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Abstract

The subject of this thesis is the design and implementation of the core system components of

a data distribution system for the H1 experiment at DESY, Hamburg. The aim of the project was to

develop a framework for online event filtering and reconstruction and offline reprocessing and

analysis. The system is running on a farm of networked, Linux based, commodity PC's.

The input data is divided into computationally independent records called 'events', which

represent a numerical description of a particle collision registered by the detector. To efficiently use

the distributed resources of the PC farm, events are sent from an input node to multiple worker

nodes which perform processing of the data. Results are then sent to an output node. The system

can be easily scalable thanks to multiple input and output nodes support.

The events are stored in and transferred between repositories which are multithreaded

CORBA servers allowing for multiple readers and writers access. It is basically a first-in first-out

store, however the repository supports also synchronization of the event flow by implementing

barriers. Barriers are special events which must be written by all writers before they can be read,

and have to be read by all readers, before they are removed. This allows to distribute data that is

important for event processing to all nodes at the same point in the event flow. The barrier

algorithm is complicated and was the main design and implementation issue.

We have chosen CORBA as the communication tool, C++ as the main programing language, JTC

Threads and pthreads as the threading library.

In the first chapter the background of the system is described, in the second the project

goals. In the third chapter two existing systems are discussed and how they fit into the project goals

stated earlier. In chapter four a more formal view of the system requirements is presented. Chapter

five is the largest chapter and it covers the design of the whole system. UML diagrams are used to

present the class structure and algorithms. Chapter six covers the most important issues of the

implementation. In chapter seven results of tests are shown. Finally in chapter eight a short

summary is presented and future plans are described. Appendix A contains an opinion about this

thesis by Alan Campbell. Appendix B the conference papers for Cracow Grid Workshop '02.
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1 Introduction

1.1 HERA and the H1 experiment

H1 is an international collaboration of about

400 scientists from 39 institutes in 12 countries,

performing fundamental research in the field of

High Energy Physics also known as Elementary

Particle Physics. The H1 collaboration has built and

operates the H1 detector, one of the big experiments

taking data with colliding electron-proton beams at

the HERA accelerator.

HERA construction has been started in 1984

and data taking begun in 1991. The accelerator is

located at DESY “Deutsches Elektronen Synchrotron” in Hamburg (Fig. 1), Germany, and is

currently the only electron-proton collider in the world [1],[2].

The main interest of research of the H1 collaboration is to measure the structure of the

proton, to study the fundamental interactions between particles, and to search for physics beyond

the Standard Model of the elementary particles [3],[4]. This is essentially done by analyzing particle

collisions. In order to verify existing theories thousands of collision (events) have to be analyzed. In

order to collect and to process such amounts of data, a high throughput computing environment has

to be created.

This thesis describes the contribution to the design and implementation of a framework,

which is being used at H1 for all computing tasks involving physical event analysis.

1.2 Computing tasks at H1

One of the main computing challenges of high energy physics is the amount of data it has to

cope with. Interactions in the detector occur at a rate of 10.4 MHz giving about 100 kB of

information each, giving us about one hundred Peta Byte of data a day. Storage of such amounts of

data would be very difficult and costly. A method for reducing the data stream before it is written to

tape or disk had to be developed. The process of throwing away uninteresting events is called

triggering. Triggering is done online and any delays result in data loss. The design of the triggering
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system is therefore especially important. Triggering has been divided into four levels. The first

three levels are hardware triggers, the fourth level is a software trigger [5].

The data which passes all trigger levels is reconstructed, that means that the signals obtained

from the detector are translated into a description of particle trajectories which resulted from the

collision. It is than stored on disk or tape and made available to H1 physics for further analysis. The

results of such analysis allow a better view into particle physics.

As more experience is gained in data processing bugs and inaccuracies are discovered or

new methods developed and added to the reconstruction code. When the improvements become

meaningful the H1 group may decide to reconstruct all events collected once more with the new

reconstruction program. 

Another computing task at H1 is Monte Carlo events processing. Analyzing simulated

collision results which are generated using Monte Carlo methods, is important for understanding

how the detector works and what influence the reconstruction process has on the results.

1.2.1 Hardware triggering

HERA is a large underground

storage ring. Electron and proton

bunches are accelerated by oscillating

electromagnetic fields to a speed near

the speed of light. They are accelerated

in two parallel tubes in opposite

directions. At two points (interaction

regions) inside the ring electrons and

protons are brought into collision.

These two interaction regions are

surrounded by particle detectors (Fig. 2). A bunch crossing happens each 96 nanoseconds. At the

collision a lot of energy is released, which results in a so-called 'shower' of new particles. These

particles can be registered when they hit the active detector elements. Each detected particle

interaction is called a physical event.

About 10% of the bunch crossings result in a proton-electron collision but nearly at each

bunch crossing a collision with a gas particle or the wall of the accelerator occurs also resulting in a

particle shower. These events are called background events and in general are uninteresting to

physical analysis. The detector can readout events at a rate of about 100 Hz which is not sufficient
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to register all events and later decide which of them are interesting. For this reason a facility called

'fast detector' is placed inside the main detector. It can register events at a rate of 100 nanoseconds

but has lower resolution than the main detector. However it can identify most of the background

events and activate the main detector readout only when an interesting event has occurred. This

reduces the rate of events to a level acceptable for the main detector. The fast detector is the Level 1

trigger.

Particles hitting an active part of the detector result in stored analogue electronic signals.

When accepted by the Level 2 trigger, special logic based on fast detector signals, these signals are

read out, digitized and stored in memory in records called BOS1 Banks ([6]). A BOS Bank contains

information about impulse strength, time, and detector part which registered it.

BOS Banks from different detector parts arrive at a VMETaxi module ([7],[8]) dedicated for

1BOS is a memory management system that enables large and complicated data structures to be realized in FORTRAN
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this part of the detector. All Taxi modules are connected in a fiber optic ring. The BOS Banks from

all VMETaxi modules are assembled to create a single event. The assembling process is being

steered by a Coordination Module (which is also VMETaxi) attached to the ring. At this point the

design has foreseen a Level 3 trigger. Its reject decision would stop the readout and free memory in

all Taxi modules. However Level 3 trigger has never been actually used. 

The scheme of the H1 data acquisition system can be seen in Fig. 3. For further reference

about the H1 DAQ (Data Acquisition) system see the H1 Detector paper [4] or the H1 detector web

page [9].

1.2.2 The software trigger and online reconstruction

When assembling data from all Taxi modules in the ring is completed we have a data

structure containing all information from the detector concerning one physical event. We call this

structure a raw data event ([10]). From the Coordination Module raw data events are send via VSB

(VME Subsystem Bus) to a process in another VME crate which runs LynxOS (real time Unix

[11]). Here the raw data events are put into FPACK format, which is a machine independent data

format used widely in high energy physics (see the FPACK manual for more details [12]). 

From the LynxOS the FPACK events are sent to a system which performs Level 4 triggering

and does the reconstruction. The Level 4 trigger is able to still reject some background events

having complete information and more time than the Level 1-3 triggers. The reconstruction process

deduces the momentum, the energy and the quantum numbers of the particles which have hit the

detector and is sometimes called the Level 5 trigger. This is the last stage of the online process.

Now the data is stored on tape or disk and made available for further offline analysis. The data input

rate the Level 4 trigger has to cope with is about 6 - 10 MB/s. The corresponding output rate of the

reconstruction process is then about 3 MB/s.

1.2.3 Reprocessing

With time, as more and more experimental events are reconstructed and analyzed, some

bugs in the reconstruction program, some inaccuracies in calibration constants describing the

detectors geometry, may come out and be fixed or new, better reconstruction techniques are

developed. When enough such corrections are made or an important problem is discovered and

fixed, the H1 members may decided that the changes should be applied to the data that has already

been reconstructed. The aim of such reprocessing is to get data with higher quality. Reprocessing
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may apply to data from several years and therefore it is a great computing effort. The last

reprocessing, which took place in 2002, covered 40 Tera Bytes of data.

The raw data that is needed for reprocessing comes from the output events of the online

reconstruction process. The events contain both the input raw data and the reconstructed event.

1.2.4 Monte Carlo simulation

Monte Carlo simulation is done in three steps by three separate applications. The first

application is called the Generator. It produces physical events based on the model of physical

interactions. The output is a set of particles described by their momentum, their energy and

quantum numbers. Such a virtual interaction is passed to the Simulation application which has a

model of all detector parts. It calculates which parts of the detector would be hit, and the signals

that would be emitted as the result. The output of the simulation process is similar to the raw data

events that we get from the detector. You can see in Fig. 4 how simulation data originates as

compared to experimental data. 

Hardware triggering is simulated by a software library, and can be performed either at the

end of the simulation process or just before the reconstruction. The simulation events are translated

to the same format as experimental events and can be put through the same reconstruction process.

The resulting events however contain additional data as compared to experimental results. Besides

the reconstructed physical event they also contain the source event, which was created by the

Generator. By comparing these two events we can see what data got lost and which parameters got
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modified during the reconstruction, allowing for better understanding of how the detector works -

which physical phenomena can be detected and which will get lost.

1.2.5 Offline analysis

Events in FPACK format which passed the Level 4 trigger and have been put through the

reconstruction process contain direct information about the collision in form of particle four

vectors. A set of tools written in Fortran has been developed for easy access to this data. Members

of H1 and other physicists may analyze thousands of such events and create statistics of processes

that happen due to the collision.

1.3 The L45 project

The L45 project has been started with a general detector and hardware upgrade. The old

computing system had to be replaced by a new one in order to keep up with the expected increase in

data rates. The upgrade touched nearly all parts of the H1 system. The goal of the L45 project was

to develop a software framework which could be applied to all main computing tasks at H1

involving event processing. The system should run on the new hardware and take advantage of

modern programming techniques and tools. 

1.3.1 Upgrade of the triggering system at H1

Before the upgrade the H1 computing system was heterogeneous. A cluster of PowerPC's

connected via VME cluster was used for Level 4 triggering and SGI challenge multiprocessor

machines were used for reconstruction, Monte Carlo processing and user analysis. The NQS-

Batchsystem (Network Queuing System) was used to control job submission and execution. Each

time reprocessing had to be done it was decided which machines to use. The L4 triggering and L5

reconstruction were done in separate steps, with data written to mass storage in between.

The upgrade replaced the PowerPC cluster and the multiprocessor machines with a

homogeneous farm of commodity PC's and all computing tasks mentioned above were moved to

this farm. PBS (Portable Batch System [13]) was adopted as batch system. The L4 triggering and

L5 reconstruction were redesigned and merged into one program [14].
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1.3.2 Main system tasks and requirements

The main goal of L45 project was to design a framework for running L45 – merged Level 4

and Level 5 trigger – on the new farm of PC's. It was also important that the framework allows for

user analysis, reprocessing and Monte Carlo. All the mentioned tasks deal with events as the basic

data unit. The design should exploit the computational independence of FPACK events by

parallelizing the computations.

The framework should be easily scalable and allow for dynamic resource acquisition and

release. It should be able to use legacy Fortran code for event processing and FPACK as the input

data format while making the switch to modern object-oriented processing code and data formats

fairly easy. New user interface modules should be designed.

1.3.3 A brief history of the project

The L45 project was started in the second half of 2000. My first contribution to the project

was in summer 2001 when I came as a summer student to DESY. Since then I have been working

on the core system components including basic data structures for keeping events, communication

and synchronization between nodes, implementation of different node types, managing startup,

stopping, cleanup, crash recovery of nodes, implementation of functions which allow control of the

system, design of the Controller module.

The deadline for the framework was the end of 2001 and by this time the first functional

version of the system was ready. The time until summer 2002 was a time of consolidation and

feature upgrades. The system is currently fully functional. L45 reconstruction and user analysis tests

have been successful. Still code cleanup and minor feature enhancements are performed

occasionally.
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2 Goals of the thesis

2.1 One framework for all processing tasks

The H1 experiment team is performing four main computing tasks - online filtering and

reconstruction, reprocessing, offline reconstruction, and Monte Carlo analysis. L45 project goal is

to design a framework which could be applied to all these processing tasks. 

The data stream coming from the experiment is divided into runs. Each run is associated

with a set of calibration constants. They contain information about detector settings which can be

changed to better fit the conditions that are in during data taking. Run stop, run start and calibration

constants information is inserted into the data flow just like ordinary events. The difference is that

they change the way events are being processed. It is necessary that run stop, run start and

calibration constants reach each process before data from the next run arrives there.

Online triggering has real time requirements. Data is streaming from the experiment as

successive collisions are detected. If the system can not handle the data stream, information is lost.

Currently the input data stream is about 7 MB/s and the output data stream about 3 MB/s, but we

want the system to be scalable to handle also higher data rates.

The library which performs L45 reconstruction and triggering is carefully developed as it is

used by the whole H1 experiment. Most bugs are found before it is applied to real experimental

data. Still we have to consider a situation when a program crashes or deadlocks. Such situation

should not cause the whole framework to stop, a quick recovery must be possible to eliminate or at

least lessen the data loss.

The input data is received from a VME crate running LynxOS via a socket. 

A special logging program divides and checks the output data stream. The result of such

checks are updates to the calibration constants. These updates should be inserted into the input data

stream as soon as possible.

Monte Carlo analysis and reprocessing are very similar to online triggering. The main

difference is that the input data comes from a file which has been generated earlier and not from the

detector. Hence there are no real time requirements and only the throughput is meaningful. The

reconstruction code is here also well tested and common for H1. Fast recovery is here not the

highest priority but rather the ability to tell how far the processing got before it crashed. This can

not be deduced simply by checking event numbers in the output file since processing on multiple

machines in parallel might have changed their order.
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After the data from the experiment has been filtered and basic reconstruction has been

performed, the events are stored on disk or tape and made available for the H1 group members for

analysis. Each member can write his own analysis program and run it on some of the experimental

data. Requests from users to perform their computation are queued by PBS batch system, and

should be fulfilled as soon as some processing power is free for use.

Because user analysis requires user programs, a simple way to link user libraries into the

system is required. Also user programs are not so well tested as online or Monte Carlo

reconstruction code. Therefore user analysis should be run in a special safe mode to decrease the

possibility of crashes and data loss.

2.2 Utilization of the PC farm

A farm of commodity dual-processor PC's has been adopted as the base hardware for the

new computing environment at H1. The PC's are running Linux and are connected by internet. In

order to fully utilize the processing power of the PC farm we have to exploit the parallelism of the

reconstruction process, while being able to dynamically acquire and release resources of the PC

farm as needed.

Each FPACK event is a computationally independent set of data. The easiest way to exploit

the natural parallelism of the problem is to distribute the processing of single events. Each event is

sent to only one node for processing, but, as mentioned above, some data, like the calibration

constants or the markers, has to be distributed to all worker nodes. We also want that groups of

events separated by calibration constants or markers don't get mixed up.

The PC farm is large enough for more than one computing task to be performed there at the

same time. For online reconstruction it is important that more PC's can join the processing if the

throughput is not sufficient to handle the input stream. In general we want the system to be able to

free or acquire resources without any interruptions to the data flow.

The operations performed by a process can be roughly divided into I/O and calculations. The

calculations require processor time while network I/O is handled mainly by the network interface

card. The system should be able to do both operations in parallel to optimize PC utilization. 

The PC are dual processor machines. The reconstruction program is written in Fortran and is

single threaded. Running two reconstructions in two separate threads or processes should be

possible.
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2.3 Using modern programming techniques

The use of low level programming languages has been the cause of high maintenance costs

and low flexibility in the past. The system should take advantage of new programming techniques

and languages, which have been developed over the last years, to reduce the development time,

increase scalability and flexibility of the system. This includes choosing a modern object oriented

programming language with an interface to a high level, standardized communication library. The

programming language should allow for easy access to Fortran routines. Increasing performance in

places in code where it is especially needed should be also possible. The communication library

should neither require developing a communication protocol nor designing of special server

facilities inside the system. The library should have bindings in many languages so that developers

of additional modules are not limited to the programming language that has been chosen for the

main system components.

2.4 Objectives of the thesis

High throughput computing has always been a requirement in HEP (High Energy Physics)

as it has to handle data amounts seldom found in other fields of science. With the construction of

particle accelerators and detectors constantly becoming better, creating a system which could

handle the requirements is a challenge, event with increasingly faster computer architectures. All

HEP experiments have similarities but also specific problems and needs which the computing

system has to fulfill. 

This thesis describes the development of a data distribution and analysis system for the H1

experiment at DESY. It addresses all its specific computing requirements but at the same time, by

applying modern, object oriented design and programming techniques, an attempt is made to create

a framework which could be easily adopted to other similar problems.
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3 Similar systems

3.1 Condor  

Condor ([15]) is a specialized batch system working in distributed UNIX/Linux/

WindowsNT environment. It is designed to manage compute-intensive jobs with high throughput

requirements. It has a queuing mechanism, a scheduling policy, priority scheme and resource

classification mechanisms. It is especially designed for using non-dedicated resources, that is

resources not owned or managed by a centralized resource manager.

3.1.1 Goals  

The general idea behind Condor is that with PC's standing on nearly each desktop and often

standing idle, we have huge resources of unused computing power. Condor is an attempt to retrieve

this processing power. Owners of PC resources would join voluntarily a system in which they could

offer their free processing power to other members of the system. In exchange the idle processing

power in the system would be made available to them if they need it. Condor is responsible for

managing user request and finding idle computers in the system.

The system must be especially sensitive to user requirements. People will only share

processing power of their PC if they can be sure they can retrieve it whenever they need it. A

resource description language is necessary so that users can precisely describe how and when their

machine can be used. A similar job description language is necessary so that users can describe

requirements for their computations.

3.1.2 Design

On each machine which decides to join Condor a background process has to be started,

which waits for the machine to become idle. On some other machine the central manager is

running. It keeps a job queue and when a machine which matches the job description becomes free,

it starts the process there. Its responsibility is also to move processes away from machines which

stopped being idle. A group of machines with one central manager is called a pool. Pools may be

hooked together in a hierarchical manner.

A checkpoint mechanism has been developed to allow for moving processes from one
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machine to another. A checkpoint is a snapshot of the process made periodically, containing all

information about the process needed to restart it from that point. Checkpoints are also used for

crash recovery.

All system calls made by the program are intercepted by Condor and if necessary redirected

to other machines. Hence the process is totally unaware of its location.

In order to take advantage of system call redirection and checkpointing the program has to

be linked with Condor libraries. There are some limitations for programs which want to use

checkpointing, like no multithreading or interprocess communication allowed (refer to Condor

manual for details). However linking with Condor libraries is not required for a program which is to

be run in a Condor pool.

Each job can be run in one of the four Condor universes:

1. standard universe - checkpoints and system calls redirection for programs linked with Condor.

2. vanilla universe - no checkpoint or system calls redirection.

3. PVM - ability to dynamically create PVM machines.

4. Globus - job submission using RSL strings.

3.1.3 Characteristics

� Specialized batch system for use of idle resources.

� No changes to code necessary.

� Checkpointing and system calls redirection.

� Jobs submitted to Condor can be run on GRID.

� Job and resource description language.

3.2 DIANE  

DIANE - Distributed Analysis Environment ([16]) has been developed by Jakub T.

�Mo cicki at CERN. It is a CERNA IT/API project to study the requirements and prototype a

middleware distributed environment for parallel data analysis for LHC. It targets mainly parallel

ntuple analysis and parallel detector simulation, however it is not limited to any specific

application. It was also an attempt to see how API products can be integrated with GRID.
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3.2.1 Design

DIANE is component based framework for parallel cluster computation. It is application-

oriented featuring a master-worker (see Fig. 5) model which is common in HEP applications It is

application independent because applications can be loaded dynamically in plugin style. The

framework communicates with applications through a well defined abstract interface. This allows to

shield user applications from changes in 3rd party components as well as from changes in DIANE's

architecture.

It is designed as an integration layer between applications and the GRID (see Fig. 6). It

implements high level GRID interface, allowing to treat the system as a GRID computing element
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but also uses low-level GRID modules for security, load balancing, environment replication and

similar. The system is protected from the instability of GRID technology by packaging modules

into pluggable components.

The core of the system is based on CORBA and CCM (CORBA Component Model).

3.2.2 Main characteristics

� Designed to run on a cluster.

� Acts as a semi interactive batch system.

� Highly modular and component oriented.

� Master worker parallel processing model.

� No low level load balancing - static data partitioning.

� Using low level GRID modules. May be accessed via GRID enabled web portals.

3.3 Summary

Most of the freely available tools for distributed, scientific computing focus on job/resource

managing making them specialized batch systems. The L45 project targets at creating a more low

level system. We hope to be able to address more of the requirements H1 computing has by

exploiting the inner parallelism of the analysis which is event-based. The system does not address

directly resource managing aspects, offering only an interface which could be used by a higher level

batch system.
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4 Requirements

4.1 Utilization of the PC farm

The system will run on a farm of dual processor PC's. It must be able to dynamically

allocate and free farm resources. The administrator should be able to do it by removing a machine

from the system or adding one without having to stop the system or loosing data. The processes

should be multithreaded so that disk I/O and network interfaces can be operated in parallel and the

dual processor architecture is fully used.

Req.1   A PC assigned to the system at startup can be removed at runtime without any data loss or

having to stop the system (Fig. 7).

Req.2   A PC which was not assigned to the system at startup can be added at runtime without

having to stop the system (Fig. 7).

Req.3   Each process should be multithreaded so that disk I/O, network operations and computation

can be done in parallel.

Req.4   On multiprocessor machines computation should be done in more than one process or

thread.

4.1.1 Throughput and scalability

The data input rate the system has to cope with when doing online triggering is about 10

MB/s. The corresponding output rate is about 3 MB/s. This are the minimal requirements for the

system. As these parameters may change in the future we want the system to be scalable to cope

also with higher input and output rates. The input and output data streams may be split, so multiple

input and output points to the system are possible.

Req.5   The system should cope with an input rate of 10 MB/s and an output rate of 3 MB/s.
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Req.6   Higher input and output rates should be possible by supporting multiple input and output

points if necessary.

4.2 Data handling

4.2.1 Data format

An event describes a collision registered by the detector. The numerical values are kept in

FPACK format. Data in FPACK format is divided into records. This records can be either physical

or logical. Physical records are constant sized (the size is usually adjusted to get best I/O

performance on the disks), and can therefore contain a part of an event, a full event, or even

multiple events. Logical records contain always one event and their size varies. 

Req.7   The system may receive logical or physical records as input data and must be able to deal

with both. Information which allows to distinguish logical and physical records is contained in

the record header.

The format of an FPACK record header is described in [12]. Logical records will be further referred

as “FPACK Events”

4.2.2 Data input

The input data may come from two sources either from a file or from a socket.

Req.8   The system must be able to read data either from a file or from a socket.

4.2.2.1 Reading from a file

Reading from a file is done when offline analysis is performed. An FPACK card file defines

the file or files data should be read from and the reading mode. A Fortran routine exists for parsing

card files line by line. It is declared:

void fparm(const char* cmd, long len)

where 'cmd' is a line of the card file and 'len' its length. The subroutine which actually reads the data

can output it either to a file or it can call a function, which, in C namespace, is declared as follows:

void fwspec(int *LUN, int *NWORDS, int *BUFFER, int *IEND)

where IEND is the error number, BUFFER is a pointer to the data and NWORDS the length of

BUFFER. An implementation of fwspec should make a copy of data in BUFFER as ownership of it
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is kept by the Fortran routine which calls fwspec. Also IEND should be set to 0 if no error occurred.

When end of file is reached or an error occurs while reading a function declared as:

void fcspec(int *LUN)

is called. For further reference to fparm, frspec, fwspec, fcspec refer to the FPACK manual [12].

Req.9   Given the FPACK card file location the system should be able to open and parse it using

the fparm function (or a compatible one). The data should be received by implementing the

fwspec function (or in a compatible way). Reading should stop when fcspec is called.

Req.10   If the given FPACK card file can not be found the system should stop immediately writing

to standard output the cause of failure.

4.2.2.2 Reading from a socket

Reading from a socket is required by online triggering. The raw data is packed into FPACK

records on a remote machine and made available via a socket.

Req.11   Given the socket address the system should be able to read subsequent FPACK records

until end of file is reached or an error occurs.

Req.12   If a connection to the given socket address can not be established the system should stop

immediately writing to standard output the cause of failure.

4.2.3 Data output

The system output consists of FPACK Events containing results of the processing. The data

is written to a file or multiple files. This is done by a Fortran routine which acquires subsequent

records for writing by calling a function:

void frspec(int *LUN, int *NSKIP, int *IRC, int *NTOT,
  int *BUFFER, int *IEND)

where BUFFER points to a memory address where the data should be copied, NTOT is the size of

BUFFER and IEND the error number which should be set to 0 if no error occurred.

Req.13   The results should be put out by implementing the frspec function.

4.2.4 Data processing

The processing of events (reconstruction, software triggering) is also done by Fortran

routines. This routines accept FPACK Events as input data and put out results also as FPACK
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Events. This routine uses fwspec to output results and frspec to get data.

Req.14   Feeding data into the processing routine and collecting results should be done using

fwspec and frspec functions.

4.2.5 Grouping of events

The input data consists of events. The order of events is, in general, not important so that

events may be put out by the system in different order then they were at the input side. We want

however to be able to group events. The order of events is still unimportant but events from

different groups should never mix with each other.

Req.15   Events can be grouped in such a way that events belonging to one group at the input side

are still in the same group when they are put out by the system.

4.2.5.1 Run start, stop events

At the end of each run a run stop event is inserted into the data flow ending the last run, and

a run start event, starting the new run. Sometimes run stop/start events of empty runs are not

inserted into the data flow. We expect the system to discover such situation at the input side and

create emergency run stop/start events.

Req.16   Events from different runs should be divided by a run stop and run start event.

Req.17   If a run stop/start event is missing in the data flow it should be created by the system.

4.2.5.2 Additional grouping of events

 We want also to be able to add additional grouping of events inside runs.

Req.18   The system should support additional grouping of events inside runs.

4.2.5.3 Distributions of calibration constants

Calibration constants are special events which interpreted by the processing code change the

way events are being processed. Calibration constants come always after a run start event of a new

run. Additional update calibration constant events may be inserted also in the middle of a run.

It is important that calibration constants reach each processing program before the events they

apply to. This means that calibration constants are also grouping events.
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Req.19   The system should support grouping of events by inserting calibration constants and

'update calibration constants' into the data flow.

4.3 Fault tolerance

4.3.1 Errors in input data

Input records contain sometimes errors which can be easily found by validating the record

headers. Such errors often make it impossible to extract events from this records. If this is the case a

record should be thrown away by the system.

Req.20   If errors in the input records are encountered which make it impossible to extract events

from them, these records should be removed from the system and a message describing the error

type should be written to standard output (Fig. 8).

4.3.2 Event processing

The processing programs sometimes contain bugs which may cause them to crash or

deadlock on certain events. The system must be able to continue processing in such a case. If

possible the event which caused this situation should be identified and left for further investigation.

Req.21   The system should be able to realize about crashed processes. The necessary cleanup

should be performed and the process restarted. Whenever possible the event which caused the

crash should be saved (see Fig. 9).
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Req.22   The system should be able to identify deadlocked processes, kill them, perform cleanup

and restart them. Whenever possible the event which caused the deadlock should be saved (see

Fig. 9).

4.4 Monitoring and control

4.4.1 Starting the system

Starting the system should be possible by defining three parameters: the input source,

defining PC to add to the system and which part of the system should be run on which machine.

Req.23   Starting the system should be preceded by specifying the input source, assigning PC's to

the system and assigning tasks to these PC's (Fig. 10).

4.4.2 Stopping the system

In some situations it may be necessary to stop the system before end of file is reached.

Depending on how critical it is to stop the system, two methods should be possible - hard stop and

soft stop. While hard stop ends immediately loosing all the data that has entered the system but was

not put out, the soft stop waits for the processing of the events that are in the system to be finished

but stops reading new events immediately.
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Req.24   A hard stop method should be implemented which allows for stopping the system

immediately. Loosing data is acceptable (Fig. 10).

Req.25   A soft stop method should be implemented which allows for stopping the system after

processing of events that already are in the system is finished. Data loss is not acceptable (Fig.

10).

4.4.3 Monitoring interface

A basic monitoring interface is required which allows to see how much data has been

already processed, what run is currently being processed, if the system has enough processing

power to deal with the input data stream. More in depth monitoring is done at event level by the

Fortran analysis program which creates histograms of the processed events so this functionality is

not required by the system.

Req.26   An interface should exist allowing to check the amount of data that has been processed

and the current position in the data flow (the run number) (see Fig. 11).

Req.27   It should be possible to check if the system has enough processing power to cope with the

input and output data streams (see Fig. 11).
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4.5 Extendability

4.5.1 New event types

Currently the support for FPACK Events is necessary but in future other data format may be

used in H1. The system should be as format independent as possible and allow for an easy switch to

object oriented data models.

Req.28   System design should allow for an easy switch to new event formats.

4.5.2 Additional modules

The system should be built in a modular way allowing new modules to be easily added - like

system controlling and monitoring tools. These additional modules may be possibly written in other

programming languages than that used for the core system components.

Req.29   Modular design of the system allowing new modules to be added easily. New modules may

be written in other programming languages than the core system components.

Requirements 28



5 Design

5.1 Selecting the communication model

Selecting the model for interprocess communication in the system was an important part of the

design since existing models vary greatly and can have great influence on the system. After many

discussions (a comparison of different solution can be found in [17]) the CORBA standard has

been chosen. It allows for:

� An object oriented model.

� Communication defined by specifying object interfaces and simple data structures

(unfortunately no object-by-value support in C++ yet)

Other advantages of CORBA (a bit more related to implementation than design) are:

� A well defined, wildly supported standard with many open source implementations,

� Operating system, machine and location transparency,

� Bindings to all modern programming languages: C, C++, Java, Python among others,

� Request handling policy which creates a separate thread for each request.

See the CORBA standard home page for more details [18]. This choice was influenced by Req. 29.

5.2 General system design

The basic unit in the system is a node which is equivalent to one PC. We want to design the

system in such a way that a node contains a single operational unit. These units can be divided into

four groups – input nodes, output nodes, worker nodes and controlling nodes (In Fig. 12. only two

input and output nodes, and six worker nodes are shown but the system is scalable). Input nodes are

responsible for reading input data and make them available to worker nodes. Worker nodes acquire

data from input nodes through polling, perform some kind of computation on it and pass the results

to output nodes (pushing). Output nodes move the data they get from worker nodes to some place

outside the system. The data flow is: input-> worker nodes -> output. Controlling nodes lie outside

the data flow and have asynchronous access to the system nodes. There are two controlling nodes –

the barrier server and the Controller. The barrier server is responsible for input synchronization and

the output-input callback mechanism, while the Controller takes care of the whole system by

starting, stopping and monitoring the nodes.

Input, output, and worker nodes have special data buffers (described in chapter 5.3.2). Input
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nodes buffer data they read and make them available to worker nodes. Worker nodes have two

buffers, one for data read from input nodes and one for the results which are buffered before being

sent to the output. Output nodes have one buffer for data they get from worker nodes.

In Fig. 12 a limitation of the system is visible, which was made to simplify the design - each

worker node can write data to multiple output nodes but it can read data only from one input node.

Thus worker nodes can be grouped based on the input node they read from (Processing group A and

B in Fig. 12).

5.2.1 Architecture overview

A more detailed view of the system, focusing of input, output and worker nodes structure,

can be seen in Fig. 13. 

Design 30

Fig. 12. General scheme of the system.



The input nodes consists of three main elements. A routine for reading data from a socket or

file exists. The class fpEB (see 5.4.3) creates CORBA structures from that data. These structures are

stored in a buffer called event repository (see 5.3.2). It implements a CORBA interface to make

events available for remote readers.

Worker nodes are more complicated. At the input side of a worker node an instance of the

class Reader is responsible for acquiring data from the input node. Data from the input node is

buffered in a local input repository. The EventDecomposer (see 5.4.2) reads events from the

repository and feeds data into the reconstruction or analysis program of the node. Results are

gathered by an fpEB and put into the local output repository. Another Reader takes the results from

the local output repository and stores them in the output node. 

The output node is constructed analogically to the input node. A repository to buffer results

coming from worker nodes exist. Events are read from it by an EventDecomposer and fed into a

function which writes them to file or other storage.

In the following chapters a bottom-up view of the system design will be presented. Starting

from event representation, through main system modules, to objects which represent different node

types.
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5.3 Events and the data flow

5.3.1 Events

An event is a set of computationally independent numerical data. At input side data arrives

in FPACK format. In order to transfer events between machines or processes we have to wrap them

into CORBA structures. Special events called barriers are introduced to allow for distribution of

calibration constants, grouping of events and marking the end of data flow.

Physical, FPACK and CORBA events. The data arrives at the input side as physical

records. A facility is needed which would extract parts of logical records from them and create

FPACK Events (Req 7).

After separating out FPACK events we are ready to distribute them among worker nodes.

Because we have decided to use CORBA for interprocess communication, we have to wrap them

into CORBA structures first. This CORBA structures will be referred to as “CORBA Events”.

CORBA Events contain all the data of the FPACK Event kept as a sequence of logical record parts

- EventBody. Each logical record part, represented by the SegSeq structure (see Fig. 14), is in turn a

sequence of octets. The structure contains also some fields with basic information about the event,

like event type, event size, run number etc. This information is in the FPACK data but it can not be

accessed without unpacking of the FPACK Event, hence for performance reasons it is duplicated.

However this information is used only by modules which deal with the FPACK structure of the

event (fpEB and EventDecomposer). At other modules only the size parameter of CORBA Events is

being used. This restriction has been made to allow for an easy switch to new event formats as

mentioned in Req. 28.

Event life time. Events in the system exist either as FPACK Events or CORBA Events. On

the input side we get events in FPACK format, but before we can send them to other processes each

event has to be wrapped into a CORBA Event. Unfortunately CORBA Events are not understood
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by the analysis and reconstruction programs. FPACK Events have to be extracted from CORBA

Events before any processing can be done. The result of the processing is also in FPACK format so

we have to create CORBA Events from it again before sending them to the output. On the output

side FPACK Events have to be extracted once more before they are written to tape or disk. The

lifetime scheme is shown in Fig. 15.

The object responsible for CORBA Event creation is called fpEB (FPACK event builder)

and its design is described in chapter 5.4.3. Unpacking of FPACK events from CORBA events is

done by EventDecomposer which in turn is described in chapter 5.4.2. 

Barrier events. An ordinary event is removed from the input side when sent to an analysis

process. However Reqs. 15-18 require that some data is sent to all worker nodes, not only one. To

achieve this special events called barriers were introduced. A barrier is not removed from the input

side until all worker nodes have read it, and also can not be removed from the output side (written

to disk) until all worker nodes have output it. They can be used to distribute calibration constants, to

separate groups of events or to mark the end of data flow. How this is achieved will be described in

more detail in the following chapters. Barriers were first proposed by Alan Campbell [19]. 

Barrier representation. Barriers, like ordinary events, exist on FPACK and CORBA level.

On CORBA level the same structure 'Event' is used. However the fields in the structure have

different meaning for a barrier than for an event. Events and barriers can be distinguished by a

special value in the CORBA structure 'kind' field and a special value in FPACK record header.

5.3.2 Event repository

In all places in the system where events have to be buffered, they are kept in a special data
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structure called event repository. The event repository is one of the most important parts of the

system as it regulates the transfer of events between different processes. It implements a CORBA

interface to make itself available to remote calls. Events in the repository are kept in sequences to

optimize network transfer when remote store and get calls are made. However local store and get

calls may operate on single events. As multiple readers and writers may access the repository at the

same time, all functions need to be threadsafe. The repository is also responsible for appropriate

handling of barriers. This will be described in chapter 5.3.3.

 Further, repository readers and writers will be referred to as repository 'clients'.

Repository configuration. The repository can be configured by passing arguments to the

constructor. The main parameters are:

� Maximum size (in bytes) of a sequence, that can be stored in the repository (if an event exceeds

this limit it will be stored anyway in one-element sequence).

� Maximum size of the repository in sequences. This value multiplied by the previous one gives an

approximation of the total repository size. This is an important parameter since we don't want to

go past the memory available on the PC and start using swap. This would hit performance badly

or even cause the system to crash. However one must be careful - the maximum sequence size

limit may be exceeded as described above, and also the maximum number of sequences can be

exceeded by one (see chapter 5.3.3 “The 'stuck' situation” for details).

� Maximum sequence length. When events are small this limit may be useful so that not too many

events are stored in a single sequence, as sequence is the basic data transfer unit between nodes.

� The number of input nodes - this is an important information for multiple input support to work.

This will be discussed it in chapter 5.3.3 “Multiple input support”.

Storing and reading events from the repository. Single events are usually small about

100kB, and making a CORBA call for each event would slow down the transfer. Therefore events

are kept in repositories grouped in sequences. Repository clients making remote calls obtain and

store sequences of events by making nextSeq() and storeSeq() calls respectively (Fig. 16). The

sequence size may by configured to efficiently utilize the network. The Reader class is designed to

transfer sequences between two repositories (see chapter 5.4.1). All functions which can be seen on

the class diagram implement the Repository CORBA interface.

Local clients, like FPACK event builder or event decomposer, which are in the same process

or at least on the same machine, can read and write data to the repository one event at a time.

storeEvent() and nextEvent() calls are used for this.
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Reading and writing algorithm will be described in more detail in chapter 5.3.3 “Algorithms

for accessing the repository”.

5.3.2.1 Reader and writer data

Each call to the repository includes an 'id' argument. It is a number identifying the client of

the repository. The repository keeps a list of records with information about each client (Fig. 16).

The _writeBarr, _readBarr, _hasWrittenEof members of the WriterData and ReaderData

structures, equal to the number of the barrier last written by a writer, the number of the barrier last

read by a reader and if the writer has written the EOF barrier respectively. This information is used

to clean up after the client when he is removed. It has to be kept inside the repository in case the

client process crashes and the client can not supply this information himself.

The variables _size, _mySeq and _lastEvent are used only when the client uses nextEvent()

or storeEvent() functions. In _lastEvent the event returned by the last call to nextEvent() is stored

(see 5.3.3 “Algorithms for accessing the repository - nextEvent()”). Each writer storing events with

storeEvent() is building his own sequence which is kept in _mySeq. When the _size reaches the

limit for sequence size, the sequence is stored with storeSeq() (see 5.3.3 “Algorithms for accessing

the repository - storeEvent()”).

Repository structure. The repository is composed of two layers. On the higher layer, which

is the eRepository class, synchronization of the calls from clients is performed. The repository

operates with mutexes and conditionals to ensure threadsafety. The lower layer is a data structure

which can be accessed only sequentially. It directly implements the barrier algorithm as described
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in chapter 5.3.3 “Storing and retrieving barriers”. The structure is called BarrierList (see Fig. 17)

and is basically a FIFO implemented using a list. Only barriers are treated in a different way. The

list elements derive from class ListElem and can be either OrdElem which encapsulates a sequence

of events, or Barrier which encapsulates an event which is a barrier.

The storeSeq(), storeBarrier(), nextSeq(), nextEvent(), addReader(), addWriter(),

writerNotification() of the repository make calls to corresponding functions in the BarrierList. On

the repository level synchronization locks are acquired and released, checks are performed if the

operation can be completed or if the thread has to wait on a conditional. On the barrier list level

modifications to the list are done, no checks are performed and it is assumed that the operation can

be completed.

In chapter 5.3.3 the algorithms behind these functions will be briefly described.

The longPing() function. The function returns a snapshot of the repository state. It returns a

structure containing information about number of events and sequences that were stored in the

repository and removed, the current highest and lowest barrier number, number of sequences in the

repository and some additional information (see Fig. 18). This function is an implementation of the

CORBA interface and can be accessed by a monitoring program to display information about the

repository (Req. 26) and to see if enough processing power has been assigned for the current tasks

(full repositories will indicate that it hasn't) (Req. 27). When the longPing() function returns the

same value for some time it may also be an indication for a deadlock which is part of Req. 22.
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5.3.3 Barrier handling

Barrier tasks. There are three main barrier

tasks. The first one is to separate groups of events.

We need this to separate events from different

runs. Barriers called mark barriers can also be

inserted without reason just to mark how far is the

processing. When a barrier is written at the output

we know that all events up to that barrier have

been processed and either rejected or successfully

reconstructed.

The second task is, as it was already mentioned, to distribute calibration constants. Data that

comes with constants barriers has to be distributed to all nodes and we must be sure that it reaches

each worker node before the events that are after it in the input data stream.

The last task to which barriers can be applied is to steer the framework. There is currently

one such barrier – the End Of File barrier. Each nodes ends after reading this barrier.

Storing and retrieving barriers. There are two main requirements the barriers have to

fulfill:

1. Each barrier has to reach all worker nodes (Reqs. 16-19).

2. Events from between two barriers have to stay there all over the data flow Req. 15. 

This can achieved by making following assumptions about barriers:

1. Events that are behind a barrier in a repository, can not be read until the barrier has been made
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readable (see Fig. 20).

2. A barrier is made readable when all writers have written it (see Fig. 20 and Fig. 21).

3. When storing events a writer has to know which barrier he has written last, and store events after

this barrier and before the next one (see Fig. 21 c,d).

4. A barrier is not removed from the list until all readers have read it (see Fig. 19 a,c and Fig 20 d).

We can see that assumption 4. implies request 1. Assumptions 1-3 imply request 2. To improve

performance we can make an additional assumption:
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1. A reader which has read a barrier can read events that are behind this barrier even before the

barrier is removed from the list (see Fig. 19 a, b).

To make barrier management possible each barrier in the system is given a unique number. The

barrier number is increased by one for each new barrier.

Checking the barrier list status. There are three functions which allow readers and writers

to see if they can write to or read from the list. The frontReadable() function returns true if the first

element of the list is readable (it will return false if the first element is a barrier which has not been

written by all writers). overflow() will return true if the list is true. That is when the maximum

number of sequences the repository is configured to store has been reached.

The 'stuck' situation. The function stuck() will return true when !frontReadable() &&

overflow(). When can such situations occur? Let's assume we have writer 'A' and writer 'B'. 'A' is

fast but 'B' is slow. Now 'A' has written a barrier to the repository and after that so many sequences

that the repository limit was reached. Nothing can be read from the repository because the barrier

that is at the front is not readable since 'B' has not written it yet. In this situation stuck() will return

true. Now if 'B' writes the barrier everything is fine. But if 'B' is so slow that it still needs to write

some old sequences before the barrier, we have a deadlock - 'B' wants to write a sequence but the

repository is full and nothing can be read from it. In such situation 'B' will be allowed to insert his

sequence, breaking the limit condition but removing the deadlock.

You might notice that the limit will never be exceeded by more than one sequence, since

after inserting a sequence at the front of the list, frontReadable() will return 'true' and the 'stuck'

situation is not valid anymore. 

Algorithms for accessing the repository. There are four functions which allow to access

data in the repository: nextEvent(), nextSequence(), storeEvent(), storeSequence(), storeBarrier().

The functions can be accessed by many readers and writer simultaneously and have to be

threadsafe. Two conditional objects and one mutex ([20],[21]) are used for this. Writers wait on the

overflow_condition when the repository is full and can not accept any new sequences. When a

reader removes a sequence from the repository making room for writers, it calls broadcast on this

conditional to wake up all writer threads waiting. Analogically readers wait on empty_condition

when there is nothing to be read in the repository and it is broadcast by writers when they store a

sequence or make a barrier readable. The algorithms behind these functions will be briefly

described.

The function nextSequence()

 1 lock mutex, 

 2 get the ReaderData structure
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 3 while !frontReadable()

 3.1 if( stuck() ) broadcast( overflow_condition )

 3.2 wait( empty_condition)

 4 call popSequence( bNumber ) on the barrier list (bNumber is taken from ReaderData)

 5 update bNumber if necessary (if a barrier has been removed)

 6 if a barrier has been removed call cacheLocalBarriers()

 7 broadcast( overflow_condition )

 8 unlock mutex

 9 return sequence

In point 3.1 we have a 'stuck' situation as explained in chapter 5.3.3 “The 'stuck' situation”.

Broadcast is called because the writer who can make the front barrier readable may be waiting on a

conditional. In point 4 and 5 the bNumber is used. It is the number of the last barrier this reader has

read. This information is passed to popSequence() so that the same reader does not read the same

barrier twice.

The Function nextEvent(). nextEvent() is very similar to nextSeq(). The differences are: 

� instead of popSequence(), popEvent() is called - this removes an event from a sequence at the

front of the list, or a barrier is read.

� broadcast( overflow_condition ) is called only if a sequence becomes empty and can be removed

from the list.

� store a copy of the removed event in the ReaderData structure (this replaces the previous event

copy).

The function storeSeq().

 1 lock mutex

 2 get the WriterData structure

 3 while overflow()

 3.1 if( stuck() && bNumber == minBarr) break

 3.2 wait( overflow_condititon )

 4 call insert( event, bNumber ) on the barrier list

 5 broadcast( empty_condition)

 6 unlock mutex
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In case of a writer bNumber is the number of the last barrier written. In point 3.1 we have

the 'stuck' situation again. minBarr is the number of the last barrier made readable. If bNumber ==

minBarr the conclusion is that the next barrier this writer is going to write is the first unreadable

barrier - the barrier at the front of the list. So letting this writer write it's sequence will 'unstuck' the

list.

The function storeEvent(). Storing events with storeEvent() results in a sequence being

build out of them. This sequence has a size limit set in the repository object construction. However

when a barrier is encountered it can not be put into the sequence. So when a barrier is found the

sequence is stored even if it's not yet finished, the barrier is stored with storeBarrier() and a new

empty sequence is created.

 1 lock mutex

 2 acquire WriterData (contains a sequence under construction)

 3 unlock mutex

 4 if adding the new event to the sequence would exceed the size limit (and the sequence has non 0
length) 

 4.1 store sequence with storeSeq()

 4.2 create a new empty sequence in WriterData

 5 if event is not a barrier, add event to sequence

 6 else

 6.1 store sequence with storeSeq(), create new, empty sequence

 6.2 store barrier with storeBarrier()

The function storeBarrier(). storeBarrier() calls addBarrier() on the barrier list and

broadcasts empty_condition if a barrier was  made readable.

Multiple input support. It was mentioned before, that a repository has to know the number

of input nodes in the system. This is necessary because each input node gets a copy of all barriers.

Now lets assume that worker nodes associated with one input node are initialized quickly. They

write barriers to the output repository, and the output repository being unaware of other input nodes

in the system allows that these barriers are made readable and are removed from the system. Now

finally worker nodes associated with the second input node are started, they want to write barriers to

the output repository which have been already removed from there and the system crashes.

To avoid such situation, each output repository has to know from how many inputs it

receives data and will not allow barriers to be removed until at least one worker node associated

with each of the input nodes will register to it.

The barrier cache. Some barriers contain data that changes the way events are being

processed. When a new worker node (Req. 2) is added to the system, many barriers may have
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already been removed from the input. Such node would have no access to these barriers anymore.

To avoid such situations, the barrier cache has been introduced (see Fig. 22). It keeps all barriers

relevant for events processing that have been removed from the input node. A new worker node

has first to read and process all barriers from the barrier cache before starting to read from the input

repository. This is done by subsequent calls to nextCachedBarrier(). The finished parameter of this

function will be set to true when the last barrier is read. The process of caching and reading cached

barrier is shown on sequence diagram in Fig. 23.

Cached barriers should not be introduced again into the data flow, they can not be output by

the worker nodes but should be removed. They can be recognized by their bNumber which is lower

then the lowest barrier number of the barriers that are still in the system.

Keeping the data flow consistent. The availability of barriers for new worker nodes is not

the only issue we have to consider when adding new nodes. They should be added as smooth as

possible without interrupting the overall data flow. That counts also for removing nodes.

Adding readers and writers. Each worker node is a reader to the input repository and a

writer to the output repository. Adding a new worker node has to be done in three steps (see Fig.

24):

 1. Inform the output repository that a new writer is coming. The writer number is increased and all

barriers that are not yet readable will have to wait for this new writer to write them.
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 2. Register in the input repository as a reader. The reader number is increased. No barrier will be

removed from the input repository until it is read by the new reader. The number of the first

barrier the new reader is going to read is returned.

 3. Register in the output repository as a writer. Knowing the number of the first barrier we are

going to read from the input repository we can register in the output repository. Barriers which

are in the output repository and which we are not going to write, can be safely removed from the

output repository (after all other writers have written them). The new writer has to wait for the

last barrier he is not going to write to arrive in the output repository, before he can start writing.

We can also add a fourth step. This step can be executed in parallel with step 3. in a separate thread

of execution:

 4. Start reading from the input repository.

 a) Read all cached barrier from the input node
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 b)Start reading from the input repository

Removing readers and writers. Removing readers and writers is much simpler than

adding. At the input repository all 'read' marks which have been left on barriers by the reader who is

going to be removed have to be erased. At the output repository the same has to be done with

'written' marks.

5.4 Main system modules

5.4.1 The Reader class

The Reader class is actually a reader and a writer. It reads sequences from one repository

and stores them in another. Both repositories are accessed through their CORBA interface. The

class diagram is shown in Fig. 25. The reading/writing loop is done in a separate thread:

1. Register in the input repository - registerInInput() -  if it has not been done earlier

2. Get cached barriers from the input repository and cache them in the output repository -
transferCachedBarriers().

3. Register in the output repository - registerInOutput().

4. Read event sequences from the input repository and store them in the output repository until end
of file is reached (transferData() function) or markForStop() is called. If barriers are attached to
a sequence they are extracted and stored separately - storeBarrier(). Sequences are stored with
storeSequence() function.

5. Store end of file in the output repository (if dontSendEOF() has not been called).

6. Unregister from the input and output repository - unRegister().

In point 1 of the algorithm the reader registers in the input repository. This is done with the

registerInInput() function. The function is public and can be called from outside. To avoid double

registration a boolean variable is set when the registration was done. Refer to the chapter 5.5.4 to

see how this can be used. The waitForStop() function may be called by a thread to join the Reader

thread and wait for it to finish. 
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Multiple output support by Reader. The MReader class extends Reader by adding

multiple output repositories support. Instead of a single output repository reference, a vector of

references is kept by the class. All functions dealing with the output repository in Reader have to be

overridden in MReader. The storeBarrier() and storeSequence() functions implementation defines

how barriers and sequences are distributed among this multiple output repositories.

5.4.2 Event decomposer

The processing/reconstruction program is written in Fortran and requires data in FPACK

format. The program calls frspec() function to acquire data (Req. 13). Event decomposer takes data

from a repository one event at a time, and each time get() is called it extracts one record from the

CORBA event and returns it. In the secure worker node design (see chapter 5.5.4) we want to be

sure that a new event doesn't leave the repository before the last one has been stored in the output

repository. Therefore EventDecomposer locks on the wait_for_get() function in SynchronizedPipe

and waits for fpEB to call it before taking the next event from the repository.
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5.4.3 Event builders

The FPACK event builder is factory of CORBA events. It reads FPACK records and

produces CORBA events which are than stored in an event repository. The event builder exists in

two kinds. fpEB works with worker nodes. It has simply to read the records and store events. The

fpEBOrbi is associated with the input node. Besides transferring FPACK records into CORBA

events it also has to insert barriers into the data flow and perform basic error checking. 

The function responsible for creating CORBA events is run in a separate thread to allow for

parallel reading of new records and/or sending ready events to other processes (Req. 3,4).

The fpEB class. The fpEB class (see Fig. 27) is associated with worker nodes. It gets

FPACK records from the analysis/reconstruction program which contains the results of

computation. It extracts FPACK Events from them, creates CORBA Events and stores them in the

local output repository of the worker node. In this local repository events are buffered before they

are sent to an output repository. The event building algorithm is following:

1. Register in the repository as writer.

2. Create a new, empty CORBA Event 'e'.

3. Get next physical record 'p' from the analysis/reconstruction program.

4. Extract next part of a logical record 'l' from 'p'.

5. if found an end of file barrier, send it to the repository and goto 8.
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6. Store 'l' as a sequence of octets inside 'e'.

7. if the event is complete send 'e' to the repository with storeEvent(), then create a new, empty
CORBA Event 'e'.

8. if reached the end of 'p' (of physical record) goto 2 else goto 3.

9. Unregister from the repository with unRegister().

The fpEB class implements a waitToStop() and a finish() function. The first one makes the

thread, which calls it, wait until the fpEB thread is finished. The second function first tells fpEB to

stop as soon as possible then it calls waitToStop(). As soon as possible means reaching a place in

the building loop in which a variable is checked whether fpEB should stop or not.

The MfpEB class. The MfpEB class has been designed analogically to MReader. It extends

fpEB by offering support for multiple output repositories. How events are distributed among

multiple repositories is defined by the storeEvent() function implementation. unRegister() and run()

functions have been overridden to handle a vector of repositories. MfpEB is used together with the

MMJobAdmin class.

The SynchronizedPipe class. The class fpEB is getting data from the analysis/reconstruction

program which (Req. 13), uses the fwspec function to output data. Because the program and fpEB

building loop run in separate threads, a threadsafe buffer is required between them for passing data.
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This buffer is called SynchronizedPipe. It offers a put() function for storing data and get() for

retrieving it. It has a capacity of one data record.

The fpEBOrbi class. The fpEBOrbi (Fig. 28) class inherits fpEB. It is associated with input

nodes and extends the functionality of fpEB by adding basic error checking of physical records,

creating barriers and negotiating where to insert barriers into the data flow with barrier server. The

communication with the barrier server is done via the OrbiMan_i class which implements the

OrbiMan CORBA interface.

The event building algorithm is following:

1. Register in the repository as writer.

2. Create a new, empty CORBA Event 'e'.

3. Get next physical record 'p' - getSegemnt().

4. Extract next part of a logical record 'l' from 'p'.

5. if found an end of file barrier, send it to the repository and goto 8.

6. if found a fatal error in record header delete event 'e', goto 2.

7. if found an asynchronous barrier request from barrier server call handleAsynchRequest().

8. if run number changed create run stop, run start, calibration constants barriers.

9. Store 'l' as a sequence of octets inside 'e'.

10.if the event is complete:

11.if reached a specific event count number submit a marker barrier request.

12.if reached a specific event number insert a barrier.

13.send 'e' to the repository, create a new, empty CORBA Event 'e'.
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14.if reached the end of 'p' goto 2 else goto 3.

15.Unregister from the repository.

Algorithm description. In point 6 of the algorithm a fatal error means that a logical record

part header is corrupted making it impossible to determine where the logical record ends. This make

the whole physical record useless and we have to throw it away. We might have also thrown away

the beginning of the next logical record, so we will have to throw away its other parts which may

come with the next physical record. This part of the algorithm fulfills Req. 20.

In point 8 two situations may lead to the creation of run start/stop barriers. In the first case a

run stop and run start event will appear in the data flow. However it sometimes happens that run

stop/start events of empty runs get lost. The algorithm has to check the run numbers of successive

events. If for example after an event with run number 8, an event with run number 11 appears, run

stop and run start events for runs 9,10 and 11 have to be created. The function

handleRunStartStopEvent() is used to handle run start/stop events which appeared in the data flow,

while createEmStartStopRunRecord() function is used when run changed but no run start/stop

events appeared. The design details of these functions will not be described here, as they are based

on FPACK format.

When run stop/start event is found or created a request to barrier server is made. This

request contains that event. After run start a request for calibration constants is made by fpEBOrbi.

In point 11 a request for a marker barrier is made. An fpEBOrbi parameter determines how

often such barriers should be inserted. For example setting this parameter to 100 means a marker

barrier is inserted each 100 events.

There are four possible results of making a barrier request:

1. The request is accepted, a barrier is created and stored in the repository, fpEBOrbi may continue.

2. Another barrier request is accepted first and fpEBOrbi has to wait for its request to be accepted.

3. fpEBOrbi is told to continue creating events until a given event number is reached (in point 12),

then the barrier is inserted.

4. The barrier is rejected, nothing happens, fpEBOrbi may continue creating events.

Handling of barrier requests will be described in more detail in chapter 5.4.4.

A barrier request may be also made from outside (not by an fpEBOrbi) or it may be specific

to only one fpEBOrbi. For example each input node and hence each fpEBOrbi may be configured to

insert a marker barrier after another number of events. In such situation the caller making the barrier

request has to notify others about it. This is done by inserting into the data flow of all fpEBOrbi's a

fake event which is called an asynchronous barrier request. When fpEBOrbi finds such a request in

the data flow (point 7), it makes a barrier request.
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Other functions. The unRegister() function has to be overridden in fpEBOrbi to include

unregistering of OrbiMan from the barrier server.

A set of functions to perform basic error checking of events, writing diagnostic output when

errors are found has been designed. Their description will be omitted here as it is tightly bound with

the FPACK data format. The description of some other functions related to barrier building will be

also omitted.

The OrbiMan_i class. OrbiMan_i is the class fpEBOrbi uses for communication with

barrier server. It implements a CORBA interface - OrbiMan - allowing for bidirectional

communication with the server. Sequence diagram in Fig. 29 shows the initialization of OrbiMan_i,

the handling of an asynchronous barrier request, and the unregistering process. Synchronous barrier

requests are made the same way. The only difference is that no asynchronous event is inserted into

SynchronizedPipe.

5.4.4 Barrier Server

The barrier server (see Fig. 30) is responsible for synchronizing barrier insertion into the

data flow. When the input stream is divided and more than one entry point to the system exists

special precautions have to be taken, if we want that barriers are inserted at the same points. 

Let's assume we have n entry points. The event numbers are unique and growing in the data

stream. When a barrier is inserted at entry point n between two succeeding events x and y (x<y), it

has to be inserted at all other n-1 entry points between two succeeding events ai and bi (ai < bi)

where  ai<y and bi>x for all i = 1 ... n-1.

To fulfill this requirement each insertion of a barrier has to be proceeded by a negotiation at

which point in the data stream it should be inserted. All input processes have to take part in the

negotiation and all input processes have to catch up with the process with the highest event number.

A state machine has been designed to decide what action should be taken based on the

request that is in the front of the queue and the barrier type of the new request. Request from all

input nodes have to be collected before a decision is made. An asynchronous barrier request is send

to the input nodes if a request has to be forced. The barrier server communicates with the input

nodes through an OrbiMan which is a CORBA interface. The barrier server has a list of references

to all OrbiMan's which corresponds to a list of all input nodes. First the state machine and actions

that can be the result of making a barrier request, will be described, then the barrier server

algorithm.

The barrier server is also responsible for barrier creation. The part of the design which has to
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do with barrier creation has been left out as it is tightly bound with the FPACK format of the

barriers.

5.4.4.1 Barrier State Machine

The BarrierSM class is responsible for making a decision what action should be undertaken

when a new barrier request is coming. This is done in two steps. First the state is computed with

computeState(), then modifications to the request queue are made with handleState(). In Table 1 all

possible states of the machine and corresponding actions have been put together. The first column

contains the type of barrier that is being requested. The first row is the type of the barrier from the

request queue which is being currently considered. The '+' and '-' signs mean that the barrier from

the request queue has a greater (+) or a lower (-) run or event number than the requested barrier.

When both barriers are Start/Stop or Em Start/Stop barriers the +/- signs mean run number, in all

other cases they mean event number. The action symbols are described in Table 2, barrier types in

Table 3. The last column in Table 1 contains barrier category which essentially describes how the

given barrier appears in the data flow. Barrier categories are listed in Table 4.
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Request Barrier from the request queue: type and run or event number.
EStart + - Start + - EStop + - Stop + - Cons + - Mark + - EOF

Em Start + −> <− O −> <− <− −> <− <− −> <− E E E E E E −> A

Start X −> <− + −> <− <− −> <− <− −> <− E E E E E E −> A

Em Stop −> −> <− −> −> <− + −> <− O −> <− − <C <W − <C <W −> A

Stop −> −> <− −> −> <− X −> <− + −> <− − <C <W − <C <W −> A

Const −> −> <− −> −> <− − >C >W − >C >W − C W − <C <W −> F

Mark −> −> <− −> −> <− − >C >W − >C >W − >C >W − C W −> F

EOF <− − − <− − − <− − − <− − − <− − − <− − − + A

Nullbarrie

r
R − − R − − R − − R − − + C W + C W R G

Table 1. State diagram of the barrier state machine

Sym Meaning

+ The current request is confirmed.

-> Replace - place the new request at front of the queue, displacing the current one,

confirmations are copied to the new request.

X Remove - the current request is removed the new one takes his place, confirmation is copied.

<- Append - the new request is checked against the next request in the queue.

O Obsolete - the new request is ignored, the current one is confirmed.

W Wait for all inputs to reach the same event position

C Continue reading until the event position of the current request is reached.

R Reject the request.

E Error.

- This situation does not occur (for example we do not compare run/event numbers when an

EOF barrier request is made).

>C Put the new request at the front of the queue and continue.

>W Put the new request at the front of the queue and wait.

<W Move to the next request in the queue compute the state once more and wait.

<C Move to the next request in the queue compute the state once more and continue.

Table 2. Explanation of action symbols
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Barrier Type Description

Start A barrier created at the start of each new run. It is based on a run start

event which appears in the input data stream. It comes always after the run

stop event (with exception of the first run).

Stop A barrier created at the end of each run. It is based on a run stop event

which appears in the input data stream.

Emergency (EM)

Start

A barrier created at the start of a run when the run start event is missing. It

comes always after the run stop event (with exception of the first run).

Emergency (EM) Stop A barrier created at the end of a run when the run stop event is missing.

Calibration constants A barrier containing the full set of calibration constants. It can appear after

a run start barrier. 

Update constants A barrier containing changes to the calibration constants. It may come after

a run start barrier or in the middle of the run. Update constants are treated

in the same way as Calibration constants by the state machine, that is why

there is no row with Update constants in Table 1.

Marker A marker barrier. It may be inserted into the data flow at constant event

intervals, for example each 100 events. It can be used to recover from

crashes, to see how far the processing came.

EOF A barrier created when an end of file appears in the data flow. It may be

also created 'artificially' to make the system, or part of it, perform a clean

close.

Nullbarrier A barrier created as a result to an asynchronous barrier request. Such a

request is made by placing a special event into the data flow. This event is

recognized by the fpEBOrbi.

Table 3. Barrier types

A Barriers generated automatically by all input nodes when a special event is encountered in the

input data stream. 

F Barriers which don't appear in the input data stream - asynchronous barriers. Input nodes have

to be forced to make requests  for these barriers. 

G This is the Nullbarrier. It is created as a replay to an asynchronous barrier request. They are

used only to confirm other barrier requests.

Table 4. Barrier categories
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5.4.4.2 Barrier server algorithm

The barrier server is run as a separate process. Its main thread is running in a simple loop

(requestLoop() function) awaiting for a request to be confirmed and then distributing the confirmed

barrier (handleRequest() function) to all input nodes via OrbiMan references. Requests are made by

input nodes by making a CORBA call to the requestBarrier() function. For each CORBA call a new

thread is created so requestLoop() and requestBarrier() have to be threadsafe. The algorithm for

handling incoming requests is following:

 1 lock mutex.

 2 if the request is new or it is different from the request at the front of the request queue:

 2.1 Call newRequest() on the state machine.

 2.2 if the request has been rejected return.

 3 if the request is new:

 3.1 if the request should be forced - broadcast an asynchronous barrier request.

 3.2 if all OrbiMan have entered this function wake up all threads else suspend this thread.

 3.3 if the request has been forced, and the event number of the current request is lower than that
of the request at the front queue, this OrbiMan has to leave the function and continue event
reading until the appropriate event number is reached. When it will enter the function again its
request will not be 'new' anymore (point 2 and 3)

 4 The request is confirmed.

 5 The thread is suspended until all other inputs have confirmed the request.

 6 The request is confirmed - the main thread of the barrier server is woken up. All threads making
a request are suspended until the main thread is finished with distributing barriers.

 7 unlock mutex

5.5 Node types

5.5.1 The Administrator class hierarchy

There are three (not counting controlling nodes) categories of nodes in the system: input

nodes, output nodes and worker nodes. There are several possible implementations in each category

and it is possible that in future new additional implementations will be required. Each node is a

multithreaded CORBA client or server. To make maintenance easier, speed up development and

ease the addition of new categories or implementation in a category, a class hierarchy of so called

administrators has been developed (see Fig. 32). An administrator is responsible for the correct
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order of initialization of all modules for a specific node type, for correct order of stopping and

cleanup. The Administrator class which is at the top of the hierarchy offers a common interface to

control different types of administrators both through the CORBA interface for remote access but

also through abstract classes which are then implemented by classes which derive from

Administrator. This allows also local objects to access their Administrator in a way independent of

the administrator type they are 'in'. You can see the abstract interface in Fig. 31. The EndAdmin

class is an example of how the functions can be implemented.
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5.5.1.1 Choosing the node type

We have decided that functionalities of different nodes should be kept in a single executable

and that the exact node type should be selected at startup by choosing a concrete administrator for

that node. A command line argument containing the name of the administrator type is passed to the

program.

5.5.1.2 Starting an administrator

The startup algorithm which is common for all classes deriving from Administrator is

following:

 1 Read and parse generic command line arguments (parseCommandLine() function)

 1.1 if found the administrator type create an instance of that class else print an error message
and exit.

 2 call startInit()

 2.1 Read and parse specific command line arguments for the selected administrator class
(parseParameters() function).

 2.2 Perform initialization of all modules (using command line parameters) with the init()
function. The init() function is administrator specific and is implemented by each
administrator type.

 3 Start threads (start() function).

 4 Wait for threads to stop.

 5 Perform cleanup.

5.5.1.3 Administrator CORBA interface

The Administrator implements three functions from its CORBA interface. They are:

waitToStop(), removeNode() and hardClose(). This functions are ways of stopping an administrator.

They are abstract functions and should be implemented for each concrete administrator class. 

The waitToStop() function implementations should just wait for all threads to stop, doing

nothing to speed this. removeNode() implementations perform a soft close of the node. The node is

cut off from its input source, processes all the data it has buffered, and when all buffers are empty,

it stops and no data is lost (Req. 25). hardClose() is a hard close implementation (Req. 24), this

should stop the node as soon as possible. The process has to unregister cleanly from the framework

but all data that is buffered is lost.
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These three functions operate mainly on thread objects: Reader and fpEB. They have their

own implementation of these three functions. EventDecomposer is an exception as it also has to

implement them. It is run by the same thread that manages the analysis so its nearly as if it was a

thread object.

5.5.1.4 Accessing the administrator

As the administrator has control over the whole node and also has access to the Controller,

we decided that it should be available from any place in the process by making it Singleton-like.

Singleton is a design pattern which in general means that there can be only one instance of an object

and that it can be accessed as if it was a global, static object (but it isn't). There are two main uses of

this design in the system.

The first use is for critical situations. For example when a reader gets an exception when

trying to access a remote repository it can call one of the cannotReachOutput(), cannotReachInput()

functions and the administrator will undertake proper action (for example contact the Controller and

get new, valid references to the output or input repository).

The second use has to do with the problem of fitting the frspec, fwspec and fcspec functions

into an object oriented design. We decided that the easiest way to connect these functions with the

rest of the system would be through the administrator. The put() function is called from fwspec to

pass data to the SynchronizedPipe, and the get() function from frspec to read data from the event

decomposer. This allows us to have only one implementation of the frspec and fwspec functions.

They just call put() and get() and where the data goes or comes from depends on the administrator

they are currently working with.

5.5.2 The EntryAdmin class

The input nodes consists of three main components: the event builder, the repository, and

the module for reading data. The name of the administrator of input nodes is EntryAdmin. Its

responsibilities are: initialization of the repository and initialization of the event builder. Two

classes derive from EntryAdmin: InputAdmin and OrbiAdmin, see Fig. 33. They have been created

to satisfy Req. 8.
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In InputAdmin the reading module is a Fortran program. It reads the name of an FPACK

card file as an input parameter or exits if no card file name is given (Reqs. 9 and 10).

In OrbiAdmin the data is read through a socket. Orbi is a thread object implemented to read

data from a socket. Here the requests 11,12 are not fulfilled as the socket address is hardwired in the

code instead of being read as an input parameter. The Orbi class was not mentioned when main

system modules were described, as it is very simple. It implements a run() function which reads

data from the socket until EOF is reached, and a finish() method which terminates the tread before

EOF is reached.

Parallelism at EntryAdmin. At least two threads are working all the time at EntryAdmin.

One is reading data (this is either Orbi or a Fortran routine for reading data) and passing it to the

SynchronizedPipe, the other is fpEBOrbi reading physical records from the pipe and making events

out of them. A thread is also started for each CORBA call made to the repository.

5.5.3 Output nodes

EndAdmin is designed analogically to EntryAdmin, it consists of: a repository, an event

decomposer and a writing module. OutputAdmin and LoggingAdmin inherit from EndAdmin (see

Fig. 34).
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 OutputAdmin has a very simple writing module which just writes the data using a Fortran

routine. In LoggingAdmin a much more complex procedure is used which extracts additional

information from the data before it is written down. This data can be passed over to a file the

BarrierServer has access to. In such way a callback mechanism is implemented allowing the results

to have influence on how the data will be processed. LogginAdmin uses external routines and

functions to analyze data, which were not part of the project.

Parallelism in EndAdmin. One thread is used for reading and processing the result in

EndAdmin. More threads are  created when calls to the repository are made.

5.5.4 Worker nodes

5.5.4.1 Split tasks

The functionality of the worker nodes has been split into two parts. The JobAdmin is responsible

for the local input and output repositories of the node. They are used to buffer data read from the

input node and the results before they are sent to the output node. The initialization process is

complex as it includes readers and writers registration (see Fig. 35).
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TaskAdmin is complementary to JobAdmin. It contains the modules for event

decomposition, processing and building. Events are read from the input repository of the JobAdmin

and fed into the analysis/reconstruction process using the EventDecomposer. Results are stored in

the Synchronized pipe and read by the event builder like in an input node. The event builder stores

them in the output repository of the JobAdmin. The system is designed to allow only one event to be

inside TaskAdmin at a time. A copy of this event is kept in JobAdmin. Should the processing

program contain a bug and crash or deadlock trying to process it, the event won't be lost but can be

written down by JobAdmin for further investigation (Req. 21).

The init and start functions. JobAdmin and TaskAdmin implement all the abstract functions

of the Administrator class an administrator should implement. But the start() and init() functions

have been divided into two parts - the 'task' part and the 'job' part. The in 'task' part objects

associated with TaskAdmin are initialized. For TaskAdmin::taskInit() just means initialization of

local objects and TaskAdmin::jobInit() initialization of connections to JobAdmin. In

JobAdmin::jobInit() initialization of local objects is performed, in JobAdmin::taskInit() the

connections to TaskAdmin are initialized, and so on. This is used in AnalAdmin.

AnalAdmin - reliability vs. performance. The model described above which uses

JobAdmin and TaskAdmin is very secure and should be always applied when the processing code is

not quite well tested. However this solution is slow as it involves additional interprocess

communication. For analysis/reconstruction code which is well tested such overhead is

unnecessary. For that reason AnalAdmin has been designed. It is a combination of JobAdmin and

TaskAdmin which removes the interprocess communication part from them. It is not so secure but

much faster.

The AnalAdmin has been designed as a template which takes two arguments, JobAdmin and
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TaskAdmin. This has been done to allow for easy creation of AnalAdmins with multiple output

support using MJobAdmin, MTaskAdmin and MMJobAdmin classes which are described in next

chapter. 

Smooth joining of TaskAdmin and JobAdmin is possible because of dividing the init() and

start() functions into two parts. AnalAdmin::initJob() just calls JobAdmin::jobInit() and

AnalAdmin::taskInit() calls TaskAdmin::taskInit(). JobAmdin::taskInit() and TaskAdmin::jobInit()

are obsolete here. The same counts for taskStart() and jobStart(). 

5.5.4.2 Multiple output support

For higher input rates or a more complicated logging program one output node may be not

sufficient to handle the data flow. For that reason multiple output support has been added. It has

been designed in two forms. The first one includes only a slight modification to JobAdmin. Instead

of the Reader class, MReader is used. The MReader is able to distribute sequences of events to

more than one repository. The administrator is called MJobAdmin and can be used together with

TaskAdmin. This classes combined by the AnalAdmin template create the MAnalAdmin.

The solution mentioned above does not allow for distributing events to different output

repositories based on event characteristics. To allow this the events have to be divided at event

builder level, before they are stored in the repository. The MfpEB class is capable of doing this.

TaskAdmin which uses MfpEB is used MTaskAdmin. MTaskAdmin can not work together with

neither JobAdmin nor MJobAdmin as they have only one local output repository. MMJobAdmin is a

JobAdmin implementation with multiple output repositories.

Again MMJobAdmin and MTaskAdmin can be joined using the AnalAdmin template. This

combination is called MMAnalAdmin.

5.6 Additional system modules

In this chapter two modules which were not implemented by me but are vital for the proper

functioning of system will be described.

5.6.1 Master and Slave Controller

Master Controller has been designed to have control over the whole system. It can be used to
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start tasks on farm machines, to add new machines when the system is running, to cleanup and

restart crashed or deadlocked machines. It communicates with nodes via Slave Controllers. There is

one Slave Controller per machine in the system. Each Slave Controller communicates with all

processes on it's machine and with the Master Controller. They communicate with the

administrators through a CORBA interface. The Controller design satisfies Reqs. 1,2,22,23.

The Controller was being implemented by Alan Campbell, Marcin Kuta [22] and Max

Vorobiev [23] who finished the implementation. I have helped with the design.

5.6.2 Logger

The Logger is a logging module for the system. As most of the processes run detached from

a terminal their messages would be lost. There is one Logger for the system and it communicates

with all nodes via CORBA. Each administrator is equipped with a RedirectionManager and a

SafeLog. The RedirectionManager when initialized redirects standard output and error so that all

messages are caught and send to the Logger. SafeLog can be used to explicitly log messages in the

Logger, whereby it is possible to adjust priorities to the messages. The Logger has been designed

and implemented by Grzegorz Mazur [24].
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6 Implementation

6.1 Programming language

C++ has been chosen as the basic programming language for implementing the system

described in this thesis. Following characteristics have led to this choice:

� Easy access to C and Fortran routines,

� High level constructs like objects, polymorphism, multiple inheritance, templates which allow

for a high code reusability and good object oriented design,

� Many ways of optimization,

� Many advanced free programming tools available under linux – gcc, gdb, editor support,

� Many advanced programming libraries.

Accessing Fortran routines. Accessing Fortran routines can be done in C++ by adding an

underscore at the end of the routine name and by putting the definition into an extern C clause. An

example of this is in the spec.cpp file where implementations of the frspec, fwspec and fcspec

functions are placed. Below is an example showing the declaration of the fwspec_ function.

extern "C" {
  void fwspec_(int *LUN, int *NWORDS, int *BUFFER, int *IEND) {

...
  }
}

Template classes. When the implementation of the eRepository class started it seemed that

the best approach is to make it as general as possible. The usual approach in an object oriented

programming language would be to make a base class Event with a basic interface the repository

uses and then make all objects or structures which need to be stored in the repository, inherit from

this base class Event. However this proved to be impossible because events are CORBA structures

and can not be made to inherit from some C++ object. The solution to this problem was making the

repository a template class where the event and event sequence is a template argument. The

definitions of the repository class and associated classes are listed below:

template < class ELEM, class SEQ > class UniRepository;
template < class ELEM, class SEQ > class BarrierList;
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6.2 CORBA implementation

Several open source CORBA implementations for Linux have been considered: ORBacus,

omniORB, ACE orb. OmniORB has been chosen for following reasons:

� Small footprint and good performance, better then ORBacus,

� A compact library offering only CORBA as opposite to ACE which is a very complex system

of libraries,

� Quick replays from the user list concerning bugs and problems,

We are currently using OmniORB 4.0. See OmniORB web page for further reference [25].

6.3 Threading library

The system being heavily multithreaded choosing a suitable thread library was an important

issue. Actually three libraries were considered: omniThreads, JTCThreads and pure POSIX

Threads. Pthreads don't suite an object oriented design very well. OmniThreads offer only a simple

wrapping about them. Most features are offered by the JTCThread library. Unfortunately using

synchronization objects like mutexes and conditionals that are provided by it, has shown to hit

performance. As a compromise we decided to use the thread object provided by JTCThread with

pure pthread primitives for synchronization which gave us:

� A full featured thread object ,

� Automatic memory management for thread objects,

� Fast synchronization methods.

For more information about JTCThreads see the ORBacus web page [26]. [20]

6.3.1 Thread objects

An object can become a JTCThread by inheriting from the JTCThread class as shown in the

example:

class Reader : public JTCThread {
  ...
}

There are three main thread classes in the system: Reader, fpEB, Orbi. MReader, fpEBOrbi, MfpEB

are also thread classes because they derive from a thread class.
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6.3.2 The MutexGuard class

As mentioned before we have decided to use pthread synchronization objects in the system

for performance reasons. Two structures were used: pthread_cond_t and pthread_mutex_t. This

bare C structures may cause problems when used in C++ code, especially the mutex. Lets consider

a synchronized function:

pthread_mutex_t lock;
void foo(){
  pthread_mutex_lock( _lock );

    bar();

  pthread_mutex_unlock( _lock );
}

In case the bar() function throws an exception the mutex _lock will remain locked. One solution is

to put a catch statement and unlock the mutex there, but this is unnecessary duplicating of code. The

MutexGuard class has much simplified the implementation of synchronized functions:

class MutexGuard{
public:
  MutexGuard( pthread_mutex_t * lock ):
    _lock( lock )
  {
    pthread_mutex_lock( _lock );
  }
  ~MutexGuard(){ 
    pthread_mutex_unlock( _lock ); 
  }
private:
  pthread_mutex_t * _lock;
};

It acquires a mutex when constructed and releases it upon destruction. Now the foo() function can

be written like this:

pthread_mutex_t lock;
void foo(){
  MutexGuard guard( _lock );
  bar();
}

The mutex _lock will be released no matter if an exception is thrown or we just exit the function.

6.4 Singleton design for the Administrator class

The Administrator implementation should combine two features. First it should allow for an
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singleton-like access to the class, second choosing one administrator class from all classes that have

been linked to the executable should be possible. It would be also good to have lazy initialization

(that is the singleton instance is created when accessed for the first time and not at program startup)

as the administrator may contain CORBA objects which should not be initialized before the main()

function is called. This has been implemented with the ClassRegister template class. Administrator

classes can be added to the class register simply by placing following statement in the source file:

CReg< Administrator, InputAdmin > CReg< Administrator, InputAdmin
>::cr( "InputAdministrator" );

In this example InputAdmin is added to the register, and stored under the name

“InputAdministrator”. No modifications to the InputAdmin code are necessary. Administrator is

given as the base class of InputAdmin.

Now to chose an administrator for the program we have to call:

ClassRegister< Administrator >::selectSingleton( adminType);

where adminType is a string with the administrator name (“InputAdministrator” for example). The

instance of the class will be created when the singleton is first accessed:

Administrator *a = ClassRegister< Administrator >::getSingleton();

Subsequent calls to getSingleton() will return the same object. This is used for example in frspec_

implementation:

void fwspec_(int *LUN, int *NWORDS, int *BUFFER, int *IEND) {

  ClassRegister<Administrator>::getSingleton()->
  put(MemBuffer(*NWORDS * WORD_SIZE, BUFFER));

  (*IEND) = 0;
  return;
}

6.5 Development tools

The main criteria for selecting development tools was that they are open source or at least

free. Developers participating in the project have much freedom in selecting their tools. Here is a

list of tools which were arbitrary chosen for the project: 

� CVS - 1.10.8 as the version control system [27],

�  gcc - 2.95.3 for compiling C++ code [28],

� gdb - 5.0 for debugging C++ code [29],[30]

� Doxygen - 1.2.8.1 to generate class documentation [31],
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Additional libraries:

� Stlport 4.5 - a thread safe STL library implementation [32],

� CmdLine - a C++ for parsing command line options and configuration files [33],

Some attempts to use a project manager like KDevelop or Source Navigator were made but we gave

it up.
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7 Tests and validation

The system in its current form was ready in summer 2002. Since then many performance

and feature tests have been performed to check if its ready for data taking from the experiment. 

Tested feature: Adding and removing worker nodes at runtime Req. 1,2

Configuration: 1 input node reading from a 1GB data file

1 output writing data to dev/null 

6 worker nodes - AnalAdmin - configured to stop processing and unregister from

the system after 400 events. No real processing was done, only passing data to

output.

Realization: Each node was restarted immediately after it stopped.

Results: Passed.

Tested feature: Coping with an input rate of 10 MB/s Req. 5

Configuration: 1 input node reading from a 1GB data file

1 output writing data to dev/null 

3 worker nodes - AnalAdmin - No real processing was done, only passing data to

output.

Realization: Before stopping the input node printed performance information.

Results: Not passed. A processing speed of about 6-7 MB/s was reached

Comments: This test was done in summer 2001. Its result was the reason for adding multiple input

support to the system.

Tested feature: Processing online data Req. 11

Configuration: 1 input node reading experiment data from a socket

1 output writing data to dev/null 

3 -5 worker nodes - one JobAdmin connected with two TaskAdmins - running H1

filtering/reconstruction program.

Realization: The system was stopped after some time.

Results: Passed. The data was processed. Events containing errors were found on the input side and

thrown away.
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Tested feature: Stability test, also automatic crashed nodes restarting, retrieving of events which

caused the crash Req. 21.

Configuration: 1 input node reading experiment data from a socket

1 output writing data using the logging system

3 -5 worker nodes - one JobAdmin connected with two TaskAdmins running H1

filtering/reconstruction program.

Realization: The system was running for two weeks. Crashed nodes were restarted automatically

by the Controller, the events which caused the crash, could be recovered and save for

further investigation. The system had to stop because of a fatal error in the logging

process.

Results: Passed. 

Comments: The system proved to be the most stable part of the reconstruction framework.

Tested feature: Multiple input support, testing the BarrierServer.

Configuration: 2 input nodes reading from two data files.

1 output writing data to dev/null

1 worker node - AnalAdmin - for each input node just passing data to the output

Realization: In the files run start/stop records were missing.

Results: Passed. The barriers were distributed properly, missing run start/stop records were

recreated

Tested feature: Throughput requirements Req. 5,6

Configuration: 2 input nodes reading from two data files.

1 output writing data to dev/null

2 worker nodes - AnalAdmin - for each input node just passing data to the output

Realization: Data was read from a file.

Results: Passed. A throughput of about 15 MB/s was reached

The tests have shown that the system is fully functional and ready to use. The support for

multiple input nodes has been necessary to fulfill the most important requirement of the system -

enough throughput to process online data. The barrier algorithm is working allowing for smooth

insertion and removal of nodes. The barrier server is handling barrier insertion into the data flow

correctly. The system is stable and crashed nodes can be restarted quickly.

In the first stage of the tests bugs were found in the code as well as minor changes in the
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design were necessary. But due to the modular architecture of the system all problems could be

found and removed quickly. The tests which followed did not reveal any new bugs in the system.
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8 Summary and future plans

Feature tests have proven that the system is fully functional and stable. The barrier approach

has been a success and we were able to address most of the H1 computing problems the previous

framework could not handle.

There are currently no new feature requests or known bugs in the system. Future plans

include minor refactoring, cleanup of the code and better documentation. This thesis was a step

towards creating a full manual of the system. However the system is to large to be described fully in

this thesis and I was forced to give up going into details of the implementation.

Still not enough tests, especially scalability tests, have been performed. The system was

tested with up to ten worker nodes and two input nodes. The results of tests for bigger

configurations would be interesting and could reveal some shortcomings of the system.

It is being considered to separate out a problem independent library from the system. The

abstract administrator classes, the repository, readers and the barrier server are nearly problem

independent. By implementing the event builder, event decomposer, the reading, writing and

processing units, the system can be turned into a framework for processing any embarrassingly

parallel problem, offering an interesting synchronization mechanism.

The concurrent character of the barrier algorithm makes it extremely difficult to prove its

correctness. By performing tests we can never be sure that all situations have been covered.

Creating a more formal model (for example with Petri Nets [34]) of the algorithm would perhaps

help to find a limited set of conditions the system has to fulfill in order to be correct. Then by

creating unit tests for this conditions we could test the system after any changes to the code.

However we can never be sure that the theoretical model we create corresponds to the

implementation.
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Appendix A .

Opinion of the Project leader

From: "Alan Campbell" <campbell@mail.desy.de>
To: "Jacek Nowak" <jnowak@ernie.icslab.agh.edu.pl>
Sent: Tuesday, May 20, 2003 5:23 PM
Subject: Re: L45 an opinion

On the Work of Jacek Nowak
--------------------------

Dear sir or madam,

It is a pleasure for me to express my opinion on the masters thesis work of
Jacek Nowak.

Jacek joined the L45 upgrade project at an early stage. The main requirements
had been formulated and initial tests had been made to verify that the chosen
technology ( C++ and CORBA ) could deliver sufficient performance. Jacek
developed the entire implementation of the core data flow framework
including barriers as synchronisation elements.

>From the beginning he has produced excellent C++ code and kept it maintainable
and understandable through the use of well thoughtout object design and the
application of design patterns. He has mastered the techniques required
in multithreaded programs and the appropriate usage of advanced features
of C++ such as templates and the standard library. He has acquired detailed
knowledge of CORBA and its C++ binding.

The project has been very successful. The code is in production use
since early 2002, successfully managing the continuous online data processing
and filtering of H1 detector data. The excellent stability of the system
proves the correctness and quality of Jacek's code.

In addition to these technical abilities, Jacek's very pleasant manner,
excellent discussion proficiency, thoughtful thinking and good presentation 
ability
enabled him to work efficiently in our international collaboration. This
greatly helped in the formulation of detailed requirements and in the
discussion of implementation options, and enabled other members of the
team to learn a lot from Jacek's knowledge and experience.

Yours sincerely,

Dr Alan Campbell
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