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Abstract

A measurement is presented which investigates the nature of diffractive ex-

changes. Data taken by the H1 experiment amounting to an integrated lumi-

nosity of L = 63 pb−1 are used to investigate the process ep → eXY in the

kinematic range where diffractive exchanges are known to dominate. The Y

system is a proton or proton remnant with MY < 1.6 GeV and |t| < 1.0 GeV2

and it is separated from the X system by a large gap in rapidity caused by

a diffractive exchange carrying a fraction of the proton’s longitudinal momen-

tum xIP ≤ 0.05. The diffractive reduced cross-section σ
D(3)
r is extracted at

high Q2 in the kinematic range Q2 > 130 GeV2, 0.07 < (β = x /xIP ) < 1.0

and 0.005 < xIP ≤ 0.05. The data are used to test several models of diffraction

and a fit to the data allows the extraction of the effective Pomeron intercept

and Pomeron parton density functions.

The new Object-Oriented generic analysis framework used to perform the

analysis is also presented. The framework consists of a set of objects which

provide the necessary functionality and flexibility to perform very different and

complex physics analyses while maintaining a constant core structure.



“It is contrary to reason to say that there is a vacuum or space

in which there is absolutely nothing.” - Descartes.
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Introduction

The observation at HERA of events with a large region of rapidity devoid of

hadronic activity, a rapidity gap, renewed interest in the field of diffraction and

gave the Pomeron a new lease of life. The measurement presented in this thesis

significantly extends the precision and phase-space of diffractive cross-sections.

Pomeranchuk studied the asymptotic behaviour of the S-matrix and proved

[1,2] that the cross-section for any process which involved the exchange of quan-

tum numbers must vanish as the centre of mass energy s increased. Foldy and

Peierls proved [3] that, conversely, if the cross-section for a process does not

vanish as s increases that cross-section must be dominated by the exchange

of vacuum quantum numbers, a so-called diffractive exchange. In the lan-

guage of Regge theory [4,5] this diffractive exchange is identified with a Regge

trajectory, the Pomeron.

Early experimental evidence showed that the total pp̄ cross-section actually

increases with increasing s [6]. The cross-section must then be dominated at

high energies by the diffractive exchange. In the Standard Model an object

with the properties of a diffractive exchange can exist, for example a glueball;

experimental searches for such a state have yielded one candidate [7].

At HERA, deeply inelastic scattering (DIS) of virtual photons off protons

is used to study the structure of the proton. The photon, with virtuality Q2,

couples to a point-like constituent of the proton, a parton, and the interaction

can be calculated using the quantised theory of electromagnetism, Quantum

Electrodynamics (QED). The theory of strong interactions, Quantum Chromo-

dynamics (QCD), can be used to calculate the short-distance strong interac-

15



tions of the partons. However, at large distances the strong coupling constant

becomes so large that perturbation theory cannot be used and this part of

the cross-section is described by phenomenologically derived parton density

functions (PDFs): the cross-section has been factorised. These PDFs cannot

be derived from first principles but their behaviour as a function of Q2 can be

predicted using QCD.

DIS can also be used to probe the structure of diffractive exchanges. Diffrac-

tive PDFs can be defined in analogy with the case for a proton [8]; in the

Resolved Pomeron Model [9] they are Pomeron PDFs. Again, QCD can be

used to predict the Q2 behaviour of these PDFs and in order to test these

predictions it is necessary to measure across as wide a range of Q2 as possible.

The measurement presented in this thesis extends the kinematic phase-space

of diffractive DIS measurements to the highest ever Q2.

The use of Object-Oriented (OO) programming techniques as a means of

dealing with the huge amounts of information necessary to perform a physics

analysis is now firmly established. Accordingly, the H1 collaboration has un-

dertaken a project to reimplement the physics analysis software and data-

storage in C++. The measurement presented in this thesis was produced with

a new generic OO analysis framework. The framework is designed such that

it can also be and is used to easily perform very different physics analyses

from the analysis presented here. This is crucial in the efficient production of

physics analyses by a large high energy physics collaboration.

After a theoretical overview in the first chapter of this thesis the H1 de-

tector used to make the measurement is described. The third chapter details

the method used to first select the high Q2 DIS event sample and then the

diffractive DIS subsample of these events. In the next chapter the method used

to analyse the data sample and extract the diffractive DIS cross-section is pre-

sented. In the penultimate chapter the diffractive DIS cross-section results are

presented and compared to several QCD-based models of diffraction. Finally,

the generic OO analysis framework used to perform the analysis is presented.
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Chapter 1

Diffractive DIS at HERA

In this chapter the basic concepts of DIS in electron-proton interactions are

introduced. The use of the QCD hard-scattering factorisation theorem [10]

as a basis for understanding hadronic structure in terms of phenomenologi-

cally derived parton density functions convoluted with perturbatively calcula-

ble hard-scattering cross-sections is outlined.

The topic of diffraction is then introduced and a brief summary of Regge

theory [4, 5] given. Based on an analogy with inclusive DIS processes the use

of diffractive DIS processes to study the structure of diffractive exchanges is

described. The extension of the QCD hard scattering factorisation theorem to

include diffractive DIS processes is discussed together with the Regge factori-

sation hypothesis. Next, synopses of several theoretical models of diffraction

are presented along with the simulations of these models. Finally, an overview

of the techniques involved in the simulation of ep interactions is given; only

those models directly compared to the data will be described in detail.
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}
p(p)
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γ, Z(q)

e±(k′)

X(p′)

Figure 1.1: A Standard Model diagram of a NC DIS process at HERA. The

four-momenta of the particles are shown in parentheses.

1.1 DIS at HERA

1.1.1 The Kinematics of DIS Processes

Deeply inelastic scattering of electrons off protons can proceed via either a

neutral or charged current exchange. The Neutral (NC) and Charged Current

(CC) reactions proceed as ep → e′X and ep → νX, respectively. For NC

the outgoing lepton is an electron whilst in the case of CC interactions it is a

neutrino. In both reactions X represents the resulting hadronic system. The

Standard Model of Particle Physics [11] describes these two processes as being

mediated by a spin-1 boson; in the case of NC this can either be a photon or

a Z boson while in the case of CC it is a W boson. In the analysis presented

in this thesis only NC interactions are considered.

Shown in figure 1.1 is the diagram of the Standard Model representation

of NC interactions at HERA; particle types are shown accompanied by mo-

menta labels in parentheses. Here, k and k′ represent the four-momenta of the

incoming and outgoing electrons, respectively, and the exchanged boson has

four-momentum q. The momentum of the incoming proton is p, while p′ is the

momentum of the hadronic system X, also known as the “proton remnant”.

Two kinematic variables are required to describe a DIS process. Variables
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that are commonly used are:

Q2 = −q2 = −(k − k′)2, x =
Q2

2p · q , y =
p · q
p · k . (1.1)

Here Q2 is the virtuality of the exchange boson, x is the Bjorken scaling variable

and y the inelasticity. They are related to the ep centre of mass energy
√

s

by the equation Q2 = sxy (neglecting the proton and electron masses).

The wavelength of the exchange boson is related to its virtuality via λ ∼ 1
Q

,

so that as Q2 increases ever smaller structures within the proton are resolved.

Nuclear scattering experiments suggest that the proton has an effective size

of ≈ 1 fm [12] which corresponds to a Q2 ∼ 1 GeV2. For larger values of

Q2 the virtual boson can be thought of as resolving sub-structure within the

proton. This is known as the DIS regime. The virtual boson then couples to

a constituent of the proton, known as a parton.

The physical interpretation of x, in the infinite momentum frame of the

proton, is that it is the fractional momentum of the proton carried by the

struck parton [12]. Similarly, in the proton rest frame, the variable y can be

thought of as the fractional momentum of the electron carried by the virtual

boson.

1.1.2 Cross-sections, Structure Functions and the Re-

duced Cross-Section

The NC cross-section can be expressed differentially in x and Q2 in terms of two

structure functions [11], F2(x, Q2) and FL(x, Q2)1, as shown in equation 1.2.

d2σep→e′X

dxdQ2
=

2πα2
em

xQ4

[(
1 + (1 − y)2

)
F2(x, Q2) − y2FL(x, Q2)

]
. (1.2)

1Z and γZ interference terms are suppressed by factors of
(

Q2

Q2+M2
Z

)
or more and so are

small or negligible given the Q2 range considered in this analysis. For clarity of discussion

these contributions are not discussed in any detail here. The expressions for the reduced

cross-section given in 1.3 and 1.21 can be generalised to include Z and γZ contributions

which can then be used in 1.4 and 1.20 respectively, see for example [13].
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The structure function F2 will be discussed further in section 1.1.3. The

structure function FL parameterises the contribution to the total cross-section

from longitudinally polarised photons and, owing to the positivity constraint

on the cross-section, it can range from 0 < FL < F2. It is experimentally

constrained to be small in most regions of phase-space and measurements show

that, as expected, it only contributes significantly to the total cross-section at

high y [14].

Nevertheless any measurement of the NC cross-section will include con-

tributions from both F2 and FL and so it is useful to introduce a reduced

cross-section defined as:

σr(x, Q2) = F2(x, Q2) − y2

1 + (1 − y)2
FL(x, Q2). (1.3)

The differential NC cross-section can then be expressed as a function of

fundamental constants, kinematic quantities and the reduced cross-section, as

shown in equation 1.4.

d2σep→e′X

dxdQ2
= 2πα2

em

1 + (1 − y)2

xQ4
σr(x, Q2). (1.4)

1.1.3 The Quark Parton Model

The Rutherford scattering formula [11] which describes the scattering of two

point-like objects has no dependence on any quantity with units of length

and so the cross-section is said to “scale”. Assuming that ep DIS interactions

proceed via the exchange of a pointlike virtual photon scattering off some

pointlike constituent of the proton then the cross-section should exhibit scaling

and have no dependence on Q2.

Early experimental evidence supported this prediction [15,16] and led the-

orists to identify the point-like constituents of the proton with Gell-Mann’s

quarks [17]. The three generations of quarks as defined in the Standard Model

are shown in table 1.1. Simply by considering the proton’s charge quantum

number (= +1), the fact that the proton is a baryon (a qqq combination) and
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1st generation 2nd generation 3rd generation Charge Baryon Number

Up (u) Charm (c) Top (t) +2/3 +1/3

Down (d) Strange (s) Bottom (b) -1/3 +1/3

Table 1.1: The 3 generations of quarks; their symbols are given in parentheses.

the lack of evidence for proton decay leads to the obvious choice for the quark

structure of the proton to be uud.

In the Quark Parton Model (QPM) the structure function F2(x, Q2) can

be related to the density of quarks within the proton. PDFs are defined for

quarks, qi(x) and anti-quarks, q̄i(x). The PDFs represent the probability of

finding a quark of type i and momentum fraction x within the proton. They

obey the relation:

F2(x, Q2) = x
∑

i

e2
i {qi(x) + q̄i(x)} (1.5)

where the index i represents the six different quark flavours given in table 1.1

and e is the electromagnetic charge of the quark. Thus F2 gives a measure of

the total quark content of the proton and it can be seen that in addition to the

uud valence quark structure needed to account for the quantum numbers of

the proton there can also be contributions from so-called “sea quarks”; these

sea quarks can appear in qq̄ pairs, thus leaving the overall quantum numbers of

the proton unchanged. In the QPM the quarks are non-interacting; the theory

which describes the strong interactions of the quarks is introduced in the next

section.

1.2 Quantum Chromodynamics

The degree of freedom ascribed to the strong interactions is called “colour”

and has three basic states, often referred to as “red, blue and green”. All
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physically observable states are colourless, i.e. they are colour singlets, and

furthermore only qq̄ and qqq states are observed in nature. The quantum field

theory which describes “colour” is called Quantum Chromodynamics (QCD)

and to explain the observed behaviour of strong interactions QCD is based

upon the SU(3)c gauge group [11].

The exchange particles which mediate strong interactions are massless spin-

1 bosons called gluons. Quarks carry one colour-charge each whilst gluons carry

approximately twice the colour-charge in eight combinations. Thus, unlike the

photons of QED, gluons can self-interact. This self-coupling, or non-Abelian,

behaviour results in the phenomenon called asymptotic freedom. At small dis-

tances, r → 0, the strong force FQCD → 0, and so at sufficiently high values of

Q2 the partonic constituents of a hadron can be thought of as being free. Con-

versely, at large distances, or small Q2, the strong force increases dramatically,

resulting in the property of confinement, or infrared slavery, which explains

why no free colour-charges are observed in nature.

The theory of perturbative QCD (pQCD) can be used to perform a calcu-

lation of a cross-section up to a given order in the strong coupling parameter,

αs. At leading order (LO) the dependence of αs on the renormalisation scale

μ2
R is:

αs(μ
2
R = Q2) =

12π

(33 − 2nf ) ln(Q2/Λ2
QCD)

where ΛQCD � 200 MeV and can be thought of as the scale at which the strong

interactions become strong1. At large Q2, αs is small and perturbation theory

can be used safely. However, for Q2 � Λ2
QCD it can be seen that αs becomes

large and the perturbative approach is no longer reliable.

1.2.1 QCD Hard Scattering Factorisation

The QPM needs to be modified to account for QCD interactions, in particular

the radiation of gluons from the quarks. Furthermore, pQCD calculations can

1The choice of scale here is an arbitrary one, the only requirement is that μ2
R >> Λ2

QCD;

in DIS Q2 is a convenient choice.
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only be safely performed when the scale of the interaction is large enough.

The cross-section must be factorised into a perturbatively calculable (hard)

part, where pQCD can be applied, and a non-perturbatively calculable (soft)

part. Any soft processes, where the momentum transfer is small, appear frozen

when viewed from a hard process, where the momentum transfer is large2. The

modified structure function has the form:

F2(x, Q2) =
∑

i

∫ 1

x

dx′σ(
x

x′ , Q
2, μ2

F )
[
qi(x

′, μ2
F ) + q̄i(x

′, μ2
F )
]

(1.6)

where σ( x
x′ , Q

2, μ2
F ) is the hard-scattering cross-section for a quark of type i

and momentum x′ and a photon with virtuality Q2; this hard process is cal-

culable in pQCD. The modified PDFs, qi(x
′, μ2

F ) and q̄i(x
′, μ2

F ), now represent

the probablity of finding a quark of momentum fraction x′ within the proton at

the factorisation scale μ2
F . The fractional momentum of the quark involved in

the hard-scatter is x by definition, but a quark with momentum x′ can lower

its momentum to x via gluon emission. Thus any quark with a fractional

momentum ranging between x and 1 can contribute, making the integral nec-

essary. The factorisation scale μ2
F is the scale below which this gluon emission

is defined to be a soft process and is absorbed into the PDFs.

Importantly, the PDFs thus defined are completely process-independent

and can therefore be measured in one process and applied to another. This

universality property means that the PDFs of the proton measured at HERA

should be able to describe any other process involving protons, whether it be

ep interactions at HERA, pp̄ interactions at the Tevatron or pp at the LHC.

1.2.2 The DGLAP Evolution Equations

Although the PDFs are not themselves calculable from first principles it is

still possible to apply pQCD in calculating their evolution. Several evolu-

tion schemes exist, most notably the DGLAP [18–21], BFKL [22, 23] and

2One of the Heisenberg uncertainty relations states that ΔEΔt ≥ �/2 so small energy

scales correspond to long time scales and vice versa.
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CCFM [24–26] schemes, each having regions of phase-space in which they are

valid. The DGLAP evolution scheme has been proven to describe all structure

function measurements at HERA, e.g. [14], and has also allowed precision mea-

surements of the strong coupling parameter αs [27]. Owing to this and given

that the DGLAP scheme is the only scheme available for comparison [28, 29],

only the DGLAP scheme is considered in this analysis.

The DGLAP evolution equations describe the evolution in ln Q2 of the

PDFs in section 1.2.1. In addition to the quark PDFs considered there gluon

PDFs, g(x, μ2), can also be defined. The DGLAP equations then have the

form [12]:

∂q(x, t)

∂t
=

αs(t)

2π

∫ 1

x

dy

y

[
q(y, t)Pqq(

x

y
) + g(y, t)Pqg(

x

y
)

]
(1.7)

∂g(x, t)

∂t
=

αs(t)

2π

∫ 1

x

dy

y

[
q(y, t)Pgq(

x

y
) + g(y, t)Pgg(

x

y
)

]
(1.8)

where t = ln(Q2)/ΛQCD and Pab(x/y) are the splitting functions which repre-

sent the probability of finding a parton a with momentum x originating from

a parton b with momentum y. For example, the gluon Bremsstrahlung pro-

cess q → qg which modifies the quark distributions is represented by the two

splitting functions Pqq(x/y) and Pqg(x/y), and similarly for modifications to

the gluon distributions, as shown in figure 1.2.

1.2.3 Testing QCD - The Structure of the Proton

The QCD picture of the proton predicts there to be contributions from:

• The three valence quarks, uud;

• Gluons, arising from QCD interactions between partons;

• Sea-quarks, arising from g → qq̄ processes.

These contributions can be parameterised and fitted to the data at a par-

ticular scale. The DGLAP evolution equations can then be used to predict
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Figure 1.2: Diagrams which show the four terms which modify the quark (top

left,right) and gluon (bottom left, right) PDFs.

the PDFs at a different scale, provided the new scale remains in the region

of validity of pQCD. In order to test the predictions of QCD it is necessary

therefore to measure across as broad a range of Q2 as possible.

The full QCD picture is now available with which it should be possible to

completely describe the structure of the proton. Figure 1.3 shows the degree

to which that description works. The Bjorken scaling prediction is seen to be

violated as x decreases, which can be interpreted in the following way: As Q2,

the resolving power, increases it is possible to resolve more and more of those

partons which carry small fractions of the proton momentum; this explains the

rise of F2 at low x. To conserve total momentum this means that, conversely,

less objects carrying large fractions of the proton momentum must be observed;

this explains the fall of F2 at high x.

The objects carrying small fractions of the proton’s momentum are iden-

tified with the gluons (which interact with the photon via g → qq̄) and the

scaling violations seen in Figure 1.3 are indirect evidence for them. Integrating

the PDFs over x reveals that only ∼ 50% of the proton’s momentum is carried

by quarks [12], suggesting that the remainder is carried by gluons.
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Figure 1.3: Measurements of the proton structure function F2 as a function of

Q2 in bins of x compared to a QCD fit using the DGLAP evolution scheme.

26



1.3 Diffraction

In this section a short review of scattering in quantum mechanics is pre-

sented and the subject of Regge theory [4, 5] is introduced. Next the topics

of Regge phenomenology and diffractive exchanges are introduced along with

the Pomeron.

1.3.1 Two-Body to Two-Body Scattering in Quantum

Mechanics

Any two-body to two-body process can be described quantum mechanically

in terms of a unitary scattering matrix S such that the amplitude, A, for the

process is:

A = 〈cd|S|ab〉 (1.9)

where ab and cd represent the initial and final two-body states respectively.

The Mandelstam variables are defined in terms of the four-momenta of the

particles [12]:

s = (pa + pb)
2 (1.10)

t = (pa − pc)
2 (1.11)

u = (pa − pd)
2 (1.12)

where pa represents the four-momentum of particle a, etc.

1.3.2 Regge Theory

In the asymptotic limit where s � |t|, the so-called Regge region or limit, the

amplitude for the 2 body to 2 body process can be written as [30]:

A(s, t) ∝ sα(t) (1.13)

which can be interpreted as an exchange in the t-channel of an object with

angular momentum α(t), shown in figure 1.4. Chew and Frautschi [31, 32]
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Figure 1.4: The process ab → cd viewed as a t-channel exchange (left) and the

equivalent s-channel process (right).

plotted the spins of low-mass mesons against their square mass (= t) and

noticed that they lie on a straight line, as shown in figure 1.5. This implies

that α is a linear function of t and defines a so-called Regge trajectory

α(t) = α(0) + α′t. (1.14)

It can be shown [30] that, in the Regge limit, the total cross-section is

related to s via:

σtot ∝ s(α(0)−1). (1.15)

The ρ family of mesons shown in figure 1.5 have an intercept α(0) ≈ 0.5,

resulting in the cross-section for this exchange decreasing as s increases.

1.3.3 Diffraction and the Pomeron

Pomeranchuk proved [1,2] that in any process in which there is charge exchange

the cross-section vanishes asymptotically. Conversely, Foldy and Peierls proved

[3] that for any process in which the cross-section does not fall as s increases

that process must be dominated by the exchange of vacuum quantum numbers.

The pp and pp̄ total cross-sections were seen experimentally to rise at large

s as s increases, as shown in figure 1.6. At large s the interaction must be

dominated by vacuum quantum number exchange which is referred to as a
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Figure 1.5: The Chew-Frautschi plot.
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Figure 1.6: The pp and pp̄ total cross-sections as a function of
√

s compared

with the Donnachie-Landshoff parameterisation.

diffractive exchange. In the Regge picture this is attributed to a Regge trajec-

tory with an intercept α(0) > 1, a trajectory named the Pomeron. Donnachie

and Landshoff [6] performed a simple fit to the pp and pp̄ data of the form:

σ = AsαIP (0)−1 + BsαIR(0)−1 (1.16)

representing a Pomeron trajectory and a sub-leading Reggeon trajectory. The

result of the fit is shown in figure 1.6. The sub-leading Reggeon trajectory can

be identified as that shown in figure 1.5.
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1.4 Diffractive DIS at HERA

It is possible to use DIS to study the structure of diffractive exchanges in

an analogous way to the use of DIS to study the structure of the proton.

Diffractive exchanges are characterised by the fact that there are no quantum

numbers exchanged overall. In the case of ep scattering the diffractive interac-

tion can be viewed as the 2 body to 2 body process γ∗p −→ Xp, i.e. the proton

emerges quasi-elastically from the scatter. The hadronic system X, resulting

from the hard photon-diffractive exchange interaction, is separated in the lab-

oratory frame from the quasi-elastic proton p as there is no colour-connection

between the two systems. This absence of the production of hadrons is called

a “rapidity gap” and can be used to identify diffractive events.

1.4.1 Diffractive Kinematics

Figure 1.7 shows the diagram for the generic diffractive DIS process at HERA.

Further to the kinematic variables defined in 1.1.1 and the Mandelstam vari-

ables the kinematic variables xIP and β are useful in describing the interaction.

They are defined as:

β =
Q2

Q2 + M2
X − t

(1.17)

xIP =
Q2 + M2

X − t

Q2 + W 2 − M2
p

(1.18)

=
x

β
(1.19)

where MX is the invariant mass of the hadronic system X, Mp is the mass of

the proton and W 2 = (q+p)2 is the square of the centre of mass of the photon-

proton system. Assuming that the diffractive exchange can be attributed to

a QCD object, i.e. a Pomeron, then xIP is the fractional momentum of the

Pomeron with respect to the proton and β is the fractional momentum of the

struck parton with respect to the Pomeron.

MY , the mass of the Y system, can also in principle be measured. However,

in this analysis both MY and t are not measured but are constrained to be
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Figure 1.7: Schematic of the generic diffractive DIS process at HERA.

small, allowing an increase in the statistics of the event sample (see section 3.2).

1.4.2 Diffractive Cross-Sections, Structure Functions and

Reduced Cross-Sections

Following the same formalism as that given in 1.1.2 the differential cross-section

for diffractive DIS, as a function of the three measured kinematic variables,

can also be expressed in terms of a reduced cross-section , σ
D(3)
r (β, Q2, xIP ):

d3σep→eXp

dβdQ2dxIP
=

4πα2
em

βQ4

(
1 − y +

y2

2

)
σD(3)

r (β, Q2, xIP ) (1.20)

where the same notation as in equation 1.4 has been used. Again the reduced

cross-section can be related to the structure functions by:

σD(3)
r (β, Q2, xIP ) = F

D(3)
2 (β, Q2, xIP ) − y2

1 + (1 − y)2
F

D(3)
L (β, Q2, xIP ). (1.21)
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1.5 Factorisations and Models of Diffraction

In order to investigate the QCD structure of the diffractive exchange using the

DGLAP formalism it is necessary to factorise the kinematical dependencies of

σ
D(3)
r (β, Q2, xIP ) such that only the x and Q2 dependencies remain. The x and

Q2 behaviour can then be predicted using the DGLAP equations.

1.5.1 QCD Hard Scattering Factorisation for Diffractive

DIS

It has been proven by Collins [8] that the diffractive γ∗p cross-section can be

written in terms of diffractive PDFs, q(x, Q2, xIP , t), which are now dependent

on four kinematic variables, convoluted with a hard-scattering cross-section:

σ(γ∗p → Xp) ∼ q(xIP , t, x, Q2) ⊗ σ̂γ�q(x, Q2). (1.22)

At fixed xIP and t these PDFs will evolve with Q2 and x in exactly the same

way as the proton PDFs in equation 1.8. Such a proof allows a full QCD fit

to the data with no additional assumptions.

1.5.2 Regge Factorisation and the Resolved Pomeron

Model

In the Regge factorisation scheme the extra assumption that the diffractive

PDFs do not depend (other than in normalisation) on xIP and t is made. In-

stead the interaction factorises into a term which describes the flux of Pomerons

from the proton and a hard scatter of the photon with the Pomeron, as illus-

trated in figure 1.8. This factorisation scheme is based on physical intuition;

the time scales for these two processes are very different. At the proton vertex

the relevant scale is t which is small in the diffractive limit. Any dynamics

occurring here will appear frozen when viewed from the hard scatter vertex

where the relevant scale is Q2. In the Regge factorisation scheme the hard
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Figure 1.8: A sketch of the Regge factorisation scheme. The diffractive ex-

change is factorised into a flux component (long time scales) and a hard scatter

component (short time scales).

scatter depends only on β(= x
xIP

) and Q2 while the flux term depends only on

xIP and t:

σ(γ∗p → Xp) ∼ fIP (xIP , t) ⊗ pIP (β, Q2) ⊗ σ̂γ�q(β, Q2) (1.23)

where fIP (xIP , t) represents the flux term, pIP (β, Q2) represent Pomeron PDFs

and σ̂γ�q(β, Q2) represents the virtual photon-quark hard-scatter. The reduced

cross-section σ
D(3)
r can then be written as:

σD(3)
r (β, Q2, xIP ) = fIP (xIP ) σIP

r (β, Q2) (1.24)

where σIP
r defines the reduced cross-section of the Pomeron.

There is strong experimental support for Regge factorisation at HERA,

e.g. [28, 29, 33]. Figure 1.9 shows the logarithmic Q2 derivative of σ
D(3)
r for

three bins of xIP , where the xIP dependence has been removed by division of

a flux factor, fIP (xIP , t). The data suggest that the fIP (xIP , t) factor contains

all of the xIP dependence.

Regge phenomenology [9] leads to a parameterisation of the flux factor:

fIP (xIP ) =

∫ tmin

tcut

eBt

x
2α(t)−1
IP

dt (1.25)

where tcut = −1.0 GeV2 defined by the selection technique in section 3.2 and

tmin is the minimum kinematically allowed value.
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Figure 1.9: The logarithmic Q2 derivative of σ
D(3)
r at three values of fixed xIP ,

multiplied by fIP (xIP , t)−1, as a function of β.
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In addition to the leading Pomeron trajectory it is necessary, at higher

values of xIP , to include a sub-leading reggeon trajectory, that shown in figure

1.5, which survives by virtue of its relatively large value of α(0). The full

parameterisation of the data is then:

σD(3)
r (β, Q2, xIP ) = fIP (xIP )σIP

r (β, Q2) + fIR(xIP )σIR
r (β, Q2) (1.26)

1.5.3 Soft Colour Interactions

In the model of Soft Colour Interactions (SCI) of Edin, Ingelman and Raths-

man [34,35] the assumption is that the underlying hard interaction is the same

for both diffractive and non-diffractive events. In the diffractive case there is

a subsequent soft interaction where colour but not momentum are transferred,

such that the overall γ∗p interaction involved no net exchange of colour. This

soft interaction can be pictured as the rearrangement of colour strings, shown

in figure 1.10. The simplest version of the model is governed by one free

parameter which is the probability of this soft interaction occurring.

A modification to this model uses a Generalised Area Law (GAL) [36]. In

this model configurations where a colour string spans a large area in energy-

momentum space are exponentially suppressed and so the probability P for a

string rearrangement is given by:

P = R0(1 − exp−bΔA) (1.27)

where R0 and b are the two parameters of the model and ΔA is the difference

between the areas spanned by the string before and after rearrangement.

1.5.4 The Semi-Classical Model

In the proton rest frame the γ∗p −→ Xp interaction can be interpreted as the

fluctuation of the virtual photon into a partonic state a long way from the

proton; this partonic state then interacts with the proton. Shown in figure

1.11 are the dominant states, qq̄ and qq̄g, as viewed in the proton rest frame

(left) and the infinite momentum frame of the proton (right).
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Figure 1.10: Diagrams showing string configurations in a DIS event when a.)

strings connect the hadronic system leaving no rapidity gaps, b.) and c.) soft

colour interactions rearrange the strings creating rapidity gaps.
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Figure 1.11: The qq̄ and qq̄g states of the virtual photon as viewed in the proton

rest frame (left) and the same process as viewed in the infinite momentum

frame of the proton (right) .
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In the Semi-Classical Model of Buchmuller, Gehrmann and Hebecker [37]

the photon fluctuates into one of the qq̄ or qq̄g partonic states; this then

scatters off the proton which is modelled as a superposition of colour fields.

If the resulting partonic state is an overall colour-singlet then the interaction

was diffractive as there was no net colour exchange.

1.6 Simulating ep Interactions

In order to correct the data1 and compare the data to the various theoretical

models Monte Carlo (MC) methods are used employing the following strategy.

• Firstly, PDFs, extracted from a previous measurement, are evolved to

the relevant scale.

• The hard process of interest, e.g. a virtual photon scattering from a

quark, is then calculated at leading order.

• The resulting partons then undergo hadronisation to produce the ob-

served hadrons. In the analysis presented in this thesis this hadroni-

sation step is always performed by the JETSET [38] programme which

implements the LUND string model of hadronisation [39].

• Finally these “generator-level” events are passed through a detailed de-

tector simulation and are therefore directly comparable to the data events.

Simulated event samples are generally required to be more than three times

the size of the data samples in order to ensure that the statistical error of the

simulated sample can be, to a good approximation, ignored.

1See section 4.3 for a discussion on correcting the data using simulations.
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1.6.1 The Models Used in this Analysis

Models used for DIS

The DJANGO [40] programme was used to simulate ∼ 400, 000 inclusive DIS

events. This programme is an interface between the HERACLES [41] ep

event generator and the ARIADNE [42] implementation of the Colour Dipole

Model [42–45], used to generate QCD radiation. The input PDFs used were

extracted from a next-to-leading order (NLO) QCD DGLAP fit to a previous

measurement of F2 made with the H1 detector [46].

Models used for Diffractive DIS

The RAPGAP [47] programme implements the Resolved Pomeron model of

diffraction and was used to simulate ∼ 2, 800, 000 diffractive DIS events with

an elastic proton. QED radiation, detailed in section 1.6.2, is simulated via

an interface to the HERACLES programme, while QCD radiation uses an

interface to the ARIADNE programme. The input PDFs for the Pomeron

component of the process are extracted from a previous H1 measurement under

the assumption of Regge factorisation [48]. The sub-leading meson component

uses a parameterisation for the π-meson taken from PDFLIB [49,50]. Finally,

the DIFFVM [51] programme was used to simulate diffractive DIS events with

proton dissociation in order to correct the cross-section back to the defined

kinematic phase-space, detailed in section 4.3.2.

Models used for Background Processes

Elastic QED-Compton events, ep → epγ, can fake NC processes and are mod-

elled by the COMPTON [52] programme. Elastic γγ events, ep → epl+l−,

(LPair) can also fake NC processes, particularly when the final state leptons

are an electron-positron pair, and are modelled by the LPAIR [53] programme.
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Figure 1.12: The Diagrams for Initial State Radiation (left) and Final State

Radiation (right).

1.6.2 Simulating QED Radiation

Simulations of QED radiation are used to account for the exchange or emission

of photons before, during or after the Born-level process. These processes are

enhanced by large log Q2/m2
e terms and in the Leading Logarithmic Approx-

imation (LLA) these terms are assumed to dominate, allowing an analytical

calculation to be made. The photon self-energy is accounted for by a running

αem and is discussed in no further detail here. Emission of photons from either

the incoming or outgoing quark is accounted for by an additional QED term

in the DGLAP evolution equations. This contribution is estimated to be small

and only at very large x and Q2 reaches the level of 1%.

The remaining contributions come from emission of photons from the in-

coming and outgoing lepton, called Initial State Radiation (ISR) and Final

State Radiation (FSR) respectively, and are shown in figure 1.12. In addition,

virtual loops also contribute despite being higher order. The HERACLES

programme is used to simulate these processes.
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Chapter 2

HERA and the H1 Detector

The measurement presented in this thesis was made using data taken by the

H1 detector [54,55] at the HERA accelerator at DESY in Hamburg, Germany

during 1999 and 2000. This chapter consists of a brief overview of the HERA

machine followed by a description of the H1 detector1 with particular emphasis

on those parts of the detector of relevance to this analysis. The final part of

this chapter describes briefly the Data Acquisition and Triggering system at

H1.

2.1 HERA

The HERA accelerator is a 6.4 km circumference ring situated at DESY in

Hamburg, Germany. A schematic view of the HERA accelerator complex is

shown in figure 2.1. The main design goal of the accelerator is to collide

electrons with protons at a high centre of mass energy to enable precision

measurements of QCD. To achieve this HERA consists of two storage rings,

one which stores electrons at an energy of 27.6 GeV, the other of which stores

protons at an energy of 920 GeV.

The particles in each ring are stored in bunches which consist of approxi-

1The H1 Detector has since undergone a major upgrade. The description presented in

this chapter is of the H1 Detector as it was during 1999 and 2000.
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Figure 2.1: The HERA accelerator complex.

mately 1011 particles with a Gaussian density distribution of σ ≈ 11 cm. Each

ring can store up to 220 bunches and the time between consecutive bunches

is 96 ns. These bunches can then be crossed to produce the ep interactions of

physics interest, henceforth referred to as ep interactions, and in good running

conditions the number of colliding bunches is ≈ 175. Some of the bunches

are left empty, so-called “pilot-bunches”, in order to study the backgrounds

arising from the beams interacting with residual gas in the beampipe and the

beamwall itself.

The two particle beams are brought together at two approximately geo-

metrically opposite points on the HERA ring. Two detectors have been built

around these interaction points, the H1 detector at the northerly point and

ZEUS at the southerly point. In addition the HERMES experiment has been

built at the eastern point where the electron beam is first polarised and then

collided with a stationary hydrogen-, deuterium- or helium-gas target for the

purpose of measuring the spin-structure of the nucleon.
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2.2 Overview of the H1 Detector

The H1 detector is a multi-purpose detector designed for studying ep interac-

tions produced by the HERA machine. It provides nearly hermetic coverage

of the interaction region, the main limitation coming from the space occupied

by the beampipe itself. A right-handed Cartesian coordinate system is used to

describe the orientation of the detector, such that the z-axis follows the direc-

tion of the proton beam, the y-axis points vertically upwards with respect to

the Earth’s surface and the x-axis points to the centre of the HERA machine.

The origin of the coordinate system is the nominal interaction point within

the detector.

Given the detector’s cylindrical symmetry, it is also convenient to use cylin-

drical polar coordinates at times and indeed it is usual in the description of

the detector components to switch between the two systems. In this system r

lies perpendicular to the z coordinate, the polar angle is defined as θ = 0◦ in

the proton beam direction, θ = 180◦ in the electron beam direction. Finally

the azimuthal angle φ is defined such that it is positive-valued for all positive

values of y.

Another useful variable used for describing the detector is pseudorapidity,

defined as η = − ln(tan θ
2
). The proton has a substantially larger momentum

than the electron with the result that the majority of the products of the

ep interactions are produced with large positive values of pseudorapidity in

a region also known as the “forward” region. This asymmetry is mirrored

in the design of the H1 detector so that the forward region is more highly

instrumented than the “backward” region (the region having large negative

values of pseudorapidity).

Figure 2.2 shows a schematic view of the H1 detector. The nominal in-

teraction point is surrounded by tracking detectors which are divided into a

central, a forward and a backward part. The tracking detectors are surrounded

by calorimetry; the Liquid Argon Calorimeter (LAC) which covers the central
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and forward regions, a backward calorimeter and the PLUG calorimeter which

covers the forward region very close to the beampipe.

The calorimeters are contained within a 1.15 T homogeneous magnetic field

provided by a superconducting magnet. The iron return yoke of this magnet is

instrumented with streamer tubes which provide calorimetry for those particles

escaping the main calorimetry. As these particles are in the tail of the hadronic

energy distribution the instrumented iron is also known as the “Tail Catcher”.

Forward of the Tail Catcher is the Forward Muon Detector (FMD), which is

composed of six layers of drift chambers separated by a toroidal magnet.

The Time-of-Flight system, which is used to reject background, consists of

several plastic scintillators positioned at various points along the beampipe.

The Luminosity System consists principally of the Electron Tagger located at

z = −33.4 m and the Photon Detector at z = −103.1 m. These two detectors

are used to measure the Bethe-Heitler process ep → epγ which has a precisely

calculable cross-section in QED.

There are numerous subdetector components. The following detail those

parts of the detector which are of particular relevance to this measurement.

For a more complete and detailed description of the H1 detector see [54, 55].

2.3 Tracking

Figures 2.3 and 2.4 show the layout of the H1 tracking system longitudi-

nally and radially respectively. Closest to the beampipe is the Central Sili-

con Tracker (CST), which consists of two concentric cylinders of double sided,

double metal silicon sensors allowing track reconstruction down to several hun-

dred μm. This device is surrounded by the Central Track Detector (CTD),

which is composed of two multiwire proportional chambers (MWPC), two z

drift chambers and two Jet chambers.
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Figure 2.3: The H1 Tracking System viewed longitudinally.

Figure 2.4: The H1 Tracking System viewed radially.
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2.3.1 The Central Track Detector

The Central Inner and Outer proportional chambers (CIP and COP) [56] are

used primarily for triggering purposes as MWPCs have an intrinsically fast

response time. The Central Inner and Outer z-chambers (CIZ and COZ)

[57, 58] are drift chambers designed to provide an accurate measurement of

the z-position of tracks originating from the interaction vertex, hence their

sense wires are strung perpendicular to the beampipe with a drift direction in

the z direction. The main purpose of the Central Jet Chambers (CJC1 and

CJC2) [59] is to provide an accurate measurement in the r − φ plane, hence

their sense wires run parallel to the beampipe.

The combined angular coverage of the CTD is 25.0◦ ≤ θ ≤ 155.0◦, with a

radial coverage of 150 mm ≤ r ≤ 850 mm. The CJC has a spatial resolution

of σrφ = 170 μm and σz = 22.0 mm while the corresponding quantities for the

z-Chambers are σrφ = 25 and 58 mm and σz = 350 μm [54].

2.3.2 The Forward Track Detector

The Forward Track Detector (FTD) provides track detection in the forward

region with an angular coverage of 7.0◦ ≤ θ ≤ 25.0◦. It consists of three iden-

tical supermodules, shown in figure 2.3, each of which contains three “Planar”

drift chambers (where the sense-wires have the same orientation as the CJCs)

one MWPC, one “Radial” drift chamber (where the sense-wires have the same

orientation as the CIZ and COZ) and one transition radiator. The momentum

resolution of the FTD is σp/p
2 < 0.03 GeV−1 and its angular resolution is

σθ,φ < 1 mrad [60].

Most of the tracks used in this analysis are reconstructed using the CTD

and are used to determine the interaction vertex, the track of the scattered

electron and the hadronic final state.
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2.4 Calorimetry

The calorimetry of the main H1 detector is composed of four main parts, as

can be seen in figure 2.2. The Liquid Argon Calorimeter (LAC) is by far the

greatest of these components, with an angular coverage of 4◦ ≤ θ � 154◦

covering most of the central and forward regions. The SPACAL calorimeter

covers the backward region with an angular coverage of 153◦ < θ < 177.8◦

being limited by the beampipe. The PLUG calorimeter covers the very forward

region closest to the beampipe (0.6◦ � θ � 3.5◦) closing the gap between

the forward part of LAC and the beampipe. Finally, the encompassing Tail

Catcher provides hadronic calorimetry in the region 4◦ < θ < 176◦.

In this measurement the LAC plays the principle role in the detection and

measurement of the scattered electron at high Q2, as well as measuring the

mass of the hadronic final state MX . It is also used to determine the leading

edge of hadronic activity in the event, and thus the edge of the rapidity gap.

The PLUG calorimeter is used with the other forward detectors to define an

empty forward region to indicate an elastic proton and rapidity gap. The

SPACAL plays only a minor role in this analysis and the Tail Catcher was not

used at all1; they will not be described in any further detail.

2.4.1 The Liquid Argon Calorimeter

The LAC [61] is divided up into eight “wheels” as shown in figure 2.5(a), each

wheel having an innermost electromagnetic part (EMC) followed by a hadronic

part (HAC)2. Each wheel is segmented in φ into eight identical octants, shown

in figure 2.5(b). This structure leads to dead regions in the detector, “z-cracks”

between adjacent wheels and “Phi-cracks” between each adjacent wheel-octant,

which need to be accounted for at the analysis stage.

The LAC is a non-compensating sampling (or sandwich) calorimeter de-

1The Tail Catcher has an energy resolution of σ(E)/E ≈ 100%/
√

E [GeV] for pions [54].
2As can be seen in the diagram, the backwardmost wheel only has an EMC part and the

outermost forward wheel only a HAC part.
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Figure 2.5: The Liquid Argon Calorimeter showing a) The wheel structure and

b) The wheel octant structure.
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signed to provide clear particle identification of electrons, muons and neutral

particles, as well as containing high energy hadronic jets. It has a high gran-

ularity for this purpose and contains 44,000 cells, each cell containing plates

of absorber (or sampling) medium, the active medium which is liquid Argon,

one readout plane and one high voltage plane.

The absorber medium used in the EMC is lead which results in the elec-

tromagnetic shower being almost always entirely contained within the EMC.

The EMC cells are further segmented longitudinally to have 3 to 4 absorber

plates (20 to 30 radiation lengths) within them and the orientation of the cells

is optimised for the identification of the scattered electron. Test beams showed

that the EMC has an energy resolution of σem(E)/E = 0.11/
√

E [GeV]⊕0.01

for electrons [62].

The HAC absorber medium is stainless steel, with a longitudinal segmen-

tation of between 4 and 6 plates in each cell (over 5 to 8 interaction lengths).

The LAC is non-compensating and so the charge output for hadrons is ≈ 30%

smaller than for electrons, requiring an offline correction for the HAC to the

signal measured on the electromagnetic scale. The HAC was found to have an

energy resolution of σhad(E)/E = 0.50/
√

E [GeV] ⊕ 0.02 for charged pions in

test beams [62].

2.4.2 The PLUG Calorimeter

The PLUG calorimeter was specifically designed to fill the gap in acceptance

between the LAC and the beampipe (0.6◦ � θ � 3.5◦) in order to minimise the

loss of transverse momentum from the H1 detector in the forward direction.

Given the geometrical constraints the PLUG is very compact in design. It is

also a sampling calorimeter and uses 9 sheets of copper as the absorber medium

interleaved with 8 layers of large area silicon detectors as the active medium.

Owing chiefly to the large amount of dead material in front of the detector it

has a rather poor resolution of σ(E)/E ≈ 150%/
√

E [GeV] [63].
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Figure 2.6: The Time of Flight System.

2.5 The Time of Flight System

The Time of Flight (ToF) system is used to reject background from beam-wall

and beam-gas interactions. It works on the principle that interactions arising

from these background processes occur at a different time to those arising

from the ep interactions at the nominal vertex within the main H1 detector.

Three plastic scintillators, used for their intrinsically good timing resolution

of 1 ns [64], are placed along the beampipe at the positions shown in figure

2.6. Two “Veto Walls”, large layers of scintillator, situated at z = −650 cm

and z = −810 cm supplement the system. Any signals in these scintillators

occuring at a time consistent with background processes can be used to reject

events.

2.6 The Luminosity System

The luminosity measurement at H1 relies on measuring the rate of the Bethe-

Heitler process ep → epγ [65] which has an accurately calculable cross-section

within QED. The measurement is made using the Electon Tagger (ET) at

z = −33.4 m and the Photon Detector (PD) at z = −103.1 m shown in figure

2.7. The rate measurement uses the PD alone, using coincident hits in the ET
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Figure 2.7: The Luminosity System.

to verify the events. This online measurement is used by the HERA opera-

tion crew to optimise luminosity delivery at the start of each fill. Offline the

measured rate is corrected for background events using the methods discussed

previously.

2.7 The Forward and Very Forward Compo-

nents of the H1 Detector

In elastic diffractive DIS processes, described in section 1.4, the forward region

of the H1 detector is empty. The definition of an empty forward region relies

on the use of some of the forward and very forward detectors at H1, which are

described in the following.

2.7.1 The Forward Muon Detector

The Forward Muon Detector [66] consists of two sets of three double-layers of

drift chambers which are separated by a toroidal magnet, as can be seen in fig-

ure 2.8. Four of the double-layers are constructed with their wires strung tan-

gentially to the beampipe to enable a measurement of θ, a “Theta-layer”, two

of the double-layers have their wires strung radially to enable a φ measurement,

a “Phi-layer” and the overall angular coverage is 3◦ < θ < 18.0◦. The presence
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Figure 2.8: The Forward Muon Detector.

of the toroid magnet allows for a momentum measurement to be made in the

range 5 < p < 100 GeV. It also means that the post-toroid layers are inherently

noisier than the pre-toroid layers, due to the amount of dead-material and syn-

chrotron radiation, and for the purposes of this analysis only the pre-toroid

layers are considered.

2.7.2 The Proton Remnant Tagger

The Proton Remnant Tagger (PRT), at z = 24 m, consists of seven individ-

ual detectors, each constructed from two separate layers of plastic scintillator

separated by 2 mm of lead, which surround the beampipe in the configuration

shown in figure 2.9. A coincidental hit in both layers of a detector, at a time

consistent with an ep interaction in the main detector, results in a signal being

registered for data acquisition.
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Figure 2.9: The Proton Remnant Tagger.

2.8 Data Acquisition and Triggering

The time between consecutive ep interactions is determined by the distance

between beam bunches and is 96 ns. However, the time taken to read all of the

information from the various detector components is an order of magnitude

greater than this which would result in the loss of most ep events. When the

experiment is not recording ep events it is said to be running in deadtime.

To reduce this problem the H1 detector uses a multi-stage triggering system

to reject background events and record as many ep interactions as possible, a

schematic of which is shown in figure 2.10.

At the first trigger level (L1) each detector component provides informa-

tion, called “trigger elements”, to the central trigger logic (CTL) which makes

logical combinations of this information to form 128 “subtriggers”. Not all

detectors can provide this information within 96 ns, the limiting component

being the LAC which requires 2.1 μs. The full detector information is there-

fore sent into pipelines where it is stored until all detectors have provided their
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Figure 2.10: The H1 Trigger System.
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trigger elements. If the CTL finds that the event fulfills any one of the 128

subtrigger conditions then the corresponding event is read from the pipeline

and passed to the next trigger level. Thus the L1 trigger level is deadtime free

as any rejected events are simply overwritten in the pipeline.

The next level of triggering, L2, takes advantage of the increased amount of

time available (20 μs) to make a decision to run more complicated algorithms

on the available information. L2 can therefore base a decision on neural net-

works as well as topological conditions. Again if the event passes any of the

L2 criteria it is passed onto the next level in the chain. In theory this would

be level 3, which has 2 ms time to make a decision, but to date this has not

been implemented.

The next level is therefore L4 where the full event information is available

and a partial event reconstruction is performed. L4 runs asynchronously to the

HERA machine on a processor farm of 32 PCs. Each event that was accepted

by an L1 trigger is verified with higher precision and the events are written to

tape at a rate of ≈ 10 - 20 Hz.

Finally, although the events have been written to tape a further level of

processing, L5, performs a complete reconstruction of the event and determines

to which physics event class it belongs. If none is found then the event is

rejected, otherwise the event is written to a Data Summary Tape (DST) which

then provides the basis for physics analysis.
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Chapter 3

Selection of Diffractive DIS

Events

In this chapter the method used to select the high Q2 diffractive DIS event

sample is presented. Section 3.1 details the inclusive high Q2 NC DIS selection,

while in section 3.2 the method of selecting the diffractive subsample of these

events is given. Distributions of event sample quantities are presented and

compared with simulations in sections 3.1.6 and 3.2.6 for the inclusive and

diffractive samples, respectively.

3.1 Selection of High Q2 NC DIS Events

The high Q2 NC DIS event sample is defined as being the sample of events with

a good electron candidate in the LAC. The efficiency of finding the electron

candidate and sources of background to these events must be well understood.

3.1.1 The High Q2 Electron Finder

The principle criteria for the identification of an electron at high Q2 are based

solely on the expected calorimeter topology. This is the observation of a com-

pact and isolated energy deposit in the electromagnetic part of the LAC with

little or no activity in the hadronic part of the LAC behind this deposit. The
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electron finder QESCAT [67] used in this analysis employs estimator variables

which quantify the shower-shape properties of an electron candidate and then

performs a selection based on these variables.

The first set of estimators are used to define a compact cluster. The total

energy of the electron candidate cluster, ETOT, must be greater than 5 GeV

and the number of cells assigned to the candidate, NCEL, must be greater

than 3. The fraction of the total energy which is contained in the first 2 layers

of the EMC (increased to 3 layers in the forward region), EAEM, must be

large and the fraction of EAEM which is in the hot core of the cluster, EAHN,

must also be large. The transverse dispersion of the cluster, EATR, defined in

equation 3.1, must be small.

EATR =

√√√√∑
i

EiR
2
i

Vi
−
(∑

i

EiRi

Vi

)2

(3.1)

In this equation both sums are over each cell of the electron candidate and E

is the energy of the cell, R the radius of the cell and V the volume.

An isolation cone, defined in η − φ space, is then used to sample the

calorimeter deposits surrounding the electron candidate cluster. The frac-

tion of energy in the isolation cone should be small and conversely the ratio

of the total energy of the electron candidate to the isolation cone energy,

EAIF(=ETOT / isolation cone energy), should be large. The hadronic energy

in the isolation cone, EAHD, should also be small.

Details of the selection criteria are shown in table 3.1. Note that in the

forward region of the LAC the selection cuts are loosened due to the limited

resolution. In the case that QESCAT identifies more than one electron can-

didate the scattered electron is taken to be the candidate with the highest

transverse momentum.

The efficiency of QESCAT for finding electrons is found to be > 99%

[68], except in those regions of the detector where the electron can directly

enter the hadronic section of the calorimeter without causing a shower in the
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Estimator Variable Description Cut value

ETOT Total cluster energy > 5 GeV

EAEM Energy fraction in first 2 > 0.94 + 0.05 cos(2θ)

(3 in IF) layers of EMC

EAHN Energy fraction in Hot Core > 0.8(0.4) in bwd (fwd) region

(Hot Core Energy / EAEM)

EATR Transverse dispersion < 7.5(3) in bwd (fwd) region

NCEL Number of cells assigned to > 3

electron candidate

EAIF Energy fraction in isolation cone EAIF > 0.98

(ETOT / Isolated Energy)

EAHD Hadronic energy in EAHD ≤ 300 MeV and

Isolation Cone EAIF > 0.95

Table 3.1: Table of the cluster estimators, the description of the parameters

and the cut values which are used by QESCAT.
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electromagnetic section. These inefficient regions are removed from the event

sample.

The probability of misidentifying a hadronic particle as an electron, found

using simulated NC events, is found to be < 0.2% [68]. The additional re-

quirement of demanding a track that points to the electron energy cluster

from the primary vertex1, a “Track-link” requirement, efficiently reduces this

background. The selection is performed by making a cut on the distance of

closest approach (dca) of an extrapolated track to the electron candidate. A

loose requirement of dca < 12 cm is chosen to keep the selection efficiency

high [68].

3.1.2 The Detector Operation and Trigger Selections

In order to ensure that the detector efficiency is high and stable a run selection

is applied which selects only those runs where those parts of the H1 detector

which are essential to this analysis are operational. In addition to the LAC the

SPACAL calorimeter and CTD are required for the final state measurement,

as well as helping to reduce backgrounds, as discussed in 3.1.4. The lumi-

nosity system is essential for the accurate determination of the luminosity

measurement and the ToF system is again vital for reducing backgrounds.

Observations of periods of coherent noise in the LAC which lead to a loss of

efficiency in electron identification require a further run selection to remove

these periods.

The sub-triggers used to keep high Q2 NC events, together with a brief

description, are presented in table 3.2. An event is kept in the analysis if

any of these sub-triggers fired and the event also subsequently passed the L4

verification trigger level.

The energy thresholds of the triggers are increased up to a factor of 5 in the

very forward regions of the LAC, again due to the poorer resolution. Regions

of the LAC for which the ST67 trigger is not 100% efficient are removed from

1see section 3.1.3

60



Subtrigger Description

ST67 Energy in EMC > 3.8 GeV

ST71 Central Vertex && ≥ 3 Central Tracks with pT > 420 MeV &&

A Track Combined with a Cluster in the LAC

ST75 Energy in EMC > 2.8 GeV && ≥ 1 Central Track with pT > 420 MeV

ST77 Missing Transverse Energy in the LAC

Table 3.2: A description of the high Q2 NC DIS Triggers used in this analysis.

the sample [13].

3.1.3 Reconstruction of the Inclusive Final State

The reconstruction of a primary vertex is essential for measuring the final state

accurately and also for reducing background from non ep events and out-of-

time events. Vertices found by the CTD (Central Vertices) are supplemented

at low y or high Q2 by vertices found by the FTD (Forward Vertices) in order to

keep events where the hadronic system or the electron track respectively are at

the edge of the acceptance of the CTD. All events are required to have a vertex

reconstructed to within 35 cm of the nominal ep interaction point. Simulations

of the z position of the vertex, zvtx, show both a shift in the mean position

and that the simulation underestimates the width of the zvtx distribution. The

simulated zvtx distribution is reweighted to the data distribution resulting in

a good description, as can be seen in figures 3.2 and 3.9.

The measurement of the hadronic final state relies on the use of both the

full calorimeter and tracking information. This overconstrains the final state

and a variety of methods can be used to reconstruct the kinematic variables

given in equation 1.1. It is possible to measure the kinematics either from
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the electron information alone, the hadronic information alone, the angular

information of the electron and hadronic system (the Double-Angle or DA

method), or a combination of the information.

The Electron Method

The Electron method uses only information from the scattered electron to

determine the kinematics of the ep interaction. The electron beam energy, Ee,

is required together with the energy and angle of the scattered electron, E
′
e

and θe. The Electron method is defined as:

Q2
e = 4EeE

′
e cos

θe

2

2

, ye = 1 − E
′
e

Ee

(1 − cos θe)

2
, xe =

Q2
e

sye
(3.2)

The Double-Angle Method

The Double-Angle (DA or da) method combines the angular information of

both the scattered electron and the hadronic final state to reconstruct the

kinematics of the ep interaction. It is defined as:

yda =
sin θe(1 − cos γh)

Υ
, Q2

da =
4E2

e sin γh(1 + cos θe)

Υ
, xda =

Q2
da

syda

(3.3)

where γh is the polar angle of the hadronic system and

Υ = sin γh + sin θe − sin (θe + γh).

The Σ Method

The Σ method combines information from both the scattered electron and the

hadronic system. It is defined as:

yΣ =
Σ

Empz

, Q2
Σ =

(E
′
e sin θe)

2

1 − yΣ

, xΣ =
Q2

Σ

syΣ

(3.4)

where Σ and Empz are defined as:

Σ =
∑
i�=ne

Ei − pz,i, Empz =
∑

i

Ei − pz,i. (3.5)
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The summation in the expression for Σ is over all final state objects (FSO)

in the detector except for the scattered electron, ne, whereas the summation

in the expression for Empz is over all FSOs in the detector. A final state

object here refers to an optimised combination of tracking and calorimeter

information which avoids double-counting [69].

The eΣ Method

Two reconstruction methods were considered for this analysis. The first method

considered is called the eΣ method as it combines the excellent precision of

the electron-only method in measuring Q2 with the best reconstruction of x

at the inclusive level which uses the Σ method given in equation 3.4. The eΣ

method is:

Q2
eΣ = Q2

e, xeΣ = xΣ, yeΣ =
Q2

sx
. (3.6)

The y Weighted Average Method

The second method considered for this analysis is called the “y weighted aver-

age method” as it combines the excellent precision of the electron method at

high y with the excellent precision of the DA method at low y. This method

has the best resolution for inclusive diffraction and is the default method for

this analysis. The reason for its superior resolution is that the hadronic final

state is completely contained in the main calorimeter in the case of diffraction,

as there are no forward energy losses, and so the resolution in the hadronic an-

gle and therefore the DA method is excellent. The y weighted average method

is:

y = y2
e + yda(1 − yda), Q2 =

4E2
e (1 − y)

tan2 θe

2

, x =
Q2

sy
(3.7)

3.1.4 Background Rejection

The main sources of non ep background in the NC sample are cosmic ray and

beam-halo events which produce muons. These muons can be misidentified as

the scattered electron. The requirement of a primary vertex and a track-link
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efficiently reduce this background to small levels [68]. The contamination is

also reduced by requiring the CJC timing information to be consistent with

an ep event. This contamination is finally reduced to negligible levels [68] by

the application of dedicated background finders [70].

Sources of ep-induced background to the high Q2 NC sample are photopro-

duction, low Q2 DIS, QED Compton scattering and γγ events. Photoproduc-

tion and low Q2 DIS, in which the scattered electron escapes the main detector

and part of the final state is misidentified as the electron, are efficiently re-

duced by the track-link requirement. These events are also only found at high

values of y and low values of E
′
e and so additional cuts on y and an effective

cut on the scattered electron energy reduce this source of contamination to

small levels [13,68]. In addition a cut on Empz (the total E − pz) of the event

reduces the photoproduction background. In a DIS event the kinematics de-

termine that Empz = 2Ee = 55 GeV, whereas a photoproduction event will

have a much lower value of Empz by virtue of the missing electron. The event

selection requires that Empz > 35 GeV for all events in this measurement,

which also reduces the Initial State Radiation corrections (see section 4.3.4).

The remaining photoproduction background is removed by studying scat-

tered electron candidates that have the opposite sign charge to the electron

beam, i.e. the track assigned to the electron candidate is measured to have a

negative charge. Assuming that in a photoproduction event the track wrongly

assigned to part of the hadronic final state has an equal probability of be-

ing positive or negative, then the total number of photoproduction events

in the sample is twice the number of opposite-sign charge events and this

background can be statistically subtracted. For electron energies less than

18 GeV this background is efficiently removed by applying this technique,

above this electron energy the technique becomes less efficient due to mis-

measurement of the charge of high pT tracks. Using Pythia to simulate photo-

production, the photoproduction background is seen to fall to negligible levels

for E
′
e > 18 GeV. The strategy employed in this analysis is to apply the tech-
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nique only for E
′
e < 18 GeV. The systematic uncertainty arising from this

procedure is cautiously estimated to be given by the largest subtracted value

in any of the affected bins.

QED Compton and γγ background events are rejected via their distinctive

final state; two electromagnetic clusters of energy with no hadronic deposits

and only one or two tracks.

3.1.5 The Final Inclusive DIS Selection

The primary requirement of the inclusive DIS selection is that there is a good

electron candidate in the LAC, as defined in section 3.1.1. Further topological

requirements demand a good ep interaction vertex and a track linking that

vertex with the electron candidate in the LAC. Regions of the detector where

the efficiency for electron identification is low are removed from the event

sample. In addition one of the high Q2 NC triggers must have fired and the

event subsequently passed the L4 verification level.

Kinematic cuts on the y and Empz of the event and an effective cut on the

electron energy reduce the photoproduction and low Q2 DIS backgrounds to

negligible levels. The remaining backgrounds from elastic QED Compton, elas-

tic γγ events and beam-induced backgrounds are removed via the application

of the dedicated background-finders discussed in section 3.1.4.

The final selection cuts used to select high Q2 NC events are summarised

in table 3.3.

3.1.6 Inclusive DIS Control Distributions

In this section control distributions are used to demonstrate the level at which

the high Q2 NC DIS event sample is understood. Sets of distributions are

shown which compare the data to the sample of events made with the DJANGO

MC simulation. The electron calibration described in [68] is also briefly stud-

ied.
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Selection Description Values

A good electron candidate in the LAC See Section 3.1.1

High Q2 NC triggers ST67 ‖ ST71 ‖ ST75 ‖ ST77

Track pointing at the electron cluster dca ≤ 12.0 cm

(not required for θe < 30◦)

Electron not in a crack in the LAC z-crack at 15.0 < ze
impact < 25.0 cm

2◦ either side of Octant edge

A Central or Forward vertex Forward vertices only accepted if

ye < 0.1 ‖ Q2
e > 1000.0 GeV2

z position of vertex −32.2 < zvtx < 37.8 cm

CJC Timing consistent with ep event ≤ 25 ns of nominal interaction time

y cut ye < 0.9

Empz cut Empz > 35.0 GeV

Electron Energy cut ye < 0.63 ‖ Q2
e > 890.0 GeV2

Not a QED Compton / LPair event See Section 3.1.4

Event not found by Background finders See Section 3.1.4

Table 3.3: A list of the cuts made to select the inclusive high Q2 NC DIS event

sample.
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General Inclusive DIS Control Distributions

Figure 3.1 shows the energy, θ and φ distributions of the electron in the inclu-

sive high Q2 NC DIS event sample for both data and simulation. In general

the agreement between data and the DJANGO simulation is very good. The

electron energy distribution, which peaks as expected at the electron beam

energy, is well described by DJANGO although the predicted resolution in

the simulation is better. This can be attributed to detector resolution effects

not modelled by the detector simulation; as the final event sample does not

show this effect no attempt was made in this analysis to correct the simula-

tion. The θ distribution shows the expected peak at the highest values of θ,

corresponding to the edge of the LAC, and the simulation describes this well.

The φ distribution shows some detailed structure, corresponding to regions of

the detector that are removed from the event sample (see section 3.1.1). This

structure is also modelled by the simulation.

The z position of the ep interaction vertex, zvtx, and the z position at which

the electron enters the LAC, ze
impact, are shown in figure 3.2. The zvtx distribu-

tion, after reweighting (see section 3.1.3), is well described by the simulation.

The ze
impact distribution is also well described by the simulation, including two

notable features; the z-crack at 15.0 < ze
impact < 25.0 cm and the edge of the

BBE at ze
impact = 152.5 cm, both of which can be clearly seen.

Figure 3.3 shows the distributions of y, Empz and Q2 for the inclusive high

Q2 NC DIS event sample. The y distribution is peaked at low values of y and

the effect of the cut ye < 0.63 ‖ Q2
e > 890.0 GeV2 can be clearly seen; both

features are described by the simulation. The Empz distribution shows the cut

of Empz > 35 GeV and peaks at 2Ee = 55 GeV, as expected; the distribution

is well described by the simulation. The Q2 distribution peaks at low Q2 and

then decreases rapidly with increasing Q2, as expected from equation 1.4.
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Figure 3.1: Distributions of the energy (top), the polar angle (middle) and the

azimuthal angle of the scattered electron. The data are shown as points, the

predictions of the DJANGO simulation are shown as solid red histograms.
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Figure 3.2: Distributions of the zvtx of the event (top) and ze
impact shown in two

ranges, −190 < ze
impact < 0 cm (middle) and 0 < ze

impact < 300 cm (bottom).

The data are shown as points, the predictions of the DJANGO simulation are

shown as solid red histograms. 69
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Figure 3.3: Distributions of the reconstructed y of the event (top), the Empz

(middle) and log Q2 (bottom). The data are shown as points, the predictions

of the DJANGO simulation are shown as solid red histograms.
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The Electron Calibration

The procedure used to calibrate the electron energy measured in the LAC

is described in detail in [68]. The energy of the electron as measured using

the DA kinematic reconstruction method, Eda, is used as the calibration scale.

Figure 3.4 shows the ratio of the calibrated energy to Eda, in four bins of ze
impact

and as a function of φ, for data and the DJANGO simulation. The agreement

between data and simulation is very good and an uncertainty of 1%, increasing

to 3% in the forward region, on the electromagnetic energy scale is obtained.
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3.2 Selection of Diffractive DIS events

The diffractive subsample of the high Q2 inclusive NC DIS event sample is de-

fined as the sample of events where there are two distinct final-state systems,

X and Y , separated by a large gap in rapidity, signalling a colour-singlet ex-

change. The selection demands that a quasi-elastic proton (Y ), which escapes

undetected down the beampipe, is well separated from the photon-dissociation

system X, which is contained in the main detector.

It is experimentally possible to measure the leading proton using the For-

ward Proton Spectrometer (FPS) and thus measure MY and t. This method

is unfortunately very limited in statistics by the geometric acceptance of the

FPS. The selection method presented here is known as the rapidity gap se-

lection technique and relies on the indirect detection of the leading proton by

demanding no activity in the forward detectors of H1. The cross-section is

defined for the kinematic range:

MY < 1.6 GeV, |t| < 1.0 GeV2 (3.8)

The variable ηmax quantifies, at a given noise threshold, the rapidity of

the FSO which is furthest forward in the LAC. A pure sample of diffractive

events can be selected by demanding ηmax < 2.0, with standard DIS events

predominantly being at larger values. However, the statistics and phase-space

of the sample can be vastly improved by lowering this cut; the forward detectors

of H1 must then be used to guarantee the rapidity gap between the X and Y

systems. The cut on ηmax used in this analysis is

ηmax ≤ 3.3. (3.9)

The principle component used in the forward detector selection is the FMD.

The FMD was originally designed to measure high energy muons but it is

also sensitive to secondary particles resulting from proton dissociation decay

products interacting with the beampipe and so provides an effective veto for

proton dissociation events. The Proton Remnant Tagger was designed to veto
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events with activity in the forward direction. The PLUG calorimeter covers

the gap in rapidity between the LAC and the FMD and requiring no deposit

in this calorimeter above noise levels guarantees the large rapidity gap.

The run selection for these detectors only demands that the FMD and

PLUG be operational. Periods when the PRT were not operational are treated

as an inefficiency incorporated into the detector simulation. Run periods when

the PRT or PLUG experienced high levels of noise are excluded from the event

sample.

The following details the procedure used for selecting the diffractive event

sample and estimating the uncertainty in the final measurements which result

from the current lack of understanding of the underlying process.

3.2.1 The Forward Muon Detector Selection

Only the three pre-toroid layers of the FMD are used for this analysis as they

are shielded from synchrotron radiation by the toroidal magnet unlike the

noisier post-toroid layers. The total number of hit-pairs in each of these layers

is used to perform the selection, thus the FMD is used very much as a tagging

detector. Demanding activity at the level of one total hit-pair in the first two

layers of the FMD, and two total hit-pairs in the first three layers of the FMD

reduces the level of background in these detectors to ∼ 2.7%. This can be

corrected for using “Random Trigger” events, events that are taken without

a physics trigger, which allows the level of noise as a function of time to be

studied. Simulated noise is then added in event by event to the simulation

based on these studies.
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The activity after the addition of random noise events in the FMD detector

for inclusive DIS events with forward activity (ηmax > 3.3), i.e. non-diffractive

events, is shown in figure 3.5. It can be seen that the simulation’s description

of the data is quite poor. Studies revealed that the only remaining source

for this discrepancy must be the DJANGO event generator1. The simulated

distribution for the sum of the first two layers of the FMD was therefore

reweighted to the data distribution for the DJANGO simulation only in order

to obtain a better description of non-diffractive events and thus reject them

from the event sample. Although the layers are not independent and therefore

a perfect description was not achievable, the resulting description, seen in

figure 3.5, is sufficient for this analysis.

The uncertainty of the efficiency of the FMD for rejecting non-diffractive

events is estimated as 10%, which is the change in the efficiency of the FMD

after reweighting; this is included as a systematic uncertainty on the final

result. The final results were found to be independent of this reweight.

The diffractive event selection requires that there be less than two hit-pairs

in the sum of the first two layers and less than three hit-pairs in the sum of

all three pre-toroid layers:

1∑
i=0

NFMD,i ≤ 1 (3.10)

2∑
i=0

NFMD,i ≤ 2. (3.11)

3.2.2 The Proton Remnant Tagger Selection

Shown in figure 3.6 is the activity in the PRT for inclusive DIS events with

forward activity. It can be seen that the efficiency of the PRT for detecting

1Possibile sources that were ruled out are a.) the model of forward energy flow used,

b.) a year-dependence of the data not included in the detector simulation [72], c.) an

incorrect year-dependent change in the detector simulation [73], d.) a Q2-dependence of

the data [74] and e.) trivial error [71]. None of these five possibilities could produce the

observed discrepancy.
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events with forward activity is consistently overestimated in the DJANGO

simulation. This can be attributed to the poor simulation of the very for-

ward region in the standard detector simulation and is corrected scintillator

by scintillator by applying a correction factor which degrades the efficiency

in the simulation to match the data. After these corrections are applied the

DJANGO simulation still shows more activity than the data, attributed to the

simulation predicting more correlations between layers than the data, and so a

further downgrading of the overall efficiency of the simulation is applied. The

final results are shown in figure 3.6. Note that the final two layers of the PRT

are excluded from the analysis as they are between four and five times noisier

than the other layers which have a negligible level of noise.

The diffractive event selection requires no activity in the PRT:

4∑
i=0

NPRT,i = 0. (3.12)

3.2.3 The PLUG Calorimeter Selection

The DJANGO simulation also lacks any simulation of noise in the PLUG

calorimeter; this was again corrected using randomly-triggered events to add

noise into the simulation event by event. The energy scale of the PLUG

calorimeter is only known to ±30% which is included as a systematic uncer-

tainty on the final results. The energy distribution for the PLUG calorimeter

for events with forward activity is shown in figure 3.7; again the description

is quite poor. However, the efficiency for the PLUG calorimeter rejecting a

non-diffractive event (ηmax > 3.3) with an energy greater than 3.5 GeV is well

described by the simulation.
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Figure 3.7: The energy distribution in the PLUG calorimeter. The data are

shown as points, the predictions of the DJANGO simulation are shown as solid

red histograms.

The diffractive event selection requires no activity in the PLUG calorimeter

above noise levels:

EPLUG ≤ 3.5 GeV. (3.13)

3.2.4 The Stability of the Forward Detector Selection

Given the poor description of the data by the available model it is important to

determine the extent to which the event selection is dependent on this descrip-

tion. Table 3.4 shows the efficiencies, for data and the DJANGO simulation,

of rejecting events with forward energy flow (ηmax > 3.3) for several combina-

tions of the forward detectors before and after all corrections and reweights.

The efficiency increases with the number of detectors used in the selection and

there is very good agreement between data and simulation for the final forward

detector selection after applying the reweights.
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Selection Data Simulation Simulation (corrected)

FMD ‖ PRT || Plug 0.94 0.97 0.94

PRT ‖ Plug 0.87 0.93 0.88

FMD ‖ Plug 0.91 0.94 0.91

FMD ‖ PRT 0.83 0.92 0.83

FMD 0.73 0.83 0.73

PRT 0.40 0.59 0.40

Plug 0.79 0.83 0.81

Table 3.4: The efficiency of several diffractive selections for rejecting events

with forward energy (ηmax > 3.3).

Selection Description Values

No forward deposit in the LAC ηmax ≤ 3.3

No activity in the FMD
∑1

i=0 NFMD,i ≤ 1

∑2
i=0 NFMD,i ≤ 2

No activity in the PRT
∑4

i=0 NPRT,i = 0

No activity in the PLUG EPLUG ≤ 3.5 GeV

Table 3.5: The list of cuts used to select diffractive events.
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MC Allowed Phase-Space

DJANGO xIP > 0.15 ‖ MY > 5.0 GeV

RAPGAP xIP < 0.15 & MY ≤ Mproton

Table 3.6: The allowed phase-space for the DJANGO and RAPGAP simula-

tions.

3.2.5 The Final Diffractive Event Selection

The final selection used to select diffractive events restricts the photon-dissociation

system, X, to be fully contained in the main H1 detector while the Y system, a

quasi-elastic proton, escapes undetected down the beampipe. The two systems

are separated by a large gap in rapidity, guaranteed by the cut on ηmax < 3.3

and the lack of any activity in any of the PLUG (3.5 < η < 5.5), FMD

(5.0 < η < 6.5) or PRT (6.0 < η < 7.5) above noise levels. The cut values are

summarised in table 3.5.

3.2.6 Diffractive DIS Control Distributions

In this section control distributions are used to evaluate the level at which the

final high Q2 diffractive DIS event sample is understood. Several distributions

are shown which compare the data to the sample of events made with the

RAPGAP MC simulation, with background contributions modelled by the

DJANGO, COMPTON and LPAIR MC simulations. The hadronic calibration

described in [68] is also briefly studied.

To prevent overlapping in phase-space the DJANGO and RAPGAP simula-

tions are each restricted to non-diffractive DIS and diffractive DIS phase-space

respectively. The prescription used is given in table 3.6
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General Diffractive DIS Control Distributions

The electron energy distribution of the diffractive subsample of NC events,

shown in figure 3.8, is quite different from the inclusive sample, in particular

it shows no obvious peak at the electron beam energy. This behaviour is well

modelled by the sum of the RAPGAP MC simulation, which peaks at low

values of the electron energy, and the sum of the simulations of background

processes (dominated by DJANGO) which peak at the electron beam energy.

Both the θ and φ distributions resemble, as expected, lower statistic ver-

sions of their parent inclusive distributions shown in figure 3.1. Again the sum

of the RAPGAP simulation and the total of the background simulations model

the data well.

The zvtx and ze
impact distributions shown in figure 3.9 also resemble, as ex-

pected, lower statistic versions of the inclusive distributions shown in figure 3.2

and are very well described by the sum of the RAPGAP and background sim-

ulations. The distributions of y, Empz and Q2 are shown in figure 3.10. While

the Empz and Q2 distributions resemble their parent distributions in figure 3.3,

the y distribution is very different. The diffractive selection, specifically the

cut on ηmax < 3.3, constrains the measurement to low x and therefore high y,

hence the removal of the low y peak.

The Hadronic Calibration

The calibration of the hadronic final state is described in detail in [68]. The first

quantity of interest is the “PT balance”, which is the ratio of the PT of the total

hadronic system (P h
T ) and the PT of the electron (P e

T ). This would be equal

to unity for NC events in a perfect detector. The second quantity of interest

is the “y balance”, the ratio of y measured using the hadrons-only method

(yh) and y measured using the DA method (yda). This would again be equal

to unity in a perfect detector. Figure 3.11 shows plots of these two quantities

versus the “hadronic angle” (γh) which is the polar angle of the hadronic final

state. The agreement between data and the sum of the RAPGAP simulation

82



Electron Energy / GeV

0 10 20 30 40 50 60

# 
E

n
tr

ie
s

0

50

100

150

200

250

300

350

400

Electron Energy / GeV

0 10 20 30 40 50 60

# 
E

n
tr

ie
s

0

50

100

150

200

250

300

350

400

Electron Energy / GeV

0 10 20 30 40 50 60

# 
E

n
tr

ie
s

0

50

100

150

200

250

300

350

400

Electron Energy / GeV

0 10 20 30 40 50 60

# 
E

n
tr

ie
s

0

50

100

150

200

250

300

350

400 H1Data

Rapgap

Background

SumMC

 / radeθ

0.5 1 1.5 2 2.5 3 3.5 4

# 
E

n
tr

ie
s

0

200

400

600

800

1000

1200

1400

1600

 / radeθ

0.5 1 1.5 2 2.5 3 3.5 4

# 
E

n
tr

ie
s

0

200

400

600

800

1000

1200

1400

1600

 / radeθ

0.5 1 1.5 2 2.5 3 3.5 4

# 
E

n
tr

ie
s

0

200

400

600

800

1000

1200

1400

1600

 / radeθ

0.5 1 1.5 2 2.5 3 3.5 4

# 
E

n
tr

ie
s

0

200

400

600

800

1000

1200

1400

1600 H1Data

Rapgap

Background

SumMC

 / radeφ

-4 -3 -2 -1 0 1 2 3 4 5 6

# 
E

n
tr

ie
s

0

50

100

150

200

250

 / radeφ

-4 -3 -2 -1 0 1 2 3 4 5 6

# 
E

n
tr

ie
s

0

50

100

150

200

250

 / radeφ

-4 -3 -2 -1 0 1 2 3 4 5 6

# 
E

n
tr

ie
s

0

50

100

150

200

250

 / radeφ

-4 -3 -2 -1 0 1 2 3 4 5 6

# 
E

n
tr

ie
s

0

50

100

150

200

250
H1Data

Rapgap

Background

SumMC

Figure 3.8: Distributions of the energy (top), the polar angle (middle) and the

azimuthal angle of the scattered electron. The data are shown as points, the

predictions of the RAPGAP simulation are shown as the solid red histograms,

the total background simulation predictions are the solid green histograms and

the sum of both are the solid blue histograms.
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Figure 3.9: Distributions of the zvtx of the event (top) and ze
impact shown in two

ranges, −190 < ze
impact < 0 cm (middle) and 0 < ze

impact < 300 cm (bottom).

The data are shown as points, the predictions of the RAPGAP simulation are

shown as the solid red histograms, the total background simulation predic-

tions are the solid green histograms and the sum of both are the solid blue

histograms. 84
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Figure 3.10: Distributions of the reconstructed y of the event (top), the Empz

(middle) and log Q2 (bottom). The data are shown as points, the predictions

of the RAPGAP simulation are shown as the solid red histograms, the total

background simulation predictions are the solid green histograms and the sum

of both are the solid blue histograms.
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Figure 3.11: The ratio of the PT of the hadronic final state system to the PT of

the scattered electron (top) and the ratio of y measured using the hadrons-only

method to the y measured using the double-angle method; both quantities are

plotted as a function of the hadronic polar angle, γh. The data are shown as

points, the sum of the RAPGAP and total background simulations is shown

as the solid blue histogram.

and the total background simulations is very good and an uncertainty of 2%

on the hadronic calibration is obtained.
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3.2.7 Reconstruction of Diffractive Variables

The final state variable necessary to measure the diffractive kinematics shown

in equations 1.19 is the mass of the hadronic final state system, MX . It is ob-

tained in the usual way from the X system with an additional reweight to take

advantage of the more optimal resolution in y of the kinematic reconstruction

method used. The resulting expression for MX is shown in equation 3.14.

M2
X = (E2 − p2

x − p2
y − p2

z)hadrons · y

yh

. (3.14)

The MX Correction

The reconstructed mass of the X system was found to be underestimated on

average by ∼ 7%, as can be seen in figure 3.12. At high (MX > 20 GeV)

this underestimation was found to vary very slightly and linearly with MX . At

lower values of MX the underestimation becomes much worse as MX decreases.

The quantity

δ(M rec
X ) =

Mgen
X

M rec
X

(3.15)

was evaluated for the RAPGAP simulation. Two functions were then fitted

to the distribution in the two MX ranges enabling the calculation of an MX-

dependent correction factor; a linear function for MX > 20 GeV and a 7th

order polynomial (chosen as it gave the best description) for MX ≤ 20 GeV.

The correction factor is then applied to both data and simulation in order

to correctly reconstruct MX . Figure 3.12 shows the quantity δ(M rec
X ) as a

function of M rec
X together with the two functions. The final reconstruction of

MX is then:

M2
X = (E2 − p2

x − p2
y − p2

z)hadrons · y

yh
· δ(MX). (3.16)

As t is not measured in this analysis the diffractive kinematics are recon-

structed according to equation 3.17.

β =
Q2

Q2 + M2
X

, xIP =
x

β
(3.17)
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Figure 3.12: The quantity δ(M rec
X ) as a function of MX together with the two

functions fit to MX ≤ 20 GeV and MX > 20 GeV.

Figure 3.13 shows the reconstructed log xIP and β distributions for the

diffractive event sample. The rising slope of the logxIP distribution, the po-

sition of the peak and the fall of the distribution at high logxIP are all well

described by the sum of the RAPGAP simulation and the total of the back-

ground simulations. The background processes, which are dominated by non-

diffractive DIS, are seen to contribute predominantly at large log xIP . The

steep rise of the β distribution followed by a gradual fall towards larger values

of β is also well described by the total simulation. The background processes,

which are again dominated by non-diffractive DIS, are approximately flat as

a function of β. In the highest β bin the elastic QED Compton process is

predicted to dominate, a detail not visible in figure 3.13.
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Figure 3.13: The logarithm of the reconstructed xIP of the event (top), and

the reconstructed β (bottom). The data are shown as points, the predictions

of the RAPGAP simulation are shown as the solid red histograms, the total

background simulation predictions are the solid green histograms and the sum

of both are the solid blue histograms.
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Chapter 4

Extraction of the Diffractive

Reduced Cross-Section σ
D(3)
r

In this chapter the procedure used to extract the diffractive reduced cross-

section σ
D(3)
r is presented. The choice of binning scheme is presented first

followed by the definition of the cross-section. The definitions used to quantify

the quality of a bin and the model-dependent corrections that are applied to

extract the cross-section are then explained. Finally, the full set of systematic

error sources for the measurement are presented.

4.1 Bin Selection

Two binning schemes are used in the measurement. The first binning scheme is

used to test the Regge factorisation hypothesis (see section 1.5.2). According

to this hypothesis the reduced cross-section should not depend on xIP other

than in normalisation which can be parameterised by a flux factor, fxIP
. The

measurement is therefore binned in x, Q2 and xIP and the diffractive reduced

cross-section can be extracted using:

σD(3)
r (β, Q2, xIP ) =

xQ4

4πα2(1 − y + y2

2
)

d3σep→eXY

dxdQ2dxIP
. (4.1)

The main goal of the second binning scheme is to measure the diffractive
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reduced cross-section using the highest resolution possible. This allows an

extraction of the greatest number of data points possible to provide the best

constraints for a fit and the best comparisons with various theoretical models.

The measurement is therefore binned in x, Q2 and β and the diffractive reduced

cross-section is extracted using:

σD(3)
r (β, Q2, xIP ) =

β2Q4

4πα2(1 − y + y2

2
)

d3σep→eXY

dxdQ2dβ
. (4.2)

The first binning scheme allows a full QCD fit to the data within the scope

of QCD Hard Scattering Factorisation (see section 1.5.1). However, due to

the limited resolution in xIP available the approach used is to test the Regge

factorisation hypothesis using the first binning method and then perform a fit

to the data using the second binning method.

A view of the Q2 − β kinematic plane is shown in figure 4.1, where the

phase-space covered by previous diffractive measurements by the H1 collab-

oration are shown, along with the phase-space covered by this measurement.

This measurement extends the phase-space in both Q2 and β of diffractive mea-

surements and increases the statistical significance of the data; it supercedes

the previous H1 measurement at high Q2 [75].

4.2 Cross-Section Definition

The cross-section is given by:

d3σep→eXY

dβdQ2dx
=

NData − NBG

L
BCC ∗ RC

A (4.3)

where NData is the measured number of events in the data, NBG is the total

number of events from all background processes and L is the integrated lu-

minosity of the data. The Acceptance correction, A, Bin Centre Corrections

(BCC) and Radiative Corrections (RC) are detailed in the following section. It

should also be noted that equation 4.3 is also valid in the other binning scheme.

This is also true of the expressions used in section 4.3.3 with an appropriate

change of variables.
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Figure 4.1: The Q2 − β kinematic plane showing the phase-space covered by

previous diffractive measurements from the H1 collaboration and the phase-

space covered by this measurement.
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4.3 Correcting Data Using Simulations

In order to extract a true measurement from the data several effects need

to be corrected for. Firstly, the measurement is made using a real detector,

consisting of detector components which have finite resolutions, efficiencies

and geometric acceptances. These effects are corrected for by the Acceptance

correction. Secondly, the cross-section measurement is divided up into bins of

finite size. In the case of this measurement these bins are cubic, but kinematic

and geometric cuts can reduce the effective size of these bins. In addition,

the shape of the cross-section will almost certainly change across the bin;

the BCCs correct for these effects. Finally, QED radiation can change the

measured kinematics of the event from the kinematics of the underlying event;

RCs correct for this effect.

4.3.1 The Acceptance Correction

In order to extract a true measurement from the data the various effects of

the detector need to be corrected for, i.e. the finite detector resolutions, effi-

ciencies and geometric acceptances. To do this, events from a MC generator,

RAPGAP in the case of this analysis, are compared before and after they are

passed through the detector simulation, labelled generator (GEN) level and

reconstructed (REC) level, respectively. If the REC level events describe the

data in every detail, then it is possible to correct the data for the effects of the

detector. If deficiencies are found in the simulation, for example the resolution

of a particular detector is not modelled correctly, then the simulated resolution

is corrected to the data in order to obtain a better description. The remain-

ing differences between data and simulation are accounted for by systematic

errors.

The effects of the detector are studied by looking at the relationships be-

tween GEN level events and REC level events. Cuts are placed on a simulated

event at both the GEN and REC levels. This leaves four scenarios which can
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Figure 4.2: Schematic showing the dynamics of bin migrations, arrows show

the path of an event from the GEN level to the REC level, thick-blue squares

are bins inside the measured phase-space, dotted-red squares are bins outside

of the measured phase-space; (a) is an illustration of the situation where an

event has the same GEN and REC bin; (b) shows a GEN event being lost from

the REC sample by being reconstructed outside of the measured phase-space;

(c) illustrates an event smearing out of a GEN bin into a REC bin; finally, (d)

shows an event smearing into a REC bin from outside of the GEN phase-space,

i.e. a reconstructed event without a GEN bin.

be described by four independent variables, illustrated in figure 4.2.

The four independent variables are defined as:

• NSTAY = The number of events which have the same GEN and REC bin

number (i)

• NLOST = The number of events with a GEN bin (j) but no REC bin

• NSMEARIN = The number of events which smeared into a REC bin (j)
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• NSMEAROUT = The number of events which smeared out of a GEN bin (i)

The total number of GEN and REC events are then defined as:

• NREC = NSTAY + NSMEARIN

• NGEN = NSTAY + NSMEAROUT + NLOST

Using these definitions the following three variables are used to quantify

the relationships between GEN and REC events:

Acceptance =
NREC

NGEN
(4.4)

Purity =
NSTAY

NREC
(4.5)

Stability =
NSTAY

NGEN − NLOST
. (4.6)

Binomial errors are calculated for Acceptance, Purity and Stability using the

four independent variables.

The Acceptance of a bin quantifies the number of events reconstructed in a

bin compared to the true number of events generated in that bin for an area of

phase-space defined by the bin. This quantity is also known as the “Smeared

Acceptance” as all reconstruction effects are accounted for, i.e. all smearing

effects are included. The true number of events present in the data, NTrue, is

recovered by applying the Acceptance correction, i.e.

NTrue = NData × NGEN

NREC
=

NData

A (4.7)

The effects of smearing are quantified using Purity and Stability. The

Purity of a bin quantifies the fraction of REC events which had the same

GEN bin. The Stability quantifies the fraction of GEN events which have the
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Figure 4.3: The Acceptance, Purity and Stability of the measurement for

Q2 = 200.0 (top) and Q2 = 400.0 GeV2 (bottom), shown as a function of

log10 xIP in bins of fixed β.
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Figure 4.4: The Acceptance, Purity and Stability of the measurement for

Q2 = 800.0 (top) and Q2 = 1600.0 GeV2 (bottom), shown as a function of

log10 xIP in bins of fixed β.
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same REC bin, without taking into account events that are lost (as this is

taken into account by the Acceptance).

The values of Acceptance, Purity and Stability are plotted as a function

of log10 xIP in bins of constant Q2 and β in figures 4.3 and 4.4. The effect

of the ηmax cut can clearly be seen on the Acceptance of the measurement at

low β; the ηmax cut is equivalent to a cut on the X system, so at the lowest

β, which corresponds to the highest MX , the Acceptance decreases as xIP

increases (as x = xIP

β
). As β increases the effect is less pronounced as MX is

smaller for the same value of xIP . As Q2 increases MX is larger for the same

value of β, resulting in the decrease in the number of β bins. The Purity of

all bins is approximately flat across the measured phase-space, except at the

highest xIP and lowest β where it decreases due to high MX events smearing

into the sample. The Stability is also approximately flat across the measured

phase-space, with a slight tendency to decrease with increasing xIP due to the

increasingly poor resolution in xIP with increasing xIP .

The values of Acceptance, Purity and Stability for each bin used in this

measurement must satisfy:

Acceptance > 30%

Purity > 30%

Stability > 30%

in order to guarantee that the contents of the bin are well understood. The

low values are due to the cubic geometry of the bins required for this analysis,

i.e. events are able to migrate in three dimensions. 30% is approximately

equivalent to 1 σ in each of the three dimensions, i.e. (68%)3 � 30%.

4.3.2 The Proton Dissociation Acceptance Correction

The measured range in MY and t is defined by the acceptance of the forward

detectors and is given in equation 3.8. There will also be migration of events

across these kinematic boundaries from proton dissociation events and this
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needs to be accounted for. The RAPGAP programme currently only simu-

lates elastic proton events and therefore the DIFFVM programme was used

to simulate proton dissociation events in order to estimate this acceptance

correction. The proton dissociation acceptance correction, PDAC, is defined

as:

PDAC =
NPD

REC + REL
PDNPD

GEN

NPD
GEN(MY < 1.6 GeV, |t| < 1 GeV2) + REL

PDNPD
GEN

(4.8)

where NPD
REC is the number of reconstructed proton dissociation events, NPD

GEN

is the total number of proton dissociation events, NPD
GEN(MY < 1.6 GeV,

|t| < 1 GeV2) is the number of proton dissociation events generated in the

kinematic range given by equation 3.8 and REL
PD the ratio of the elastic to the

dissociative cross-sections. The value of REL
PD is estimated to be 1 but is only

constrained by experiment to be in the range 0.5 < REL
PD < 2.0 [76–78]. Note

that the number of reconstructed elastic events in equation 4.8 is taken to be

the number of generated events as the effects of smearing of elastic proton

events is already contained in the Acceptance correction calculated using the

RAPGAP programme. The final value of the Acceptance correction used in

equation 4.3 is then the product of the Acceptance correction calculated using

the RAPGAP programme and PDAC.

The value of PDAC was found to be:

PDAC = 1.081 ± 0.003 (4.9)

where the error is the statistical error only. The sources of systematic errors

on this correction are discussed in section 4.4.
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4.3.3 Bin Centre Corrections

The Bin Centre Corrections adjust the measurement of the cross-section in a

bin of finite size to the quoted bin centres. There are two effects to consider,

firstly the effect of the finite size and geometric shape of the bin, which may or

may not be cubic, and secondly the shape of the cross-section across the bin.

The bin centres are chosen so as to keep this correction small and are denoted

using obvious notation as βC , Q2
C , xC so that the corrections are given by:

BCC =

d3σ
dβdQ2dx

|β=βC ,Q2=Q2
C ,x=xC∫ βmax

βmin

∫ Q2
max

Q2
min

∫ xmax

xmin

d3σ
dβdQ2dx

dβdQ2dx
(4.10)

All generator-level cuts are applied when calculating the BCCs to take account

of any non-cubic nature of the bins, which is important at the edges of phase-

space.

The bin centre corrections are plotted as a function of log10 xIP in bins of

constant Q2 and β in figures 4.5 and 4.6. The value of the BCC has been

multiplied by the bin volume, under the assumption that it is cubic, for each

bin, in order to show the non-trivial effects of non-cubic bins and the shape of

the cross-section across a bin.

In the highest Q2 bin the corrections are approximately unity in the highest

log10 xIP bin with the effect of the y cut, ye < 0.9, being to increase the

correction in the lower log10 xIP bin. In the lower Q2 bins the effective electron

energy cut, ye < 0.63 ‖ Q2
e > 890.0 GeV2, produces the same effect at a

higher value of log10 xIP . Finally, the lowest Q2 bin shows both the effect of

the effective electron energy cut and the electron theta cut, θe < 153.0◦, which

increases the value of the correction with increasing log10 xIP , giving rise to

the V −shape.
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Figure 4.5: The Bin Centre Corrections calculated for this measurement for

Q2 = 200.0 (top) and Q2 = 400.0 GeV2 (bottom), shown as a function of

log10 xIP in bins of fixed β. The bin volume effects have been removed (see

text).
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Figure 4.6: The Bin Centre Corrections calculated for this measurement for

Q2 = 800.0 (top) and Q2 = 1600.0 GeV2 (bottom), shown as a function of

log10 xIP in bins of fixed β. The bin volume effects have been removed (see

text).
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4.3.4 Radiative Corrections

The sources of radiative corrections are discussed in section 1.6.2. FSR tends

to produce a photon which is collinear with the electron and hence the electron-

photon pair are detected as a single electromagnetic energy cluster. The

electron-photon pair is then reconstructed as a single electron with the correct

energy, resulting in only a small correction. ISR reduces the centre of mass

energy, thereby having a large effect on the reconstructed kinematics of the

event. This effect is reduced by the cut on Empz at 35.0 GeV, which allows a

maximum photon energy of 10.0 GeV.

The radiative corrections are defined as the ratio of the cross-section, as

calculated by RAPGAP and HERACLES, with and without QED radiation,

i.e.

RC =
σ

σRAD

. (4.11)

The radiative corrections are plotted as a function of log10 xIP in bins of

constant Q2 and β in figures 4.7 and 4.8. The corrections are approximately

equal to unity at the lowest log10 xIP and increase with increasing log10 xIP . At

high β there is a tendency for the correction to decrease again with increasing

log10 xIP at the highest log10 xIP ; this effect is most pronounced in the lowest

Q2 bin.
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Figure 4.7: The Radiative Corrections calculated for this measurement for

Q2 = 200.0 (top) and Q2 = 400.0 GeV2 (bottom), shown as a function of

log10 xIP in bins of fixed β.
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Figure 4.8: The Radiative Corrections calculated for this measurement for

Q2 = 800.0 (top) and Q2 = 1600.0 GeV2 (bottom), shown as a function of

log10 xIP in bins of fixed β.
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4.4 Systematic Uncertainties on the Measurement

All of the sources of systematic uncertainties in the measurement lead to a

corresponding error on the final measurement. Presented in the following is

the fractional percentage error on the error source considered along with the

resulting fractional percentage error on the diffractive reduced cross-section

σ
D(3)
r (β, Q2, xIP ), simply referred to as “the measurement” in the following.

The fractional percentage error on the measurement is presented in the form

[L, A, H ], where L is the lowest value of the uncertainty in any bin, A the

average uncertainty and H the highest value of the uncertainty in any bin.

Sources of error which have a 100% bin-to-bin correlation give rise to the

same error in all bins and are:

• The uncertainty due to the luminosity measurement is 1.5% [13], result-

ing in an uncertainty on all bins of the measurement of 1.5%.

• The uncertainty on the MY distribution used in DIFFVM arises from our

a priori ignorance of it. The input distribution is reweighted by a factor

of ( 1
M2

Y
)±0.3 resulting in an uncertainty on all bins of the measurement of

0.07 %.

• The t dependence of the proton-dissociation cross-section used in DIF-

FVM is better constrained than that for the elastic cross-section. The

input distribution is reweighted by e±t resulting in an uncertainty on all

bins of the measurement of 0.09%.

• The efficiency of the PRT is not well modelled by the simulation and

results in an uncertainty on PDAC. The systematic error on PDAC is

estimated by applying 0.5 and 2 times the overall reweight factors used

and results in an uncertainty on the measurement, which is the same for

all bins, of 4.8%.

• The efficiency of the FMD is also not well modelled by the simulation

and results in an uncertainty on PDAC. The systematic error on PDAC
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is estimated by decreasing the FMD efficiency by 10 %. The resulting

uncertainty on the measurement is 1.1% and is the same for all bins.

• The uncertainty on the energy scale of the PLUG calorimeter is 30% and

also results in an uncertainty on PDAC. The resulting uncertainty on all

bins of the measurement is 0.2%.

Sources of error which are considered to have bin-to-bin correlations of less

than 100% are:

• The uncertainty on the electron energy depends on the impact position

in z of the electron in the LAC. It is 1% in the backward part of the

LAC and 0.7% for the range −150 < ze
impact < 20 cm [13] leading to an

uncertainty on the measurement of [0.02, 1.6, 5.3].

• The uncertainty on the electron polar angle is θ-dependent. For θ > 135◦

it is 1 mrad increasing to 2 mrad for the range 135◦ > θ > 120◦ and 3

mrad for θ < 120◦ [13]. This leads to an uncertainty on the measurement

of [0.0, 0.7, 2.4].

• The uncertainty on the amount of hadronic energy measured in the LAC

is determined in section 3.2.6 and is 2%. This leads to an uncertainty on

the measurement of [0.06, 1.2, 6.1].

• The uncertainty on the amount of hadronic energy measured in the

SPACAL is 7% [79] and leads to an uncertainty on the measurement

of [0.0, 0.02, 0.5].

• The uncertainty on the amount of energy due to noise in the LAC is 25%

[68]. This leads to an uncertainty on the measurement of [0.5, 5.3, 23.0].

• The uncertainty on the number of background events in the final event

sample is estimated by increasing the total background contribution

beyond the point at which the sum of signal and background simu-

lations can describe the data. The uncertainty estimated using this
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method is 50% and this leads to an uncertainty on the measurement

of [0.2, 5.7, 17.0].

• The uncertainty on the amount of energy measured in tracks is 3% [13]

and leads to an uncertainty on the measurement of [0.0, 0.6, 4.1].

• The uncertainty on the xIP distribution used in RAPGAP arises from our

a priori ignorance of it. The input distribution is reweighted by ( 1
xIP

)±0.1

corresponding to changes greater than can be constrained by the data.

The resulting uncertainty on the measurement is [0.4, 2.0, 3.5].

• The uncertainty on the β distribution used in RAPGAP arises from

our a priori ignorance of it. The input distribution is reweighted by

β±0.1 and (1 − β)±0.1 resulting in an uncertainty on the measurement

of [0.8, 2.0, 3.7] and [0.1, 2.4, 6.9] respectively. Again, the reweights are

chosen to be larger than can be constrained by the data.

• The t dependence of the cross-section is parameterised as eBt where the

parameter B used in RAPGAP is taken from a previous H1 measurement

[48]. The input distribution is reweighted by e±2t in order to reflect the

uncertainty on the measured value of B resulting in an uncertainty on

the measurement of [0.05, 0.8, 5.3].

• The efficiency of the PRT is not well modelled by the simulation and

a reweighting procedure was used (see section 3.2.2) to obtain a better

description of the data. The systematic error is then estimated by ap-

plying 0.5 and 2 times the overall reweight factors used and results in an

uncertainty on the measurement of [0.0, 0.7, 1.9].

• The efficiency of the FMD is also not well modelled by the simulation

and again a reweighting procedure was used (see section 3.2.1) to ob-

tain a better description. The FMD efficiency is decreased by ∼ 10%

by this procedure and the systematic error is estimated by decreasing
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the FMD efficiency by a further 10%. The resulting uncertainty on the

measurement is [0.0, 1.0, 4.9].

• The uncertainty on the energy scale of the PLUG calorimeter is 30% [63],

resulting in an uncertainty on the measurement of [0.0, 2.3, 5.3].

Sources of error on the measurement which are not correlated between bins

are:

• The uncertainty on the efficiency of the NC triggers used is estimated

from the variation of the inefficiencies of the individual subtriggers; the

value used is 0.3% [13].

• There is a 0.5% uncertainty on the efficiency of the track-link requirement

estimated from the remaining discrepancy between data and simulation

[13].

• The uncertainty arising from the determination of the radiative and bin

centre corrections is estimated by changing the kinematic distributions

of RAPGAP and recalculating the corrections; the value used is 3% [80].

• An uncertainty of 0.5% on the electron identification efficiency is es-

timated by comparison of the cluster-based electron finder used to an

independent track-based electron finder [13].

• The ratio of the proton-dissociation cross-section to the elastic proton

cross-section, REL
PD, is varied between 0.5 and 2, corresponding to the

limits set by previous measurements [76–78]. The resulting uncertainty

on the measurement is 4.7%.

• The statistical uncertainty on the Acceptance correction leads to an un-

certainty on the measurement of [1.5, 5.0, 18.7].
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4.4.1 Kinematic Reconstruction

The measurement should be independent of the kinematic reconstruction tech-

nique used. Shown in figures 4.9 and 4.10 are plots of the reduced cross-section

as measured using the default reconstruction method given by equation 3.7 and

the eΣ method given in 3.6. No systematic differences are observed between

the two reconstruction methods.
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Figure 4.9: The diffractive reduced cross-section σ
D(3)
r multiplied by xIP as

measured using the default kinematic reconstruction method and the eΣ

method. Inner error bars are statistical error alone, the outer error bars are

the total statistical and systematic errors added in quadrature.
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Figure 4.10: The diffractive reduced cross-section σ
D(3)
r multiplied by xIP

as measured using the default kinematic reconstruction method and the eΣ

method. Inner error bars are statistical error alone, the outer error bars are

the total statistical and systematic errors added in quadrature.
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Chapter 5

Results and Interpretation

In this chapter the results of this analysis are presented in the form of the

diffractive reduced cross-section σ
D(3)
r . The xIP dependence of the data is

studied and the data are compared with the SCI and Semi-Classical models

for diffraction introduced in sections 1.5.3 and 1.5.4, respectively. Two NLO

DGLAP QCD fits [28,29] are compared to the data; the first fit, Fit 1, excludes

the data presented in this analysis, the second fit, Fit 2, includes this data. A

value for the effective Pomeron intercept αIP (0) is extracted from Fit 2. Next

the Q2 and β dependencies of the data at fixed xIP are studied and finally,

diffractive PDFs are extracted from both fits and compared. Tables of the

cross-section results are presented in appendix A.

5.1 The Diffractive Reduced Cross-Section σ
D(3)
r

The diffractive reduced cross-section σ
D(3)
r (x, Q2, xIP ) (multiplied by xIP to

reduce the strong xIP dependence of the data) is shown as a function of xIP in

bins of fixed β and Q2 in figures 5.1 and 5.2 . The data are binned using the

fixed β binning scheme (see section 4.1) allowing the xIP structure of the data

to be studied. At low values of xIP the data are seen to rise as xIP decreases,

consistent with the Pomeron trajectory. At the highest values of xIP there

is the suggestion of an increase in the data as xIP increases which would be
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indicative of the meson trajectory. As β increases the cross-section is clearly

seen to decrease; there is no obvious dependence of the cross-section on Q2.

5.2 Model Comparisons

Although the underlying mechanism behind diffraction is not theoretically un-

derstood several models of diffraction have been suggested. In this section the

two models introduced in sections 1.5.3 and 1.5.4 are confronted with the data.

5.2.1 Soft Colour Interactions

Shown in figure 5.3 are two comparisons to the SCI model introduced in section

1.5.3. The dashed, black curve is the prediction of the original model, the

solid, blue curve is the model incorporating the generalised area law. The

original model is able to describe the data in the highest β bin at high xIP

but undershoots the data almost everywhere else. The model incorporating

the generalised area law produces a much better overall description and is able

to describe the data well everywhere except at the lowest β. In general the

model has a slight tendency to overshoot the data at high β and undershoots

the data at low β.

5.2.2 Semi-Classical Model

Shown in figure 5.4 is a comparison of the data to the Semi-Classical Model

introduced in section 1.5.4. There is no attempt to model quark exchange,

i.e. include a meson-like component, in this model and so the model is not

expected to describe the data at high xIP . At the lowest β the model produces

a reasonable description of the data, but at higher β the prediction tends

to undershoot the data. Of the 7 data points which satisfy the condition

xIP < 0.01 only one data point lies within one standard deviation of the

prediction of the model; the other 6 data points all lie above the prediction of

the model by significantly more than one standard deviation.
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Figure 5.1: The diffractive reduced cross-section σ
D(3)
r multiplied by xIP as a

function of log10 xIP in bins of fixed β and Q2 for Q2 = 200 and 400 GeV2.

Inner error bars are statistical errors alone, the outer error bars are the total

statistical and systematic errors added in quadrature.
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Figure 5.2: The diffractive reduced cross-section σ
D(3)
r multiplied by xIP as a

function of log10 xIP in bins of fixed β and Q2 for Q2 = 800 and 1600 GeV2.

Inner error bars are statistical errors alone, the outer error bars are the total

statistical and systematic errors added in quadrature.
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5.3 Comparisons with NLO QCD Fits and Pre-

vious Measurements

In this section the data are compared to two NLO QCD fits to the diffractive

reduced cross-section. The first fit, Fit 1, is a fit made to lower Q2 data and

the high Q2 data measured in a previous analysis [28, 29]. The second fit,

Fit 2, uses the same lower Q2 data set but replaces the previous high Q2 data

with the data presented in this analysis. Both fits are performed under the

assumption of Regge factorisation, an assumption supported by the data.

5.3.1 Comparison of the Data with Fit 1

Figure 5.5 shows the data compared to Fit 1 which is made to data not in-

cluding the data presented in this analysis. Also shown are the medium Q2

data used in the fit and low Q2 data (not used in the fit). The fit is seen to

describe the data well across the full kinematic phase-space.

Figure 5.6 shows a comparison of this measurement with Fit 1 and a pre-

vious measurement using H1 data taken between 1994 and 1997 with an in-

tegrated luminosity of 35.6 pb−1 [75]; these data were used in the fit. The

integrated luminosity of the data used in the analysis presented in this thesis

is 63.0 pb−1. This analysis extends the kinematic range in β, Q2 and xIP of

diffractive measurements. In the region of overlap of the two measurements

there is good agreement and no significant differences are seen. Fit 1 produces

a good description of the data except at high β where the fit overshoots the

data. Also shown is the Pomeron component of the fit, which clearly demon-

strates the need for the inclusion of the sub-leading Reggeon component.
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Figure 5.5: The diffractive reduced cross-section σ
D(3)
r multiplied by xIP as a

function of log10 xIP in bins of fixed β and Q2 as measured in this analysis

(green points) and H1 analyses at medium Q2 (red points) and low Q2 (blue

points). Also shown is a NLO QCD fit to H1 data (solid black curve), Fit 1 in

the text, which includes the medium Q2 data. Inner error bars are statistical

errors alone, the outer error bars are the total statistical and systematic errors

added in quadrature. 120
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5.3.2 Comparison of the Data with Fit 2

Figure 5.7 shows the data compared to Fit 2 which includes the data presented

in this analysis (replacing the high Q2 data measured in the previous analysis).

The χ2 per degree of freedom of the fit is very close to unity1:

χ2/dof = 325.6/324. (5.1)

The new fit describes the data better at high β, although it does still overshoot

the data, while retaining the good description at lower β. The effect of the fit

on the data points is also shown in figure 5.7. At low β the fit is dominated by

the lower Q2 data, but at higher β the high Q2 data of this analysis become

more important. This is due to the constraint MX > 2 GeV for all data

points included in the fit in order to justify neglecting higher order effects not

included in the fit. Also shown in the figure is the prediction of F D
2 from the

fit, the effect of F D
L on the fit can clearly be seen at high y.

5.3.3 Extraction of αIP (0)

The effective Pomeron intercept αIP (0) is extracted from the data used in

Fit 2 using the parameterisation given in equation 1.26 with flux factors

parameterised according to equation 1.25. The value obtained is:

αIP (0) = 1.186 ± 0.01 (5.2)

which is consistent with previous H1 measurements [48]. This value is signifi-

cantly above the value of ∼ 1.08 obtained by Donnachie and Landshoff in their

fit to pp and pp̄ data [6].

5.3.4 Comparison of Lower Q2 Data with Fit 2

Shown in figure 5.8 are the low Q2 data included in Fit 2 compared to Fit 2.

The fit describes the data very well across the measured kinematic range and

1The systematic errors of the data presented in this analysis are treated, as an exceptional

case in the fit, as being fully correlated, which is a good approximation.
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Figure 5.7: The diffractive reduced cross-section σ
D(3)
r multiplied by xIP as a

function of log10 xIP in bins of fixed β and Q2 as measured in this analysis

(open points) compared to a NLO QCD fit to H1 data, Fit 2 in the text,

which includes the data presented in this analysis (blue curve). The data

points as shifted by the fit are also shown (solid red points) together with the

prediction of F D
2 (dashed blue line). The error bars show the total statistical

and systematic errors added in quadrature.
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the description at high β is improved.

5.3.5 The Q2 Dependence of σ
D(3)
r

Shown in figures 5.9 and 5.10 is the diffractive reduced cross-section multiplied

by xIP as a function of Q2 in bins of fixed β and xIP compared to Fit 2. Also

included in these figures are the medium Q2 data used in the fit and the low Q2

data not included in the fit. At the lowest β large positive scaling violations

are seen in the data which persist until the largest measured value of β. These

large scaling violations are indicative of a largely gluon-dominated structure.

The scaling violations can be compared to the scaling violations of F2 in figure

1.3. Scaling occurs at a fractional momentum x ≈ 0.13 for the proton. In

contrast scaling occurs at a fractional momentum β ≈ 0.66 for diffractive

exchanges.

5.3.6 The β Dependence of σ
D(3)
r

Shown in figures 5.11 and 5.12 is the diffractive reduced cross-section multiplied

by xIP as a function of β in bins of fixed Q2 and xIP compared to Fit 2. Also

included in these figures are the medium Q2 data used in the fit and the low Q2

data not included in the fit. In the low xIP bin the data are approximately flat

as a function of β. In the high xIP bin the data show a tendency to decrease

with increasing β.
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Figure 5.8: The diffractive reduced cross-section σ
D(3)
r multiplied by xIP as

a function of log10 xIP in bins of fixed β and Q2 as measured in a previous

analysis using H1 data (red points) compared to the NLO QCD fit to H1 data,

Fit 2 in the text, which includes that data and the data presented in this

analysis (blue curve). The data points as shifted by the fit are also shown

(solid red points). Inner error bars are statistical errors alone, the outer error

bars are the total statistical and systematic errors added in quadrature.
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Figure 5.9: The diffractive reduced cross-section σ
D(3)
r multiplied by xIP as

a function of Q2 in bins of fixed β and xIP for xIP = 0.01 as measured in

this analysis (green points) and H1 analyses at medium Q2 (red points) and

low Q2 (blue points). Also shown is a NLO QCD fit to H1 data (solid black

curve), Fit 1 in the text, which includes the medium Q2 data. Inner error bars

are statistical errors alone, the outer error bars are the total statistical and

systematic errors added in quadrature.
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Figure 5.10: The diffractive reduced cross-section σ
D(3)
r multiplied by xIP as

a function of Q2 in bins of fixed β and xIP for xIP = 0.03 as measured in

this analysis (green points) and H1 analyses at medium Q2 (red points) and

low Q2 (blue points). Also shown is a NLO QCD fit to H1 data (solid black

curve), Fit 1 in the text, which includes the medium Q2 data. Inner error bars

are statistical errors alone, the outer error bars are the total statistical and

systematic errors added in quadrature.
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Figure 5.11: The diffractive reduced cross-section σ
D(3)
r multiplied by xIP as

a function of β in bins of fixed Q2 and xIP for xIP = 0.01 as measured in

this analysis (green points) and H1 analyses at medium Q2 (red points) and

low Q2 (blue points). Also shown is a NLO QCD fit to H1 data (solid black

curve), Fit 1 in the text, which includes the medium Q2 data. Inner error bars

are statistical errors alone, the outer error bars are the total statistical and

systematic errors added in quadrature.
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Figure 5.12: The diffractive reduced cross-section σ
D(3)
r multiplied by xIP as

a function of β in bins of fixed Q2 and xIP for xIP = 0.03 as measured in

this analysis (green points) and H1 analyses at medium Q2 (red points) and

low Q2 (blue points). Also shown is a NLO QCD fit to H1 data (solid black

curve), Fit 1 in the text, which includes the medium Q2 data. Inner error bars

are statistical errors alone, the outer error bars are the total statistical and

systematic errors added in quadrature.
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5.3.7 Diffractive Parton Densities

Following the NLO QCD fit to the data it is possible to extract PDFs in-

terpretable within the resolved Pomeron model as being the parton density

functions of an object with the quantum numbers of the vacuum, i.e. the

Pomeron. Furthermore, using the strategy given in [28, 29] it is possible to

extract the uncertainties on these PDFs. Both a singlet distribution Σ(z, Q2
0)

and a gluon distribution g(z, Q2
0) are included in the fits, where the singlet

distribution assumes u = d = s = ū = d̄ = s̄ and the starting scale used

is Q2
0 = 3 GeV2. Figures 5.13 and 5.14 show the PDFs at NLO from Fit 1

and Fit 2 as a function of z on a linear and log scale respectively, where z is

the fractional momentum of the parton within the diffractive exchange with

respect to the diffractive exchange.

The gluon density is seen to dominate the structure of the diffractive ex-

change in both fits at all Q2. Fit 2 produces a substantially more gluon dom-

inated structure than Fit 1.

5.4 Summary and Outlook

A new measurement of inclusive diffractive DIS at high Q2 has been presented

which extends the previous kinematic phase-space significantly and increases

the statistical significance of the data. The data have been shown to be well

understood with both the inclusive DIS sample and the diffractive DIS sample

being well described by Monte Carlo simulations. All systematic effects have

been accounted for and the Monte Carlo simulations corrected to describe the

data where appropriate.

The diffractive reduced cross-section σ
D(3)
r (x, Q2, xIP ) was extracted from

the data in the kinematic range (Q2 > 130 GeV2, 0.07 < β < 1.0 and 0.005 <

xIP ≤ 0.05) and found to be consistent with previous measurements using the

H1 detector. The xIP dependence of the data was studied and a value of αIP (0)

was extracted using a Regge parameterisation of the data. The value of αIP (0)
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Figure 5.13: The diffractive quark singlet and gluon density functions as a

function of z as extracted from two NLO QCD fits; Fit 1 (black curves) and

Fit 2 (pink curves). The bands show the experimental error.
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extracted is consistent with previous measurements and is significantly larger

than that of the soft Pomeron of hadronic physics. The data are consistent

with a Pomeron dominated exchange at low values of xIP with a non-negligible

meson contribution at higher values of xIP .

Several models of diffraction were confronted with the data. The Semi-

Classical model is found to produce a reasonable description of the data at

low β but undershoots the data at higher β. The original SCI model is found

to be able to describe the data in the highest β bin at high xIP . The SCI

model which incorporates a generalised area law is found to produce a good

description of the data except at the lowest β.

Following the proof of QCD hard scattering factorisation for diffraction [8]

the data were also studied within the framework of QCD by using a binning

scheme which fixes xIP . This allows the Regge factorisation hypothesis to

be tested, the Q2 and β dependencies to be studied and a NLO QCD fit to

be performed. The Q2 dependence of the data show large positive scaling

violations persisting out to large values of β ∼ 2
3
, consistent with the gluon

dominated structure seen in previous analyses. The large gluon density is seen

to persist out to the largest fractional momenta. NLO QCD fits to the data

are able to describe the data well and the extracted PDFs are dominated by a

large gluon contribution across the full measured phase-space. The NLO QCD

fit which includes the data presented in this analysis produces a more gluon-

dominated structure than the previous fit, although the fits are consistent with

each other.

The Regge factorisation hypothesis implies the concept of a resolvable

Pomeron in diffractive processes at HERA. The NLO QCD fits to the data

demonstrate that this is a good approximation, at least at HERA, of what-

ever the underlying process is. More data will be needed to test the extent of

the validity of the Regge factorisation approximation, to extract more accurate

diffractive PDFs and to uncover the true nature of this intriguing phenomenon.
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5.4.1 Improvements and Future Work

There are several areas in which improvements could be made to the current

analysis.

• Combining the 1994-1997 data period would increase the integrated lu-

minosity by ≈ 50 %, yielding an increase in the statistical significance of

the data.

• Incorporating proton dissociation into the RAPGAP Monte Carlo would

decrease the corresponding systematic uncertainties.

• The simulated description of the Forward Detectors of H1 is quite poor

and an improved understanding of these detectors would reduce the as-

sociated systematic uncertainties.

• The uncertainty on the amount of energy due to noise in the LAC is 25%

and leads to a large systematic uncertainty which could be reduced.

Improvements of the generic OO analysis framework used to perform this

analysis are discussed in section 6.3.9.
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Chapter 6

Object Oriented Techniques

Used in Offline Physics Analysis

In this chapter the generic Object-Oriented (OO) analysis framework used to

perform the analysis presented in this thesis is described. Firstly the principles

of OO programming are introduced along with the applicability of these princi-

ples to physics analysis. The OO data-storage and analysis framework of H1 is

briefly introduced with emphasis on those elements of the framework relevant

to analysis. Next, physics analysis is abstracted into a series of generic tasks

which are identified with analysis-level objects; these objects can be organised

into the generic analysis framework presented here. Finally, a discussion of

future work to improve the generic analysis framework is presented.

6.1 Introduction

One of the founding principles behind OO programming philosophy is the

finding that humans have a surprisingly small short-term memory and are

only capable of processing 7 ± 2 pieces of information at once [81]. This is a

crucial limitation in man’s ability to deal with complex systems, an example

of which is a software framework used to perform physics analysis. If there is

no structure to the system then a step by step or binomial search approach is
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likely to be the best means of solving problems within the system.

6.1.1 Chunking and Modularisation

Although humans are only capable of processing 7±2 pieces of information at

once this limitation does not seem to depend on the complexity of the piece

of information. For example, an average human can process as many words

as he/she can letters. Chunking information, like forming words from letters,

increases the total amount of information that can be processed.

If the individual information within a software system can be organised

into chunks of information, henceforth referred to as modules, then each piece

of information in the system can be bigger. 7 ± 2 pieces of information will

then represent a larger fraction of the system as a whole. Modules can also be

arranged into larger, composite modules and so the modularisation process can

be re-iterated until the system is composed of < 7 modules. However, if the

modules cannot be treated independently of one another then the modularisa-

tion procedure does not significantly reduce the complexity of the system.

6.1.2 Object-Orientation

Object-Orientation takes the modularisation process one step further. In an

OO system each module is also entirely responsible for its data. These em-

powered modules, or objects, must themselves be able to supply any and all

information about the data they contain. All access to the object’s data is

through the object’s interface allowing the object itself to maintain its in-

tegrity. The contents of the object are thus decoupled from the system; the

system now comprises of < 7 independent, possibly composite, objects which

can only deal with each other through well-defined interfaces and as a result

the complexity of the system is significantly reduced.
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Abstraction

An abstraction is the list of methods, or member functions in C++, which

defines what an object can and must do. For example, a “Mode of Trans-

port” ModeOfTransport1 may be defined as something which transports a

“Paying Customer” PayingCustomer from one specified “Place” Place to an-

other. It must therefore provide a Transport member function which allows

a PayingCustomer to be transported from one Place to another.

ModeOfTransport vehicle;

PayingCustomer customer;

Place fromA, toB;

vehicle.Transport(customer, fromA, toB);

Specialisation and Inheritance

Different sorts of the same abstraction can behave in different ways. Train,

Bus and Taxi are all a ModeOfTransport. They are specialisations of the

original abstraction and in the C++ programming language this relation-

ship is expressed through inheritance; Train, Bus and Taxi all inherit the

ModeOfTransport interface. They will each perform the Transport request

for a PayingCustomer, each one performing the request slightly differently,

but how they do it is not important. Of course, the PayingCustomer may find

that the amount that he is requested to pay via his Pay member function varies

greatly, but the ModeOfTransport has transported the PayingCustomer as he

said he would according to his interface and now the PayingCustomer must

respect his interface and pay. The interface defines what an object must do

and both ModeOfTransport and PayingCustomer objects must strictly adhere

to their respective interfaces.

1Here the notation used is that a concept is given in quotation marks followed by the

name of the abstraction in this font-type.
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Encapsulation

The member functions that an object provides to other objects are called public

member functions and define the interface to the object, i.e. what the object

will do, but how an object performs a particular task and how it maintains its

own state, i.e. via its data members, are private information. Encapsulation is

this separation of an object’s interface from its implementation. The Train,

Bus and Taxi are all a ModeOfTransport each differing in how they transport a

PayingCustomer. They could also differ in their physical states, although there

may be some similarities. The important thing is that the PayingCustomer

shouldn’t have to and indeed doesn’t have to care about these details. If

Buses and Trains find a way of running to schedule the PayingCustomer still

requests to be transported in exactly the same way as before (although he

may find that the amount he pays varies again). Changes made to an objects

algorithms and state are internal and because of encapsulation these changes

cannot affect other objects.

6.1.3 Classes and Objects

Classes are generally the means by which OO computing languages define an

object’s state and interface. In the trivial example below a class Circle is

defined in C++, with a rather restricted (and not very useful) interface.

class Circle{

public:

Circle() {fRadius = 1.0;}

Circle(double radius) {fRadius = radius;}

~Circle() {}

double GetRadius() {return fRadius;}

private:

double fRadius;

};
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Circle is little more than a data-storage object as it stands and it would be

far more efficient to simply use the double already provided. To be a complete

Circle object it must at least have member functions like

double GetDiameter();

double GetArea();

double GetCircumference();

as well as some functionality which allows a client to manipulate the Circle

object, e.g.

void SetRadius();

void SetDiameter();

void SetArea();

void SetCircumference();

6.1.4 A Code Comparison - The 4-vector

A 4-vector is a familiar concept in physics and the components of a 4-vector,

for example px, py, pz and E, appear frequently in physics analysis software.

In an OO programming scheme the components of the 4-vector are collected

together into one object which will be referred to here as the 4Vector object2.

The 4Vector object is responsible for its own information and can therefore

ensure its own self-consistency. If the 4-vector needs to be changed in some

way then the 4Vector object is responsible for ensuring that it is changed

consistently and correctly. In the example below the task set is that a 4-vector

is first made, then scaled by a factor of 2.0 (for example in the case of a

calibration) and finally the polar angle of the 4-vector is shifted by 2 mrad (for

example in the case of studying the effect of a systematic uncertainty on the

angular position of a detected particle). On the left is a possible solution in

C, on the right is a solution using a 4Vector object.

2The concept of the 4-vector is so familiar in fact that several 4Vector classes exist,

albeit with different names. The ROOT [82] 4Vector class is called TLorentzVector.
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C C++

// Initialisation

double px = 1.0; double px = 1.0;

double py = 1.0; double py = 1.0;

double pz = 1.0; double pz = 1.0;

double e = 1.0; double e = 1.0;

4Vector victor(px, py, pz, e);

// Scale the 4-vector

px *= 2.0;

py *= 2.0;

pz *= 2.0;

e *= 2.0; victor *= 2.0;

// Add 2 mrad to theta preserving the magnitude of the vector

double p = sqrt((px*px)+(py*py)+(pz*pz));

double pt = sqrt((px*px) + (py*py));

double theta = atan2(pt, pz);

theta += 0.002;

double phi = atan2(py, px);

px = p*sin(theta)*cos(phi); double theta = victor.GetTheta();

py = p*sin(theta)*sin(phi); theta += 0.002;

pz = p*cos(theta); victor.SetTheta(theta);
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Of course the calculations are fairly trivial3 and if this were a standalone,

once-and-once-only task that needed to be done then it would be far more

efficient to write the code on the left rather than write the 4Vector class.

However, this calculation and very many others like it are required time and

time again when dealing with and manipulating 4-vectors. In the OO scheme

all useful manipulations are defined once in a 4Vector class and all 4Vector

objects manipulate themselves using that singular definition4.

The important thing to note is that victor is not only a means of data-

storage, he also controls all access to his data, thus he is able to ensure that his

data is always self-consistent; a client of victor is not allowed to be in a posi-

tion to get something wrong. Note too that victor is created as a Cartesian

4-vector but has no problem in dealing with spherical polar representations

of himself. The author of the 4Vector class is perfectly at liberty to change

the way in which a 4Vector stores its state or the way in which it performs

calculations, for example to optimise performance, without fear of affecting

any 4Vector clients.

6.2 OO Techniques Applied to Physics Analysis

Software

Despite the diversity of techniques that must be employed to perform physics

analysis there remain many similarities between the tasks which need to be

done. OO programming provides a natural way to exploit these similarities.

3Although there are several common bugs possible, for example, in which order should

the arguments be given to atan2?
4Thus, if the arguments to atan2 are given in the incorrect order the programmer need

only look in one place to correct the bug. Once the definition is corrected then every 4Vector

object benefits.
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6.2.1 The H1 OO Project

The H1OO Project [83] is the new combined data storage and physics analysis

framework for H1. The aims of this project can be summarised as

• Use OO paradigms to organise and centralise the physics analysis soft-

ware.

• Use the best understanding of the H1 detector and physics analysis al-

gorithms in all physics analyses and build on this expert knowledge.

• Use one tool for data storage and physics analysis.

The H1OO framework is based on ROOT [82] which provides a means of

storing objects persistently as well as a series of packages aimed specifically

for physics analysis. The old and new data storage schemes are shown in

6.1. Both schemes share the same input level which is the Production Output

Tape (POT). In the old scheme this POT information is used to create the

Data Summary Tape (DST) which is then used in turn to create, generally

using private FORTRAN code, a reduced set of information for each event (an

ntuple); this is then analysed using PAW [84].

In the new scheme the POT information is used to create the Object Data

Storage (ODS) layer which is equivalent to the DST information. The ODS

consists of reconstructed tracks, clusters and detector-level information, but

this information is stored in the form of objects, for example H1Track and

H1Cluster objects. The next layer of information is the micro ODS (μODS)

and contains identified particle objects reconstructed from the ODS informa-

tion, for example H1PartMuon objects are the reconstructed muons from the

event. The final layer of information is the H1 Analysis Tag (HAT) layer which

is a concise event summary, for example it contains the number of muons found

in the event. Any combination of the ODS, μODS and HAT layers can be anal-

ysed using ROOT combined with the H1OO framework.
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Figure 6.1: A schematic view of the old (left) and new (right) data storage

and analysis schemes of H1.

The H1OO framework also provides a means of steering objects via the

H1Steering package [85]. Steering here is used to mean dynamically changing

the state of an object without having to recompile code. The initial state

attributes of an object can be specified in a simple ACSCII text file, the

H1Steering mechanism then uses ROOT’s run-time type information mecha-

nism to set the object’s attributes to the specified values.

The Hybrid Mechanism

The analysis presented in this thesis uses a hybrid mechanism to produce μODS

and HAT files from existing FORTRAN code which are then analysed using a

combination of ROOT and the H1OO framework. This mechanism allows the

structure of the code to be checked independently of new physics algorithms

and the results obtained are directly comparable with existing results made

using the old scheme. The H1OO framework is continuously developing and

the version used for this thesis is 2.2.13.
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6.3 A Generic OO Analysis Framework

The aim of the following is firstly to identify the generic tasks which need to

be performed in an analysis and then to relate these tasks to objects.

6.3.1 Generic Analysis Tasks

Figure 6.2 shows a flow diagram of a typical analysis scenario.

1. Initialisation, steering and control of the analysis is done.

2. A set of files is loaded, data or simulation.

3. For each event in the file:

• Variables are read in from the files;

• More variables are calculated from that information;

• An event selection is performed;

• If the event passes the selection some histograms are filled;

• The event is binned.

4. If there is another set of files goto 2.

5. Calculations of Acceptance, Purity and Stability, etc. are done.

6. The final measurement is made.

Binning an event here refers to the process of finding the reconstructed

(REC) level and generator (GEN) level bins for an event and studying them

according to the method detailed in section 4.3.1, where the definitions of

Acceptance, Purity and Stability can also be found.

One abstraction which presents itself immediately on inspection of this list

is the Event object. This object is necessary in order to ensure that there is

one coherent and consistent representation of the event. This object will be the
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Figure 6.2: A flow diagram of an analysis.
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source of all of the information that is needed by the other objects involved in

the Analysis, which is itself an abstraction. The following paragraph describes

in words the list given above; object candidates are highlighted.

An Analysis is composed of several AnalysisChains each of which

consist of the Files of data or simulated events that are to be

analysed. For each Event in the file an EventSelection is made,

some Histograms are filled and the Event is Binned. When all

AnalysisChains have been analysed some FinalCalculations are

done and the final Measurement is made.

6.3.2 The H1Calculator

The Event object was the first object identified in section 6.3.1. Such an ob-

ject already exists in the H1OO framework under the name of H1Calculator.

An Event is clearly a complex object, dealing with information ranging from

tracks and clusters to identified particles such as electrons and muons and fi-

nally whether or not the Event is (for example) a diffractive, high Q2 Event.

Object composition allows the different aspects of the Event object to be seg-

mented into smaller objects which are referred to as Calculators. Individual

Calculator classes control the access to different aspects of the Event informa-

tion and the Event object, being composed of them, controls the Calculators

allowing the Event object to ensure that it is always consistent.

A simple example can be used to highlight the benefit of the Event ob-

ject. The Event kinematics, calculated using several possible techniques by a

kinematics Calculator, requires information from the scattered electron and

the hadronic final state (HFS) Calculators. The diffractive kinematics of an

Event require information from the kinematic Calculator as well as informa-

tion from the diffractive final state Calculator. The full set of dependencies

for calculating the diffractive kinematics of an Event can be seen in figure 6.31.

1The dependence on the Event’s vertex Calculator arises from the dependence of the

scattered electron and HFS systematic uncertainties on their z position in the LAC.
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The colour-coding scheme used in figure 6.3 is such that yellow Calculator ob-

jects have a systematic uncertainty associated with some of their information,

blue and red objects do not and the red diffractive kinematics Calculator is

the object of interest.

If a client wishes to know the effect of a systematic uncertainty on the polar

angle of the scattered electron on a measurement then the client requests

the Event object to shift the polar angle of the scattered electron by the

uncertainty. This will have the result that every subsequent time the client

asks the Event object for information about the scattered electron the polar

angle of the scattered electron will be shifted by the uncertainty. Crucially, if

the client also requests information about the diffractive kinematics2 then the

diffractive kinematical quantities will also be changed accordingly.

6.3.3 An Event Selection

An Event selection is performed by an EventSelector object. The basic con-

stituent of an EventSelector is the Cut object which will return a boolean

decision on the Event. Logical combinations of Cuts are also necessary and the

OrCut, NotCut and AndCut Cut objects specialise in forming logical combina-

tions of more simple Cut objects. The basic criteria needed to make a simple

Cut object are the name of the variable and the range that variable is required

to be in.

Cut objects are placed into a list of cuts (CutList) which provides an

interface for applying all Cuts; this CutList object uses the ROOT TObjArray

class which is an array class for TObjects (and Cut objects are also TObjects).

The EventSelector consists of three CutLists, one for the list of criteria

for the reconstructed level properties of an Event for both data and simulation,

one for the generator level properties of a simulated event and one for the

purpose of selecting the generator level phase-space for a given simulation.

2The diffractive kinematics may depend on the polar angle of the scattered electron

depending on the kinematic reconstruction technique used.
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Figure 6.3: The set of Calculator objects necessary for calculating the diffrac-

tive kinematics (red) of an Event. Yellow Calculator objects have a system-

atic uncertainty associated with some of their information, blue and red objects

do not.
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EventSelector

+ AddRecCut(Cut* c) : void

+ PassesRecCuts() : boolean

- fRecCutList : CutList

Cut

- fRange : float[2]

CutList
+ AddCut(Cut* c) : void
+ PassesCuts() : boolean

- fCutList : TObjArray*

- fVariableName : int

+ PassesCut() : boolean

+ AddGenCut(Cut* c) : void
+ AddMCCut(Cut* c) : void

+ PassesGenCuts() : boolean
+ PassesMCCuts() : boolean

- fGenCutList : CutList
- fMCCutList : CutList

Figure 6.4: The EventSelector, CutList and Cut objects.

The EventSelector, CutList and Cut objects are shown in figure 6.4. In this

and the other class diagrams in this section the conventions used are those of

the Unified Modelling Language (UML) [86].

149



HistManager {abstract}

# BookHistos() : void

# FillHistos(int index) : void

- fHistArrays : TObjArray*

- fCurrentHistArray : TObjArray*

+ Fill(int index) : void

+ GetIndex(TString name) : int

# cd(int index) : void

Figure 6.5: The HistManager object.

6.3.4 Histogramming an Event

ROOT already provides several histogram objects. However, in the course of

producing an analysis many histograms are needed in order to ensure that the

selected event samples are well understood. A HistManager object acts as an

interface for several individual histogram objects. Again the ROOT TObjArray

class is used to store the histogram objects, which are also TObjects. In fact a

HistManager object can deal with the subdivision of histograms into different

categories, for example reconstructed level and generator level histograms. A

client books some histograms under a name of his choice and can then tell

the HistManager to fill these histograms using that name. The HistManager

object is shown in figure 6.5

Plotting several histograms at once for the purpose of presenting control

distributions of event samples is an art unto itself, an art at which a Plotter

object excels at.
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6.3.5 Binning an Event

The process of binning an Event is a fairly complicated one. A BinGrid

object defines one binning scheme, for example in this analysis two three-

dimensional binning schemes are used for the binning of the cross-section

measurement and thus two BinGrid objects are used in the Analysis. The

results of binning an Event are the sets of numbers defined in section 4.3.1, i.e.

NREC , NGEN , NSTAY , NSMEARIN , NSMEAROUT and NLOST . Each number has

a corresponding error on that number and the two are intrinsically linked. The

Measurement object is an abstraction of these “numbers with errors”. Finally,

the Binner object oversees the whole process of creating Measurements with

BinGrids with the help of an object which encapsulates all of the information

that it needs to perform this task, this is the SelectionResults object.

The BinGrid Object

A BinGrid is an N-dimensional array of bin edges. Given an N-dimensional

array of numbers a BinGrid will return the unique bin number for that sample.

For example, a BinGrid created with bin edges in x and Q2 will return the

bin number given a two dimensional array containing the Event’s value of x

and Q2. The BinGrid object is shown in figure 6.6.

The Measurement Objects

Measurements are a series of related numbers. In the case of a SimpleMeasurement

this is most easily expressed as the two values N and ΔN . In general these two

values will be an array of values, the elements of which are defined by a BinGrid

object. CompositeMeasurements are collections of related SimpleMeasurements,

for example NREC , NGEN , NSTAY , NSMEARIN , NSMEAROUT and NLOST . The

Measurement interface and the SimpleMeasurement and CompositeMeasurement

objects are shown in figure 6.7. The ArrayD object also shown in this figure is

an array of doubles, an array which is also a TObject.
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BinGrid

+ AddBinEdges(ArrayD edges) : void

+ GetBinNumber(ArrayD sample) : int

- fBinEdges : TObjArray*

+ GetTotalNumBins() : int

Figure 6.6: The BinGrid object.

The SelectionResults Object

The SelectionResults object encapsulates all of the information that is

needed in order to bin an event and one SelectionResults object is needed

per binning scheme. Figure 6.8 shows this simple object together with the

CalcReader object. The CalcReader object is given an array of variable names

and it retrieves the corresponding variables from the Event object when asked

to.

The Binner Objects

A Binner object oversees the whole binning process, using a BinGrid to bin one

or more Measurements. As such it houses the binning algorithm and the algo-

rithms for the calculations of Acceptance, Purity and Stability. DataBinner

and ModelBinner objects each specialise in binning data and simulations re-

spectively, they are shown in figure 6.9 together with the Binner interface.
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Measurement {abstract}

+ Add(Measurement* m) : void

+ Get(TString name) : Measurement*

+ AddValue(double d, int bin, TString name) : void

+ GetValue(int bin, TString name) : double

+ GetError(int bin, TString name) : double

+ GetEntries() : int

+ GetGrid() : BinGrid*

SimpleMeasurement

- fData : ArrayD
- fSumW2 : ArrayD

+ operators [ ], +, -, *, /, +=, -=, *=, /=

CompositeMeasurement

- fMeasurements : TObjArray*

+ operators [ ], +, -, *, /, +=, -=, *=, /=

- fBinGrid : BinGrid*

- fBinGrid : BinGrid*

Figure 6.7: The Measurement interface and the SimpleMeasurement and

CompositeMeasurement objects.
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SelectionResults

+ ReadInfo() : void
+ GetGenCutsFlag() : boolean

- fGenCutsFlag : boolean

+ GetRecCutsFlag() : boolean

+ SetGenCutsFlag(boolean b) : void
+ SetRecCutsFlag(boolean b) : void

- fRecCutsFlag : boolean
- fGenInfo : ArrayD
- fRecInfo : ArrayD

+ GetGenInfo() : ArrayD
+ GetRecInfo() : ArrayD
+ GetWeight() : double

- fWeight : double

CalcReader

+ GetInfo() : ArrayD
+ ReadInfo() : void

- fInfo : ArrayD
- fVariableNames : ArrayI

Figure 6.8: The SelectionResults and CalcReader objects.
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Binner

DataBinner

ModelBinner

+ Bin(Results* r) : void

+ CalculateAll(Measurement* m) : void

- CalculateAcceptance() : void

- CalculatePurity() : void

- CalculateStability() : void

+ Bin(Results* r) : void

+ Bin(Results* r) : void

- fBinGrid : BinGrid*

- fMeasurement : Measurement*

- fBinGrid : BinGrid*

- fMeasurement : Measurement*

Figure 6.9: The Binner interface and the DataBinner and ModelBinner ob-

jects.
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6.3.6 An Analysis Chain

An AnalysisChain stores the HistManagers and Measurements for one chain3

of analysis. The actual behaviour of an AnalysisChain is defined by its

EventLoop member function, which defines what the AnalysisChain does on

an event by event basis. Default implementations for data, background and

model AnalysisChains are also part of the analysis framework.

File Management

The AnalysisChain uses a FileManager object to manage the finding and

loading of the files that it will analyse. The FileManager object in turn deals

with the H1Tree of the H1OO framework, which is the interface to both the

μODS and HAT layers. Both the AnalysisChain and FileManager objects

are shown in figure 6.10.

6.3.7 The Analysis Object

An Analysis object is composed of one or more BinGrids, one or more

EventSelectors, one or more SelectionResultss and one or more AnalysisChains.

Its behaviour is dictated by the DoAnalysis member function, a default im-

plementation of which exists in the framework4. At the end of the analysis job

the Analysis object is written as one coherent object to a ROOT file. Cru-

cially, when the analysis object is subsequently read back from its file it is still

an object; the analysis itself is consistent. The Analysis object is shown in

figure 6.11.

3The name is taken from the PAW definition where a chain represents a set of files.
4The default implementation simply loops over all exisiting AnalysisChains asking them

to perform their DoAnalysis tasks.
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AnalysisChain {abstract}

- fTree : H1Tree*
- fHistManagers : TObjArray*

- fMeasurements : TObjArray*

# EventLoop(Analysis* a) : void

+ DoAnalysis(Analysis* a) : void

+ AddHistManager(HistManager* h) : void

+ AddMeasurement(Measurement* m) : void

+ GetHistManager(TString name) : HistManager*

+ GetMeasurement(TString name) : Measurement*

FileManager

+ SetPath(TString path) : void

+ GetTree(TString type, TString name) : H1Tree*

+ Instance() : FileManager*

- fInstance : FileManager*
- fTree : H1Tree*
- fPath : TString

Figure 6.10: The AnalysisChain and FileManager objects.
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Analysis {abstract}

- fChains : TObjArray*
- fSelectors : TObjArray*

- fBinGrids : TObjArray*

# SetObjects() : void

+ DoAnalysis(Analysis* a) : void

# AddBinGrid(BinGrid* bg) : void

# AddSelector(Selector* s) : void

+ GetBinGrid(TString name) : BinGrid*

+ GetSelector(TString name) : Selector*

# MakeChain(TString name) : void

Figure 6.11: The Analysis object.
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6.3.8 The Complete Design

The complete design for the generic analysis framework is shown in figure

6.12. Structurally the framework is centred around the Analysis object which

houses the BinGrids, EventSelectors, SelectionResultss and AnalysisChains

and these objects are initialised according to some steering parameters at the

start of the analysis job. In the default implementation of the DoAnalysis

function of the Analysis object the AnalysisChain objects are simply looped

over and asked to do their DoAnalysis task. This will consist of loading in a

new set of files via the FileManager object which will then be analysed in the

EventLoop.

In a typical implementation of the EventLoop function the EventSelector

will be required to perform its Event selections at the reconstructed and gen-

erator levels for each event. Depending on the results of these selections

the HistManager will be required to fill some histograms. At the end of

the EventLoop the Binner object will Bin the SelectionResults object,

which has gathered all of the necessary information, and updates one or more

Measurements according to the definition provided by the BinGrid. When

there are no more events left to analyse the Binner performs the calcula-

tions of Acceptance, Purity and Stability and creates Measurement objects

to store these numbers. All of the Measurements created by the Binner are

then given to the AnalysisChain to store. The HistManager is added to the

AnalysisChain during initialisation.

When all of the AnalysisChain objects have finished doing their work the

Analysis object simply writes itself to a ROOT file. This default behaviour can

be changed by overriding the DoAnalysis function of the Analysis object. All

AnalysisChains, BinGrids, EventSelectors and SelectionResults objects

are therefore written together as part of one coherent Analysis object, which

also stores any steering parameters used. If a physicist want to know the se-

lection used to produce the cross-section measurement made with a particular

Analysis object then he/she just needs to ask the Analysis object.
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6.3.9 Improvements and Future Work

The physics analysis uses of the generic analysis framework presented here cur-

rently range from “Searches for Leptoquarks” and “Studies of isolated electrons

and muons in events with missing transverse momentum” to “Measurements

of the inclusive NC and CC cross-sections” and of course the measurement of

the diffractive reduced cross-section at high Q2 presented here. The framework

continues to develop as it acquires more users who demand more flexibility and

functionality of it. The following is a discussion of general improvements that

could be made to enhance the framework.

Cross-Section Extractions and Systematic Uncertainties

The cross-section extraction procedure involves many sets of numbers and, de-

spite the CompositeMeasurement object, still requires many objects (greater

than the 7± 2 goal). At least one potential object would make this procedure

simpler, an object which deals with calculating the error arising from a sys-

tematic uncertainty on the measurement. In general this error is calculated

from the change in the Acceptance correction found for each particular uncer-

tainty and a SystematicMeasurement could generalise and thereby simplify

this procedure.

Steering

The Analysis, AnalysisChain and SelectionResults are all entirely steer-

able and the EventSelector object can be partially steered to enable or disable

Cuts through the AnalysisChain steering. The H1OO Steering mechanism al-

lows any object to be steered and so this list could be extended to include all of

the objects in the framework. The decision on whether or not to steer an ob-

ject must be a compromise between compile-time errors, which are preferred,

and run-time errors.
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A Graphical User Interface

The ROOT framework already supports graphical objects and a graphical user

interface to the analysis framework would make it yet more user-friendly. A

full “Point and Click” physics analysis would have many obvious benefits, for

example an Analysis object stored in a ROOT file could be sent to a colleague

who may then be several mouse-clicks away from not only seeing the results

but any other related information.
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Appendix A

Tables of Cross-Section Results

Q2 (GeV2) β xIP xIP σ
D(3)
r δstat δsys

200.0 0.106667 0.03 0.044639 0.053 0.107

200.0 0.166667 0.03 0.040093 0.046 0.114

200.0 0.266667 0.03 0.031921 0.051 0.107

200.0 0.320000 0.01 0.032590 0.050 0.093

200.0 0.433333 0.03 0.030096 0.052 0.111

200.0 0.500000 0.01 0.027015 0.048 0.106

200.0 0.666667 0.03 0.021232 0.067 0.127

200.0 0.800000 0.01 0.016398 0.069 0.119

400.0 0.266667 0.03 0.034476 0.073 0.103

400.0 0.433333 0.03 0.029282 0.065 0.111

400.0 0.666667 0.03 0.021633 0.072 0.115

400.0 0.800000 0.01 0.016850 0.110 0.133

800.0 0.433333 0.03 0.037834 0.116 0.123

800.0 0.666667 0.03 0.016580 0.132 0.126

1600.0 0.666667 0.03 0.015760 0.254 0.190

Table A.1: The diffractive reduced cross-section σ
D(3)
r (Q2, β, xIP ) multiplied

by xIP as measured in bins of fixed Q2, x and xIP . The quantities δstat and δsys

represent the fractional statistical and systematic errors, respectively.
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Q2 (GeV2) β xIP xIP σ
D(3)
r δstat δsys

200.0 0.10 0.032000 0.049455 0.070 0.132

200.0 0.20 0.016000 0.033355 0.058 0.108

200.0 0.20 0.025000 0.034738 0.053 0.123

200.0 0.20 0.040000 0.037552 0.075 0.137

200.0 0.40 0.008000 0.030565 0.076 0.110

200.0 0.40 0.012500 0.027801 0.062 0.115

200.0 0.40 0.020000 0.026605 0.067 0.106

200.0 0.40 0.032500 0.030994 0.078 0.134

200.0 0.65 0.004923 0.030915 0.089 0.121

200.0 0.65 0.007692 0.025607 0.073 0.120

200.0 0.65 0.012308 0.023395 0.073 0.113

200.0 0.65 0.020000 0.021863 0.077 0.122

200.0 0.65 0.030769 0.024284 0.078 0.132

200.0 0.65 0.049231 0.020425 0.109 0.173

200.0 0.90 0.003556 0.022024 0.203 0.211

200.0 0.90 0.005556 0.012713 0.182 0.231

200.0 0.90 0.008889 0.014579 0.174 0.211

200.0 0.90 0.014444 0.006831 0.233 0.212

200.0 0.90 0.022222 0.006459 0.252 0.236

200.0 0.90 0.035556 0.004461 0.374 0.489

Table A.2: The diffractive reduced cross-section σ
D(3)
r (Q2, β, xIP ) multiplied

by xIP as measured in bins of fixed Q2, x and β for Q2 = 200 GeV2. The quan-

tities δstat and δsys represent the fractional statistical and systematic errors,

respectively.
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Q2 (GeV2) β xIP xIP σ
D(3)
r δstat δsys

400.0 0.20 0.040000 0.042185 0.107 0.150

400.0 0.40 0.020000 0.029400 0.097 0.115

400.0 0.40 0.032500 0.028070 0.104 0.139

400.0 0.40 0.050000 0.029144 0.150 0.225

400.0 0.65 0.012308 0.023841 0.115 0.135

400.0 0.65 0.020000 0.020908 0.089 0.118

400.0 0.65 0.030769 0.025187 0.083 0.119

400.0 0.65 0.049231 0.019766 0.112 0.168

400.0 0.90 0.008889 0.010775 0.293 0.197

400.0 0.90 0.014444 0.010946 0.241 0.221

400.0 0.90 0.022222 0.005240 0.300 0.283

400.0 0.90 0.035556 0.005505 0.297 0.334

800.0 0.40 0.032500 0.031758 0.185 0.171

800.0 0.65 0.020000 0.029304 0.169 0.157

800.0 0.65 0.030769 0.017839 0.161 0.135

800.0 0.65 0.049231 0.023023 0.164 0.161

800.0 0.90 0.014444 0.010672 0.527 0.251

800.0 0.90 0.022222 0.004165 0.513 0.312

800.0 0.90 0.035556 0.008997 0.335 0.232

1600.0 0.65 0.030769 0.013968 0.354 0.289

1600.0 0.65 0.049231 0.017106 0.282 0.148

1600.0 0.90 0.022222 0.005472 0.768 0.289

1600.0 0.90 0.035556 0.001585 1.155 0.252

Table A.3: The diffractive reduced cross-section σ
D(3)
r (Q2, β, xIP ) multiplied by

xIP as measured in bins of fixed Q2, x and β for Q2 = 400, 800 and 1600 GeV2.

The quantities δstat and δsys represent the fractional statistical and systematic

errors, respectively.
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