (EREC) to that observed at the gen-

erator level (EGEN). The distribution of EGEN/EREC was plotted for each cell or

section and the reconstructed energy corrected accordingly. Figure 4.4 shows this

distribution, with a Gaussian fit, for the inner cell −16 cm � xSPACAL � −12 cm

and −16 cm � ySPACAL � −12 cm. This distribution, like that for all other cells

and sections, was corrected from the mean fit value (1.016 in this case) to be centred

at unity.

Figure 4.4: Distribution of generated divided by reconstructed positron energy for
DJANGO in the cell −16 cm � xSPACAL � −12 cm and −16 cm � ySPACAL � −12
cm. The mean of the distribution is 1.016 ± 0.005 and the width 0.023 ± 0.010.

2. Correct the positron energy distribution in the data to the corrected reconstructed

Monte Carlo energy. Figure 4.5 shows the distributions for data (blue points) and

Monte Carlo (red points) for the outer section −48 cm � xSPACAL � −32 cm

and 0 cm � ySPACAL � 16 cm. Both distributions were fitted to Gaussians. The

mean positions were 26.1 ± 0.1 GeV and 26.7 ±0.1 GeV for data and Monte Carlo
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respectively. The data position was corrected to that of the Monte Carlo. This was

repeated for all cells and sections.

Figure 4.5: Reconstructed positron energy distribution for data (blue points) and
DJANGO (red points) in the Spacal section −48 cm � xSPACAL � −32 cm and 0 cm
� ySPACAL � 16 cm.

3. Smear the Monte Carlo distributions because these are too sharp in comparison

with the data, that is the detector smearing is not well simulated. Figure 4.5 shows

a Spacal section where the width of the data distribution was 1.1 ±0.1 and that of

the Monte Carlo was 1.0 ± 0.1. The smeared energy is defined as,

E ′
e(SMEARED) = E′

e(CORRECTED) + RND × σ(SMEAR), (4.17)

where RND represents a Gaussianly distributed random number for each Monte

Carlo event and σ(SMEAR) relates the Gaussian widths of the data and Monte

Carlo distributions by:

σ(SMEAR) =
√
σ(DATA)2 − σ(MC)2. (4.18)
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4.6.3 Hadronic Calibration

Variables derived from LAr calorimeter measurements also do not show perfect agreement

between data and Monte Carlo. Hence, a calibration must be applied here as well. For

the purpose of this analysis, standard H1 calibration constants applicable for the low Q2

region were applied. These constants were calculated for each octant of each wheel of

the LAr calorimeter. The ratio pT,h/pT,e for data events is weighted accordingly until it

matches that of the simulation and then the transverse momentum balance is corrected

to unity in both data and Monte Carlo [103] [104].

Figures 4.6 and 4.7 show a selection of variables before the positron and hadron calibra-

tions were applied to the data. Figure 4.6(a) shows the positron energy observed in the

Spacal. The ratio of the double angle method prediction, EDA = Ee(1−yDA)

sin2(θe/2)
(where yDA

was defined in section 4.5.3) to the measured positron energy is shown in figure 4.6(b).

It can be seen that neither the mean positions of the distributions, nor the shapes, are

consistent for data and Monte Carlo. Figures 4.7(a), (b) and (c) show the total E − pz

of the positron and hadronic final state, transverse momentum balance and y balance,

before the Spacal and LAr calibrations, which are all calculated from both the positron

and hadron variables. Again the Monte Carlo and data show quite different distributions.

Figures 4.8 and 4.9 show the same distributions after the cell by cell Spacal calibration

(described in section 4.6.2) and the LAr calorimeter calibration have been applied. The

Spacal calibration was performed in a separate region of phase space to that in which

the measurement is performed and figures 4.8(a) and (b) demonstrate the success of the

calibration in this higher y region. Figures 4.9(a)-(c), which depend on both calibrations,

demonstrate the success of the hadronic calibration.

4.6.4 Inclusive Control Distributions

The reason for making control distributions is to ensure that there is a good agreement

between the data and the Monte Carlo simulations, with all the cuts, selections and

corrections applied, to validate the reliability of the final measurement of the cross section

or structure function.

Figure 4.10 shows various inclusive kinematic distributions plotted for data (the black

points shown with statistical errors), DJANGO, which models inclusive deep inelastic

scattering (the green histogram), and PHOJET (the purple histogram) to describe the

photoproduction background. An overall normalisation correction of 0.8 is applied to the
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(a) Positron energy (b) Energy reconstructed by double
angle method / positron energy in
Spacal

Figure 4.6: Control distributions before the application of Spacal and LAr calorimeter
calibrations for the positron energy (a), and ratio of double angle method to measured
energy (b). The data points are shown, with statistical errors, by the black points, the
DJANGO and PHOJET Monte Carlo contributions are denoted by the green and purple
histograms respectively and the total Monte Carlo is shown in red.

PHOJET events in both the inclusive and diffractive cases. For clarity the statistical

errors on the Monte Carlo are not shown here.

Figures 4.10(a)-(i) demonstrate the good agreement between data and Monte Carlo for

inclusive variables in addition to those presented in section 4.6.3. The plots in fig-

ures 4.10(a)-(c) show the positron and hadronic angles, where the dramatic variations

in the positron azimuthal angle plot (c) originate from parts of the Spacal being rejected

by the fiducial cuts. The z-vertex and RSPACAL distributions are shown in figures (d)

and (e) respectively. The sum of the component Monte Carlos describes the data well.

The kinematic variables used in the binning of F2(x,Q
2), presented in the next chapter,

are shown in figures 4.10(f)-(i). Here the Q2 distribution, both at the lowest end and

over the whole range, and distributions for the scaling variables x and y are presented.

Q2, x and y here are derived from the electron-double angle reconstruction method as

described in section 4.5.4. The well described control distributions, together with the

small resolutions observed for x and Q2 presented in section 4.5.5, illustrate the benefit

of using the electron-double angle method for reconstruction.
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(a) Total E − pz of the positron and
hadronic final states

(b) Transverse momentum balance

(c) y balance

Figure 4.7: Control distributions before the application of Spacal and LAr calorimeter
calibrations for the total E − pz (a), transverse momentum balance (b) and y balance
(c). The data points are shown, with statistical errors, by the black points, the DJANGO
and PHOJET Monte Carlo contributions are denoted by the green and purple histograms
respectively and the total Monte Carlo is shown in red.

4.7 Diffractive DIS Event Selection

The selection of diffractive events is based on identifying events with a large rapidity

gap in the forward region of the H1 detector between the hadronic final state (X) and

the outgoing proton system (Y ). This section describes the diffractive forward detector
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(a) Positron energy (b) Energy reconstructed by double
angle method / Positron energy in
Spacal

Figure 4.8: Control distributions after the application of Spacal and LAr calorimeter
calibrations for the positron energy (a), and the ratio of double angle method to measured
energy (b). The data points are shown, with statistical errors, by the black points, the
DJANGO and PHOJET Monte Carlo contributions are denoted by the green and purple
histograms respectively and the total Monte Carlo is shown in red.

selection in detail.

4.7.1 Forward Detector Selection

The full diffractive structure function is dependent on five variables: Q2, x
IP
, β,MY and

t. Since the outgoing proton state is not detected, measurements of MY and t are not

generally possible. Hence, the F
D(3)
2 measured is the distribution summed over the region

|t| < 1.0 GeV2 and MY < 1.6 GeV in order to principally select events with an elastic

proton whilst minimising systematic errors associated with unknown MY and t dependen-

cies. Cuts are imposed using the forward detectors, as will be described in this section,

to limit the activity observed in the forward region. The variable x
IP

, which is used in

the binning of events for the diffractive structure function, must be reconstructed with a

reasonable acceptance and purity (defined in equations 5.3 and 5.4 in chapter 5) and this

means events with x
IP
> 0.05 are excluded.
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(a) Total E − pz of the positron and
hadronic final states

(b) Transverse momentum balance

(c) y balance

Figure 4.9: Control distributions after the application of Spacal and LAr calorimeter
calibrations for total E − pz (a), transverse momentum balance (b) and y balance (c).
The data points are shown, with statistical errors, by the black points, the DJANGO
and PHOJET Monte Carlo contributions are denoted by the green and purple histograms
respectively and the total Monte Carlo is shown in red.

The LAr selection

Demanding no activity, above the noise level of 300 MeV, in the forward region of the

Liquid Argon Detector can reduce the contamination from high x
IP

and large MY proton

dissociation backgrounds. However, because there is random noise present in the calorime-
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(a) Positron polar angle (b) Positron azimuthal angle

(c) Hadronic polar angle (d) z−vertex distribution

(e) RSPACAL
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(f) Low photon virtuality, Q2 (g) Photon virtuality, Q2

(h) Bjorken scaling variable, x (i) Inelasticity, y

Figure 4.10: Control distributions for the positron polar angle (a), positron azimuthal
angle (b), hadronic polar angle (c), z-vertex distribution (d), and RSPACAL (e). The
kinematic distributions of Q2, x and y are shown in figures (f)-(i). The data points are
shown, with statistical errors, by the black points, the DJANGO and PHOJET Monte
Carlo contributions are denoted by the green and purple histograms respectively and the
total Monte Carlo is shown in red.
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ter, approximately 2.5% of diffractive events are lost after this cut. The LAr calorimeter

covers a region of pseudorapidity extending to 3.4 and the distribution of ηMAX , which was

defined in equation 3.3, can be decomposed into diffractive and non-diffractive regions.

Non-diffractive events show a peak at the highest values of ηMAX , falling off rapidly to zero

by about ηMAX = 2 whilst the diffractive data show a lower plateau spanning the region

of moderate rapidity (see figure 4.15(m) or 4.16 as examples). The different behaviours

are due to the fact that in DIS the struck partons and proton remnant are connected by

a colour string but the diffractive final state shows disconnected colour strings. Hence,

the cut on ηMAX is chosen to maximise the diffractive event selection whilst rejecting

non-diffractive events. The selection for diffractive events in this analysis is,

ηMAX < 3.3. (4.19)

The Forward Muon Detector Selection

The Forward Muon Detector, which was described in section 1.5.1, is situated at the front

end of the main detector and was originally designed for the detection of high energy

muons. It is also invaluable in diffractive analyses as it can be used by requiring that

little or no activity is observed in it. This rejects non-diffractive events, since such events

give track segments in the FMD either due to particles directly produced in the e − p

interaction or via secondary scattering with the beam-pipe or surrounding material. The

selection on the number of hit pairs in the FMD,

NFMD(1,2) ≤ 1, (4.20)

NFMD(3) ≤ 2, (4.21)

is imposed where the numbers in brackets refer to the layers of the detector with 1 being

the innermost. The three post-toroid layers are not used in the selection procedure as the

synchrotron radiation from the incident positron beam produces high background levels

in them. The two separate cuts 4.20 - 4.21 are chosen, rather than one on all three layers,

to minimise the correction to the data required because of residual noise in the detector

whilst retaining as tight a selection as possible. The third layer suffers from much higher

noise levels than the first and second.

The noise correction for the FMD is calculated from randomly triggered data events
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which comprise approximately 1% of the total data recorded. These events are written

to tape irrespective of whether a physics event is indicated from the sub-triggers. Hence,

the sample represents the pedestal on which the FMD information sits. If a randomly

triggered event has noise in the FMD but not in the LAr calorimeter (the Monte Carlo

simulation already simulates noise in the LAr calorimeter) this is classed as a noise event.

For each HERA luminosity fill the percentage of noise observed in the FMD is determined

and the data corrected accordingly. Figure 4.11 shows the fill by fill noise levels recorded

for the 1999 minimum bias running period. The fraction of diffractive events lost due

to noise in the FMD alone is ∼ 1.6% on average. The noise correction presented here is

calculated not only for the FMD but also the PRT, FTS and Plug calorimeter as well,

but these contributions are less important.

Figure 4.11: Percentage of randomly triggered events with noise in the forward detectors
shown for each HERA luminosity fill. The solid line represents the average noise level of
∼ 2% over all fills.
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The Forward Tagging System Selection

As described in section 1.6.1 the Forward Tagging System comprises five scintillating fibre

detector stations, positioned at z = 9, 16, 24, 53, 92 m in the forward direction. These will

be referred to as FTS1, FTS2, PRT, FTS3 and FTS4 respectively. The residual noise

present in these detectors is negligible, except for the sixth layer of the PRT (which was

not used in this analysis), hence the selection requirement for diffractive events is that

there should be no activity present in these detectors. The outer FTS stations (FTS3

and FTS4) were not used because in comparisons between data and Monte Carlo large

discrepancies were observed. Hence, the FTS selection can be summarised as:

NPRT (1,2,3,4,5,7) = 0, (4.22)

NFTS(1,2) = 0. (4.23)

Since the FTS and PRT are important in the diffractive event selection, it is also important

that there is a good agreement between data and Monte Carlo on the level of activity in

these detectors for non-diffractive events. For various combinations of “anti-diffractive”

cuts, the detection efficiency, as defined in equation 4.24, of the PRT and FTS stations

was compared for data and Monte Carlo. The results, summarised in columns 1-2 in

table 4.3 show that the efficiency of the Monte Carlo simulation is too high and therefore

must be downgraded. This behaviour has been observed in previous analyses for the

PRT and is attributable to known deficiencies in the PRT simulation. The correction

method presented here is based on work presented in [105] though the procedure has been

performed separately for the 1999 minimum bias data sample. The efficiency is calculated

as in equation 4.24 and the Monte Carlo used was DJANGO:

Efficiency =
Events passing anti − diffractive cuts

Total number of events
(4.24)

The recalibration factors by which the FTS and PRT efficiencies must be downgraded

in the simulation were calculated by imposing the anti-diffractive selections ηMAX > 3.3,

NFMD(1, 2) > 1 and NFMD(3) > 2 and the recalibration factor, F, defined in equa-

tion 4.25, was calculated using DJANGO and data:

F =
Data Events with Hits in FTS(PRT) / All Data

MC Events with Hits in FTS(PRT) / All MC
. (4.25)
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Efficiency (%)
Condition Data MC MC FTS
ηMAX > 3.3 72.7342 ± 0.0557 85.0879 ± 0.0017 −
NFMD > 1 68.9660 ± 0.0586 81.6931 ± 0.0016 −
NFTS > 0 12.9526 ± 0.0425 33.2536 ± 0.0006 13.6459 ± 0.0002
EPLUG > 5 GeV 47.8104 ± 0.0632 66.2944 ± 0.0013 −
ηMAX > 3.3& 10.5920 ± 0.0309 30.1727 ± 0.0005 12.4960 ± 0.0002
NFTS > 0
ηMAX > 3.3& 63.6391 ± 0.0609 77.4224 ± 0.0015 −
NFMD > 0
NFMD > 1& 11.0224 ± 0.0396 29.8749 ± 0.0005 12.3174 ± 0.0002
NFTS > 0
ηMAX > 3.3& 9.2172 ± 0.0366 27.2864 ± 0.0005 11.1381 ± 0.0002
NFMD > 1&
NFTS > 0

Table 4.3: Efficiency of detecting activity with various combinations of the forward de-
tectors for data and inclusive DIS Monte Carlo (MC). The “MC FTS” column represents
the Monte Carlo efficiency after the application of the FTS recalibrations and conditions
which are unaffected are indicated by “−”.

Separate recalibration factors were calculated for FTS1, FTS2 and the PRT. The results

are summarised in table 4.4.

Detector Recalibration Factor
PRT 0.703 ± 0.007
FTS1 0.550 ± 0.005
FTS2 0.664 ± 0.006

Table 4.4: Recalibration corrections signifying the probability with which activity is ig-
nored in the Monte Carlo simulation for the PRT and FTS stations.

Application of the recalibration factors to the Monte Carlo yields a much improved

agreement with the data, as shown by comparing the second and fourth columns of ta-

ble 4.3. Discrepancies remain in the fraction of events with ηMAX > 3.3, NFMD > 1 and

EPLUG > 5 GeV after the anti-diffractive cuts. These are partly due to the poor sim-

ulation of proton dissociation events in DJANGO, which typically give hits in the PRT

and FTS but not in the FMD and have ηMAX < 3.3. The extent to which inadequacies

of the dead material and beam-pipe simulation play a role is not yet fully understood.

However, the effect on the measurement of these discrepancies is small, and covered by

the systematic errors, since several forward detectors are used in combination and only

one is required to reject a non-diffractive event. The overall rejection efficiency is in excess
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of 99%.

The Plug Calorimeter Selection

The PLUG calorimeter was also found to aid in the selection of diffractive events. It is

particularly useful in rejecting high x
IP

background contributions. There is random noise

present in the Plug calorimeter which is not included in the Monte Carlo simulation.

The total noise correction due to the FMD, PRT, FTS and Plug was ∼ 2% for the 1999

minimum bias data (see figure 4.11). The diffractive cut applied in the analysis was,

EPLUG < 5 GeV. (4.26)

4.7.2 Reconstruction and Resolution of Diffractive Variables

Following the selections described above (section 4.7.1) to restrict the data sample to

diffractive events, the diffractive structure function F
D(3)
2 was extracted by binning the

data in Q2, x and β. The resolutions for Q2 and x were presented in section 4.5.5 and

the resolution in β is discussed here. β is derived from equation 3.11 which depends

on MX , the mass of the hadronic final state system. This is reconstructed by combining

Spacal and LAr calorimeter cluster information with CJC track information with measures

taken to avoid double counting. This mass can then be reconstructed from the energy

and momentum of the final state. It was found in [69] that a superior reconstruction was

obtained if the value of MX was corrected by a ratio of y measurements 3. Therefore,

MX is reconstructed benefitting from the optimal yeDA reconstruction method, giving the

mass of the final state as,

M2
X = (E2 − p2

x − p2
y − p2

z)h · yeDA

yh

, (4.27)

where yeDA was defined in section 4.5.4 and yh is the inelasticity as calculated by the

hadron reconstruction method (see section 4.5.2). The measured value of MX was also

scaled by a factor of 1.07 to account for residual losses beyond the detector acceptance in

the backward direction. This latter factor was calculated from the observed bias in the

resolution plot defined by,

3The final state mass squared can be rewritten as M2
X = (E − pz)(E + pz) − p2

T hence the inclusion
of yh ∼ E − pz in the denominator cancels with the hadron E − pz in the numerator.
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δ(MX) =
MX(g) −MX(r)

MX(g)
, (4.28)

where the letters in brackets denote generated (g) and reconstructed (r) level Monte Carlo.

Figure 4.12 shows the quality of the reconstruction of MX , which can be compared with

those for the inclusive variables x and Q2 in figure 4.2. It can be noted that the resolution

for MX determines that of β, which is calculated from equation 3.11 in chapter 3. The

resolution and bias for MX are both observed to be larger in magnitude than for x and

Q2 (see section 4.5.5).

Figure 4.12: The quality of the reconstruction illustrated by the function δ defined in
equation 4.28, for the diffractive variable MX .

4.7.3 RAPGAP Reweight

As will be presented in section 4.7.4, the RAPGAP Monte Carlo fails to give a good

description of the data when control distributions are made for the diffractive selection.

In particular the low positron energy (high y) region was poorly described, and also

the shapes of the distributions of the diffractive variables x
IP

and β. This is shown in

figure 4.13. Since the DJANGO and PHOJET Monte Carlos provided a good description

of the inclusive data, the differences in the diffractive case are attributable to a failure to

describe the low Q2 diffractive cross section by the saturation model used in RAPGAP.

Hence, to correct for this effect the Monte Carlo was reweighted at the generator level to

give an improved description of the data. The procedure adopted was to plot the ratio of
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data to RAPGAP Monte Carlo for the y, x
IP

and β distributions after first subtracting

the photoproduction contribution, in order to determine the reweighting functions needed

to improve the agreement between data and Monte Carlo. It was found that fourth order

polynomial reweights for the y and x
IP

variables, and a seventh order polynomial function

for β resulted in a good description.

(a) Inelasticity, y (b) x
IP

(c) β

Figure 4.13: Diffractive control distributions before the application of the reweighting
functions to RAPGAP for the inelasticity (a), x

IP
(b) and β (c). The data points are

shown, with statistical errors, by the black points, the DJANGO and PHOJET Monte
Carlo contributions are denoted by the green and purple histograms respectively, as before,
and the RAPGAP, DIFFVM and COMPTON distributions are represented by the blue,
dotted red and dotted blue histograms respectively. The total Monte Carlo is indicated
by the solid red line.
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Ideally the reweight would have been performed with respect to a previous measurement

or another Monte Carlo prediction which is known to describe diffractive data at low Q2

but this was not possible4. This measurement represents the first statistically significant

F
D(3)
2 extracted in this kinematic region and hence no previous measurement exists for this

low Q2 range. A good description of the inclusive data was obtained using the DJANGO

Monte Carlo generator, without need for reweighting, and also for RAPGAP in a closely

related measurement at higher Q2 [78]. Hence, the problem is with the Monte Carlo

generator rather than the simulation of the detector.

Figure 4.14 shows the same distributions as in figure 4.13 after the RAPGAP Monte

Carlo has been reweighted according to the above prescription. The data are observed

to agree well with the reweighted Monte Carlo, indicating that the reweighting procedure

was successful. The reweight has the greatest effect at high x
IP

, high β and low y.

4.7.4 Diffractive Control Distributions

Control plots were made for the diffractive data and Monte Carlo for the same distribu-

tions as in the inclusive case. Due to the presence of a rapidity gap in the diffractive

final state there are now extra quantities which can be also plotted to check that true

diffractive events have been selected.

Figure 4.15 shows some of the diffractive control distributions plotted for data and all

the Monte Carlo contributions. In comparison to figures 4.8, 4.9 and 4.10, plots (a)-(l)

demonstrate that a good agreement between data and Monte Carlo for inclusive variables

is also obtained when diffractive DIS events are selected, after the reweight on RAPGAP

(described in section 4.7.3) has been applied. Plots (m) and (n) show variables relevant

to the diffractive analysis. The pseudorapidity distribution is shown in figure 4.15(m)

and the non-diffractive peak can clearly be seen contributing at the highest values of

ηMAX whereas the diffractive Monte Carlo RAPGAP describes the fairly flat plateau

observed in the middle region of the plot. The mass of the hadronic final state is shown

in figure 4.15(n) where it can be observed that most of the events have a low mass.

With the reweight applied at the Monte Carlo generator level, a good agreement at the

reconstructed level is observed for all variables, including those presented in figure 4.14.

The residual differences at high x
IP

in the x
IP

plot of figure 4.14(c) are not fully understood

and are covered in the systematic errors in this analysis.

4An improvement which could be made is to perform a QCD fit to the data,as was carried out in [69],
and then use the resolved pomeron model (as described in section 3.4.2) to generate the events again.
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(a) Inelasticity, y (b) x
IP

(c) β

Figure 4.14: Diffractive control distributions after the application of the reweighting func-
tions to RAPGAP for the inelasticity (a), x

IP
(b) and β (c). The data points are shown,

with statistical errors, by the black points, the DJANGO and PHOJET Monte Carlo con-
tributions are denoted by the green and purple histograms respectively, as before, and the
RAPGAP, DIFFVM and COMPTON distributions are represented by the blue, dotted
red and dotted blue histograms respectively. The total Monte Carlo is indicated by the
solid red line.

4.7.5 MY Migration Correction

The measurement of the diffractive structure function F
D(3)
2 is made within the kinematic

boundary MY < 1.6 GeV and |t| < 1 GeV2. There will however be some migration or
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(a) Positron energy (b) Positron polar angle

(c) Positron azimuthal angle (d) Total E − pz

(e) Hadronic angle
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(f) pT balance (g) y balance

(h) z−vertex distribution (i) RSPACAL

(j) Bjorken scaling variable, x
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(k) Low virtuality, Q2 (l) Virtuality, Q2

(m) Pseudorapidity, ηMAX (n) Hadronic final state mass,
MX

Figure 4.15: Control distributions after the application of the diffractive selection. The
positron energy and angles are shown in figures (a)-(c), and the total E − pz of the
positron and hadronic final state is shown in (d). The hadronic polar angle is given
in (e) with pt and y balance plots in (f) and (g). Figures (h)-(l) show the z-vertex,
RSPACAL and kinematic distributions, whilst the diffractive variables ηMAX and MX ,
are shown in plots (m)-(n). The data points are shown, with statistical errors, by the
black points, the DJANGO and PHOJET Monte Carlo contributions are denoted by
the green and purple histograms respectively, as before, and the RAPGAP, DIFFVM
and COMPTON distributions are represented by the blue, dotted red and dotted blue
histograms respectively. The total Monte Carlo is indicated by the solid red line.
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smearing of events across this boundary which needs to be corrected for in the calculation

of the diffractive cross section. This is not accounted for in RAPGAP which only simulates

elastically scattered protons. Figure 4.16 below shows the ηMAX distribution for data

compared with the RAPGAP and DJANGO mixture before diffractive cuts. It can be

seen that the data and Monte Carlo agree at each edge of the distribution, but the central

region is now poorly described, with the discrepancy of the order of a factor of two

approximately. This difference is due to the fact that proton dissociation is not modelled

in either RAPGAP or DJANGO.

Figure 4.16: The ηMAX distribution for data (black points) and RAPGAP (blue his-
togram) and DJANGO (green histogram) Monte Carlos before diffractive cuts are applied.
The total Monte Carlo is indicated by the red histogram.

Following the method presented in [105] this boundary correction factor, P, is calculated

from the elastic and proton dissociative DIFFVM Monte Carlo as,

1 − P =
Net Number of Events Migrating from MY < 1.6 to MY > 1.6 GeV

Total Number of Generated Events
(4.29)

=
Net Migrations out of MY < 1.6 GeV,|t| < 1 GeV2

Events Generated in MY < 1.6 GeV,|t| < 1 GeV2
. (4.30)

The correction factor can be expressed as,

1 − P =
NPD

gen (MY < 1.6 GeV, |t| < 1 GeV2) −NPD
rec

NPD
gen (MY < 1.6 GeV, |t| < 1 GeV2) +REL

PD ·NEL
gen(|t| < 1 GeV2)

, (4.31)
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where NPD
gen represents the number of generated proton dissociation events, NPD

rec is the

number of reconstructed proton dissociation events after the diffractive selection, NEL
gen

gives the number of elastic generated events for the same luminosity as the proton dis-

sociation Monte Carlo and REL
PD denotes the ratio of proton elastic to dissociative cross

sections. The value of the correction is given in equation 4.32 below. There is an associ-

ated systematic error on this value, which is in fact the dominant systematic error on the

measurement of F
D(3)
2 . The four contributions to this error are:

• REL
PD was assumed to equal unity in equation 4.31. This ratio between the elastic

and dissociative cross sections is varied between 1:2 and 2:1. This gave rise to a

systematic error of ±1.48%.

• The simulated efficiencies of the forward detectors used in the selection were varied

in accordance with the method described in [105]. The recalibration factors of the

PRT and FTS (given in table 4.4) are varied making them 100% efficient, and less

efficient by the same amount, and the detection efficiency of the FMD was varied

by ±4%. The FMD contribution to the total systematic error was ±0.53%. The

contribution from varying the PRT and FTS factors yielded systematic errors of

±7.51% and ±2.01% respectively.

• The generated M2
Y distribution in the proton dissociation Monte Carlo simulation

was varied by ( 1
M2

Y
)±0.3, which contributes ±2.48% to the total systematic error.

• The slope parameter, b, in proton dissociation was varied by ±1 GeV2 according

to the generated t-distribution ebt. This contributed an additional ±1.64% to the

systematic error.

The total systematic error on the net smearing, P, was found to be ±0.085, hence the

final result for the smearing into the region MY < 1.6 GeV was:

P = 1.026 ± 0.004 (stat.) ± 0.085 (syst.). (4.32)

The significance of the correction being larger than unity is that more events are smearing

into the region MY < 1.6 GeV than are smearing out of it.

The assumption that the ratio of proton elastic to dissociation events equals unity and does

not vary with β, Q2 or x
IP

is standard procedure for H1 F
D(3)
2 (β,Q2, x

IP
) measurements

but was tested here. Elastic diffractive scattering events involve dissociation at the γ∗IP
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vertex (see figure 3.2 in chapter 3) whilst the intact proton escapes down the beam-pipe.

Events of this kind (single dissociation events) are selected by demanding all diffractive

cuts to be satisfied. Events where the proton also dissociates (double dissociation) into a

low mass state are selected by requiring that at least one of the forward detector cuts is

failed, but that either ηMAX < 3.3 or that there is a rapidity gap somewhere in the main

detector spanning at least two units in pseudorapidity. Figure 4.17 shows the ratio of

single (elastic) to double dissociation selections as a function of pseudorapidity ηMAX for

uncorrected data events. It can be observed that this uncorrected ratio is consistent with

a flat distribution (indicated by the straight line fit). Figure 4.18(a) shows the same ratio

for two regions of Q2, with events in the range 1.25 GeV2 < Q2 ≤ 3.5 GeV2 represented by

the black data points and events in the region 3.5 GeV2 < Q2 ≤ 60 GeV2 denoted by the

red points. The black points in figure 4.18(b) represent the ratio for 0.00001 < x ≤ 0.0002

whilst the red points are for 0.0002 < x ≤ 0.01. There is no evidence for any variation

with either Q2 or x within the statistical errors shown. This is in accordance with the

Regge factorisation hypothesis given in section 3.4.2. The ratio of the two selections

is approximately 0.7 throughout the measured phase space. Crudely correcting for the

efficiencies of the selections gives a single to double dissociation ratio of order unity, as

assumed in equation 4.31.

Figure 4.17: Uncorrected ratio of elastic to proton dissociation data events as a function
of pseudorapidity ηMAX .
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(a)

(b)

Figure 4.18: Uncorrected ratio of elastic to proton dissociation data events as a function
of pseudorapidity ηMAX . Figure(a) represents the ratio in bins of low and high Q2 rep-
resented by the black and red points respectively. The black and red points in figure (b)
represent the ratio for low and high regions of x respectively.
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4.8 Summary of Diffractive Selection

The diffractive structure function is measured in the region,

MY < 1.6 GeV, (4.33)

|t| < 1 GeV2, (4.34)

x
IP
< 0.05, (4.35)

where, after the selection of an inclusive deep inelastic scattering sample, diffractive events

are selected by the following demands on activity in the forward detector region of H1:

ηMAX < 3.3, (4.36)

NPRT (1, 2, 3, 4, 5, 7) = 0, (4.37)

NFTS(1, 2) = 0, (4.38)

NFMD(1,2) ≤ 1 hit pair, (4.39)

NFMD(3) ≤ 2 hit pairs, (4.40)

EPLUG < 5 GeV. (4.41)

Chapter 5 describes the extraction of the inclusive and diffractive structure functions and

presents the results obtained from the 1999 minimum bias data.
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Chapter 5

Measurement of the Diffractive
Proton Structure Function

5.1 Inclusive DIS Studies

The inclusive control distributions of figures 4.8 - 4.10 demonstrated the good agreement

achieved between data and Monte Carlo. The scattered positron and hadronic final state

are well measured and understood after the application of Spacal and LAr calorimeter

calibration factors. The inclusive structure function F2(x,Q
2) can therefore be extracted

and compared with previous H1 measurements as a means of checking the procedure

used to obtain cross sections and structure functions before the measurement is extended

to diffraction. The 1999 minimum bias data studies for F2(x,Q
2) are presented in this

section, and the diffractive measurement can be found in section 5.2.

5.1.1 Extraction of F2(x,Q
2)

The relationship between the inclusive cross section and structure function was given in

equation 2.19 in section 2.2.2. Neglecting the longitudinal contribution (and Z0 exchange)

to the inclusive cross section this can be rewritten in terms of the variables used in the

measurement of F2(x,Q
2) as,

F2(x,Q
2) =

(NDATA −NBG) · BCC · RADC
ACC ·BV · LUM · FAC

xcQ
4
c

4πα2
(
1 − yc + y2

c

2

) , (5.1)

where NDATA is the number of data events in a given analysis bin and NBG is the back-
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ground contribution from photoproduction events (modelled by PHOJET). BCC is the

bin centre correction and BV is the volume of the bin
∫
dxdQ2, RADC is the radiative

correction (not explicitly calculated for this measurement) and ACC is the “smeared ac-

ceptance” (defined in section 5.1.5), calculated from DJANGO. xc, Q
2
c and yc are the

values at which the data point is quoted. The determination of these quantities is dis-

cussed in the following sub-sections. LUM is the luminosity of the data in units of pb−1

and FAC is a factor equal to (�c)2 = 389379660 GeV2 pb which is required to maintain

a consistent treatment of units. The scheme used for the binning of the data is also

presented in 5.1.3.

5.1.2 Background Contributions

The inclusive control plots of figures 4.8 - 4.10 showed the background contamination

due to photoproduction events in the data sample at low E ′
e (high y) and low Q2. The

estimation of the number of photoproduction events obtained from PHOJET (NBG) is

subtracted from the number of data events (NDATA), which have passed the standard

DIS selection detailed in 4.6. The contribution is found to be small everywhere with the

largest corrections, for the lowest values of Q2 and highest y, being approximately 2%.

5.1.3 Binning Scheme

The binning scheme adopted for the measurement of F2(x,Q
2) is taken from a recent H1

publication [63] which presented F2(x,Q
2) measured from combined 1996 and 1997 data

in the range 2 GeV2 < Q2 < 150 GeV2. The Q2 and x values used are presented in

tables 5.1 and 5.2 respectively. The data were divided into 13 Q2 bins and 12 x bins.

5.1.4 Bin Centre Corrections

F2(x,Q
2) is calculated at the centres of the Q2 and x bins defined in tables 5.1 and 5.2.

However a small correction is required since the area under the F2 function in each bin

will not be symmetric about the bin centre due to the variation of F2(x,Q
2) across the

bin. Also selections on y for example cut into the bin implying that only part of a bin is

actually usable. Hence, the data are shifted up or down to correct for this effect. The bin

centre correction (BCC) is defined as:
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Q2 bin Lower limit (GeV2) Central Value (GeV2) Upper limit (GeV2)
1 1.25 1.5 1.75
2 1.75 2.0 2.25
3 2.25 2.5 3.0
4 3.0 3.5 4.25
5 4.25 5.0 5.75
6 5.75 6.5 7.5
7 7.5 8.5 10.25
8 10.25 12.0 13.5
9 13.5 15.0 17.5
10 17.5 20.0 22.5
11 22.5 25.0 30.0
12 30.0 35.0 40.0
13 40.0 45.0 52.5

Table 5.1: Q2 binning as used in the 1999 minimum bias data measurement of the inclusive
structure function F2(x,Q

2).

x bin Lower limit Central Value Upper limit
1 0.000026 0.000032 0.000041
2 0.000041 0.00005 0.000065
3 0.000065 0.00008 0.000105
4 0.000105 0.00013 0.000165
5 0.000165 0.0002 0.00026
6 0.00026 0.00032 0.00041
7 0.00041 0.0005 0.00065
8 0.00065 0.0008 0.00105
9 0.00105 0.0013 0.00165
10 0.00165 0.002 0.0026
11 0.0026 0.0032 0.0041
12 0.0041 0.005 0.0065

Table 5.2: x binning as used in the 1999 minimum bias data measurement of the inclusive
structure function F2(x,Q

2).

BCC =
F2 at bin centre

< F2 > over bin
=

F2(Q
2
c , xc)

[
∫

dQ2dxF2(x,Q2)∫
dxdQ2 ]

=
F2(Q

2
c , xc)∫

F2(x,Q2)dQ2dx
· BV, (5.2)

where all integrals are over the x, Q2 range of the analysis bin, BV is the bin vol-

ume,
∫
dxdQ2, and F2(x,Q

2) represents a parameterisation of the H1 measurement taken

from [63]. In order for this correction to be applicable to the data, the regions cut out
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by y cuts etc. in the data must be rejected. Hence, the following cuts are imposed at the

generator level of the Monte Carlo for the acceptance determination (section 5.1.5) and

the integrals in equation 5.2,

• E ′
e(gen) > 6 GeV

• 153◦ < θe(gen) < 176.5◦

• E − pz(gen) > 35 GeV

• Q2(gen) > 1.25 GeV2

• y(gen) > 0.05

which exactly match the analysis cuts in section 4.6.

Figure 5.1 shows the bin centre corrections as a function of x for fixed Q2. The BCCs

are observed to be reasonably constant with a value approximately equal to unity, with

deviations only observed at the extremes of the ranges of x and Q2 where the θe, y and

E ′
e cuts are important.

5.1.5 Acceptance and Purity Correction

The measurement of F2(x,Q
2) relies on binning the data and Monte Carlo according to

the scheme in section 5.1.3. Corrections must be made for the loss of events due to the

imperfect acceptance and efficiency of the detector using the Monte Carlo simulation.

It is also possible for an event to be reconstructed in the wrong bin due to the finite

resolution. A correction must therefore be performed for the smeared acceptance, defined

as the ratio of reconstructed Monte Carlo events to generated Monte Carlo events. In

order to calculate an error on this, the reconstructed and generated numbers of events

must be divided into components with uncorrelated errors. Hence, the acceptance (ACC

in equation 5.1) can be written as,

Acceptance =
N(rec)

N(gen)
=

Nstay +Ncome

Nstay +Ngo +Nlose
, (5.3)

where, for events passing the reconstructed level cuts, Nstay defines the number of events

generated in a bin and reconstructed in the same bin, Ngo gives the number of events
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Figure 5.1: Bin centre corrections for the inclusive proton structure function F2(x,Q
2) as

a function of x in bins of Q2.

generated in a bin but reconstructed elsewhere and Ncome describes events reconstructed

in a bin that were generated elsewhere. For events failing the reconstructed level cuts,

Nlose gives the number of events generated in a bin. In terms of the same component

variables, purity, stability and smearing terms can also be defined:

Purity =
N(gen and rec)

N(rec)
=

Nstay

Nstay +Ncome

, (5.4)

Stability =
N(gen and rec)

N(gen)
=

Nstay

Nstay +Ngo +Nlose
, (5.5)

Smearing =
N(gen) −N(rec)

N(gen)
=
Ngo +Nlose −Ncome

Nstay +Ngo +Nlose

, (5.6)
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For a perfect acceptance, purity and stability, a value of 1 is expected, and a smearing

value of 0. For this measurement both the acceptance and purity in each bin were required

to be greater than 30%.

5.1.6 Systematic Errors

There are, as with every cross section measurement, several systematic uncertainties aris-

ing from imperfect understanding of detector components and of the models used in gen-

erating the Monte Carlo events. A full systematic error analysis was not performed for the

F2(x,Q
2) measurement. Instead for those systematic effects which are common to both

measurements the average fractional systematic errors as calculated for F
D(3)
2 (β,Q2, x

IP
)

(for which a full description is given in section 5.2.7) were applied to the F2(x,Q
2) mea-

surement. The total systematic error shown on the data points takes into account un-

certainties in the positron energy and polar angle, hadronic Spacal and LAr calorimeter

energy scales, vertex and trigger efficiencies, and bin centre corrections. An uncertainty

is also included to compensate for the absence of radiative corrections on the data points.

This corresponds to a total error of ±8.7%. A normalisation error, arising from uncer-

tainties in the luminosity determination and BDC efficiency, is not shown but contributes

an additional 2.2% error.

5.1.7 Results for F2(x,Q
2)

The results obtained for F2(x,Q
2) are shown at fixed values of x as a function of Q2 in

figure 5.2 and at fixed values of Q2 as a function of x in figure 5.3. The red points are

F2(x,Q
2) measured in this analysis and the blue points are from a recent H1 publication

on 1996-1997 data [63]. Both measurements are shown with inner statistical and outer

total (statistical and systematic added in quadrature) errors.

The 1999 minimum bias data sample comprises much less luminosity than the 1996-1997

published data and were selected for a diffractive physics measurement, hence the non-

diffractive events were down-scaled as described in section 4.4. This means the sample has

about a factor 10 less statistics than the published H1 measurement shown in figures 5.2

and 5.3. In addition no detailed work on systematic errors or radiative corrections has

been done for this F2(x,Q
2) extraction. The published data extend to lower Q2 and

lower y than the present measurement due to the additional use of the BST for vertex

finding. That detector has not been used in the present analysis. Some low Q2, low x
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Figure 5.2: The inclusive proton structure function F2(x,Q
2) extracted from this mea-

surement (red points) compared with a previous H1 publication [63] (blue points). The
measurements are shown as a function of Q2 in bins of x.

points are also lost due to low acceptance originating from applying the Spacal fiducial

cuts. However, a good agreement is observed between the two measurements within

errors, with the implication that the data are well understood and properly modelled by

the inclusive Monte Carlo. Therefore, with the positron detection in the Spacal under

control, the extension to diffraction is well founded.
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Figure 5.3: The inclusive proton structure function F2(x,Q
2) extracted from this mea-

surement (red points) compared with a previous H1 publication [63] (blue points). The
measurements are shown as a function of x in bins of Q2.

5.2 Diffractive Measurements

The following sections describe the extraction of the structure function F
D(3)
2 (β,Q2, x

IP
).

The control plots in chapter 4 showed that a reasonable description of the diffractive data

was obtained after the RAPGAP Monte Carlo was reweighted in accordance with the

method detailed in section 4.7.3. Hence, the diffractive proton structure function can be

measured following the same method used for F2(x,Q
2). The final results are presented

in section 5.2.8.
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5.2.1 Measurement of F
D(3)
2 (β,Q2, x

IP
)

Neglecting the small FL(x,Q2) contributions, the diffractive structure function as given

in equation 3.12, can be rewritten in terms of the “measurement variables” as,

F
D(3)
2 (β,Q2, x

IP
) =

(NDATA −NBG) · BCC · RADC
ACC · BV · P · LUM · FAC

βcQ
4
c

4πα2
(
1 − yc + y2

c

2

) , (5.7)

where RADC is the radiative correction defined in equation 5.8, which is required because

the cross section is defined at the QED Born Level, P is the correction due to smearing

across the MY < 1.6 GeV, |t| < 1 GeV2 boundary (as described in section 4.7.5) and

the other variables are as described in section 5.1.1. The number of background events

NBG now also takes QED-Compton scattering events into account (section 5.2.2) and the

acceptance correction, ACC, is calculated using RAPGAP, DJANGO and DIFFVM for

the diffractive case. Note that since the binning is performed in x but F
D(3)
2 is defined as

a function of x
IP

= x/β, the xc term on the right hand side of equation 5.1 has changed

to βc.

5.2.2 Background Contributions

There are two sources of background (NBG) to the diffractive DIS sample for which the

cross section has to be corrected. The background arising from photoproduction events,

estimated using the PHOJET Monte Carlo, contributes mainly at low Q2 and high y

typically at a level of 1 − 2%. A background due to QED-Compton scattering processes,

modelled by COMPTON, is also present with the largest contributions at high β. The

correction to the data is typically less than 1% at low-medium β.

5.2.3 Binning scheme

The x and Q2 binning is inherited from the inclusive measurement. Hence, the values in

tables 5.1 and 5.2 are still valid, but now the data are also binned in β as in [69] and [78]

but extending the β range slightly lower (due to the lower Q2 values accessible). Table 5.3

below details the binning scheme in β.

The final value for the structure function is given in terms of Q2, x
IP

and β. x
IP

here is

simply evaluated from the bin centre values and x
IP

= x
β
, as defined in equation 3.7 in
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β bin Lower limit Central Value Upper limit
1 0.0005 0.001 0.005
2 0.005 0.01 0.023
3 0.023 0.04 0.07
4 0.07 0.1 0.14
5 0.14 0.2 0.3
6 0.3 0.4 0.5
7 0.5 0.65 0.8
8 0.8 0.9 1.0

Table 5.3: β binning used in the 1999 minimum bias data measurement of the diffractive
structure function F

D(3)
2 (β,Q2, x

IP
).

section 3.2.

5.2.4 Radiative Corrections

A correction is applied to the data in order to correct F
D(3)
2 (β,Q2, x

IP
) to the QED Born

level after removing smearing due to initial and final state photon radiation and correcting

for virtual loops. The correction factor is given by,

RADC =
F

D(3)
2 (NON − RADIATIVE)

F
D(3)
2 (RADIATIVE)

, (5.8)

which is calculated from separate samples of Monte Carlo (RAPGAP) generated with

and without QED radiative effects, with the requirement E − pz > 35 GeV applied at

the generator level. The luminosity of each sample was approximately 95 pb−1. The

correction factor (RADC) obtained, shown in figure 5.4, was observed to be reasonably

constant over the entire phase space with a value typically equal to 0.95 which varied only

by 20% at most for the highest x
IP

values.

5.2.5 Bin Centre Corrections

As described in section 5.1.4, the inclusive data were bin-centre-corrected before the struc-

ture function was evaluated. The same arguments apply here and the process must be re-

peated, this time including the β binning and using a parameterisation of F
D(3)
2 (β,Q2, x

IP
)
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Figure 5.4: Radiative corrections for the diffractive structure function, F
D(3)
2 (β,Q2, x

IP
)

shown as a function of x
IP

for fixed values of β and Q2, with β increasing from left to
right and Q2 increasing from top to bottom.

112



taken from [69]. Hence, the bin centre correction for the diffractive structure function is

given by,

BCC =
F

D(3)
2 (βc, Q

2
c , xc)∫

F
D(3)
2 dβdQ2dx

· BV. (5.9)

The additional diffractive generator level cuts applied, for the same reasons as in the

inclusive case, were:

• MY (gen) < 1.6 GeV

• |t(gen)| < 1 GeV2

Figure 5.5 shows the bin centre corrections for F
D(3)
2 (β,Q2, x

IP
). As for the F2(x,Q

2)

measurement the corrections are observed to be approximately equal to one for the most

part, with occasional deviations occurring at the kinematic limits of the measurement.

5.2.6 Acceptance and Purity Calculations

Equations 5.3 - 5.6 are still valid for the diffractive measurement. Again cuts on acceptance

and purity are imposed but in this case the acceptance is factorised into an inclusive part

where standard DIS cuts are applied and a diffractive DIS part where the diffractive

selection is applied in addition. Respective acceptance cuts of 20% and 50% are applied.

A cut at 20% on purity is applied which is lower here than that in the inclusive case due

to the three-dimensional binning. Figures 5.6 and 5.7 respectively show the factorised

diffractive acceptance and purity in all bins of Q2 and β, including those that are rejected

for the F
D(3)
2 (β,Q2, x

IP
) measurement, as a function of x

IP
. The diffractive acceptance is

observed to be reasonably constant except for the low β, high x
IP

(high ηMAX) and low

Q2, high x (high θe) regions. The purity is approximately flat except at the limits of the

measurement.

5.2.7 Systematic Errors

A full systematic error analysis was performed for the measurement of F
D(3)
2 (β,Q2, x

IP
).

The systematic uncertainties arise from imperfect understanding of detector components
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Figure 5.5: Bin centre corrections for the diffractive structure function, F
D(3)
2 (β,Q2, x

IP
)

shown as a function of x
IP

for fixed values of β and Q2, with β increasing from left to
right and Q2 increasing from top to bottom.

and uncertainties in the models used in generating the Monte Carlo events. The systematic

uncertainties taken into account for this measurement and evaluated separately for each
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Figure 5.6: Diffractive acceptance for the extraction of the diffractive structure function,
F

D(3)
2 (β,Q2, x

IP
) shown as a function of x

IP
for fixed values of β and Q2, with β increasing

from left to right and Q2 increasing from top to bottom.

115



Figure 5.7: Purity for the extraction of the diffractive structure function, F
D(3)
2 (β,Q2, x

IP
)

shown as a function of x
IP

for fixed values of β and Q2, with β increasing from left to
right and Q2 increasing from top to bottom.
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bin of the measurement are summarised below:

Detector Calibration and Efficiency Uncertainties:

• The LAr energy scale:

The uncertainty in performing the hadronic calibration of the liquid argon detector

leads to an uncertainty in the absolute LAr calorimeter energy scale of ±4% which

corresponds to an uncertainty in the final measurement of ∼ ±1.5%.

• The Spacal hadronic energy scale:

The equivalent error for the absolute Spacal hadronic energy scale is 7% which leads

to an uncertainty of ∼ ±1.4%.

• Energy carried by tracks:

The fraction of energy in the hadronic final state algorithm described in section 4.7.2

carried by tracks is varied by ±3%. This propagates ∼ ±1% error into the final

F
D(3)
2 (β,Q2, x

IP
).

• The Spacal positron energy scale:

The uncertainty in the energy scale in the electromagnetic part of the Spacal is ±1%

yielding an error on the final measurement of ∼ ±2.9%.

• Determination of θe:

The uncertainty in measuring the polar angle of the positron is ±1.5 mrad 1 giving

the second largest individual error of ∼ ±4.5%.

• Forward detectors:

The forward detectors are not fully efficient hence the freequency with which activity

is ignored for the PRT and FTS is varied by 25 %. The efficiency of the forward

muon detector is varied by ±5% as a measure of the systematic uncertainty. The

uncertainty in the Plug calorimeter energy scale is ±30%. Together these errors

contribute ∼ ±0.9% to the final F
D(3)
2 (β,Q2, x

IP
) measurement in addition to the

errors they induce on the MY smearing correction (see section 4.7.5).

1This number is larger than is usually quoted (±0.5 mrad) since no detailed Spacal-BDC alignment
information was available.
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Monte Carlo Uncertainties:

• Simulated x
IP

distribution:

The uncertainty in the x
IP

distribution modelled in RAPGAP is estimated by

reweighting the distribution by (1/x
IP

)±0.2. This choice is larger than the range

of possibilities allowed by the measured data points, which is also the case for the

other Monte Carlo uncertainty systematic errors below. The variation leads to an

error on the final measurement of ∼ ±1.4%.

• Simulated β distribution:

The β distribution is reweighted by factors β±0.1 and (1 − β)±0.1 to provide sys-

tematic uncertainties of ∼ ±0.8% and ∼ ±0.6% in the measured F
D(3)
2 (β,Q2, x

IP
)

respectively.

• t slope:

Similarly the t distribution is reweighted by ±e±2t, which propagates to an uncer-

tainty of ∼ ±0.2% on F
D(3)
2 (β,Q2, x

IP
).

• Q2 distribution:

The uncertainty in the Q2 distribution in the Monte Carlo is evaluated by reweight-

ing the distribution by factors log10(Q
2)±0.2. This leads to an error of ∼ ±0.4% in

the structure function measurement.

• High x
IP

background:

It is possible for events generated in the region x
IP
> 0.1 and MY > 5 GeV simulated

using DJANGO to enter the sample. Hence, the number of DJANGO events is

varied by ±100% resulting in a ∼ ±2.3% effect on the measurement.

• Vector meson simulation:

The normalisation of the DIFFVM simulation was varied by ±50% to provide the

systematic uncertainty. This was found to be ∼ ±1.1%.

• Photoproduction background:

The uncertainty in the number of events entering the sample due to photoproduction

background is estimated by varying the PHOJET normalisation by ±100%. This

provides an uncertainty in the measurement of F
D(3)
2 of ∼ ±4%.

• QED Compton background:

The uncertainty on background from QED Compton events is evaluated by varying

the number of contributing events by ±50%. An uncertainty in the measurement

of ∼ ±2.5% is obtained.
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Uncorrelated Errors:

The following uncertainties are applied in the form of a percentage error which is the

same in all bins. They are treated as uncorrelated between bins in the fits that follow in

section 5.3 due to a lack of knowledge about the correlations between them.

• Trigger efficiency:

The triggers used in this analysis were assumed to be 100% efficient, which was

demonstrated in section 4.3.2. The uncertainty in this is estimated to be ∼ ±1% [78].

• Ratio of elastic to proton dissociation processes:

The contributing uncertainties to the correction for smearing about the MY limit

of the measurement were described in section 4.7.5. The variation of the ratio of

elastic to proton dissociation events leads to an uncorrelated error of ∼ ±1.5%.

• Bin-centre and radiative corrections:

Evaluation of the bin-centre and radiative corrections, described in sections 5.2.4

and 5.2.5 respectively, have a related systematic uncertainty of ±3%.

Normalisation Uncertainties:

The uncertainty in determining the luminosity leads to an overall normalisation error on

all data points of ±2%. The uncertainty in the efficiency of the BDC is taken to be ±1%

and the error in determining the noise corrections required for the forward detectors is

±0.6%. The remaining contributions to the correction for migrations across the MY and

t measurement boundary (section 4.7.5) are also taken to contribute to the normalisation

uncertainty. This combined smearing error of ±8.2% is the dominant systematic error

in the measurement of the diffractive structure function. The total normalisation error,

which is not shown on the final data points is ±8.5%.

5.2.8 Results for F
D(3)
2 (β,Q2, x

IP
)

The measured F
D(3)
2 (β,Q2, x

IP
) is shown in figure 5.8 as a function of x

IP
in bins of

Q2 (which increase down the page) and β (which increase across the page). The data

points are shown with inner statistical and outer total (statistical and systematic added

in quadrature) errors. The normalisation uncertainty of ±8.5% is not shown. The vertical

scale in the first three Q2 bins has been altered with respect to the others in order that

the behaviour of the distribution may be more easily examined in this new low Q2 region.
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The data are observed to stay constant or rise slowly with decreasing x
IP

at fixed β and

Q2. This behaviour is consistent with previous measurements and therefore typical of

the pomeron exchange observed in DIS. The points at the smallest x
IP

are observed to

lie lower than expected, which will have an effect on the phenomenological fits presented

in section 5.3. The reason for this is unknown and requires further investigation in the

future.

The data were compared with two previous H1 measurements. Figure 5.9 shows the

measured F
D(3)
2 (β,Q2, x

IP
) compared with a low Q2 measurement on shifted vertex data

collected in 1995 [80] which had a luminosity of 0.12 pb−1 (compared with 3.74 pb−1 for

this measurement). It can be seen that the superior statistics of the 1999 minimum bias

data allow the evaluation of the structure function at more x
IP

bins with much smaller

errors. Phenomenological fits to the data are therefore more easily performed and these

will be discussed in section 5.3. The plot shows F
D(3)
2 in the region of overlap between

the 1999 minimum bias measurement and that performed on the shifted vertex 1995 data,

which is 1.5 GeV2 < Q2 < 5 GeV2. Hence, although the minimum bias running does not

access the lowest values of Q2 reached in a shifted vertex set-up (the 1995 measurement

spans 0.4 GeV2 < Q2 < 5 GeV2) a more statistically significant measurement has been

performed in the region of overlap and no H1 F
D(3)
2 data have been published below

Q2 = 4.5 GeV2. An extra bin in the Q2 interval for 2.0 GeV2 is also possible due to the

higher statistics. The level of agreement is acceptable, except at Q2 = 1.5 GeV2 where

the reason for the disagreement is not yet known.

The 1999 minimum bias F
D(3)
2 (β,Q2, x

IP
) values were also compared with the latest

F
D(3)
2 (β,Q2, x

IP
) measurement on 1997 data to be released as preliminary by H1. Fig-

ure 5.10 shows the 1999 minimum bias data points compared with the 1997 data [78]

and figure 5.11 makes this comparison for fixed β values at Q2 = 6.5 GeV2. Figure 5.12

compares the two measurements for the entire region of overlap where (F
D(3)
2 (1999) −

F
D(3)
2 (1997))/F

D(3)
2 (1999) is plotted as a function of x

IP
. The discrepancies between the

1997 and the 1999 data at the lowest x
IP

(highest y) values are clearly visible. Else-

where however an excellent agreement is observed between the 1999 measurement, ex-

tracted using the saturation model in RAPGAP, and the 1997 measurement for 6.5 GeV2

< Q2 < 120 GeV2 which used the resolved pomeron model in RAPGAP. The forward

detector selections and other systematics are also rather different between the two mea-

surements. The 1999 measurement is the most statistically significant measurement of

F
D(3)
2 (β,Q2, x

IP
) yet at low Q2 extending to ∼ 12 GeV2 after which the 1997 measurement

is statistically better. The good agreement with this higher Q2 data gives confidence in

the lower Q2 F
D(3)
2 (β,Q2, x

IP
) measurement down to the lowest Q2 values (1.5 GeV2).
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Figure 5.8: The diffractive proton structure function extracted from the 1999 minimum
bias data. x

IP
F

D(3)
2 (β,Q2, x

IP
) is shown as a function of x

IP
for fixed values of β and Q2,

with β increasing from left to right and Q2 increasing from top to bottom. The data points
are shown with inner statistical and outer total (statistical and systematic in quadrature)
errors. A normalisation error of ±8.5% is not shown.
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Figure 5.9: The diffractive proton structure function from this measurement (red
points) compared with a previous unpublished H1 measurement [80] (blue points).

x
IP
F

D(3)
2 (β,Q2, x

IP
) is shown as a function of x

IP
for fixed values of β and Q2. Both

measurements are shown with total (statistical and systematic) errors. The statistical
errors for the 1999 measurement are represented by the inner error bars.

Hence, this measurement extends the kinematic region from which H1 has extracted the

diffractive structure function by a substantial amount.
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Figure 5.10: The diffractive structure function from this measurement (red points) com-

pared with a recent H1 measurement [78] (blue points). x
IP
F

D(3)
2 (β,Q2, x

IP
) is shown as

a function of x
IP

for fixed values of β and Q2, with β increasing from left to right and Q2

increasing from top to bottom. Both measurements are shown with inner statistical and
outer total (statistical and systematic added in quadrature) errors. The vertical scale in
the first three Q2 bins has been altered with respect to the others.
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Figure 5.11: The diffractive structure function from this measurement (red points) com-

pared with a recent H1 measurement [78] (blue points). x
IP
F

D(3)
2 (β,Q2, x

IP
) is shown as

a function of x
IP

at Q2 = 6.5 GeV2 for fixed values of β. Both measurements are shown
with inner statistical and outer total (statistical and systematic) errors. The 1997 data
points are offset slightly from the central x

IP
values for clarity.

5.3 Interpretation of Results

5.3.1 Regge Parameterisation

A phenomenological fit, following the method in [69] and [78], to the x
IP

dependence of

F
D(3)
2 (β,Q2, x

IP
) of figure 5.8 was performed for fixed β and Q2. The data were param-

eterised according to a Regge-motivated fit of the form of equation 3.25 in section 3.4.2

with,
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Figure 5.12: Comparison of the 1999 and 1997 F
D(3)
2 (β,Q2, x

IP
) measurements evaluated

as (F
D(3)
2 (1999)−FD(3)

2 (1997))/F
D(3)
2 (1999) and presented as a function of x

IP
in bins of β

increasing across the page and Q2 increasing down the page. The error takes into account
total errors on both measurements.

fIP,IR(x
IP

) =

∫ tmin

−1

eBIP,IRt

x
2αIP,IR(t)−1
IP

dt, (5.10)

where |tmin| is the minimum value of |t| allowed kinematically and the pomeron and

meson trajectories are linear as defined in equation 3.13. The parameter values, given in

equations 5.11- 5.15 with statistical errors only, were taken from previous measurements,
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αIR(0) = 0.50 ± 0.16, (5.11)

α′
IP = 0.26 ± 0.26 GeV−2, (5.12)

α′
IR = 0.90 ± 0.10 GeV−2, (5.13)

BIP = 4.6±3.4
2.6, (5.14)

BIR = 2.0 ± 2.0. (5.15)

Two fits were performed in (β,Q2) bins with a cut of y < 0.45 applied to minimise the

longitudinal contribution to the diffractive structure function, which is hereafter taken to

be negligible. The value of αIP is assumed to be constant for all β and Q2 values fitted. Fit

A uses data with Q2 > 6.5 GeV2, which was the lower limit for the 1997 phenomenological

fit [78] and fit B takes data from the entire 1.5 GeV2 < Q2 < 45 GeV2 range into account.

The results of fits A and B are shown respectively in figures 5.13 and 5.14. Data included

in the fits are indicated by a solid circle whilst those excluded are depicted by a hollow

circle. The solid curves represent the sum of pomeron and meson contributions whilst the

dotted lines correspond to pomeron exchange only. The need for the meson trajectory in

addition to the pomeron trajectory is noticeable in both figures in the low β bins where

the data points can lie above the pomeron exchange predictions by more than a factor

of two for the highest x
IP

values. Conversely at the highest values of β a decrease with

increasing x
IP

is generally observed. This behaviour is consistent with figure 3.4.

The values of αIP(0) resulting from the two fits are summarised in table 5.4. The statistical

errors only are shown. The systematic and model dependence errors have not yet been

evaluated but the errors are expected to be similar to those for the 1997 data in [78]

where the systematic error was evaluated to be 0.017. The model dependence error was

±0.063
0.035, the dominant contribution to which originated from the lack of knowledge about

the longitudinal structure function F
D(3)
L .

Fit αIP(0) χ2 / degree of freedom
A 1.104 ± 0.036 0.78
B 1.107 ± 0.026 0.68

Table 5.4: Values for the effective pomeron intercept αIP(0) extracted for Q2 > 6.5 GeV2

(fit A) and for all values of Q2 (fit B). The latter is taken to be the actual value.
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Figure 5.13: x
IP
F

D(3)
2 (β,Q2, x

IP
) from 1999 minimum bias data is shown as a function of

x
IP

for fixed values of β and Q2, with β increasing from left to right and Q2 increasing from
top to bottom. The result of a phenomenological Regge fit to the data for Q2 > 6.5 GeV2

is also shown for combined pomeron and meson exchange contributions (solid curve) and
pomeron exchange only (dotted curve). The open circles indicate data points which were
excluded from the fit.
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Figure 5.14: x
IP
F

D(3)
2 (β,Q2, x

IP
) from 1999 minimum bias data is shown as a function of

x
IP

for fixed values of β and Q2, with β increasing from left to right and Q2 increasing
from top to bottom. The result of a phenomenological Regge fit to the data for all Q2

is also shown for combined pomeron and meson exchange contributions (solid curve) and
pomeron exchange only (dotted curve). The open circles indicate data points which were
excluded from the fit.
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The extracted values of αIP(0) are therefore consistent with the soft pomeron intercept

αIP(0) ∼ 1.08 which describes soft hadron-hadron interactions. Within statistical er-

rors the values are inconsistent with previous H1 measurements [69], [80] and [78] where

αIP(0) ∼ 1.2. Assuming that the systematic and model dependence errors would be of

similar magnitude to previous measurements, the pomeron intercept extracted here would

be consistent with previous measurements within the total errors.

5.3.2 Comparison with QCD Fits

As discussed in section 3.4.2 the structure functions F IP
2 (β,Q2) and F IR

2 (β,Q2) describe

the partonic structure of the pomeron and meson exchanges respectively. In addition

to the phenomenological model (section 5.3.1) describing the pomeron and meson x
IP

dependence, the β and Q2 evolution of the structure function can be described by the

DGLAP equations (section 2.2.5). QCD fits have not been performed for the 1999 min-

imum bias data itself, although comparisons have been made with those from the H1

1994 [69] QCD fits. Here the pomeron and meson exchanges were parameterised in terms

of non-perturbative parton input distributions for light quarks (u, d, s) and gluons at a

low starting scale Q2
0 = 3 GeV2. This is known as “H1 QCD fit 2”. The evolution is

performed separately in β and Q2. Again the region of phase space y > 0.45 was excluded

because of the uncertainty in the knowledge about the longitudinal structure function

contribution. Because of vector meson and possible higher twist contributions, points

with MX < 2 GeV were also excluded.

Figure 5.15 shows the 1999 minimum bias data from this analysis (blue points) compared

with the QCD fit 2 to the H1 1994 data [69] which was performed on data with Q2 > 4.5

GeV2. It can be observed that a reasonable agreement exists in the low Q2, low β region.

At higher Q2 however the data are consistently below the 1994 fit. The data exhibit a

flatter dependence on x
IP

, for large β and small x
IP

, than the QCD fit to the 1994 data.

This behaviour is consistent with that observed for the 1997 data [78], which can be seen

from the data comparison in figure 5.10.

5.3.3 F
D(3)
2 Model Comparisons

The measured F
D(3)
2 (β,Q2, x

IP
) was compared with predictions from the the Soft Colour

Interaction model of Edin, Ingelman and Rathsman (section 3.4.4) and the semi-classical

model of Buchmüller, Gehrmann and Hebecker (section 3.4.4). In addition, comparisons
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Figure 5.15: x
IP
F

D(3)
2 (β,Q2, x

IP
) from 1999 minimum bias data is shown as a function of

x
IP

for fixed values of β and Q2, with β increasing from left to right and Q2 increasing
from top to bottom. The result of the QCD fit to the 1994 H1 data for both pomeron and
meson exchange contributions is indicated by the solid curve and for pomeron exchange
only by the dotted curve. The vertical scale in the first three Q2 bins has been altered
with respect to the others.
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with the saturation dipole model of Golec-Biernat and Wüsthoff (sections 2.2.7 and 3.4.3)

are made in section 5.3.4.

Figure 5.16 shows F
D(3)
2 (β,Q2, x

IP
) extracted from the 1999 minimum bias data compared

with two versions of the prediction from the Soft Colour Interactions model, obtained from

the LEPTO [92] Monte Carlo generator. In the SCI model the diffractive hard scattering

interaction is modelled in the same way as that for inclusive deep-inelastic scattering.

It is the soft colour rearrangements in the final state that determine whether or not a

rapidity gap, and therefore a diffractive final state, is produced. In the first version of the

fit diffractive final states are produced with a single free parameter, the universal colour

rearrangement probability P0, fixed by a fit to previous F
D(3)
2 [86] data (dotted curves).

The second version modifies P0 based on a generalised area law [106] (solid curves) which

takes into account the areas of the string configurations before and after the interaction.

It can be seen that a more reasonable description of the data is achieved for the second

version than for the original SCI prediction except for the high β, low Q2 (very low MX)

region. In the low MX < 2 GeV region the model is not expected to be valid, due to the

exclusion of higher twist terms, although the predictions in this region are still included in

the figure. Discrepancies with both predictions are also observed in the lowest β bins. The

phase space extension obtained from the present data demonstrate the large differences

between the original model and the revised area law model, with the latter giving a better

description in this low Q2 region.

The comparison of the 1999 minimum bias data points and the prediction from the semi-

classical model [87] is shown in figure 5.17. This is another colour dipole approach where

partonic fluctuations of the photon, which scatter off the colour fields of the proton, are

modelled in a non-perturbative way. The model depends on just four free parameters,

which were obtained from a fit to combined inclusive and diffractive structure function

data. Generally the data are observed to have a flatter x
IP

dependence and lie below the

model prediction (solid curves). At high β (low M2
X) the model is not expected to be

valid because possible higher twist contributions are not included in the model predictions.

This region is indicated by dotted curves and here the data are generally observed to lie

above the predictions. No obvious difference in the data-model agreement is observed

for the new low Q2 region compared with the rest of the kinematic region. The rising

behaviour observed in the low β bins, attributable to the meson exchange contribution in

section 5.3.1, is clearly not reproduced by this model.
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5.3.4 β and Q2 dependence of F
D(3)
2

The β and Q2 dependences of F
D(3)
2 (β,Q2, x

IP
) at fixed values of x

IP
have been examined

in previous measurements [69] [78]. A good description of the data was obtained by

modelling the x
IP

dependence with a fit inspired by Regge theory, and using the DGLAP

equations to describe the evolution in β and Q2. The diffractive parton distributions

indicated the presence of a high gluonic content in the proton, characterised by the β

dependence evolving from high to low β with increasing Q2 (see section 3.4.2). Rising

scaling violations were observed for low and medium values of β, falling only for the

highest values of β.

Figure 5.18(a) shows the Q2 dependence of F
D(3)
2 (β,Q2, x

IP
) at a fixed value of x

IP
= 0.003

in bins of x and β. To produce this plot, the nearest data points to x
IP

= 0.003 at each

β and Q2 value were “swum” to x
IP

= 0.003 using the results of the Regge fits. The

maximum distance by which points were “swum” was 0.33 in log(x
IP

). Also shown are

the H1 1997 data points [78] directly extracted at x
IP

= 0.003 using an alternative binning

scheme, and the QCD fit 2 from the H1 1994 data [69] (described in section 5.3.2). The

1999 minimum bias data clearly exhibit rising scaling violations for β values up to 0.4,

with the behaviour at 0.65 being flatter. Consistent with previous measurements, falling

scaling violations are observed for the highest β bin (β = 0.9). A good agreement is

observed with both the 1997 data and the 1994 QCD fit at medium and high β, although

the behaviour of F
D(3)
2 at low β is not as steep as either previous measurement. The

β dependence of F
D(3)
2 (β,Q2, x

IP
) for x

IP
= 0.003 at fixed values of Q2 is presented in

figure 5.18(b), again compared with the 1997 data and the 1994 QCD fit. The data

exhibit a reasonably flat dependence on β. This behaviour persists to high values of Q2,

where both the 1997 data and the 1994 QCD fit lie significantly above the data. In this

region the 1999 data sample is statistically limited and due to the “swimming” scheme,

the lowest x
IP

data points, which tend to be lower than the previous measurements, are

usually used. In the low Q2 region however a good agreement is observed with the previous

measurements. Therefore, although QCD fits have not been performed on the 1999 data

they are broadly consistent with the conclusions from the earlier measurements that the

pomeron is gluon-dominated with boson-gluon fusion being the dominant mechanism

occurring in diffractive interactions at HERA.

Comparisons of the data with colour dipole models were presented in section 5.3.3. The

β and Q2 dependences of the data compared with these models were also examined and

are presented here. In each case the distributions are shown only for one fixed value of

x
IP

= 0.003, as chosen for figure 5.18. Figure 5.19 shows the Q2 and β dependence of
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the F
D(3)
2 data compared with the predictions of the semi-classical model as described

in section 5.3.3. In general although some of the features of the data are described, the

model does not agree well with the data, with the data lying below the prediction at low

Q2 and low β and above the model for high Q2 and high β. A similar level of agreement

between data and the model was observed for the H1 1997 data [78].

Finally the Q2 and β dependence of the data compared with the saturation model [68] [82]

is shown in figure 5.20. This model is based on a colour dipole approach and fits to data

for the inclusive structure function F2(x,Q
2) are used to describe the qq̄ and qq̄g dipole

cross sections. Assuming two-gluon exchange, these cross sections are used to predict the

diffractive structure function F
D(3)
2 (β,Q2, x

IP
) with the addition of just one additional free

parameter for the t dependence eBt, where B = 6 GeV−2. The saturation model contains

higher twist terms and therefore is valid over the entire kinematic range measured. The

predictions shown here are revised with respect to the original model of [68] [82] after an

incorrect treatment of the extra colour factor applied for qq̄g dipoles was used originally.

Throughout the whole range of the measurement the data are in excellent agreement with

the saturation model predictions. In contrast to previous data sets, the low x
IP

, high Q2,

low β region appears to be reproduced well here.

5.4 Summary

A sample of diffractive deep-inelastic scattering events with a luminosity of 3.74 pb−1 was

selected from H1 data collected with minimally biased triggers in 1999. The diffractive

proton structure function F
D(3)
2 (β,Q2, x

IP
) was measured in the kinematic region covering

1.5 GeV2 < Q2 < 45 GeV2, 0.001 < β < 0.9 and 10−4 � x
IP
< 0.05. Previously published

H1 results for F
D(3)
2 (β,Q2, x

IP
) only exist for Q2 ≥ 4.5 GeV2 and β ≥ 0.01 hence this

analysis accessed lower Q2 and β values than has previously been possible. The new

data points were observed to agree with previous H1 results based on H1 1994 [69],

1995 [80] (unpublished) and 1997 [78] data throughout most of the phase space covered

in this analysis. The new 1999 minimum bias data points represent the most statistically

significant H1 F
D(3)
2 (β,Q2, x

IP
) results for Q2 < 12 GeV2 to date. Evaluation of the

structure function has also been performed at more β, x
IP

and Q2 values. Hence, future

opportunities to improve the modelling and understanding of low Q2 diffraction now

exist. Comparisons with predictions from the semi-classical and Soft Colour Interactions

models were made, which generally only described the data in certain kinematic regions.

The updated saturation model predictions provided an excellent description of the β and
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Q2 dependences of the F
D(3)
2 (β,Q2, x

IP
) data at a fixed value of x

IP
. A new value for the

effective pomeron intercept was calculated by performing a Regge fit to the data. This was

found to be consistent with that of the soft pomeron, unlike other recent measurements at

H1 [69], [78], [80]. In summary, the lowest Q2 bins of the F
D(3)
2 measurement dramatically

increase the H1 kinematic coverage at high precision although there are several areas in

which work still needs to be done in order to complete the analysis, which unfortunately

are beyond the time-scale of this thesis.

5.5 Future Prospects

The forward detector selection ideally requires further investigation. The sixth layer of

the PRT was not used due to high noise levels present in the detector, but this leads to

a large contribution to the systematic error for the correction due to smearing across the

measurement boundary MY < 1.6 GeV and |t| < 1 GeV2. This is the largest systematic

error on the measurement. Hence, work is required to try to reduce it. The second

largest systematic error originates from the uncertainty in measuring the polar angle of

the positron in the Spacal. Further study is therefore needed to understand the details of

the alignment between the Spacal and BDC detectors. Work for this is currently ongoing

implying this systematic error can be significantly reduced in the near future.

The efficiency for finding an event vertex was presented in section 4.6.1, which illustrated

that this efficiency decreases with decreasing y. This has the effect that events with low

values of y are not well detected or modelled by Monte Carlo. A correction could be

applied in order to regain lost events at low y. Previous studies, for example [103], have

shown the BST to be useful in improving the vertex efficiency at low y as well as reducing

the amount of photoproduction background present in the data sample. The BST has

been used in inclusive analyses on the 1999 minimum bias data [107] and hence effort

should be made in the future to do this for diffraction as well. The region of discrepancy

between the 1999 minimum bias and 1997 data at low x
IP

(high y) also requires further

investigation.

Finally, an alternative binning scheme in x, Q2 and x
IP

(rather than x, Q2 and β) for

F
D(3)
2 (β,Q2, x

IP
) is being developed whereby the β and Q2 dependence of F

D(3)
2 (β,Q2, x

IP
)

can be evaluated for fixed values of x
IP

. This method has the benefit of allowing more

β = x/x
IP

bins to be obtained allowing precise measurements of the scaling violations.

The calculation of the effective intercept αIP(0) could be affected by the low x
IP

region so

a final value is not possible until the low x
IP

region is better understood.

134



0.02

x IP
 F

2D
(3

)
β=0.001 β=0.01 β=0.04 β=0.1 β=0.2 β=0.4 β=0.65 β=0.9

1.5

Q2

[GeV2]

0.02 2

0.02 2.5

0.05 3.5

0.05 5

0.05 6.5

0.05 8.5

0.05 12

0.05 15

0.05 20

0.05 25

0.05 35

0.05

10
-4
10

-3
10

-2
10

-4
10

-3
10

-2
10

-4
10

-3
10

-2
10

-4
10

-3
10

-2
10

-4
10

-3
10

-2
10

-4
10

-3
10

-2
10

-4
10

-3
10

-2
10

-4
10

-3
10

-2

xIP

45

H1 99MB
SCI (orig.)

SCI (area law)

Figure 5.16: x
IP
F

D(3)
2 (β,Q2, x

IP
) from 1999 minimum bias data (blue points) is shown as

a function of x
IP

for fixed values of β and Q2, with β increasing from left to right and Q2

increasing from top to bottom. The data are compared with predictions of the Soft Colour
Interactions model [86] (dotted curves) and a refined version based on a generalised area
law [106] (solid curves). The vertical scale in the first three Q2 bins has been altered with
respect to the others.
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Figure 5.17: x
IP
F

D(3)
2 (β,Q2, x

IP
) from 1999 minimum bias data (blue points) is shown as

a function of x
IP

for fixed values of β and Q2, with β increasing from left to right and
Q2 increasing from top to bottom. The data are compared with the prediction of the
semi-classical model [87] (solid curves). The dotted curves represent an extension of the
model to M2

X < 4 GeV2, where the model is not expected to be valid. The vertical scale
in the first three Q2 bins has been altered with respect to the others.
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Figure 5.18: x
IP
F

D(3)
2 (β,Q2, x

IP
) at fixed x

IP
shown as a function of Q2 (a) and β (b).

The blue points represent the new 1999 data, the black points are H1 1997 data [78] and
the curves are the result of a QCD fit to H1 1994 data [69] including both pomeron and
meson contributions (solid curve) and pomeron only (dotted curves).
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Figure 5.19: x
IP
F

D(3)
2 (β,Q2, x

IP
) at fixed x

IP
shown as a function of Q2 (a) and β (b).

The data (blue points) are compared with the prediction of the semi-classical model [87]
(solid curves). The dotted curves represent an extension of the model to M2

X < 4 GeV2,
where the model is not expected to be valid.
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Figure 5.20: x
IP
F

D(3)
2 (β,Q2, x

IP
) at fixed x

IP
shown as a function of Q2 (a) and β (b). The

data (blue points) are compared with the prediction of the saturation model [68] (solid
curves). The qq̄ transverse component is represented by the dashed curve, the longitudinal
contribution by the dotted curve and the qq̄g term by the dotted-dashed curve.
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