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Abstract

Heavy quark production (c and b) is investigated in the H1-experiment at the ep collider
HERA using events with a D∗-meson and an additional muon. Data taken during the
years 1997 and 1999-2000, corresponding to an integrated luminosity of about 85 pb−1,
are used. Exploiting the charge and angle correlations between the D∗-meson and the
muon a separation of charm and beauty production is performed. Total charm and beauty
production cross sections are measured in the visible ranges of the transverse momentum
pT (D∗) > 1.5 GeV/c, the pseudorapidity |η(D∗)| < 1.5, the momentum p(μ) > 2.0 GeV/c,
|η(μ)| < 1.735 and the inelasticity 0.05 < y < 0.75 at Q2 < 1 GeV2 and Q2 < 100 GeV2.
Also differential cross sections in various D∗μ-variables are measured and compared with
the predictions of different leading order QCD Monte Carlo simulations and in the case of
the Q2 < 1 GeV2 data set also with next-to-leading order calculations. Furthermore the
unintegrated gluon density is extracted.

Zusammenfassung

Die Produktion schwerer Quarks (c und b) wird beim H1 Experiment am ep Beschleu-
niger HERA untersucht, wobei Ereignisse mit einem D∗-Meson und einem zusätzlichen
Myon verwendet werden. Die Daten der Jahre 1997 und 1999-2000, welche einer integrier-
ten Luminosität von etwa 85 pb−1 entsprechen, werden verwendet. Durch Ausnutzung
der Ladungs- und Winkelkorrelationen zwischen dem D∗ und dem Myon wird eine Tren-
nung von Charm- und Beauty-Produktion vorgenommen. Totale Charm- und Beauty-
Produktionswirkungsquerschnitte werden in den sichtbaren Bereichen des transversalen
Impulses pT (D∗) > 1.5 GeV/c, der Pseudorapidität |η(D∗)| < 1.5, des Impulses p(μ) >
2.0 GeV/c, |η(μ)| < 1.735 und der Inelastizität 0.05 < y < 0.75 bei Q2 < 1 GeV2

und Q2 < 100 GeV2 gemessen. Außerdem werden differentielle Wirkungsquerschnitte
verschiedener D∗μ Grössen gemessen und mit den Vorhersagen von verschiedenen QCD
Monte-Carlo Simulationen in führender Ordnung verglichen, im Falle des Datensatzes mit
Q2 < 1 GeV2 auch mit NLO Rechnungen. Desweiteren wird die unintegrierte Gluondichte
extrahiert.
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Introduction

In particle physics the properties of the constituents of matter and their interactions are
investigated. To date the microscopic world is described very successfully by the Standard
Model (SM). In the SM the fundamental constituents are six quarks and six leptons.
They interact via different forces, the electroweak and strong interactions. The theory of
the strong force is Quantum Chromo Dynamics (QCD), which describes the interaction
between quarks by the exchange of gluons.

The topic of this analysis is the production of charm and beauty quarks in ep-collisions at
HERA. The dominant production mechanism of heavy quarks at HERA is photon gluon
fusion (PGF). In this picture a heavy quark- antiquark pair is produced by a photon from
the incoming beam electron and a gluon from the incoming proton. This process provides
a good testing ground of QCD.

The calculations of cross sections in QCD are performed using perturbation theory using
the strong coupling αs as an expansion parameter. For heavy quark production in ep-
collisions next-to-leading order (NLO) calculations are availabe. The convergence of the
perturbation series is only ensured if a hard scale is present, for example the virtuality of
the photon or the transverse momentum or the mass of a heavy quark. Since αs depends
on the scale, its value decreasing with increasing scale, the convergence of the perturbation
series improves with increasing scale. A good convergence of the series is related to a small
theoretical uncertainty of the predicted cross section. Since the beauty quark is about 3-4
times heavier than the charm quark, the theoretical uncertainties for beauty production
are smaller than for charm production.

In general charm production measurements at HERA are well described by the theory,
whereas the picture is somewhat unresolved in the b-sector (pp̄: [1, 2, 3, 4], γp: [5, 6, 7, 8],
γγ: [9, 10], ep: [11, 12], eN : [13]). First measurements at HERA [5, 6] were about a factor
3-5 above the NLO predictions, while most recent HERA b-production cross sections [7, 8]
are closer to the theory in NLO.

Most previous charm and beauty measurements at HERA were based on the measurement
of one heavy quark (single tagging). In the case of charm the D∗ meson is commonly
used for this tag, while for beauty often the semileptonic decay into muons is taken as
a signature. In the meantime, the available data samples are large especially for charm
production and contain some thousands of events. More information about the heavy
quark final state is accessible in events with two jets along with the D∗, as is the case in
more recent charm analyses [14, 15].
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2 CONTENTS

In this thesis a heavy quark pair is tagged, one via a D∗-meson and the other one via a
muon (double tagging). A great advantage of using D∗ reconstruction is that the contri-
butions from the light quarks u, d and s can be eliminated by a fit to a mass spectrum
obtained from the D∗ candidates. Double tagging provides more information about the
production mechanism than single tagging. A disadvantage of double tagged samples is
of course that they contain a reduced number of events.

The first analysis topic of this thesis will be the measurement of total charm and beauty
cross sections. A separation of charm and beauty production is performed by exploiting
the charge and angle correlations between the D∗-meson and the muon.

A double tagging analysis is highly sensitive to NLO effects, the fragmentation and the
behaviour of the initial partons, which in the case of PGF are the photon emitted by the
incoming electron and the gluon. The study of these effects is a second topic of this thesis.
Such studies have already been carried out at fixed target experiments, e.g. at E687 [16, 17]
and more recently at FOCUS [18]. Here both charm quarks were reconstructed using D
mesons and the data show the expected NLO effects. These effects are even stronger than
predicted. The data could be interpreted as indicating a non-zero transverse momentum
of one of the initial partons.

In the third step of this analysis an attempt is made to gain further information on the
structure of the proton. The structure is described by quark and gluon densities. These
densities are believed to be universal and are therefore applicable in all other experiments
at hadonic colliders (ep, pp̄, pp).

Several approaches describe the evolution of such quark and gluon densities as a function
of the virtuality of the photon Q2 and the Bjørken variable x. In the DGLAP approx-
imation [19] the evolution is performed using gluon emissions strongly ordered in the
transverse momentum. In the more recent CCFM approach [20, 21] this ordering is no
longer present. Within the CCFM approach the gluon density depends explicitly on the
transverse momentum of the gluon and is called the unintegrated gluon density. Predic-
tions of this approach have been used successfully, e.g. in forward jet production [22]. No
direct measurement of the unintegrated gluon density however has been performed yet.
Reconstructing the heavy quark pair the measurement of the unintegrated gluon density
is possible.

This thesis is organised as follows: In the first chapter the theoretical framework is ex-
plained with emphasis on heavy quark production and on different theoretical approaches
for the evolution of the parton densities. The double tagging method using a D∗-meson
and a muon is described in the second chapter. The H1 detector is introduced next. Here
the detector components, relevant for this analysis, are described in some detail. In the
fourth chapter the selection of the D∗μ events is described. In chapter five the description
of the data by the Monte-Carlo simulation is investigated, in particular studies concerning
the muon background are presented. The chapter six deals with the separation of charm
and beauty production. In chapter seven the total charm and beauty cross section results
are presented. In chapter eight differential normalised cross sections as a function of dif-
ferent variables such as the azimuthal angular difference between the D∗-meson and the
muon or the transverse momentum of the D∗μ-pair, are calculated and in the last chapter
the extraction of the unintegrated gluon density is performed.



Chapter 1

Theoretical Framework

In this chapter the kinematical variables used to describe the ep scattering at HERA
are introduced. The structure of the proton and photon structure are then considered.
Evolution models which predict the structure of the proton or photon at an arbitrary
scale, if the structure is known at an initial scale, are discussed in some detail and the
differences between the different models are noted.

After this the heavy quark production mechanism is presented and the regimes of validity
of different approximations are discussed. The special features of heavy quarks concerning
the evolution models are considered. Finally hadronisation, the transition of the quarks
into the observable hadrons, is explained.

1.1 HERA Kinematics

At HERA beams of electrons or positrons are collided with beams of protons. The ep
scattering process can be described to leading order by the exchange of either a neutral
boson - γ or Z0 - or by a charged boson W±. The case of γ or Z0 exchange is called
a neutral current exchange process. The other case, in which the incoming electron or
positron transforms into an antineutrino or a neutrino respectively, is called a charged
current exchange process (see figure 1.1).

The four-momenta of the incoming electron k, the outgoing electron or neutrino k′ and
the proton P can be used to define the following Lorentz invariant variables:

s = (k + P )2 (1.1)
Q2 = −q2 = −(k − k′)2 (1.2)

x =
Q2

2P · q (1.3)

y =
P · q
P · k (1.4)

W 2
γp = (P + q)2 (1.5)

Here
√
s is the centre-of-mass energy of the ep system and Q2 is the virtuality of the

exchanged boson, which corresponds to the four-momentum transfer squared from the

3
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e(k)

e’(k’)

γ(q)

p(P)
Xp

xP

e(k)

νe(k’)

W(q)

p(P)
Xp

xP

Figure 1.1: ep scattering Feynman diagrams. Left: neutral current photon exchange.
Right: charged current exchange.

electron to the proton. At HERA electrons and protons are collided at a centre-of-mass
energy

√
s of 300 GeV and since 1998 of 318 GeV. Wγp is the centre-of-mass energy of

the γp system and x and y are Bjørken variables. In the Quark Parton Model (QPM)
x describes the relative momentum fraction carried by the scattered parton to the total
momentum of the proton. In the proton rest frame y gives the relative energy loss of the
electron. x and y have values ranging between 0 and 1.

Only three of these five kinematic variables are independent and therefore three variables
are enough to describe the kinematics of the process. Neglecting the masses of the electron
and the proton the following relations between these quantities hold:

Q2 = s · x · y (1.6)
W 2

γp = y · s−Q2 (1.7)

In analogy to optics the possible resolution to probe the internal structure of the proton in
the transverse direction depends linearly on the de Broglie wave length λ. The de Broglie
wave length is given via λ = h/|qt| where qt ∼

√
Q2 is the transverse momentum of the

exchanged boson. Large Q2 thus means high resolution. With the largest possible Q2 at
HERA structures of the size of 10−18 m can be investigated.

The ep scattering events are classified by the virtuality Q2 of the exchanged boson. The
regime of small Q2 is called photoproduction and the regime of large Q2, Deep-Inelastic-
Scattering (DIS). At the H1 experiment photoproduction events are usually selected by
the cut Q2 < 1 GeV2. Moderate DIS events are experimentally often selected by the
requirement of 2 GeV < Q2 < 100 GeV2 and DIS events at high are often selected by Q2

via Q2 > 100 GeV2. In this analysis events in photoproduction and at moderate Q2 are
considered.
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In photoproduction and at moderateQ2 the charged current process is strongly suppressed,
due to the fact that the cross section is proportional to (1/(Q2 + M2

W ))2, which is very
small due to the large mass of the W± boson (MW = 80.4 GeV/c2). The neutral current
process is dominated by photon exchange and the corresponding term is proportional to
1/Q4. The term due to pure Z exchange is proportional to (1/(Q2 +M2

Z))2, which is again
strongly suppressed due to the large mass of the Z0 boson (MZ = 91.2 GeV/c2). There
is also a γZ interference term proportional to 1/(Q2 · (Q2 +M2

Z)). For Q2 < 1000 GeV2

[23] the influence of the interference term can be neglected. At high Q2 this term leads to
destructive interference in the case of e+p scattering and to a constructive interference in
the case of e−p scattering.

1.2 Differential Cross Sections and Structure Functions

The double differential neutral current cross section (QED) at moderate Q2 is given by
the following formula:

d2σe±p,NC

dxdQ2
=

4πα2

xQ4
·
(
y2xF1(x,Q2) + (1− y)F2(x,Q2)

)
(1.8)

Here F1(x,Q2) and F2(x,Q2) indicate the proton structure functions and α is the elec-
tromagnetic coupling constant. In the QPM the structure function F2(x,Q2) is related to
the sum of the quark and antiquark densities fq/p(x,Q2) and fq̄/p(x,Q2) according to:

F2(x,Q2) = x
∑
q

eq ·
(
fq/p(x,Q

2) + fq̄/p(x,Q
2)
)

(1.9)

eq indicates the charge of the quark and in the sum all active flavours in the proton have to
be considered. fq/p(x,Q2) or fq̄/p(x,Q2) is the probability to find a quark (antiquark) with
a momentum x at a scale Q2 in the proton. If the strong forces between the quarks are
neglected, the parton densities depend only on x (scaling behaviour), however Quantum
Chromodynamics (QCD) leads to scaling violation and the quark densities depend also
on Q2. This is discussed in detail in the next section.

A photon with a non vanishing virtuality Q2 can be either transversely or longitudinally
polarised, whereas a real photon always has a transverse polarisation. This is a conse-
quence of the gauge invariance of electrodynamics, which is related to the zero-mass of
real photons [24]. The corresponding longitudinal structure function FL(x,Q2) is defined
in the following way:

FL(x,Q2) = F2(x,Q2)− 2xF1(x,Q2) (1.10)

The ratio of the longitudinal and transversal cross sections, σL and σT respectively, is:

R =
σL

σT
=

FL(x,Q2)
F2(x,Q2)− FL(x,Q2)

(1.11)

and the double differential neutral current cross section can be rewritten as:

d2σe±p,NC

dxdQ2
=

2πα2

xQ4
·
(

2 · (1− y) +
y2

1 +R

)
· F2(x,Q2) (1.12)
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Due to the y2 dependence of the second term the longitudinal structure function can lead to
sizeable effects only in the regime of large y and only in DIS. Due to angular momentum
conservation the longitudinally polarised photons in DIS can interact only with quarks
or gluons with a non-negligible transverse momentum. The quarks can obtain such a
transverse momentum from gluon radiation or from gluon splitting, which is a consequence
of QCD. In the naive QPM the proton consists only of spin 1/2 particles and FL is zero
since the Callan-Gross relation between F1 and F2 holds:

F2(x) = 2xF1(x) (1.13)

FL can be neglected in the kinematic regime important for the analysis presented here,
and equation 1.12 reduces to:

d2σe±p,NC

dxdQ2
=

2πα2

xQ4
·
(
2 · (1− y) + y2

)
· F2(x,Q2) (1.14)

In the theory model relevant for this analysis neither the charm nor the beauty quark
are active flavours in the proton. Thus the charm F c

2 or beauty contribution F b
2 to the

structure function F2 is more complicated. In particular they depend on the gluon density
fg/p(x,Q2) and this will be explained in section 1.5.

At highQ2 a further structure function F γZ
3 (x,Q2) = x

∑
q eq ·aq ·(fq/p(x,Q2)−fq̄/p(x,Q2))

due to the γZ interference term becomes important, which is related to the difference of
the quark and antiquark densities. Also the structure function FZ

2 (x,Q2) = x
∑

q(v2
q +a2

q) ·
(fq/p(x,Q2) + fq̄/p(x,Q2)) for Z exchange has to be taken into account. vq and aq denote
here the vector or axial-vector couplings of the quarks respectively. Since in this thesis
only photoproduction or moderate DIS events are selected F γZ

3 and FZ
2 can be neglected.

1.3 QCD Framework

In QCD the strong interaction is mediated by gluons and the charge of the strong inter-
action is the colour (red, green, blue). Quarks carry colour and interact via the exchange
of gluons (which also carry colour). In contrast to Quantum Electrodynamics (QED) the
strong interaction is non-Abelian and the gluons can couple also to each other.

1.3.1 The Strong Coupling Constant αs

In perturbative QCD (pQCD) cross sections can be computed as a power series in the
strong coupling constant αs. To leading order no internal loops contributes but at higher
orders each observable receives additional contributions from loop diagrams, such as those
shown in figure 1.2.

Due to the gluon self interaction in addition to the fermion loop also pure gluon loops
exist. This leads to a different behaviour of the strong coupling with increasing scale
Q2 compared to QED. In QED, where only the fermion loop contributes, the charge is
screened by e−e+ pairs at small Q2 (low resolution). At high Q2 (high resolution) the
charge is however large and the electromagnetic coupling constant α increases slightly
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Figure 1.2: Examples for loops in QCD. Left: gluon loop. Right: fermion loop

with Q2. The fermion loop in QCD leads to the same result but the gluon loop results
in an additional anti-screening. The charge is spread out by the gluons and the charge is
small at large Q2 (high resolution). For Q2 → ∞ the quarks are quasi-free, a property
which is referred to as asymptotic freedom. In the other case Q2 → 0, αs becomes large
and perturbative QCD is not applicable anymore (confinement).

To calculate the contributions from a particular loop an integration over all particle mo-
menta p in the loop has to be performed. The upper limit p → ∞ leads to ultraviolet
(UV) divergences, however in a renormalisation procedure these divergences are absorbed
in the running of the strong coupling constant and an arbitrary renormalisation
scale μR is introduced. μR can be regarded as the momentum at which the subtraction,
which removes the divergences, is performed. The scale μR is arbitrary, a physical observ-
able R (calculated to all orders of αs) has to be independent of μR. Mathematically this
requirement is expressed in the renormalisation group equation (RGE):

μ2
R

dR

dμ2
R

= μ2
R

∂R

∂μ2
R

+ μ2
R

∂αs

∂μ2
R

∂R

∂αs
= 0 (1.15)

The differential equation can be written as a power series in αs(μ2
R) and so-called β

functions, which can be calculated in QCD (loop corrections) as follows:

μ2
R

∂αs

∂μ2
R

= αsβ(αs) = −β0α
2
s − β1α

3
s − higher order terms (1.16)

with

β0 = 11− 2
3
· nf

β1 = 102− 38
3
· nf

Here nf indicates the number of active flavours. In the one loop approximation, i.e.
considering only the term β0, the following expression for αs is obtained:

αs(μ2
R) =

1

b · ln
(

μ2
R

Λ2
QCD

) (1.17)

Here b is defined by b = β0/4π. ΛQCD is the scale where αs gets large and the perturbative
series in αs no longer converges and thus pQCD is not applicable anymore. The value
of ΛQCD is determined experimentally to be about 200 MeV. It has become customary
however to specify αs at the scale of the Z0 mass instead of using ΛQCD as a reference
scale. The experimental result is αs(MZ) = 0.119 ± 0.004 [25].
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Figure 1.3: Illustration of the factorisation principle. The factorisation scale cut μF

distinguishes between ’short distance’ (μ > μF ) and ’long distance’ (μ < μF ) physics

1.3.2 Factorisation

Apart from the ultra violet divergences considered above, also infrared divergences appear
in QCD. They are again a consequence of the behaviour of the strong coupling constant
αs. In the soft regime, at small scales μ2 (“long” distance physics), αs is large (see figure
1.3). This leads to divergences i.e. for kT → 0 (almost collinear gluon radiation) due to
dσ/dk2

T ∼ 1/k2
T . Here kT is the transverse momentum of the emitted gluon. In the integral

over kT the introduction of an artificial regulator μF (a lower limit cut-off) is needed to
avoid these divergences. The scale μF corresponds to the non-perturbative scale, where
pQCD breaks down. In analogy to the ultra violet divergences, where the divergences
were absorbed in the running of the charge or coupling, the singularities here are absorbed
into the parton densities. This leads to a running of the parton densities fi/p(x, μ2

F ).
They are called renormalised parton densities. For all processes at a large scale μ2 > μ2

F

pQCD is applicable due to a small αs and the soft processes with μ2 ≤ μ2
F are absorbed in

the renormalised parton densities. Such separation in ’soft’ and ’hard’ processes is called
factorisation and μF is therefore called factorisation scale. The principle of factorisation
is sketched in figure 1.3.

Factorisation provides a rule how to treat the singularities but the treatment of the finite
terms is arbitrary. The factorisation scheme, however, determines how much of these
finite terms is factorised into the renormalised quark distributions. In the DIS scheme
all finite contributions are absorbed in the quark distributions and F2 is given by F2 =
x
∑

q,q̄ eq ·fq/p(x, μ2) (equation 1.9). In the more common MS scheme only one finite term
is absorbed in the quark distributions in addition to the divergent part and the formula
for F2 is modified.

In general the ep cross section is the convolution of the renormalised parton density func-
tion fi/p(x, μ2

F ), depending on the factorisation scale μF , and the hard boson parton cross
section σ̂i(ŝ, αs(μR), μR, μF ), which is calculable in pQCD:

dσ(ep→ e′X) =
∑

partons

∫ 1

0
dx fi/p(x, μ

2
F ) · dσ̂i(ŝ, αs(μR), μR, μF ) (1.18)
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a) b)

μ2
1 μ2

1

μ2
2

μ2
1 � μ2

2

μ2

μ2

Figure 1.4: a) Resolution of the p structure at different scales μ2. At large scales small
structures are resolved and the probability is large that the photon probes a quark, which has
already emitted a gluon or which comes from gluon splitting. b) Quark density distributions
at different scales.

The factorisation theorem states, that the renormalised parton density functions are uni-
versal and depend only on the hadron type. Therefore it should be possible to use the
parton densities of the proton, which were determined at HERA, to study all kinds of
collisions involving protons, for example at the TEVATRON or later at the LHC.

1.3.3 Parton Densities and Evolution Models

The renormalised parton densities contain the soft processes up to the factorisation scale
μ2

F , like for example gluon radiation and gluon splitting. Therefore the parton densities
depend on a scale. In DIS events a common choice for μ2

F is Q2. For events with heavy
quarks this choice of μ2

F is modified, since the mass of the heavy quarks is also large and
can act as a scale (see section 1.5). This dependence of the parton densities on a scale can
be understood by considering that at large scales small structures are resolved and the
probability is large that the photon probes a quark, which has already emitted a gluon or
which comes from gluon splitting (see figure 1.4 a). In these cases however the momentum
of the quark is smaller than the momentum of the original parton in the proton. The
quark densities therefore, with increasing scale μ2, become progressively larger at small x
and progressively smaller at small x (figure 1.4 b)).

The theory provides no fundamental prediction for the parton densities. However, if the
parton densities are known at an arbitrary scale μ2

0 it is possible to determine the parton
densities at any other scale μ2 using the QCD evolution equations. Various different evo-
lution equations have been determined: DGLAP (Dokshitzer, Gribov, Lipatov, Altarelli
Parisi) [19], BFKL (Balitsky, Fadin, Kuraev, Lipatov) [26, 27] and CCFM (Catani,
Ciafaloni, Fiorani, Marchesini) [20, 21]. The initial parton densities are provided by ex-
perimental measurements. A good introduction into the DGLAP and BFKL evolution
approach can be found in [28, 29].

The evolution approaches consider all the processes shown in figure 1.5 (gluon radiation
and gluon splitting). The splitting functions Pij(z) give the probability, that a parton j
with a particular four-momentum k and a longitudinal momentum fraction x, radiates a
parton of a momentum fraction (1 − z)x and continues as a parton i with a momentum
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Figure 1.5: Gluon radiation and splitting processes and definition of the Altarelli Parisi
splitting functions.

Q2

x

xn,kT,n

xn-1,kT,n-1

x1,kT,1

p

pT,n

pT,n-1

pT,1

x0,kT,0

..

...
.

e

Figure 1.6: General gluon ladder.

fraction zx. In the case shown in figure 1.5 a) the differential cross section dσq→qg/dk
2 for

a quark radiating a gluon depends on 1/k2 and a singularity occurs for k2 → 0. In the case
shown in figure 1.5 d), where a gluon splits into two gluons, two singularities occur, again
one for k2 → 0 and another for z → 0. The differential cross section here is proportional
to 1/k2 · 1/z but has further finite terms. The three evolution approaches handle these
singularities differently.

In the DGLAP approach the evolution of the parton densities is performed in k2 and
holds for large scales μ2 and for moderate Bjørken x. Here the assumption is, that the
emission of gluons, i.e. the parton ladder, is strongly ordered in k2. This implies also
a strong ordering in the squared transverse momentum k2

T of the emitting particle or
the squared transverse momentum p2

T of the emitted parton. The leading contribution is
proportional to 1/k2. This is because k2 of the parton before the emission is assumed to
be much smaller than after the emission (see figure 1.6). The integration of such a term



1.3. QCD FRAMEWORK 11

+ + +...

Figure 1.7: Summation of all considered gluon ladders.

leads to ln(μ2) terms which have to be summed up to all orders giving a term of the form∑
An(ln(μ2))n. Not only the radiation of one gluon is important, but also the radiation

of two or three or n gluons have to be considered (see figure 1.7). Within this approach
the DGLAP evolution equations are given by:

∂fqj/p(x, μ2)
∂ ln(μ2)

=
∫ 1

x

dz

z

αs

2π

(
P̂qq(z)fqj/p(

x

z
, μ2) + P̂qgg(

x

z
, μ2)

)
(1.19)

∂g(x, μ2)
∂ ln(μ2)

=
∑
q,q̄

∫ 1

x

dz

z

αs

2π

(
P̂gg(z)g(

x

z
, μ2) + P̂gqfqj/p(

x

z
, μ2)

)
(1.20)

In the BFKL model the evolution is performed in x and holds for moderate μ2 and
small x. In this regime the assumption is, that the momentum fraction z carried by
the parton after the emission is very small. Thus the leading contribution is the 1/z
term. This leads to a resummation of ln(1/x) terms. In contrast to the DGLAP case
here the virtuality of the partons in the ladder is unordered and the virtuality k2 of the
initial parton is not negligible in comparison to the virtuality k′ 2 of the parton after the
emission. Thus the splitting functions in the BFKL case are more complicated. Also the
factorisation theorem becomes more complicated. The hard scattering cross section has to
be calculated off-shell, which means that the virtuality of the parton, which enters into the
hard cross section, cannot be neglected, as done in the case for the DGLAP evolution. This
is called kT -factorisation compared to the collinear factorisation in case of the DGLAP
evolution approach (hard cross section is calculated on-shell). In the BFKL model only
gluons are considered initial partons, because at small x this is the dominant contribution.
The gluon density depends on k2

T and on x. The gluon density within the BFKL approach
F(x, k2

T , μ
2
0) can be related to the conventional DGLAP gluon density g(x, μ2) as follows:

xg(x, μ2) �
∫ μ2

0
F(x, k2

T , μ
2
0)
dk2

T

k2
T

(1.21)

The CCFM model can be related to both of the above approaches. In the case of large
μ2 and moderate x the CCFM model is equivalent to the DGLAP approach and in the case
of small x and moderate μ2 it is equivalent to the BFKL approach. Here a resummation of
both possible singular terms in z as well as in k2 is performed without requiring a strong
ordering in k2

T . In analogy to the BFKL approach the omitted assumption of a strong
kT ordering leads to a hard cross section, which depends on kT (kT factorisation). Gluon
emission is only allowed in a region of increasing emission angle (to account for colour
coherence effects), thus leading to an evolution in angle. This is illustrated in figure 1.8.
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Figure 1.8: Illustration of the angular ordering of emitted gluons in the CCFM evolution
model.

parton 1

parton 2

q=(q0,q)

k=(E,k)

qt

θ

Figure 1.9: Emission of a gluon (parton 2) from parton 1.

In this approach the gluon density A(xg, kT , q̄
′
t) has apart from xg and kT an additional

dependence on the maximum angle allowed for any emission, which corresponds to the
factorisation scale μ2

F . The gluon density in this approach is called unintegrated gluon
density.

All these approaches give a good description of the structure function F2 at small x.
However, the description of the hadronic final state is less satisfactory. For example
forward jet data [22] can not be described by the DGLAP approach, whereas the BFKL
and the CCFM model give a much better description. Also in the heavy quark sector there
are some problems with the DGLAP formalism: In the case of charm photoproduction the
Next-to-leading order (NLO) calculations do not describe all aspects observed in the D∗

data [7, 30, 14, 31, 15]. The first b-measurements [5, 6] were about a factor 3-5 above the
NLO calculations, while in more recent b-measurements [7, 8] in the visible range better
agreement is observed.

Since in this analysis the unintegrated gluon density as used in the CCFM model will be
determined, the CCFM formalism is described in more detail in the next section.

1.3.4 CCFM Equation

In this section the CCFM formalism [32, 33, 34] is treated in more detail. The CCFM
model is based on the angular ordering of emitted gluons. First a simplified picture [35]
to understand the angular ordering qualitatively is given using the uncertainty principle.

Consider first the evolution of a gluon ladder. First an initial parton 1 emits a gluon
(parton 2), as indicated in figure 1.9. The lifetime Δt of the two parton system is given
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Figure 1.10: CCFM gluon ladder.

by the change of energy ΔE. For simplification a fast initial parton is considered. The
initial massless system - parton 1 - has after the gluon emission acquired a mass M given
by:

M2 = (q + k)2 = 2Eq0(1− cos θ) ≈ 2Eq0
(

1−
(

1− θ2

2

))
= Eq0θ2 (1.22)

The change of the energy of the two parton system in the rest frame ΔE∗ is given by the
mass M of the system. To get the change of energy in the laboratory system ΔE the time
dilation factor γ ≈ E/M has to be considered, which yields the following formula for the
lifetime of the two parton system in the laboratory system:

Δt =
1

ΔE
= γ · 1

ΔE∗ =
E

M
· 1
M

=
E

q0Eθ2
=

1
q0θ2

(1.23)

The lifetime of further gluon emissions - emission and reabsorption processes - has to be
smaller than the previous lifetime of the two parton system. Otherwise no gluon ladder
would arise. This leads to the following requirement for a gluon ladder:

Δt1 > Δt2 > Δt3 > ... (1.24)

Due to equation 1.23 this is related to

θ2
1 < θ2

2 < θ2
3 < ... ⇒ θ1 < θ2 < θ3 < ... (1.25)

Hence, the evolution of a gluon ladder can be related to as angular ordering.

A schematic figure of a gluon ladder in the CCFM model is shown in figure 1.10. The
“internal” gluons have the four-momenta ki = (Ei, �ki) and the emitted gluons qi =
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(q0i , q
1
i , q

2
i , q

3
i ). Here xi (yi) gives the relative momentum fraction of the initial gluon i

(emitted gluon i) to the proton momentum in systems, in which the initial gluon has no
transverse momentum. zi gives the momentum reduction of the i-th initial parton for the
i-th gluon emission:

xi = zi · xi−1 (1.26)

The four-momentum qi of the i-th emitted gluon can be written in the following form
(Sudakov decomposition):

qi = (q0i , �q) = yi · (P + ξik) + qt,i , where yi = (1− zi) · xi−1 (1.27)

Here P = (Ep, 0, 0, Ep) indicates the four-momentum of the proton, k = (Ee, 0, 0,−Ee) the
four-momentum of the incoming electron and qt,i = (0, q1i , q

2
i , 0) = (0, �qt,i) is the transverse

momentum of the i-th emitted gluon, which is orthogonal to P and k. The emitted gluons
are assumed to be massless (q2i = 0) and this leads to the equation (s ≈ 2Pk):

ξi =
�q2t,i
sy2

i

(1.28)

The relative momentum fraction of the emitted gluon yi can be obtained from the following
consideration:

q0i = yiEp + yiξiEe

q3i = yiEp − yiξiEe

which leads to

yi =
q0i + q3i

2Ep
(1.29)

Furthermore it is possible to express the variable ξi in terms of the rapidity ŷi = 1/2 ln((q0i +
q3i )/(q

0
i − q3i )) = − ln(tan θi/2) of the i-th emitted gluon and thereby the angle θi of the

i-th emitted gluon with respect to the proton flight direction. The latter equality holds
because the emitted gluons are assumed to be massless:

q0i + q3i = 2yiEp

q0i − q3i = 2yiξiEe

⇒ ξi =
Ep

Ee
· exp(−2ŷi) (1.30)

ξi =
Ep

Ee
· tan2

(
θi

2

)
(1.31)

In the ep rest frame equation 1.30 reduces to:

ξi = exp(−2ŷi) = tan2
(
θi

2

)
(1.32)

In the particular case of quark pair production (for example a heavy quark pair, see figure
1.10) the four-momentum of the quark pair can be written analogous to that of the emitted
gluons (equation 1.27) in form of the Sudakov decomposition:

pQQ̄ = pQ + pQ̄ = Y (P + Ξk) + pt,QQ̄ (1.33)
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Here pQQ̄ = (EQQ̄, px,QQ̄, py,QQ̄, pz,QQ̄) is the four-momentum of the quark pair and
pt,QQ̄ = (0, px,QQ̄, py,QQ̄, 0) the transverse momentum of the quark pair. Again the trans-
verse momentum is orthogonal to the four-momentum of the proton and the incoming
electron. With p2

QQ̄
= M2

QQ̄
the following formula is obtained for Ξ:

Ξ =
M2

QQ̄
+ �p2

t,QQ̄

sY 2
(1.34)

In analogy to yi (equation 1.29), one obtains for Y :

Y =
EQQ̄ + pQQ̄,z

2Ep
(1.35)

In a similar way as for emitted gluons, Ξ can be expressed in terms of the rapidity ŷQQ̄ =
1/2 ln((EQQ̄ + pQQ̄,z)/(EQQ̄ − pQQ̄,z)) of the quark pair:

Ξ =
Ep

Ee
· exp(−2ŷQQ̄) (1.36)

Due to colour coherence, gluon emissions are only possible in an angular ordered region
of phase space, i.e. increasing angles: θi < θi+1. In the CCFM model this is expressed via
an ordering in ξ (see equation 1.31):

ξ0 < ξ1 < ... < ξi < ξi+1 < ... < Ξ (1.37)

In the theory a so-called scaled transverse momentum often is related to the transverse
momentum vector of the i-th emitted gluon:

q′t,i =
| �qt,i |
1− zi (1.38)

This scaled transverse momentum q′t,i can be related to xi using equations 1.28 and 1.27:

q′t,i = xi−1

√
sξi (1.39)

Using equations 1.26 and 1.38 the angular ordering of equation 1.37 can be rewritten as:

q′t,i > zi−1q
′
t,i−1 (1.40)

The maximal possible q′t is therefore obtained from the maximal possible Ξ and xi−1 then
corresponds to the x of the gluon at the quark box (top of figure 1.10), indicated here as
xg:

q̄′t = xg ·
√
sΞ (1.41)

In the DGLAP approach the evolution is performed for moderate zi and with a strong
kT ordering. This is equivalent to an evolution in | �qt |= pT . Due to equation 1.38 this
implies also a q′t ordering and thus DGLAP also implies an angular ordering. In addition
the requirement given in equation 1.40 gives for small z no restriction for | �qt | and therefore
also no in kT , equivalent to what the BFKL model requires, which holds in the limit of
small z and the evolution in kT is arbitrary. Thus the CCFM model provides a way to
unify the DGLAP and BFKL evolution models.
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+ + +  ...  +

Figure 1.11: Contributions of the non-Sudakov form factor.

In the CCFM model the gluon density A(xg, kT , q̄
′
t) depends on three quantities xg, kT

and q̄′t. In the model q̄′t serves as the factorisation scale and corresponds to the maximal
allowed angle for any gluon emission.

The integral form of the CCFM evolution equation can be written as:

A(x, kT , q̄
′
t) = A0(x, kT , q̄

′
t) +

∫
dz

z

∫
dq′t
q′t

Θ(q̄′t − zq′t) ·ΔS(q̄′t, zq
′
t)P̃ (z, q′t, kT )A(

x

z
, k′T , q

′
t)

(1.42)
Θ is the step function and is equal to one for values above zero and equal to zero for values
below zero. The first term describes all paths without branching and the second considers
evolution paths, which have their last branching at zq′t. ΔS is the Sudakov form factor:

ΔS(μ2) = exp

(
−
∫ μ2

μ2
0

dμ2′

μ2′

∫
dz

αs

2π
P̃ (z)

)
(1.43)

P̃ is the gluon splitting function in the CCFM model. In the evolution only gluons are
considered. In the CCFM splitting function usually only the leading terms are considered,
i.e.:

P̃ =
ᾱs(q2t )
1− z +

ᾱs(k2
T )

z
Δns(z, q′ 2

t , k2
T ) (1.44)

Here the non-Sudakov form factor Δns is defined by:

log Δns = −ᾱs(k2
T )
∫ 1

0

dz′

z′

∫
dq′t
q′t

Θ(kT − q′t)Θ(q′t − z′qt) (1.45)

The non-Sudakov form factor considers virtual contributions such as those shown in figure
1.11. The differential form of the CCFM evolution equation is given by [36, 34]:

q̄′t
d

dq̄′ 2
t

xA(x, kT , q̄
′
t)

ΔS(q̄′t, μ0)
=
∫
dz
dφ

2π
P̃ (z, q̄′t/z, kT )

ΔS(q̄′t, μ0)
x′A(x′, k′T ,

q̄′t
z

) (1.46)

The x′ and k′T are the momentum fraction and the transverse momentum before the last
gluon emission.

Due to the absence of a strong kT ordering in the CCFM model and also in the BFKL
model, the kT of the gluon can have values, which belong in the soft physics regime (the
value can be lower than the kT of the initial parton, see figure 1.12). This leads to the
important consideration of when the gluon splitting is considered as hard and when it is a
soft physics process. The choice of the a kT -cut has a strong influence on the unintegrated
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a) b)

Figure 1.12: Comparison of evolution paths in the DGLAP a) and CCFM approach b).

gluon density. The largest differences between the different kT -cut choices occur for small
kT up to 1 or 2 GeV2. A factor 2-3 at low xg is obtained [37].

Further changes to the gluon density arise when the non-singular terms in the splitting
functions are included and when ᾱs(q2t ) instead of ᾱs(k2

T ) is used in the second term of the
splitting function equation (equation 1.44) and in the non-Sudakov form factor equation
(equation 1.45).

Until now the unintegrated gluon density has only implicit experimental constraints in kT

and q̄′t from F2 data [38, 39, 37]. By using D∗μ correlations to tag both heavy quarks it
is possible to reconstruct q̄′t(D∗μ), xg(D∗μ) and kT (D∗μ) from the four-momenta of the
two identified particles. An extraction of the unintegrated gluon density becomes possible.
The detailed procedure will be described in chapter 2.

1.4 Photoproduction

The region of small Q2 (Q2 → 0) is called photoproduction. Here the description of ep
scattering events can be simplified by factorising the emission of quasi real photons by the
electron from the subsequent interaction of the photon with the proton. In this analysis
the photoproduction regime is considered alone and together with moderate DIS events.
A flux of photons with an energy distribution n(y) can be calculated, where in this regime
the Bjørken variable y can be interpreted as the energy fraction of the photon relative to
the energy of the incoming electron. The ep cross section can be reduced to the γp cross
section in the following way:

dσep(y) = σγp(y) · dn(y) (1.47)

The photon spectrum dn(y) is obtained using the Weizäcker Williams Approximation
(WWA), which neglects the photon virtuality and terms involving the longitudinal photon
polarisation. The spectrum of quasi-real photons is integrated over the whole Q2 range -
[Q2

min, Q
2
max]:

dn(y,Q2
max) = fγ/e(y,Q

2
max)dy (1.48)

Here fγ/e is the photon flux, which can be written as:

fγ/e =
αEM

2π

[
1 + (1− y)2

y
log

(
Q2

max

Q2
min

)
− 2m2

ey

(
1

Q2
min

− 1
Q2

max

)]
(1.49)
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Figure 1.13: Different states of a quasi real photon [41].

αEM denotes the fine structure constant and Q2
min = m2

ey
1−y the kinematic lower limit.

Photoproduction events can be experimentally selected by requiring a scattered electron
with a small scattering angle. The electrons can also be found in the electron taggers. In
this analysis a photoproduction event is defined with an appropriate anti-tag condition,
i.e. outgoing electrons above a given scattering angle θc cut are vetoed. For small angles
Q2

max is given by:
Q2

max = Q2
min + E2

e (1− y)θ2
c (1.50)

For heavy quark production and untagged electrons with θc < 2.5◦, corrections to the
WWA with respect to the exact calculation are at the two percent level for charm pro-
duction and about 0.25% for beauty production [40]. For tagged photoproduction with
θc < 0.3◦ this approximation is even better.

In addition to DIS events with a large photon virtuality Q2, in which the structure of the
proton is probed, the structure of the quasi-real photon itself is probed in ep scattering
events with Q2 ≈ 0. Here the photon can interact directly with the proton as a bare
photon: direct photoproduction. But it is also possible that the photon fluctuates into
a qq̄ state before interacting with the proton (resolved photoproduction). In resolved
photoproduction two different cases are often distinguished. In the first case the photon
fluctuates into a qq̄ without forming a bound hadronic state (anomalous resolved) and in
the second case (vdm contribution) the qq̄ pair forms a vector meson with the quantum
numbers of the photon, e.g. ρ, ω, φ with JPC = 1−−. The latter case is addressed by the
Vector Meson Dominance Model (VDM) [42]. In figure 1.13 the different possible states of
the photon are summarised. In this analysis the vdm contribution is irrelevant. As from
now only the anomalous resolved contribution is considered.

In case of heavy flavour physics the case where the photon fluctuates into a heavy quark
pair (cc̄ or bb̄), so-called charm or beauty excitation, is important. The other possibility,
which leads to contributions in heavy flavour production, is the process, where the photon
fluctuates first in a light quark pair and where then one of the quarks emits a gluon. This
contribution will be referred to as normal resolved contribution in this analysis. However
this contribution is small in the kinematic region of this analysis as will be shown in section
2.4.

In a similar way to the parton densities on the proton side, the probability fq/γ of finding a
parton within the photon can be defined within the QPM as (only the QED contributions
are considered):

fq/γ(xγ , μ
2) = e2q ·

αEM

π

(
x2

γ + (1− xγ)2
)

ln(
μ2

m2
q

) (1.51)
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Figure 1.14: Illustration of the factorisation for heavy quark production in case of photo-
production.

Here xγ denotes the energy fraction which is carried by the quark relative to the energy
of the photon Eγ and mq is the mass of the free quarks. Summing over all colours nc and
flavours nf results in the photon structure function F γ

2 :

F γ
2 (xγ , μ

2) = 2xγ

∑
nc,nf

e2qfq/γ(xγ , μ
2)

= 3
∑
nf

e4q
αEM

π
xγ

(
x2

γ + (1− xγ)2
)
· ln

(
μ2

m2
q

)
(1.52)

The quark charge eq contributes to the fourth power in F γ
2 in contrast to the quadratic

contribution to the hadronic structure functions of the proton in F p
2 . Furthermore F γ

2

increases with increasing energy fraction xγ of the quark in the photon. F γ
2 depends

directly on a scale μ2 at which it is probed. In F p
2 the scale enters only via the QCD

evolution equations. Due to the ln(1/m2
q) dependence of F γ

2 the heavy quark contributions
(corresponding to charm or beauty resolved excitation) are suppressed compared to the
contributions from light quarks.

QCD corrections to the simple QPM photon structure function can be calculated using
the DGLAP evolution equations. These equations have a similar form as for the proton
parton densities (see equations 1.19 and1.20). The differ is that an additional term is
included to account for the point-like (direct) coupling.

1.5 Heavy Quark Production

At HERA the basic process for producing heavy quarks is boson gluon fusion (figure 1.14).
The normal top quark production is not possible due to the large mass of the top quark.
Thus heavy quark production in the context of this thesis means always charm and beauty
production.
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To calculate the heavy quark cross section, the parton distributions of the proton and in
case of photoproduction also the photon flux and the parton distributions of the photon
have to be known at a scale at which the proton or photon is probed. In the case of
photoproduction (γp) the heavy quark production cross section can be written as (see
figure 1.14):

σγp(ep→ e′QX) =
∑

partons

∫
dy

∫
dxj

∫
dxifγ/e(y, μ

2)fj/γ(xj , μ
2)fi/p(xi, μ

2)σ̂ij(ŝ,mQ, μ
2)

(1.53)
Here the capital Q refers to the heavy quarks c or b, σ̂ij indicates the hard parton cross
section and ŝ is the centre-of-mass energy of the two interacting partons i and j. The
parton i from the proton p, mainly a gluon, and parton j (in the case of direct photo-
production this is replaced by a photon) from the photon, interact and heavy quarks are
produced.

In the case of DIS the ep cross section is related either to the charm or beauty contributions
F c

2 and F b
2 respectively of the structure function F2. The structure functions are connected

to the convolution of the partonic hard cross section σ̂γ∗i and the parton distribution fi/p

of the proton at the probing scale, e.g. μ2
F = Q2 +m2

Q (for more details see [43, 44]). Here
i indicates a parton out of the proton, which is usually a gluon:

d2σ(ep→ e′QX)
dxdQ2

=
2πα2

xQ4
·
(
2 · (1− y) + y2

)
· FQ

2 (x,Q2,m2
Q) (1.54)

FQ
2 (x,Q2,m2

Q) =
∑

parton

∫ zmax

x

dz

z
fi/p(

x

z
,m2

Q, Q
2)F̃i(z,Q2,m2

Q) with

F̃i(z,Q2,m2
Q) =

Q2

4π2α

(
σ̂T

γ∗i(ŝ, Q
2,m2

Q) + σ̂L
γ∗i(ŝ, Q

2,m2
Q)
)

(1.55)

Here z denotes the momentum fraction of a gluon after emitting a gluon and zmax is given
by zmax = Q2/(ŝ + Q2). In Deep-Inelastic-Scattering in addition to the contribution of
transversely (T) polarised photons also a contribution from longitudinally (L) polarised
photons is present.

In contrast to the light quarks u, d, s, which have masses of the order of ΛQCD, the
heavy quarks c, b with masses much larger than ΛQCD cannot be treated for all energies
in the same way. In figure 1.15 different regimes for heavy quark production mechanism
[45] are shown depending on the scale μ and on the Bjørken variable x. Heavy quark
production at HERA covers mainly the regime with μ ≈ mQ but the small x regime as
well as the high energy regime can be reached. If the total energy of the partonic collision
is near threshold and x is moderate, the heavy quarks are treated as heavy objects which
do not occur within the proton. The dominant production mechanism in this regime is
the so-called flavour creation or boson gluon fusion. At high centre-of-mass energies of
the initial colliding particles and moderate x (and thus high energy scales μ2 � m2

Q)
the mass of the heavy quarks c and b are negligible compared to μ2 and the quarks can
be treated in a similar way to the light quarks with zero mass. Therefore the dominant
production mechanism in this regime is flavour excitation, where the heavy quark is an
active flavour in the proton. At small x the logarithmic terms ln(1/x) become large and a
small x resummation is needed, which is performed for example in the BFKL and CCFM
evolution equations but not in the DGLAP approximation. In this regime the heavy
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Figure 1.15: Illustration of different regimes of the heavy flavour production depending on
the scale μ and the Bjørken variable x. Adopted from [45]
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Figure 1.16: Leading order boson gluon fusion Feynman diagrams. Right side: crossed
Feynman diagram.

quarks are treated as heavy objects similar to the regime with μ ≈ mQ and moderate x.
The hard cross section depends on kT in this regime.

At HERA most heavy quarks are produced near the threshold. In this regime the boson
gluon fusion (BGF) process is the dominant production mechanism. The leading order di-
agram is shown in figure 1.16. Here a photon emitted from the incoming electron interacts
with a gluon from the proton and a heavy quark pair is produced. The c and b quarks are
treated as heavy particles and the calculations are done in the massive scheme.

In the next two sections the LO cross sections are introduced for heavy quark production
in photoproduction and DIS within the massive scheme. The NLO calculation within this
scheme is introduced in section 1.5.3. In section 1.5.4 the high energy regime is discussed
and in section 1.5.5 the small x regime is explained for heavy quarks.

The pair production of charm and beauty in the fragmentation via gluon splitting g →
QQ̄ is in principle also a possible mechanism. At HERA this production mechanism is



22 CHAPTER 1. THEORETICAL FRAMEWORK

suppressed, because it is in all regimes not the LO contribution but one order higher
in αs than the dominating photon gluon fusion process. This production mechanism is
therefore not discussed. At the hadron collider TEVATRON the situation is different.
Here the process gg → gQQ̄ gives a sizeable contribution to the process gg → QQ̄, since
the cross section of gg → gg is about a factor 100 higher than the cross section gg → QQ̄
[46].

1.5.1 LO Photoproduction Cross Section

The differential light flavour creation cross section via boson gluon fusion is given by [47]:

d2σ

dt̂dû
=
ααSπe

2
q

s2

(
û

t̂
+
t̂

û

)
δ(ŝ + t̂+ û) (1.56)

Here ŝ, t̂ and û are Mandelstam variables, which are defined for a 2-body A+B → C+D
reaction as follows:

ŝ = (pA + pB)2 = (pC + pD)2 (1.57)
t̂ = (pA − pC)2 = (pB − pD)2

û = (pA − pD)2 = (pB − pC)2

ŝ+ t̂+ û+Q2 = 0 (1.58)

In the case of heavy quark production the mass of the quarks is not negligible anymore
and equation 1.56 modifies to [45, 47]:

d2σ

dt1du1
=
ααSπe

2
q

s2

(
u1

t1
+
t1
u1

+
4m2

Qŝ

t1u1

(
1− m2

Qŝ

t1u1

))
δ(ŝ + t1 + u1) (1.59)

with t1 = t̂−m2
Q and u1 = û−m2

Q. After integrating over u1 and t1 the total BGF heavy
quark production cross section in LO can be written as [45, 47]:

σγg→QQ̄(ŝ,m2
Q) =

2πααS(μ2)e2Q
ŝ

·
((

1 +
4m2

Q

ŝ
− 8m4

Q

ŝ2

)
· ln

(
1 + β

1− β
)
−
(

1 +
4m2

Q

ŝ

)
· β
)

(1.60)
with β = (1− 4m2

Q/ŝ)
1/2.

In figure 1.17 the total LO order heavy flavour production cross section is shown for c and
b production as a function of

√
ŝ. The 1-loop values for c and b are chosen for the strong

coupling constant: αS(m2
c) = 0.303 and αS(m2

b) = 0.22. At threshold there is a strong
increase in the cross section but at

√
ŝ ≈ 4 GeV in case of charm or

√
ŝ ≈ 12 GeV in case

of beauty it falls with increasing
√
ŝ. The β-terms in equation 1.60 lead to this threshold

behaviour. Due to the smaller quark charge eq of beauty and the larger quark mass the
beauty cross section is about a factor 200 smaller than the charm cross section.

For photoproduction in addition to the direct process discussed above the resolved com-
ponent also gives a sizeable contribution. The Feynman diagrams of the so called “normal
resolved” contribution are shown in figure 1.18 a). Here a gluon or a light quark out of
the photon interacts with a parton of the proton. In the resolved component referred to
as “charm or beauty excitation” a heavy quark out of the photon takes part in the hard
interaction. The different excitation diagrams are shown in figure 1.18 b) and c).
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Figure 1.17: LO boson gluon fusion (γg → QQ̄) cross section of heavy quarks. The
dependence on

√
ŝ (ŝ = xgxγys) is shown. a) Photoproduction, b) DIS
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Figure 1.18: Feynman diagrams for the heavy quark production via a resolved photon. a)
Normal resolved process. b,c) Charm excitation. Here the photon fluctuates into a cc̄ pair,
but only one quark takes part in the hard interaction process. Charm excitation via a quark
propagator is strongly suppressed compared to the diagram with a gluon propagator.

1.5.2 LO DIS Cross Section

In the case of Deep-Inelastic-Scattering (DIS) events the partonic cross section is charac-
terised by the reaction γ∗g → QQ̄ and the virtuality of the photon therefore has to be
considered. In addition to transversely polarised photons (T) also longitudinally polarised
photons (L) could in principle take part in the hard interaction. In DIS the total heavy
quark cross sections can be written as [43, 44]:

σ(γ∗g → QQ̄)T =
2πααs(μ2)e2q
ŝ+Q2

((
ŝ2 −Q4

(ŝ+Q2)2
+

4m2
Qŝ

(ŝ+Q2)2)
− 8m4

Q

(ŝ+Q2)2

)
(1.61)

ln
(

1 + β

1− β
)
−
(

(ŝ−Q2)2

(ŝ+Q2)2
+

4m2
Qŝ

(ŝ+Q2)2

)
β

)
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Figure 1.19: Feynman diagrams of the virtual corrections considered in NLO calculations.

a) b) c) d)

Figure 1.20: Feynman diagrams of the gluon radiation corrections considered in NLO
calculations.

σ(γ∗g → QQ̄)L = 8πααs(μ2)e2q ·
Q2ŝ

(ŝ+Q2)3

(
β − 2m2

Q

ŝ
ln
(

1 + β

1− β
))

In figure 1.17 b) the total LO BGF cross section is shown for charm production as a
function of ŝ and for three different values of Q2. The cross section decreases strongly
towards larger Q2. Furthermore the production threshold and the maximum is moved
toward larger

√
ŝ

1.5.3 NLO

The leading order partonic cross sections have to be convoluted with the appropriate LO
parton densities to calculate the hadronic cross sections and inclusive distributions. At
LO the scale μ2 appears only in the lowest order αS (equation 1.17) and there is no real
physical criteria for choosing any particular scale. Large variations in the cross section are
obtained when μ2 is varied.

In Next-to-leading order (NLO) calculations [48, 45] the partonic cross sections have to
be convoluted with the appropriate NLO parton densities to calculate the hadronic cross
sections. NLO calculations reduce the sensitivity to the scale μ2 by also taking diagrams
of order α2

s into account. Especially in the case of charm, which provides at threshold and
for low Q2 only a relatively small scale, αs is relatively large and the convergence of the
perturbation series is not as good as for beauty, which has a large mass. The charm cross
section in photoproduction is thus much more sensitive to the mass and the scales than
the beauty cross section. In [49] the dependence of the total heavy quark photoproduction
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cross section on the mass and the scales, the renormalisation scale (default value μ2
R = m2

Q)
as well as the factorisation scale (default values: μF = 2μR for charm and μF = μR for
beauty), is investigated in detail. Large deviations between the upper (mc = 1.8 GeV/c2)
or lower (mc = 1.2 GeV/c2) mass choice and the central value (mc = 1.5 MeV/c2) of the
order of a factor 2 are obtained for the total charm cross section. For beauty production
deviations of only the order 20% are obtained for the analogous study, where the central
beauty mass of mb = 4.75 GeV/c2 is varied by ±0.25 GeV/c2. A variation of the renor-
malisation scale by a factor two in both directions leads for charm to deviations between
60% and 100%. For beauty these deviations are smaller, about 20%. Varying also the fac-
torisation scale by a factor two in both directions an additional uncertainty of about 30%
to 40% for charm and about 6% for beauty is obtained. A further uncertainty in the heavy
quark photoproduction calculations is caused by the large photon-proton centre-of-mass
energies W available. Fixed order calculations become unreliable in certain kinematical
regions due to the presence of large radiative effects (small x-region). Potentially large log-
arithms, log(W 2/m2

Q), appear, which spoil the convergence of the perturbative expansion.
In this case a resummation to all orders of these large logarithms has to be performed. In
[49] the uncertainty arising from such small x-effects was estimated. For the direct charm
production cross section an uncertainty of 40% is obtained, while for the beauty produc-
tion cross section this effect is less dramatic (about 20%). The theoretical predictions are
therefore much more reliable for beauty production.

In figure 1.19 Feynman diagrams of the virtual corrections to the LO BGF process are
shown and in figure 1.20 the NLO contributions due to gluon radiation are illustrated.
Due to the virtual corrections and gluon radiation, ultraviolet, infrared and collinear sin-
gularities appear. The ultraviolet divergences are removed by renormalisation (charge
and mass), the infrared divergences cancel with loop contributions and the collinear diver-
gences are absorbed into the definition of the parton densities [48, 45]. A consequence of
this procedure is the direct dependence of the cross section on the renormalisation scale
μR and the factorisation scale μF . By comparing the NLO diagram figure 1.20 d) with the
resolved excitation diagram figure 1.18 c) it is obvious that they describe the same pro-
cess, thus charm excitation is approximately the same as NLO. In NLO it is not possible
to distinguish between direct and resolved processes anymore. For beauty production the
contribution of the NLO corrections as well as the contributions of the excitation processes
were estimated to be both about 35% of the total photoproduction cross section (Q2 < 1).
For charm larger differences between these two corrections, NLO about 35% and excitation
about 60%, were obtained (by using the programs, which will be introduced in section 2.2
and 2.3).

Measurements at HERA of charm production are all described relatively well by the theory.
But in the b-sector, the picture is somewhat unresolved (pp̄: [1, 2, 3, 4], γp: [5, 6, 7, 8],
γγ: [9, 10], ep: [11, 12], eN : [13]). The first b-measurements at HERA [5, 6] were about a
factor 3-5 above the NLO calculations, while in more recent HERA b-measurements [7, 8]
in the visible range better agreement is observed. In this analysis D∗μ-events are selected
and a separation of charm and beauty production is performed by exploiting the charge
and angle correlations between the D∗-meson and the muon. This exclusive analysis makes
possible the measurement of the charm and beauty cross section closer to threshold than
the previous analyses.
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a cb

Figure 1.21: Feynman diagrams of the massive scheme. a) shows the LO contribution, b)
an example for a virtual contribution and c) and d) show NLO radiative processes.

a cb d

Figure 1.22: Feynman diagrams of the massless scheme. a) shows the LO contribution, b)
an example for a virtual contribution and c) and d) show NLO radiative processes.

1.5.4 Calculation Schemes

Up to now heavy quark production near threshold has been discussed, where μ ∼ mQ

holds. In this kinematic regime the 3-flavour-fixed-number-scheme (massive scheme) is
used. The results of this analysis will be compared with NLO calculations within this
approach. For completeness, a brief overview of the other two existing approaches, which
apply in different kinematic regimes, is given in this section.

At large scales the heavy quarks can be treated as zero mass partons, like the other light
quarks u, d and s. Effectively this means charm or beauty can be treated as an active
flavour in the proton. The corresponding scheme is called the 4-flavour-zero-mass-scheme
(massless scheme) [50]. The LO contribution in the massless scheme, illustrated in figure
1.22 a), is only of the order α compared to ααs in the massive scheme, shown in figure
1.21 a). Also the NLO contributions are in this scheme always one order smaller in αS

(figure 1.22 c) and d)).

The massive scheme at large scales and the massless scheme at small scales have large
uncertainties and are not of NLO accuracy. This is illustrated in figure 1.23 [51, 50].

The most reliable pQCD prediction is obtained by combining these two schemes together[50].
Here different numbers of flavours are used in the different energy ranges. Near threshold,
where μ ∼ mQ holds, the massive scheme is used and it is evolved upwards. For large
scales μ � mQ a slightly modified mass less scheme with mQ �= 0 is applied and it is
evolved downwards.
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Figure 1.23: Illustration of the accuracy of the NLO calculation in the massive and the
massless scheme [50].
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Figure 1.24: Comparison between collinear (kT = 0) and kT factorisation (kT �= 0). kT

factorisation contains implicitly higher order contributions as shown and also the gluon
propagator diagram of the charm excitation [34].

1.5.5 Small x Cross Sections

The third regime already shown in figure 1.15 is the small x regime with s� ŝ (ŝ = xys).
In this regime a resummation of ln(1/x) terms is needed using the CCFM or BFKL ap-
proaches (see section 1.3.3 and 1.3.4). This leads to the so-called kT -factorisation. The
cross section of the hard interaction, has to be calculated “off-shell” (meaning that the
gluon out of the proton, which takes part in the hard interaction has a non-vanishing virtu-
ality). In these models the gluon density depends also on kT and is called the unintegrated
gluon density. In kT -factorisation the LO hard process is calculated via γg∗ → QQ̄ for
photoproduction and γ∗g∗ → QQ̄ in the case of DIS, since g is off-mass shell. Figure 1.24
shows a comparison of the kT -factorisation and the conventional collinear factorisation
applied in the DGLAP formalism. In the kT -factorisation scheme (figure 1.24 d)) some
higher order terms of NLO (figure 1.24 b)), NNLO, .. as well as the most important term
of the resolved charm excitation contribution (figure 1.24 c)) are taken into account.

Figure 1.25 shows the kT dependence of the heavy quark cross section σ̂(γ∗g∗ → QQ̄)
within the kT -factorisation scheme. The decrease of the cross section towards large values
of kT is stronger for small photon virtualities Q2 = k2

t γ .
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Figure 1.25: k2
T dependence of the heavy quark cross section γ(∗)g∗ → QQ̄ within the kT -

factorisation. Left: Charm production, right: beauty production. The cross sections are
shown for four values of the photon virtuality Q2 = k2

t γ , [52].

In the case of kT -factorisation the γ(∗)p cross section [34, 52] is obtained by the convolution
of the unintegrated gluon density A(x, kT , q̄

′
T ) with the kT dependent hard cross section:

σγ(∗)p(μ
2,m2

Q) =
∫ 1

0

∫ ∞

0

dxg

xg
dk2

T A(xg, kT , q̄
′
t)σ̂γ(∗)g∗ (1.62)

After explaining the heavy quark production, the transition of heavy quarks into hadrons
via fragmentation is described in the next section.

1.6 Fragmentation

Fragmentation is used to describe the transition of the coloured quarks to colourless
hadrons. For this transition only phenomenological models exist due to the fact that the
strong coupling constant rises strongly at large distances and thus spoils the perturbative
calculations.

The inclusive production cross section for heavy hadrons can be written as:

dσh(p) =
∑

iε partons

∫ 1

0
Dh

i (z, μF )dσ̂i(
p

z
, μF )

dz

z
(1.63)

Here Dh
i indicates the probability for an initial parton i to produce a hadron h with

momentum fraction z and dσ̂i is the hard ep cross section computed at the factorisation
scale μF (see section 1.5). Implied here is that Dh

i is independent of the hard scattering
process, which is referred to as universality of the fragmentation process. This assump-
tion has been verified by the ZEUS collaboration, who have measured the fragmentation
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Figure 1.26: a) Illustration of the independent fragmentation. b) Peterson function for
the c and b quark in NLO as well as a Peterson function modelling the decay of b-hadrons
into D∗ [54, 55].

function of the D∗ meson in photoproduction using D∗ events with an associated jet [53].
Good agreement with the measurements performed at e+e− collider experiments OPAL
and ARGUS is obtained.

A perturbative treatment is partially possible. For heavy quarks the transition from the
quarks produced at a scale μF to the quarks on their mass shell is performed via gluon
radiation in the perturbative fragmentation functionDi. LO and NLO calculations of these
functions are available. In Monte-Carlo generators this part is described perturbatively
via parton showers. The second part of the fragmentation describes the non-perturbative
transition from the quarks on mass shell to hadrons and is expressed by non-perturbative
fragmentation function DH :

Dh
i (z, μF ) =

∫ 1

z
Di(x, μF )DH(

z

x
)
dx

x
(1.64)

The dependence of Di on the factorisation scale μF is again obtained via the DGLAP evo-
lution equations. In contrast to the proton or the photon case here a boundary condition
exists:

Di(x, μF = mQ) = δ(1 − x) (1.65)

If the heavy quark is produced at μF = mQ no further gluon radiation is possible and
thus Di is a delta function.

For the non-perturbative part or the confinement part of the fragmentation several models
exist. Only the independent fragmentation model with emphasis on Peterson fragmenta-
tion [56] and the Lund string model are explained in more detail, because they are used
in the simulation for the analysis presented here.

For heavy quarks independent fragmentation according to the Peterson function is at
HERA often used instead of the Lund string model. Due to the relative large mass of the
heavy quarks no large differences between these two models occur.

In the independent fragmentation model a bound meson Qq̄ is formed by creating a qq̄ pair
from the vacuum (see figure 1.26 a)). Baryons are obtained in this model from vacuum



30 CHAPTER 1. THEORETICAL FRAMEWORK

Energy [GeV] LO NLO
εc ARGUS 10.5 0.058 0.035

OPAL 91.2 0.078 0.040
ZEUS near threshold 0.064 –

εb ALEPH 91.2 0.0069 0.0033

Table 1.1: Peterson parameter for the transition of a c or b quark into a D∗ meson obtained
by different experiments and in LO or NLO [57, 53].

fluctuations like qqq̄q̄. But in this model an ad hoc requirement of colour and flavour
neutralisation with the last quark is needed. The fragmentation function DH is derived
from the transition amplitude P (Q → h) and the appropriate longitudinal phase space
factor 1/z with z = Eh/EQ. P is related to the energy difference between the initial and
final state ΔE = EQ − Eh − Eq according to:

P ∼ 1
(ΔE)2

=
1

(EQ −Eh −Eq)2
(1.66)

The energy difference can be written as:

ΔE = EQ − Eh − Eq

=
√
m2

Q + p2
Q −

√
m2

h + p2
h −

√
m2

q + p2
q

=
√
m2

Q + p2
Q −

√
m2

h + z2p2
Q −

√
m2

q + (1− z)2p2
q

≈ m2
Q

2pQ

(
−1
z
− εQ

1− z + 1
)

(1.67)

In the last step the relations mq/pQ, mQ/(zpQ), mq/(1 − z)pQ � 1 are used and the
approximation

√
1 + x2 ≈ 1 + 1/2 · x is applied. εQ = m2

q/m
2
Q is in practice a parameter

that is adjusted to describe the data. It refers to the hardness of the fragmentation process.
The Peterson fragmentation function can thus be written as:

DH
Q (z) =

NA

z

(
1− 1

z
− εQ

1− z
)−2

(1.68)

NA is needed to normalise the total probability for hadron formation to unity.

In table 1.1 the Peterson parameters εc and εb for the transition of a charm or beauty
quark in a D∗ meson obtained by different experiments are summarised. The Peterson
parameter εQ depends on the perturbative treatment of the cross sections dσ̂i. In NLO
additional gluon radiation is considered and the values for εQ obtained in NLO are smaller
than the corresponding LO values. The fragmentation is harder, meaning a smaller εQ
value, if the gluon radiation is considered already in the hard process. The fragmentation
of a b quark is harder since hadron fragmentation is less sensitive to the production of
light quarks due to the larger b mass. For the heavier b quark it is easier to carry the light
quarks away than for the charm quark, leading to a larger momentum fraction z of the
hadron in case of beauty fragmentation. In figure 1.26 b) the Peterson function in NLO
are shown using as Peterson parameter for charm εc = 0.035 (for beauty εb = 0.0033) as
it later is used in the NLO calculations.

In the Lund string model [58] the colour field between a qq̄ pair is described as a one
dimensional colour flux tube, called a string (see figure 1.27 a)). The energy of the string
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Figure 1.27: Principle of the Lund string fragmentation. a) Colour field between a qq̄ pair.
b) Fragmentation in the Lund string model.

is given by Estring = κr. Here r denotes the distance between the two colour charges and
κ is the string tension constant or the mass density in the string. κ is of the order of
1 GeV/fm. The linear dependence of the string energy on the distance r is motivated by
the QCD potential:

V (r) = −4αs

3r
+ κr (1.69)

Heavy quarkonium spectra can be fitted using this potential.

If the string energy is large enough to produce a new qq̄ pair the string breaks up. This
is illustrated in figure 1.27 b). The strings evolve until the quarks are on their mass shell
and then the quarks are combined to colourless hadrons. Baryons are produced via the
pair-wise production of di-quarks during a string break up. The gluons are described in
this model as “kinks” in the colour string.

In the independent fragmentation model as well as in the Lund string model the change
of the transverse momentum due to the transition of a quark to a hadron has to be
implemented by hand. For this a Gaussian distribution in transverse momentum pT is
used. In the Lund string model the string break up can be understood as a tunnelling
probability P ∼ exp(Am2

q) exp(Bp2
T ). With this the correct flavour mix u : d : s : c =

1 : 1 : 0.3 : 10−11 is obtained. In the case of the independent fragmentation model
free parameters are used for baryon and strangeness suppression and also for the correct
ratio of vector mesons (VM) to pseudo scalar mesons (PS). In the Lund string model the
parameters for baryon suppression and the ratio VM/PS also have to be chosen freely.

After explaining in this chapter the theoretical foundations of the heavy quark production
at HERA the next chapter is concerned with the reconstruction of the heavy quark pair
final state. In this thesis the heavy quark pair is tagged via a D∗ meson and an additional
muon.



Chapter 2

Reconstruction of the QQ̄ Final
State

The fragmentation and decay of heavy quarks can result in the production of D∗ mesons
and muons. In this analysis, both of these signatures are used to “tag” heavy quarks,
thereby giving a so-called double-tagging analysis.

In this chapter the method used to reconstruct the heavy quarks is explained. The double-
tagging of heavy quarks is discussed first. Then a short motivation for the D∗μ-pair
double-tag method is given. After explaining briefly the tagging of heavy quarks with
D∗-mesons and via semileptonic decays separately, the D∗μ variables heavily used later
in the analysis are explained and a physical motivation is given for them. The Monte
Carlo generators and the NLO program FMNR for photoproduction are introduced and
acceptance studies are performed. At the end of this chapter the strategy for determining
the unintegrated gluon density is described in more detail.

2.1 Double Tagging of Heavy Quark Events using a D∗-
Meson and a Muon

In figure 2.1 the principle of double tagging using a D∗-meson and a muon is shown for
charm production. The two heavy quarks (c and c̄) produced are both tagged. The D∗-
meson is reconstructed usually via the so-called “golden decay channel” (D∗ → D0πs →
Kππs). The c̄-quark is tagged by reconstructing the muon μ.

The advantage of the double tagging procedure with respects to single tagging is the
almost complete reconstruction of the heavy quark pair final state. This in principle
makes it possible to extract the gluon density with smaller theoretical uncertainties than
possible in inclusive analyses. Furthermore, sensitive tests of Next-to-leading order (NLO)
perturbative QCD calculations can be performed. For example, the vectorial sum of
the heavy quark transverse momenta in the photon-gluon rest frame obtains a non-zero
contribution at NLO. This can be tested by measuring the transverse momenta of the D∗

and muon.

32
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Figure 2.1: Double tagging of charm production in the photon gluon rest frame. The c-
quark is tagged by identifying the D∗+ meson. The c̄-quark is identified using the semilep-
tonic decay mode c̄→ μ−ν̄μX

By using the D∗ for the reconstruction of a heavy quark a very clean heavy quark sample
can be obtained and the D∗ provides to good approximation the kinematic quantities of
the corresponding quark. The branching ratios however for decay chains which can be
used for D∗ identification are only of the order of 1% (see figure 2.1), so the resulting
heavy quark sample is small.

In the case of muon production, the muon and heavy quark momenta are not so closely
correlated with each other and the purity of the sample is much lower, however, due to the
large branching ratio for the semileptonic decay of heavy quarks (about 10%) a relatively
large sample is obtained. The requirement of a D∗ and a muon in a double tagging analysis
is therefore a compromise between a high statistics sample and a very clean sample. The
size of such a sample is at least a factor 10 smaller than the D∗-meson sample obtained
using single tagging.

In the next two subsections the tagging of heavy quarks via a D∗ meson and via a semilep-
tonic decay into a muon are described in more detail.

2.1.1 Tagging of Heavy Quarks with D∗-Mesons

The D∗+ (D∗−) meson consists of cd̄ (c̄d) quarks and has a mass mD∗ = (2010.0 ±
0.5) MeV/c2 [59]. In the context of this analysis D∗-meson always means both charge
states. The probability, that a c-quark hadronises into a D∗+-meson is [60]:

f(c→ D∗+X) = (23.5 ± 0.7 ± 0.7)% (2.1)
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Channel BR [%]
D0π+ 67.7 ± 0.5
D+π0 30.7 ± 0.5
D+γ 1.6± 0.4

Table 2.1: Decay channels and branching ratios BR of D∗+-meson [59].

Channel BR [%]
K−π+ 3.83 ± 0.09
K−π+π0 13.9 ± 0.9
K−π+π0π0 15± 5
K−π+π+π− 7.49 ± 0.31

K̄0π0 2.11 ± 0.21
K̄0π+π− 5.4± 0.4
K̄0π+π−π0 10.0 ± 1.2
K−e+νe 3.64 ± 0.18
K−μ+νμ 3.22 ± 0.17

Table 2.2: Selected decay channels and branching ratios BR of the D0-meson [59].

and the fragmentation fraction of beauty quarks into D∗-mesons is [61]:

f(b→ D∗+X) = (17.3 ± 1.6± 1.2)% (2.2)

TheD∗-meson decays via the strong interaction, leading to lifetimes of the order of 10−22−
10−24 s. It is therefore not currently possible to reconstruct the charged D∗-meson directly
(the production and decay vertices cannot be separated by the detector. Therefore the
D∗-meson is reconstructed via its decay products (see table 2.1).

In this analysis only the decay to a D0-meson (mD0 = (1864.6 ± 0.5) MeV/c2, [59]) and
a charged pion is considered. The advantage of this channel is the small mass difference
ΔM between the D∗ and D0 [59]:

ΔM = mD∗ −mD0 = (145.436 ± 0.016) MeV/c2 (2.3)

Since this value lies only slightly above the mass of the pion (mπ = 139.57 MeV/c2), the
phase space is strongly restricted for this decay. A much more precise reconstruction of the
mass difference ΔM compared to the individual masses of the D∗ and the D0 is therefore
possible. Due to the small kinetic energy of the pion it is often referred to as slow pion
and indicated as πs.

The D0-meson can decay only via the weak interaction, leading to a larger lifetime τD0 =
(0.4126±0.0028) ps [59]. The D0 decays mostly into a kaon, the charm quark transforming
via the radiation of a charged W -boson into a strange quark. In table 2.2 the branching
ratios of several decay channels are quoted. In this analysis only the D0-decay channel
into a negatively charged kaon and a positively charged pion is used. The advantage of
this decay channel, compared to other decay channels with larger branching ratios, is that
it leaves only two charged decay particles in the final state. The larger the number of
particles, which have to be combined, the larger is the combinatorial background.
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The reconstruction of further short-lived neutral particles performed also via their decay
particles would lead to a further reduction of the overall branching ratio. The reconstruc-
tion of low energetic π0 via the decay into photons is also problematic in events with a
relative large particle multiplicity, typical for D∗-events.

Altogether the branching ratio obtained for D∗-mesons decaying via the golden decay
channel, D∗ → D0πs → D0ππs, is:

BR(D∗+ → K−π+π+
s ) = BR(D∗+ → D0π+

s ) · BR(D0 → K−π+) = (2.59 ± 0.06)% (2.4)

2.1.2 Tagging of Heavy Quarks via Semileptonic Decays

In open heavy quark production heavy quarks transform during fragmentation into hadrons
containing one heavy quark. Muons can then be produced by the semileptonic decays of
these heavy hadrons. Here the charm or beauty quark transforms via the radiation of a
charged W -boson mainly into a strange or a charm quark respectively. A muon and a
neutrino are then produced via the decay of the W -boson.

Charm hadrons decay with a probability of nearly 100% into hadrons containing a strange
quark, for example negatively charged kaons. Beauty hadrons decay with a probability of
about 100% into hadrons containing a charm quark. The decay of a c or b-quark into a
d-quark or u-quark is strongly suppressed, since the Vcd or Vub elements of the Cabibbo-
Kobayashi-Maskawa-Matrix (CKM-matrix) are much smaller than the Vcs or Vcb elements.
In the case of beauty quarks the small size of the Vcb element of the CKM-matrix with
respect to the size of Vcs in the case of charm leads to on average a 1.5 - 3 times larger
lifetime of b hadrons than c hadrons, despite the fact that the mass of beauty hadrons is
much larger [24].

Charm hadrons arising from the decay of beauty hadrons can also decay semileptonically
in a muon, here referred to as cascade decay, while in the case, where the muon is produced
directly in the decay of the beauty hadron, this is called direct decay. In this analysis the
decay of a beauty hadron into charm or a tau lepton, which then decays into a muon, is
collected into the cascade decay mode. The branching ratio c→ μ has been measured by
the LEP experiments [54]:

BR(c→ μ) = (9.8 ± 0.5)% (2.5)

For beauty the branching ratio for the direct and cascade decays, obtained also by the
LEP experiments [62], are:

BR(b→ μ) = (10.95+0.29
−0.25)% (2.6)

BR(b→ c→ μ) = (8.0 ± 0.4)% (2.7)

BR(b→ c̄→ μ) = (1.6+0.4
−0.5)% (2.8)

BR(b→ τ → μ) = BR(b→ τX) · BR(τ → μ)
= (2.48 ± 0.26)% · (17.36 ± 0.05)% = (0.43 ± 0.05)% (2.9)

In this analysis the total branching ratio used for a b-quark to produce a muon over the
cascade decay mechanism is:

BR(b→ cascade − μ) = BR(b→ c→ μ) + BR(b→ c̄→ μ) +

BR(b→ τ → μ) = (10.03 ± 0.64)% (2.10)
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2.1.3 Branching Ratios for D∗μ Events

The probability, that in a given cc̄ event a D∗-meson decays via D∗ → Kππs and a muon
is simultaneously produced, is given by:

BR(cc̄→ KππsμX) = 2 · BR(c→ μ) · f(c→ D∗) · BR(D∗ → Kππs)

= (0.1194 ± 0.0076)% (2.11)

The factor 2 accounts for both possibilities: c→ D∗+ → K−π+π+
s , c̄→ μ− and the charge

conjugated process. In case of beauty the branching ratio consists of three parts:

BR(bb̄→ KππsμX) = 2 · f(b→ D∗)BR(D∗ → Kππs) [BR(b→ cascade − μ)+

BR(b→ μ)] + 2 · BR(b→ D∗μX)BR(D∗ → Kππs) (2.12)

The first term is the branching ratio for D∗μ-events, where the D∗-meson and the muon
come from different quarks. This term contains contributions from events, where the muon
comes either from a cascade decay (see equation 2.10) or a direct decay. The second term
accounts for events, where the D∗ and the muon come from the same quark. Almost
all D∗μ-events, which originate from the same b-quark come from the decay of a B0 or
B̄0-meson:

B̄0 → D∗+μ−ν̄μ (2.13)

The probability, that a D∗μ-pair is produced from a b-quark is [62]:

BR(b→ D∗+μ−ν̄μ) = (2.75 ± 0.19)% (2.14)

Combining this together with the branching ratios, of the last subsections, a value:

BR(bb̄→ KππsμX) = (0.333 ± 0.032)% (2.15)

is obtained. The contribution of D∗μ-events coming from the same b-quark, to the overall
branching ratio of D∗μ-events in beauty production is 43%.

2.1.4 Charge and Angle Correlations

The aim of this thesis is to tag both heavy quarks, one with a D∗-meson and the other
one with a muon. In the case of charm the reconstruction of a D∗ and a muon guarantees
a heavy quark pair (double-tagging), while for beauty the D∗ and the muon can come
from the same quark. However this case provides a nice opportunity to separate charm
and beauty production.

The dominant heavy quark production mechanism at HERA is photon gluon fusion (PGF)
as already discussed in the previous chapter. Here the heavy quarks are produced in pairs.
In the LO picture the momenta of the produced heavy quarks are exactly opposite in the
photon-gluon rest frame. This also holds for the transverse momenta of the quarks in
the rest frame of the photon and the incoming proton (γp-frame), since these two frames
differ only by a longitudinal boost in the z-direction. The azimuthal angular difference
ΔΦ∗ between the transverse momenta of the two quarks is thus 180◦ in both frames. In
figures 2.2 and 2.3 a),b) and c) the possible charge and angle correlations between the
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Figure 2.2: Possible charge and angle correlation for charm events in the γg rest frame
and in the LO direct picture. For simplification the fragmentation and the subsequent
decay of a charm hadron into a muon is drawn here only as transition on the quark level.

D∗-meson and the muon are shown for charm and beauty production in the photon–gluon
rest frame (γg-frame) in direct leading order.

For charm events the only possible azimuthal angle difference ΔΦ∗(D∗μ) between the D∗-
meson and the muon in the γg or γp frame is approximately 180◦. The charge of the two
particles is opposite, thus Q(D∗) �= Q(μ) (figure 2.2). Due to the fragmentation and the
decay, the D∗-meson and the muon have only approximately the same direction as the
assigned quark.

For beauty events, in addition to the equivalent charge and angle configuration as for
charm (fig. 2.3 a)), two further possibilities exist: 1) The D∗-meson and the muon can
come from different b quarks, but the muon is produced directly in a b hadron decay (fig.
2.3 b)). This leads to the same charges of the D∗ and the muon together with a ΔΦ∗ of
approximately 180◦. 2) The D∗-meson and the muon come from the same b-quark (fig.
2.3 c)). Here the two particles again have opposite charges but ΔΦ∗ is usually small. In
figure 2.3 no B0-B̄0-mixing or B0

s -B̄0
s -mixing configuration is shown since mixing does not

lead to an additional charge angle configuration.

Taking into account NLO effects, gluon radiation from the heavy quarks before interacting
with the photon is possible (figure 1.20 d)). This leads to an angle ΔΦ∗ smaller than 180◦

between the two outgoing heavy quarks in the γg (or γp) frame. Furthermore a possible
non-zero initial “intrinsic” transverse momentum of the interacting partons can lead to
ΔΦ∗(QQ̄) �= 180◦.

Similar statements are true for the resolved processes, the normal resolved as well as
the excitation processes, which are expected to contribute mainly in photoproduction.
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Figure 2.3: Possible charge and angle correlations for beauty events in the γg rest frame
in the LO direct picture. For simplification the fragmentation and the subsequent decay of
a beauty hadron into a muon (direct or cascade decay) or a D∗-meson is drawn here only
schematically. a) b→ D∗+, b̄→ c̄→ μ−, b) b→ D∗+, b̄→ μ+, c) b→ D∗+μ−.
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Here the parton out of the photon, which takes part in the hard interaction, can have
a transverse momentum with respect to the photon. With such a transverse momentum
the γp-frame and the parton-proton frame differ by a boost with a transverse component,
leading to a ΔΦ∗(QQ̄) in the γp frame smaller than 180◦.

These effects smear the charge and angle correlations between the D∗-meson and the muon
further. In this analysis a distinction is made between ΔΦ∗ ≥ 90◦ and ΔΦ∗ < 90◦. Taking
the charges into account four correlation regions can be defined:

1. ΔΦ∗ < 90◦ and Q(D∗) = Q(μ).

2. ΔΦ∗ ≥ 90◦ and Q(D∗) = Q(μ).

3. ΔΦ∗ < 90◦ and Q(D∗) = −Q(μ).

4. ΔΦ∗ ≥ 90◦ and Q(D∗) = −Q(μ).

1 2

3 4

Q(μ) = Q(D∗)

Q(μ) �= Q(D∗)

ΔΦ∗ < 90◦ΔΦ∗ ≥ 90◦

no charm

few beauty

no charm

beauty

beauty

beauty

few charm charm

2.1.5 D∗μ-Quantities

The advantage of double tagging with respect to single tagging is that the kinematics of
the heavy quark pair final state are almost completely reconstructed, at least in the case of
charm. For beauty a clear relation between the two quarks and the D∗μ-pair is obtained
only in a more restricted region of phase space (correlation region 2).

Sensitive tests of Next-to-leading order (NLO) perturbative QCD calculations can be per-
formed. The sum of the heavy quark transverse momentum vectors p∗T (QQ̄) and the
azimuthal angular difference ΔΦ∗(QQ̄) between the heavy quarks in the photon-proton
rest frame obtain non-zero contributions only at NLO (only if direct processes are con-
sidered). The investigation of a possible intrinsic transverse momentum kT of the initial
partons (e.g. the incoming gluon) is possible with these two variables.

Figure 2.4 shows the ΔΦ(DD̄) and p2
T (DD̄) distributions of the E687-experiment [16]. In

this fixed target experiment a photon beam with a mean energy of about 200 GeV was
used. For comparison the theoretical prediction is shown in NLO (full line) with mc =
1.5 GeV/c2. The dotted and dashed lines show the impact of an intrinsic momentum kT

of one of the incoming partons. In both plots, the data points have a broader distribution
than NLO QCD without assuming an intrinsic kT . This conclusion is supported by more
precise, recent FOCUS data [18].

In this analysis the measured transverse momentum p∗T (D∗μ) and the azimuthal angular
difference ΔΦ∗ of the D∗μ-pair in the photon-proton rest frame is taken as an approxima-
tion for the corresponding quark quantities, p∗T (QQ̄) and ΔΦ∗(QQ̄). These two quantities
are defined as:

p∗T (D∗μ) =
√

(p∗x,D∗ + p∗x,μ)2 + (p∗y,D∗ + p∗y,μ)2 (2.16)
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Figure 2.4: ΔΦ(DD̄)- and p2
T (DD̄)-distribution for charm production in γN -collisions.

Shown are the experimental results of the E687-collaboration [17] together with predictions
of perturbative calculations in NLO and the impact of an intrinsic transverse momentum
kT of one of the initial partons on the NLO calculations.

ΔΦ∗ =

{
|φ∗D∗ − φ∗μ| for |φ∗D∗ − φ∗μ|≤ 180◦

360◦ − |φ∗D∗ − φ∗μ| for |φ∗D∗ − φ∗μ|> 180◦ (2.17)

In addition to these two quantities the invariant mass M(D∗μ) of the D∗μ-pair is an
approximation to the invariant mass M(QQ̄) of the quark pair. In the LO picture this
mass corresponds to the centre-of-mass energy of the incoming photon and the gluon

√
ŝ.

The rapidity ŷ = 1/2 · ln(E(QQ̄) + pz(QQ̄))/(E(QQ̄) − pz(QQ̄)) of the quark pair is in
the LO picture and in photoproduction directly connected to the ratio of the energies
coming from the electron and proton sides, which contribute to the hard interaction. If
the process: parton + g → Q + Q̄ (assuming kT = 0) is considered, the four-momentum
of the parton out of the photon which takes part in the hard interaction is p = xγ · q. For
the incoming gluon out of the proton g = xg · P is used. Therefore:

E(QQ̄) + pz(QQ̄) = xg ·Ep + xγy ·Ee + xg · Ep − xγy · Ee = 2xgEp

E(QQ̄)− pz(QQ̄) = xg ·Ep + xγy ·Ee − xg · Ep + xγy · Ee = 2xγyEe (2.18)

and ŷ(QQ̄) =
1
2

ln

(
xgEp

xγyEe

)
(2.19)

In this analysis the measured ŷ(D∗μ) is also an approximation for ŷ(QQ̄).

Substituting the relation M2(QQ̄) = xg · xγy · s, a formula for the momentum fraction xγ

of the parton with respect to the photon momentum can be obtained:

ŷ(QQ̄) =
1
2

ln

(
M2(QQ̄)Ep

x2
γy

2Ees

)
=

1
2

ln

⎛
⎝(M(QQ̄)

√
Ep

xγy
√
Ees

)2
⎞
⎠

= ln

(
M(QQ̄)√

s

√
Ep

Ee

1
yxγ

)

xγ =
M(QQ̄)√

s

√
Ep

Ee

1
y
· exp(−y(QQ̄)) (2.20)
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Figure 2.5: Elements of an ep event generator.

In this analysis xγ(D∗μ) is used to check, whether the data are compatible with the
resolved excitation component predicted by the theory.

2.2 Monte Carlo Simulation

In order to compare theoretical models with measurements, Monte Carlo programs are
used. Furthermore these programs are used to correct the data for resolution, triggering
and efficiency effects. The Monte Carlo programs simulate scattering processes based on
theoretical models. Since the output of these Monte Carlo programs has the same format
as the measured data, data and Monte Carlo prediction can be compared directly. For
this the following three steps are necessary:

• Generation: The four-vectors of the particles in the final state are generated ac-
cording to the distributions predicted by the theoretical model.

• Detector Simulation: Using the previously generated particle four-vectors the
trajectories of the particles through the detector are calculated and particle decays
are simulated according to particle lifetimes. Signals in the detector are simulated.

• Reconstruction: The tracks, momenta and energies of the particles are recon-
structed from the detector signals, using the same program used for the reconstruc-
tion of the data.

The Monte Carlo event generation step has several stages. The starting point is a fixed-
order matrix element (ME) used to describe the hard partonic subprocess, which is con-
voluted with the parton densities. In present Monte Carlo generators the hard process is
implemented only in LO. To simulate higher orders, initial and final state parton showers
(PS) are used. The initial PS are always evolved backwards from the hard process to the
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proton. During the initial as well as during the final state PS additional partons are pro-
duced. All produced partons hadronise subsequently. The complete procedure is sketched
in figure 2.5. Apart from the hard process all stages are in the generators based on leading
logarithmic approximations and phenomenological models.

In this analysis the Monte Carlo generators PYTHIA [63] and RAPGAP [64] are used
for the determination of the trigger and reconstruction efficiencies, the fraction of beauty
events in the selected data and to correct for hadrons mis-identified as muons. Further-
more, they are compared directly with the data. For the simulation of photoproduction
events PYTHIA is taken. Within this Monte Carlo generator the simulation of direct
and resolved processes, normal resolved as well as excitation, is possible. For DIS events
the Monte Carlo Generator RAPGAP is used, which includes real photon emissions from
the incoming electron and virtual contributions at the electron vertex, simulated in the
program HERACLES [65], which is contained within the RAPGAP generator. The Monte
Carlo generator CASCADE [66] is used in addition as an alternative in both photopro-
duction and DIS.

In all generators the hard subprocess is boson gluon fusion, at least in case of direct pro-
cesses. PYTHIA simulates also the resolved processes discussed in the last chapter. For
the Monte Carlo generators PYTHIA and RAPGAP, which are both based on the DGLAP
evolution model of the structure functions, the matrix element is calculated on-shell. Since
the CASCADE generator is based on the CCFM evolution model, the virtuality of the
incoming gluon and thereby the kT dependence of the matrix element have to be taken
into account explicitly. For the initial parton shower evolution of the RAPGAP and
PYTHIA generators the probability for a parton to branch is given by the DGLAP evolu-
tion equation, while for the CASCADE generator the branching probabilities are based on
the CCFM evolution model. Final state parton showers are always based on the DGLAP
evolution model. The hadronisation of light quarks is performed using the Lund string
model and for the hadronisation of the heavy quarks the Peterson fragmentation function
is used in this analysis. For charm production the Peterson parameter was set to the LO
value εc = 0.078 and in case of beauty production εb = 0.008 is used (see also chapter
1). For all Monte Carlo generators used the fragmentation is simulated using the program
JetSet/PYTHIA 6 [67].

For both Monte Carlo generators RAPGAP and PYTHIA, CTEQ5L [68] is used to pa-
rameterise the parton density functions in the proton and for the photon GRV-G LO [69]
is used (if resolved processes are considered). In case of CASCADE an unintegrated gluon
density A(xg, kT , q̄

′
t) is used. This gluon density was determined by requiring a good de-

scription of the structure function F2 [38, 39, 37].
The mass mc of the charm quark was set to mc = 1.5 GeV/c2 and the beauty mass mb

was chosen to be mb = 4.8 GeV/c2 (CASCADE and PYTHIA) and as mb = 4.75 GeV/c2

in the case of the Monte Carlo generator RAPGAP.
For the B0 − B̄0 mixing a value of 0.73 was chosen for the mixing parameter xd =
ΔmB0/ΓB0 according to [62]. The corresponding parameter for B0

s−B̄0
s mixing is xs = 18.

In the case of B0
s − B̄0

s mixing only a measured lower limit of xs > 14 exists [62].

For the photoproduction sample the kinematic range was restricted to Q2 < 1 GeV2 and
for the DIS sample 1 GeV2 < Q2 < 100 GeV2. Only such events are selected, which
contain at least one D∗-meson, which decays via a D0 into a Kππs system.
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Channel BRMC [%] BRmeas. [%] fcor

D∗ → Kππs 2.5 2.59 ± 0.06 1.036
c→ D∗ 30 23.5 ± 0.7 0.783
c→ μ 9.4 9.8± 0.5 1.043

1/2 · cc̄→ D∗μ 2.82 2.30 ± 0.14 0.82
b→ D∗ 30 17.3 ± 1.6 0.577
b→ μ 10.5 10.95 ± 0.27 1.043

b→ cascade− μ 10.7 10.03 ± 0.64 0.937
b→ D∗μ 2.19 2.75 ± 0.19 1.256

1/2 · bb̄→ D∗μ cascade decay (scenario A) 3.15 1.74 ± 0.19 0.54
1/2 · bb̄→ D∗μ direct decay (scenario B) 3.21 1.89 ± 0.18 0.60

b→ D∗μ (scenario C) 2.19 2.75 ± 0.19 1.256
1/2 · bb̄→ D∗μ 8.46 6.38 ± 0.32 0.754

Table 2.3: Important branching ratios used in the Monte Carlo simulation compared to the
measured branching ratios [54, 62]. A correction factor fcor is quoted for each branching
ratio.

Channel fMC [%] fmeas. [%] fcor

bb̄→ D∗μ cascade decay (scenario A) 38 27 0.71
bb̄→ D∗μ direct decay (scenario B) 37 30 0.81

b→ D∗μ (scenario C) 25 43 1.72

Table 2.4: Comparison of the contributions fMC between the three beauty scenarios in the
Monte Carlo Simulation with the measured ones fmeas.. A correction factor fcor for each
beauty scenario is indicated.

Table 2.3 gives an overview of the important branching ratios used in the Monte Carlo
simulation together with the measured values. For beauty production the correct contri-
butions of the three different cases has to be ensured. Table 2.4 compares the fractions
obtained by the Monte Carlo simulations with the measured fractions. In addition a cor-
rection factor is quoted. These correction factors are applied to the corresponding beauty
scenarios in all Monte Carlo simulations used. The remaining differences concern only
normalisation effects. In order to calculate cross sections the corresponding correction
factors of the branching ratios cc̄ → D∗μ and bb̄ → D∗μ have to be applied as quoted in
table 2.3 (marked with bold font).

Samples with different beam energies and detector setup were generated. The relative
luminosities of the different samples correspond to those in the data. For the charm
Monte Carlo the total luminosity is Lc−MC = 1.0 fb−1 and for beauty Lb−MC = 20 fb−1.

2.3 NLO Calculations: FMNR

Next-to-leading order (NLO) perturbative QCD calculations for charm and beauty pro-
duction in ep scattering are available for deep-inelastic-scattering (HVQDIS [70, 43]) and
for photoproduction (FMNR [49, 71, 72]). A comparison of the data with NLO calculations
is done only in photoproduction.
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Figure 2.6: Muon momentum spectrum in the rest frame of a charm hadron as obtained
from the PYTHIA Monte Carlo.

FMNR performs the calculations in the fixed order massive scheme and all NLO processes
shown in the previous chapter are considered. Normal resolved processes can also be
taken into account. However, since these contributions are small, they are neglected in
this analysis. The FMNR output contains the transverse momenta �pT and the rapidities
ŷ of the heavy quarks and the radiated light parton (gluon or quark) in the case of NLO
processes. These are given in the rest frame of the electron and the proton. The energy
and the momentum in the z-direction are obtained via:

pz = mT · sinh(ŷ) with mT =
√
�p2

T +m2 (2.21)

E = mT · cosh(ŷ) (2.22)

In order to compare the results of the calculations to the data, the fragmentation of the
heavy quarks into hadrons, and also the semileptonic decay of heavy hadrons into a muon
(direct and cascade) has to be modelled. Starting from the four-momenta of the quarks
the four-momenta of a D∗-meson and a muon, are calculated as follows:

For charm production the four momenta of the c and c̄ quark are evolved into a charm
hadron using the Peterson fragmentation function with εc = 0.035. This value corresponds
to the Peterson parameter obtained for the D∗, and is typical of many charmed hadrons
in NLO. The four-momenta are scaled with the momentum fraction z (different for both
quarks) of the charm hadron with respect to the initial c or c̄ quark. This fraction is
generated according to the Peterson fragmentation function. This is done in a frame, in
which pz(Q) = −pz(Q̄) holds for the z-component of the two quarks. A boost is then
applied back into the ep rest frame. The c quark is evolved already in its final state, the
D∗-meson. The two modified four vectors are then transformed into the laboratory frame.

The decay of the c̄ hadron into a muon is calculated in the hadrons rest frame. The cosine of
the polar angle cos(θ) and azimuthal angular distribution of the decay muon are isotropic in
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Figure 2.7: Muon momentum spectra in the rest frame of the initial beauty hadron as
obtained from the PYTHIA Monte Carlo. Left: Cascade decay; right: direct decay.

this frame and the momentum distribution is adopted from the LO Monte Carlo generator
PYTHIA (see figure 2.6). All charm hadrons are considered in this distribution. The four-
momentum of the muon in the rest frame of the c̄ hadron is then obtained by generating
the values for the two angles and the absolute value of the momentum p according to the
required muon momentum spectrum. A Lorentz boost back into the laboratory frame is
then performed. The modified four-vectors now represent the D∗-meson and muon.

For beauty the procedure is more complicated due to the fact that three different scenarios
exist (not considering B − B̄ mixing):

A. μ− ← c̄-hadron← b̄-hadron← b̄ b→ b-hadron→ D∗+

B. μ+ ← b̄-hadron← b̄ b→ b-hadron→ D∗+

C. b-hadron→ D∗+μ−

The fragmentation of the bb̄-pair into a b or b̄ hadron is performed in an analogous way
as explained for charm production. The only difference is that here the Peterson frag-
mentation function parameter ε is chosen as εb = 0.0033. For scenario A and B the decay
of the b hadron into a D∗-meson is modelled by using a second Peterson fragmentation
function with ε = 0.42 [54, 55] (see figure 1.26, page 29). In the rest frame of the b hadron
the azimuthal and polar angular distributions of the D∗-meson are isotropic and their
values are chosen from an uniform distribution. The absolute value of the momentum
of the D∗-meson corresponds to the maximum possible momentum scaled with a factor
z corresponding to the Peterson fragmentation function. From these three variables the
four-momentum of the D∗-meson is calculated and afterwards a boost into the laboratory
frame is performed.

The decay of the beauty hadron into a muon is implemented in a similar way as for charm
production, using for the scenario A a muon momentum spectrum from the cascade decay
and for scenario B from the direct decay of the initial b hadron. These muon momentum
spectra in the rest frame of the initial b hadron are again obtained from the PYTHIA
Monte Carlo program and again all beauty hadrons are considered. The distributions are
shown in figure 2.7.



46 CHAPTER 2. RECONSTRUCTION OF THE QQ̄ FINAL STATE

  [GeV/c]
0CMS of B

D*p

0 0.5 1 1.5 2 2.5

  [
G

eV
/c

]
  0

C
M

S
 o

f 
B

μ
p

0

0.5

1

1.5

2

2.5

νμ->D*0Ba)

  [rad]
0CMS of B

D*θ

0 0.5 1 1.5 2 2.5 3

  [
ra

d
]

  0
C

M
S

 o
f 

B
μθ

0

0.5

1

1.5

2

2.5

3

νμ->D*0Bb)

  [rad]
0CMS of B

D*φ

-3 -2 -1 0 1 2 3

  [
ra

d
]

  0
C

M
S

 o
f 

B
μφ

-3

-2

-1

0

1

2

3

νμ->D*0Bc)

Figure 2.8: Correlations of the polar (b) and azimuthal (c) angles and the momenta (a)
of the D∗μ-pair from b hadron decays. These quantities are calculated in the rest frame of
the b hadron.

For scenario C, where a b hadron decays into a D∗μ-pair, the correlation between the two
particles is taken into account. The correlation between the polar and azimuthal angles
of the D∗μ-pair as well as the correlation of the momenta of the D∗-meson and the muon
are taken from the PYTHIA Monte Carlo generator. They are shown in figure 2.8. Since
most of the D∗μ-events of scenario C originate from a B0 decay (about 70%), only the
B0-decay is considered and the three quantities above are shown in the rest frame of the
B0-meson. The values of these quantities for the two particles are generated according to
their correlations. After calculating the four-momenta of the D∗ and the muon a boost
back into the laboratory frame is applied.

The cross sections obtained after the modification of the QQ̄ cross sections with the
fragmentation procedure are indicated with σFMNR

Q . Only the four-momenta of the quark
pair were changed during the fragmentation procedure. To get D∗μ cross sections, as
determined from the data, the branching ratios and a factor 2 to account for the two
quarks have to be taken into account:

σc = 2 · BR(c→ D∗)BR(c→ μ) · σFMNR
c (2.23)
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σb (A) = 2 · BR(b→ D∗)BR(b→ cascade − μ) · σFMNR
b (A) (2.24)

σb (B) = 2 · BR(b→ D∗)BR(b→ μ) · σFMNR
b (B) (2.25)

σb(C) = 2 · BR(b→ D∗μ) · σFMNR
b(C) (2.26)

Here (A), (B), (C) denote the three different beauty scenarios.

For differential cross sections in the quantities ΔΦ∗, p∗T (D∗μ), the invariant mass M(D∗μ)
and the rapidity ŷ(D∗μ) of the D∗μ-pair, the data from all correlation regions 1-4 are
used. Correlation region 4 only is used for the extraction of the gluon density leading
to a large charm contribution and thus to an acceptable correlation between the quark
pair and the reconstructed D∗μ-pair. With the future anticipated increase in statistics
correlation region 2 will provide for beauty a good correlation between the quark pair and
the D∗μ-pair. The data of correlation region 3 lead to a clean b→ D∗μ cross section.

In data more than one D∗μ-pair can be found and since there is no reasonable criteria
to select a pair, all found D∗μ-pairs are counted. D∗μ-pairs are not uncorrelated in the
case of multi D∗μ events. But because the fraction of multi D∗μ events is small, the effect
of the correlation on the error of the data points can be neglected. The cross sections,
extracted in this analysis, can be written as:

σcor 1−4
c = σc (2.27)

σcor 4
c = σΔΦ∗>90◦

c (2.28)

σcor 1−4
b = σb (A) + σb (B) + σb (C) (2.29)

σcor 4
b,no b→D∗μ =

(
(1−AB−osc)2 +A2

B−osc

)
· σΔΦ∗>90◦

b (A) +

2 · (1−AB−osc) ·AB−osc · σΔΦ∗>90◦
b (B) (2.30)

σcor 3
b = σΔΦ∗<90◦

b (C) +
(
(1−AB−osc)2 +A2

B−osc

)
· σΔΦ∗<90◦

b (A) +

2 · (1−AB−osc) ·AB−osc · σΔΦ∗<90◦
b (B) (2.31)

For beauty production B0-mixing is also considered and it is assumed that the probability
for an oscillated B0-hadron is Ab−osc = 12%. The cross section contribution of beauty
scenario A and B are very small for ΔΦ∗ < 90, while the contribution of beauty scenario
C for ΔΦ∗ > 90 is of course smaller than the ΔΦ∗ < 90 contribution (but still sizeable).
Indeed this contribution is, in the visible range of this analysis, larger than the naively
expected dominant contribution from scenario A, since the acceptance for beauty events
from scenario A is much smaller than for that of scenario C.

In the program FMNR a charm mass mc = 1.5 GeV/c2 and a beauty mass mb =
4.75 GeV/c2 are used. The parton densities of the proton are parametrised using CTEQ5D
[68]. For beauty production the mean value of the factorisation scale is chosen to be
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cross section [pb]Selection
direct normal res. excitation

Charm
cc̄ incl. 571540 76515 358110
D∗ 267000 33400 162000
+0.05 < y < 0.75 156000 24500 118000
+pT (D∗) > 1.5 GeV/c 38600 5650 42400
+|η(D∗)| < 1.5 28100 1640 28900
+μ 2770 165 2840
+p(μ) > 2.0 GeV/c 2150 83 2189
+|η(μ)| < 1.735 (vis.) 142 4 100
Beauty
bb̄ incl. 3742 677 1139
D∗ 1288 185 397
+0.05 < y < 0.75 984 149 322
+pT (D∗) > 1.5 GeV/c 535 76 189
+|η(D∗)| < 1.5 396 23 128
+μ 196 12 64
+p(μ) > 2.0 GeV/c 164 8 53
+|η(μ)| < 1.735 (vis.) 55 3 17

Table 2.5: Predicted cross sections for inclusive charm and beauty production from the
PYTHIA Monte Carlo generator. The total D∗μ cross section in the measured visible
range and several stages between these two extremes are given. The direct, normal resolved
and the resolved excitation component are indicated separately.

equal to the renormalisation scale μR and equal to the transverse mass mT : μF = μR =
mT =

√
((pT (b) + pT (b̄))/2)2 +m2

b . For charm production μF = 2μR = 2 · mT with
mT =

√
((pT (c) + pT (c̄))/2)2 +m2

c is taken. The value of ΛQCD is set to 0.226 and αs to
0.118. All the calculations are performed in the DIS renormalisation scheme.

2.4 Monte Carlo Studies of D∗μ Events

Some of the expected distributions from the Monte Carlo simulations are now discussed.

Table 2.5 shows predictions for the charm and photoproduction cross sections separately
for the direct and resolved contributions. The latter is separated into normal resolved
and excitation contributions. The first row in each case shows the inclusive charm or
beauty production cross sections. Several intermediate stages between these inclusive
cross sections and the visible D∗μ cross sections (last row) are quoted. In the case of
direct photoproduction the cross section reduces by a factor of 4025 for charm production
and by a factor of 68 for beauty production. These factors contain the branching ratios
and the acceptances A, Adirect

c = 1.0% and Adirect
b = 11%.

The requirement of p(μ) > 2 GeV/c together with the requirement of D∗-mesons and
muons identified in the central detector (|η(D∗)| < 1.5 and |η(μ)| < 1.735) leads to a
strong enrichment of events from beauty production.
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Figure 2.9: Correlation between the transverse momentum pT (D∗) of the D∗ and the
momentum p(μ) of the muon for photoproduction in the visible range before applying pT

and p cuts. a) charm production, b) beauty production.
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Figure 2.10: Correlation between the pseudorapidities η of the D∗ and the muon for pho-
toproduction in the visible range before applying η cuts. Left: charm production, right:
beauty production.

The acceptances for events from excitation processes are only slightly smaller than those
of the direct processes. For charm production an acceptance of Aex

c = 0.8% and for
beauty production an acceptance of Aex

b = 11% are obtained. The cross section of the
normal resolved component is already for the inclusive cross section significantly smaller
than the direct or excitation cross sections. The contribution of the normal resolved
component to the total inclusive charm photoproduction cross section is 7.6%. For beauty
production a fraction of 12% is obtained. The selection of D∗μ-pairs leads to a further
strong suppression of this component. In particular the cut on the pseudorapidity of the
D∗ and the momentum of the muon reduce this fraction significantly. Since the predicted
fraction in the visible range for charm production is smaller than 1.7%, and for beauty
production � 4.0%, the normal resolved component is neglected in this analysis.
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correlation regions [%]
b-scenario

B0-osc. 1 2 3 4 1-4
- 1.4 14.5 17.7 43.4 76.9

A D∗-side 1.0 7.5 1.6 2.6 12.7
D∗μ from diff. quarks μ-side 0.5 6.0 0.2 1.2 7.9

cascade decay both sides - 0.2 1.2 1.0 2.4∑
2.9 28.2 20.7 48.2 100

- 10.9 55.7 0.6 7.8 75.1
B D∗-side 0.1 0.5 2.0 10.3 12.9

D∗μ from diff. quarks μ-side 0.1 0.6 1.6 7.8 10.1
direct decay both sides 0.3 1.5 - 0.2 2.0∑

11.3 58.3 4.3 26.1 100
- - - 65.2 19.3 84.5C

D∗-side - - 11.8 3.7 15.5
D∗μ from same quark ∑

- - 77.0 23.0 100

Table 2.6: Contributions of the three different beauty decay scenarios (see page 45) de-
pending on the correlation regions for photoproduction. The contributions are split further
into those without any (or two of the same b-side) B0-meson oscillation, with one, where
this oscillation is assigned to the D∗ or muon side, and with two oscillations for the beauty
scenarios A and B, where the two particles are coming from different heavy quarks.

In figures 2.9 and 2.10 the correlations between the transverse momentum pT (D∗) of the
D∗-meson and the momentum p(μ) of the muon and the correlations of the pseudorapidi-
ties η of the D∗-meson and of the muon are shown for charm and beauty production in
photoproduction. The distributions in figure 2.9 and 2.10 are shown in the visible range
(Q2 < 1 GeV2, 0.05 < y < 0.75, pT (D∗) > 1.5 GeV/c, |η(D∗)| < 1.5, p(μ) > 2.0 GeV/c,
|η(μ)| < 1.735) before applying the pT and p cuts and the η cuts respectively. The visible
range is marked by lines within both figures. For charm only the tails of the pT (D∗) and
p(μ) distributions fall in the visible range of the detector. For beauty the situation is
slightly better. In case of beauty the dominant region of D∗μ event production lies in
the η(D∗) range 0.5 < η(D∗) < 2.5 and in the η(μ)-range 0.5 < η(μ) < 2.5. For charm
the contribution of D∗μ events, with a central D∗-meson and a muon in the forward or
backward direction is largest. The contribution, where both particles are in the central
region is small. An extension of the visible range towards the forward region should lead
to a strong increase in the number of D∗μ events.

The transverse momentum distribution of the D∗-meson and the muon momentum dis-
tribution as well as the pseudorapidity distributions of the D∗-meson and the muon in
photoproduction are shown for charm production in figure 2.11 and for beauty production
in figure 2.12. The effect of applying step-by-step the pT , p and η cuts to these distribu-
tions is also presented. In particular the cut on the momentum of the muon leads to a
strong modification of the shape of the pseudorapidity of the muon (figure 2.11 d)). After
applying this cut a minimum is observed in the central region, where a maximum was be-
fore. For beauty the same cut has a much less dramatic effect (figure 2.12 d)). The reason
for this behaviour is the soft muon momentum spectrum in case of charm production.

The simplified picture of the possible charge and angular correlations for the different
beauty scenarios can be extended using the Monte Carlo simulation. Table 2.6 shows
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Figure 2.11: Transverse momentum pT (D∗) (a), muon momentum p(μ) (b), pseudorapidity
of the D∗-meson η(D∗) (c) and the pseudorapidity of the muon η(μ) (d) in photopro-
duction charm events. The change of these distributions in size and shape by applying
the other three kinematical constraints step by step is also presented (see legend).

the contributions of the three different beauty scenarios (see page 45) depending on the
correlation regions. The contributions are divided further into those without anyB0-meson
oscillation, those with one oscillation assigned to the D∗ or muon side, and those with two
oscillations for the beauty scenarios A and B (where the two particles are coming from
different heavy quarks). In the case of beauty scenario A a large contribution in correlation
region 2 is obtained, which is not expected naively. In the case of no B0-meson oscillation
this contribution is due to processes like b → cτ−ν̄τ → cν̄τμ

−ν̄μνtau and b → cc̄s. In
the case of beauty scenario B (considering no B0 oscillation) contributions are obtained
also in correlation region 3 and 4, although naively no contributions are expected. These
contributions are caused by the process b→ cc̄s. Furthermore it is obvious, that in case of
the third beauty scenario, a significant fraction is obtained for ΔΦ∗ > 90◦, and therefore
in correlation region 4.
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Figure 2.12: Transverse momentum pT (D∗) (a), muon momentum p(μ) (b), pseudorapidity
of the D∗-meson η(D∗) (c) and the pseudorapidity of the muon η(μ) (d) in photopro-
duction beauty events. The change of these distributions in size and shape by applying
the other three kinematical constraints step by step is also presented (see legend).

Table 2.7 summarises the contributions of the three different beauty scenarios to each
correlation region. The dominant contribution to correlation region 2 comes from scenario
B. For correlation region 3 the main contribution is from scenario C. In correlation region
4 the largest contribution is not given by scenario A but scenario C. This is due to the
smaller acceptance for muons from cascade decays (e.g. soft p(μ) spectrum) than for those
from the other two scenarios.
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correlation beauty scenario [%]
region A B C

1 5.8 94.2 -
2 10.5 89.5 -
3 3.1 2.5 94.4
4 14.9 27.9 57.3

1-4 7.7 30.3 62.0

1 2

3 4

Q(μ) = Q(D∗)

Q(μ) �= Q(D∗)

ΔΦ∗ < 90◦ΔΦ∗ ≥ 90◦

no charm

few beauty

no charm

beauty

beauty

beauty

few charm charm

Table 2.7: Contributions of the three different beauty decay scenarios (see page 45) in each
correlation region for photoproduction.



54 CHAPTER 2. RECONSTRUCTION OF THE QQ̄ FINAL STATE

Q

Q

+

xg

+ + + + + res. + ..

1) 2) 3) 4) 5) 6)
LO

NLO︷ ︸︸ ︷

considered
in frag.

very small small small in double
tagging events

Figure 2.13: Contributions to the heavy quark cross section up to NLO.

2.5 Procedure for Extracting the Unintegrated Gluon Den-

sity

As already discussed in the last chapter the unintegrated gluon density is extracted using
CCFM evolution model. The unintegrated gluon density A(xg, kT , q̄

′
t) depends on three

quantities: the momentum fraction xg of the incoming parton taking part in the hard in-
teraction (in systems without a transverse momentum of the initial parton), the transverse
momentum of this parton kT and the maximum allowed angle q̄′t (see section 1.3.4).

These quantities can be calculated from the four-momenta of the two heavy quarks. Figure
2.13 shows the different processes contributing to the heavy quark cross section up to
NLO. The normal resolved contribution can be neglected as previously discussed (section
2.4). The production of heavy quarks via gluon splitting is very small (< 5% [73]) in
all kinematic ranges and has no strong impact on the distributions of the three relevant
quantities. The excitation processes are given in principle by the second Feynman diagram
and by the one, where a gluon is radiated from an internal quark line (Feynman diagram
5)). The latter contribution is very small. The radiation of a gluon from an external
heavy quark line is automatically included in the final state parton showers modelled in
the Monte Carlo simulations.

The dominant contributions are the processes 1-3. For these the following formulae hold:

xg =
M2(QQ̄) +Q2

y · s (2.32)

kT = p∗T (QQ̄) (2.33)

q̄′t = xg ·
√
s · Ep

Ee
· exp(−2ŷQQ̄) (2.34)
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Here M(QQ̄) is the invariant mass of the heavy quark pair, p∗T (QQ̄) its transverse mo-
mentum measured in the photon proton rest frame, and ŷ(QQ̄) is the rapidity of the
quark pair in the laboratory frame. Ep and Ee give the energy of the incoming proton
or electron respectively and Q2 is the virtuality of the photon. y is the Bjørken variable.
Equation 2.34 was already derived in section about 1.3.4. Equation 2.33 is obtained from
momentum conservation and the fact that in the photon-proton rest frame, the photon
has no transverse momentum with respect to the z-axis. Only the incoming gluon can
then have a non-zero transverse momentum and this momentum has to be balanced by
the two heavy quarks, equation 2.33 has to hold.

In case of photoproduction equations 2.32 and 2.33 reduce to:

xg =
M2(QQ̄)
y · s (2.35)

kT = p∗T (QQ̄) ≈ pT (QQ̄) (2.36)

Here the transverse momentum of an arbitrary particle in the photon-proton rest frame
is unchanged in the laboratory frame.

A short derivation of equation 2.32 is given below for those events, where xg is connected
to the relative momentum fraction of the proton carried by the gluon (all systems with
kT = 0). The reaction γg → QQ̄ is considered for this purpose. The four-momenta of
the gluon g = (xg ·Ep, 0, 0, xg ·Ep) = xg · (Ep, 0, 0, Ep) = xg · P , the photon momentum q
(q2 = −Q2) and the four momenta of the heavy quarks pQ and pQ̄ are related as:

g + q = pQ + pQ̄

⇒ (g + q)2 = (pQ + pQ̄)2 = M2(QQ̄)

⇔ g2 + 2 · qg + q2 = M2(QQ̄)

⇒ 2 · xg · qP −Q2 = M2(QQ̄)

x=Q2/(2q·P )⇔ Q2 · xg
x −Q2 = M2(QQ̄)

⇔ xg =
M2(QQ̄) +Q2

Q2/x

Q2=x·y·s⇔ xg =
M2(QQ̄) +Q2

y · s
Since xg depends only on Lorentz invariant quantities it is also Lorentz invariant. Therefore
this definition of xg holds in all frames. However the interpretation of xg as the relative
momentum fraction of the gluon to the proton momentum is only valid in systems where
kT = 0.

In [73] a slightly different xg definition is proposed for the photoproduction regime (labo-
ratory frame):

xg =
M(QQ̄)√

s
·
√
Ee

Ep
· exp

(
ŷ(QQ̄)

)
(2.37)



56 CHAPTER 2. RECONSTRUCTION OF THE QQ̄ FINAL STATE

))μ*(Dg(x10log
-4 -3.5 -3 -2.5 -2 -1.5 -1

)
g

(x
10

lo
g

-4

-3.5

-3

-2.5

-2

-1.5

-1

a)

) [GeV/c]μ*(DTp
0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

 [
G

eV
/c

]
T

k

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

b)

)μ*’(Dtq
0 1 2 3 4 5 6 7 8 9 10

’ t
q

0

2

4

6

8

10

12

14

16

18

20
c)

Figure 2.14: Correlation between variables, on which the unintegrated gluon density de-
pends, a) xg, b) kT and c) q̄′t reconstructed via the quark and via the D∗μ quantities. The
correlation is shown for charm production in the photoproduction domain. Only events of
the correlation region 4 (ΔΦ∗ ≥ 90◦ and different charges) are selected.

This formula holds also for the normal resolved processes, however it is valid only for
kT = 0. Therefore this formula is not suitable for the extraction of the unintegrated gluon
density, where kT = 0 can no longer be assumed.

In this analysis the unintegrated gluon density is extracted using definition of xg given
in equation 2.32. The four-momenta of the heavy quarks are approximated by those of
the D∗-meson and the muon. Figure 2.14 shows for charm production in photoproduction
the correlation between xg, kT and q̄′t obtained from D∗μ quantities and obtained from
QQ̄-quantities. For xg a relatively good correlation between the D∗μ and the quarks is
observed, while for the two other variables kT and q̄′t the correlations is worse, due to
fragmentation effects and in particular the semileptonic decay in the case of the muon.
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The correlations would improve strongly, if the heavy quark pair were tagged using two
D-mesons and the correlation would be much worse, if the heavy quark pair were tagged
using two muons.

The distributions based on the QQ̄ variables will be obtained via an unfolding (see chapter
9). Here the correlation between theD∗μ and theQQ̄ quantities (figure 2.14) are exploited.
In the unfolding detector effects can also be considered, if the unfolding matrix is obtained
from a Monte Carlo simulation. Since in this double-tagging analysis the unfolding has
to correct only for fragmentation effects and does not rely on any assumption about the
heavy quark momenta or their correlation, a LO-Monte Carlo can be used for the unfolding.
An unfolding with NLO calculations is not expected to yield better results, because the
fragmentation is treated in a much simpler way. The unintegrated gluon density depends
on three variables and thus in principle a threefold differential distribution has to be
determined and unfolded. Since the data are statistically limited, only single and double
differential distributions with a few bins can be considered.

The differential cross sections depending on xg, but calculated in bins of kT and q̄′t, are
related to the unintegrated gluon density xgA(xg, kT , q̄

′
t) as follows:

dσ(kT , q̄
′
t)

dxg
= xgA(xg, kT , q̄

′
t) ·

dσg=1(kT , q̄
′
t)

dxg
(2.38)

The cross section on the right-hand side corresponds to the hard subprocess cross section
(γg∗ → QQ̄ in case of photoproduction and γ∗g∗ → QQ̄ in case of DIS) in the visible
range convoluted with the photon flux. The “g=1” indicates that it is obtained by a
constant gluon density (k2

T · xgA(xg, kT , q̄
′
t) = 1). This cross section can be calculated

with the CASCADE Monte Carlo event generator with a gluon density which is flat in
all variables instead of using the the normal parton density function of the proton. Since
an unintegrated gluon density is directly related to an off-shell calculation of the hard
subprocess, the Monte Carlo event generator CASCADE has to be used instead of a
Monte Carlo generator based on the DGLAP evolution model.

The calculated cross section is given for a specific factorisation scale μF . Due to the sta-
tistical method used this scale μ2

F modifies to an average 〈μ2
F (i)〉 calculated over all events

in the i-th interval of the different distributions. In each bin i the averaged factorisation
scale is different and to obtain an unintegrated gluon density at an overall averaged fac-
torisation scale 〈μ2

F 〉, which holds for all events and not only for a single bin, the data
points have to be propagated in μ2

F using a given parametrisation. With that equation
2.38 modifies to:

xgAi(xg, kT , q̄
′
t, 〈μ2

F 〉) =
xgA(xg, kT , q̄

′
t, 〈μ2

F 〉)
xgA(xg, kT , q̄

′
t, 〈μ2

F (i)〉) ·
dσ(kT , q̄

′
t)

dxg
·
(
dσg=1(kT , q̄

′
t)

dxg

)−1

(2.39)

In [74] it was shown that the effect of this propagation factor is very small compared to the
large statistical errors, since within the errors no strong dependence of the gluon density
on the factorisation scale μ2

F is observed. Therefore in this analysis no such propagation
factor is applied and equation 2.38 will be used.



Chapter 3

The H1 Experiment at HERA

The data used in this analysis were taken by the H1 detector at the HERA machine. At
HERA electrons and protons are accelerated in two separate beams and the two beams
collide inside the H1 and ZEUS detectors. The particles produced during an interaction
are measured by different components of the detector.

The electron-proton collider HERA is introduced first and then the H1 detector is described
focussing on the components which are important for this analysis.

3.1 The HERA Accelerator

The ep storage ring HERA (see figure 3.1) is situated at the DESY laboratory in Hamburg,
Germany. It has a circumference of 6.4 km and consists of two separate storage rings, one

a) b)

Figure 3.1: a) The HERA accelerator and its four experiments H1, ZEUS, HERMES and
HERA-B. b) HERA pre-accelerators.
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for protons and one for electrons or positrons. The electron and proton beams collide in
two interaction regions where the detectors H1 and ZEUS are located. There are two more
experiments, HERMES and HERA-B, which use only one of the beams. The HERMES
experiment uses the longitudinally polarised electron beam to study the spin structure of
the nucleons. The HERA-B experiment uses the proton beam from HERA. The beam
is focussed on a wire target to produce B-mesons. In ep-ring-accelerators, transversally
polarised electrons are automatically produced, while for longitudinal polarisation spin
rotators are needed. During the data taking period 1992-2000 (referred to as HERA I)
only the HERMES experiment had a longitudinally polarised electron beam. After the
HERA upgrade (HERA II), longitudinally polarised electron beams are also possible in the
ZEUS and H1 detectors. Furthermore, a second aim of the HERA upgrade is to increase
the luminosity by a factor 3-5.

Before injection into the HERA storage ring the electrons as well as the protons are
accelerated in so-called pre-accelerators. They are accelerated further in the HERA ring
itself. The electrons achieve a maximum energy of 27.5 GeV and the protons an energy
of 820 GeV / 920 GeV before / since 1998 respectively. This results in a centre-of-mass
energy of

√
s ≈ 300 GeV before 1998 and

√
s ≈ 318 GeV since 1998 respectively. In the

year 1998 and in the first part of 1999 electrons were used instead of the positrons used
usually.

The beam particles are stored in up to 220 bunches with a bunch crossing interval of 96 ns,
corresponding to a rate of 10.4 MHz. The bunches consist of about 1010 − 1011 particles.
A small number of non-colliding bunches, so-called pilot bunches, are used for background
studies. The lifetime of the lepton beam is about 10 hours for positrons and only 6 hours
for the electron beam. In contrast to positrons, electrons can recombine with the ions of
the residual gas in the beam pipe. This leads to a shorter electron beam lifetime. The
typical lifetime of the proton beam is with several 100 hours much larger.

3.2 The H1 Detector

The H1 detector is a typical multi-purpose detector designed to measure the momentum
and the energy of particles produced in an ep interaction. To ensure an almost complete
reconstruction of such an ep collision event, the detector has an almost hermetic coverage
around the beam axis. The asymmetric construction of the detector takes the different
beam energies of the electron and proton into account. Due to the larger energy of the
protons the centre-of-mass system is not at rest but shifted in the direction of the proton.
Therefore a large number of produced particles have a momentum in proton direction.
The instrumentation in this direction is enhanced.

The right-handed coordinate system used at H1 has its origin at the nominal interaction
point. The z-axis points in the proton beam direction. The region with positive z is called
the “forward” region. The x-axis points towards the centre of the HERA ring and the
y-axis points perpendicularly upwards. The azimuthal angle φ is given by the angle with
respect to the x-axis in the xy-plane. The polar angle θ is the angle with respect to the
z-axis. Thus the polar angle is θ = 0◦ in the proton direction and θ = 180◦ in electron
beam direction.
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Figure 3.2: Construction of the H1 detector.

The components of the H1 detector (figure 3.2) are arranged around the beam axis. The
tracking system as well as the calorimeter are located inside the super conducting coil,
which produces a magnetic field for momentum measurement. This layout reduces the
dead material in front of the calorimeter. The detector components from the inner com-
ponents to the outer are:

• Silicon Tracker: The central and backward silicon tracker (CST and BST respec-
tively) measure the hits of charged particles via ionisation in semiconductors. Since
they are located near to the interaction point and since the spatial resolution is
very high, they can be used to determine primary and secondary vertices. The BST
covers the angular range 162◦ ≤ θ ≤ 176◦ and makes a very precise measurement
of the scattered electron possible. The CST is described in more detail in section
3.2.2. More information on the silicon trackers can be found in [75]. Since 2002 a
third silicon tracker exists in the forward region (FST, forward silicon tracker).

• Tracking detectors: The central tracking detector (CTD) consists of two central
jet chambers (CJC1 and CJC2), two central z-drift chambers (central inner/outer
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z-drift chamber, CIZ/COZ) and two proportional chambers (inner/outer propor-
tional chamber CIP/COP). In the jet chambers (see section 3.2.1) the momentum
and the direction of charged particles are measured via ionisation in a gas. Since
the measurement of the z-coordinate is with a resolution of σz = 6-7 cm much less
precise than the measurement in the xy-plane (σxy = 150 μm), the z-coordinate is
improved by an additional z determination in the z-chambers, which have a better
resolution of σz = 350 μm.
The forward tracking detector (FTD) consists of three so-called super modules each
segmented in a forward proportional chamber (FPC), radial and planar drift cham-
bers and a transition radiator. The FTD covers the angular range 5◦ ≤ θ ≤ 30◦.
To measure the momentum of charged particles in the backward direction (151◦ ≤
θ ≤ 177.5◦) the backward drift chamber (BDC) is used. The BDC is mainly used to
detect the scattered electrons.
More information about the tracking detectors can be found in [76], and references
therein.

• Calorimeter: The tracking detectors are surrounded by a liquid argon calorimeter
(LAr) [77] in the central and forward region. The main task of the calorimeter is
the identification of neutral and charged particles and also jets and the energy mea-
surement of these objects. The LAr is a sandwich calorimeter consisting of an inner
electromagnetic (EM) and an outer hadronic (HAD) part. The HAD calorimeter
covers the angular range 4◦ ≤ θ ≤ 135◦ and the angular coverage of the electro-
magnetic calorimeter (4◦ ≤ θ ≤ 153◦) extends more into the backward direction.
To identify hadrons in the very forward range 0.6◦ ≤ θ ≤ 4◦ the so-called plug
calorimeter is used. In the backward direction the spaghetti calorimeter (SpaCal)
(see section 3.2.3 and [78]) is installed, which is mainly used to measure the energy
and the angle of the scattered beam electron.

• Super conducting coil: The LAr calorimeter is located inside a super conducting
coil, which produces a magnetic field of 1.15 Tesla. Charged particles are deflected
and make a momentum measurement of these particles possible.

• Muon system: The muon system consists of two subdetectors, the central muon
detector (CMD) and the forward muon detector (FMD). Both are designed for the
identification of muons. The CMD is described in more detail in section 3.2.4. More
information on the CMD can be found in [79]. The FMD [80] covers the polar angular
range 3◦ < θ < 17◦. It is a spectrometer consisting of a toroid magnet between three
double layers of drift chambers at both sides. For muons with momenta p > 5 GeV/c
a momentum measurement with a resolution of up to 24% is possible. The resolution
decreases slowly for larger momenta.

• Time-of-flight system: The time-of-flight system (ToF) consists of scintillators
located at both ends of the detector along the beam pipe. The scintillators have
a good time resolution of 1 ns and are used to reject beam-induced background
arriving out-of-time in the H1 detector.

• Luminosity system: The luminosity is measured via the Bethe-Heitler process
ep→ epγ, for which the cross section is very well known. The luminosity system is
situated downstream from the H1 detector in the direction of the electron beam. It
consists of a photon detector (PD) at z = −103m and the electron tagger (ET33)
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at z = −33 m. In the offline reconstruction only the photon measurement is used.
This leads to a precision of better than 2% for the measurement of the integrated
luminosity. For online luminosity measurement electron identification in the ET33
is also used.
Furthermore, ET33 and the other electron taggers (ET44 at z = −44 m and the ET8
at z = −8 m) can be used to detect the scattered electron in photoproduction events
at very small scattering angles (θe′ ≈ 180◦), corresponding to photon virtualities
Q2 < 0.01 GeV2.

A more detailed description of the H1 detector can be found in [81] and [82] or on the web-
page [83]. In the next subsections the components important for this presented analysis
are described in more detail.

3.2.1 Central Jet Chamber

The central jet chamber consists of two gas-filled coaxial cylinders situated along the beam
axis from z = −1.1 m to z = +1.1 m. The first chamber CJC1 has an inner radius of
20.3 cm and an outer radius of 45.1 cm. Thus the polar angular range 11◦ ≤ θ ≤ 169◦ is
covered by the CJC1. The inner radius of the second chamber is 53.0 cm and the outer
radius 84.4 cm. This leads to a slightly smaller angular coverage of 26◦ ≤ θ ≤ 154◦.

The inner chamber CJC1 consists of 720 anode sense wires running parallel to the z-axis,
distributed over 24 radial layers each with 30 azimuthal cells in φ (see figure 3.3). The
outer chamber has 32 radial layers each with 60 cells, containing 1920 anode sense wires.
The drift field is formed by cathode wires, which separate the sense wires in φ. A jet
chamber cell extends azimuthally from the sense wire plane to both adjacent cathode wire
planes. Radially it extends over the full radial length of the CJC1 or CJC2 respectively.
The adjacent sense wires in such a cell are separated by two potential wires, which are
set to ground. Thus there are four potential wires around each sense wire forming a
square. This arrangement makes it possible to adjust drift field and gas amplification
nearly independently. To get an almost uniform drift field the distance of the cathode
wires to the sense wire plane is taken into account in the chosen voltage of the cathode
wires. At the inner and outer end of each cell field wires are situated to ensure that the
field is also at the end of the cells sufficiently uniform. The sense wires are offset from the
nominal wire plane by ±150 μm because of the electrical forces between them. This offset
ensures that the position of the sense wire is always well known and it helps to identify
mirror hits.

The jet chamber cells are tilted by 30◦ with respect to the radial direction. This provides
two advantages: First the particles traversing the CJC cross a larger number of sense wire
planes, meaning more drift cells are penetrated on average. This leads to a better track
reconstruction and avoids track ambiguities (wrong track segments, consisting of mirror
hits, no longer match). Secondly the Lorentz angle is approximately compensated by this
tilt. The Lorentz angle is the angle between the electrical field and the drift direction of
the electrons, which are deflected by the Lorentz force of the magnetic field.

The chambers are filled with a gas mixture, which is ionised if a charged particle traverses
the chamber. The positive ions drift to the cathode wires and the electrons to the sense
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Figure 3.3: Cross section view of the central jet chambers.

wires. Between the cathode wires and the potential wires the field is almost uniform and
thus the drift velocity of the electrons is almost constant. In the gas amplification range
between potential wires and the sense wires, the electric field is proportional to 1/r, where
r indicates the distance of the electron to the sense wire. The electron gains sufficient
energy to cause secondary ionisation and a chain of such processes leads to an avalanche
of secondary electrons. On the sense wire the deposited charge of such an avalanche,
caused by a charged particle, is measured and read out via an electronic circuit.

The distance of the track of a charged particle to the sense wire in the xy-plane is deter-
mined from the drift time. A spatial resolution of σxy = 150 μm is achieved. The sense
wires are read out at both ends and the z-coordinate is determined from the ratio of the
measured charges at both ends (charge division). The resolution of the z-coordinate is
σz = 6− 7 cm. A significant improvement is obtained by taking the z-chambers CIZ and
COZ into account. Since their sense wires are perpendicular to the z-axis a two orders of
magnitude better resolution is achieved.

A three dimensional hit for the track of a charged particle is determined from the drift
distance as well as from the z-coordinate. The hits are assigned to tracks and a helix
trajectory is fitted. From this fit the track parameters are obtained.

Further information, obtained by the drift chamber, is the energy loss per distance dE/dx.
This quantity can be determined from the total collected charge on a sense wire. Since
the energy loss depends on the momentum and on the mass of the particle it can be used
together with the Bethe-Bloch formula [59] to get some information about the particle
type.
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Figure 3.4: Construction of the central silicon tracker CST.

3.2.2 Central Silicon Tracker CST

The CST consists of two cylindrical layers of semiconductor (silicon) sensors. The inner
radius is 5.57 cm and the outer 9.7 cm. The length of the CST is 44.2 cm. Thus the
CST covers the polar angular range 30◦ ≤ θ ≤ 150◦. The inner layer contains 12 so-
called ladders, which are arranged around the z-axis. Each of the ladders consists in the
z-direction of six silicon sensors and readout electronics at both ends. The outer layer is
composed of 20 ladders (see figure 3.4).

When a charged particle traverses the CST an electron-hole pair is produced in the silicon.
Due to the voltage between the inner and outer surface of the sensors, the electrons and
holes drift to the inner or outer side. Here strips are mounted, from where the deposited
charge is read out. Since the strips of both sides are perpendicular to each other it is
possible to measure the rφ-coordinate as well as the z-coordinate. In rφ a resolution of
σrφ = 12 μm is achieved and in z a resolution (depending on the polar angle) of up to
σz = 22 μm is obtained.

A three dimensional hit is determined from the position of the sensor and the two co-
ordinates. Possible CST hits are then assigned to tracks measured in the CJC and the
improved track parameters are found.
A more detailed description of the CST can be found in [84].

3.2.3 Spaghetti Calorimeter

The backward ’spaghetti’ type calorimeter (SpaCal) covers the polar angular range 151◦ ≤
θ ≤ 178◦ and is mainly used for the energy and angle measurement of the scattered
electron. The acceptance of the SpaCal corresponds to photon virtualities in the range
1 ≤ Q2 ≤ 100 GeV2.

The SpaCal consists of scintillating fibres embedded in lead. If a particle reaches the
calorimeter, secondary particles are produced via interactions with lead atoms. The sec-
ondary produced particles carry a large fraction of the energy loss of the initial particle.
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Figure 3.5: Cross section view of the backward spaghetti type calorimeter SpaCal.

A chain of such processes leads to a particle shower. In the scintillating fibres the energy
of the secondary particles is measured. From the energy and their spatial distribution the
total energy and the position of the primary particle is determined.

The SpaCal is divided into an electromagnetic and a hadronic section. Both sections have
a thickness of 25 cm (see figure 3.5). Since the SpaCal is mainly used for the identification
of the scattered electron, the hadronic part is only about one interaction length deep. An
electron will deposit its total energy in the electromagnetic section, while a hadron will
deposit only a small part of its energy in the hadronic section due to the larger extension
of hadronic showers. Furthermore the segmentation is much finer in the electromagnetic
part than in the hadronic part of the SpaCal. The electromagnetic part consists of 1192
quadratic cells with a length of 4 cm and the hadronic part of 136 cells with a cross-
section of 12x12 cm2. The energies are measured with σE/E = 7.5%

√
E [GeV] ⊗ 1% in

the electromagnetic and with σE/E = 30%
√
E [GeV] ⊗ 7% in the hadronic part of the

SpaCal.
More information about the SpaCal can be found in [85].

3.2.4 Central Muon Detector

In contrast to all the particles (except neutrinos), which are in general stopped in the inner
detector (up to the LAr), the energy loss of muons is typically very small in the calorimeter.
Thus the muon systems are located outside the inner detector. The central muon detector
consists of the iron return yoke of the magnet coil and limited streamer tubes which are
situated in several slits of the iron yoke. The CMD is divided into four regions: the
forward and backward barrel, which cover together the angular range 35◦ ≤ θ ≤ 135◦, and
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Figure 3.6: Layout of the 64 modules of the instrumented iron.

the forward and backward endcap. The forward and backward endcaps have an angular
acceptance of 5◦ ≤ θ ≤ 35◦ and 130◦ ≤ θ ≤ 175◦ respectively. Each of these parts again
consists of 16 modules (see figure 3.6). Altogether the CMD contains 64 modules. Each of
these modules consists of 10 iron plates with a thickness of 7.5 cm in the radial direction
(barrel) or in the z-direction (endcaps). In each slit of the iron one layer of streamer tubes
is located, except for the slit between the fourth and fifth iron layer where two layers of
streamer chambers are situated. In addition in front of and behind the instrumented iron
so-called muon boxes are installed, each of them consisting of three layers with streamer
chambers (see figure 3.7). These additional muon boxes improve the track measurement.
Altogether 16 streamer chamber layers exist.

Two different types of streamer chambers are used: five layers with strips and 11 layers
with pads. Each streamer chamber consists of several gas tight elements, which are again
built up of two so-called 8-fold profiles. A profile contains 8 sense wires orientated along
the z-axis in the barrel and along the x-axis in the endcaps. The muon chambers are also
equipped on the top of those elements either with strips perpendicular to the wires or with
pad electrodes to provide a two-dimensional measurement. The cross section of a muon
chamber is 1x1 cm2 (see figure 3.8).

In analogy to the case of the CJC, the muon chambers are filled with a gas mixture, and
in the same way as in the CJC, the momentum and direction of the penetrating muons is
measured via ionisation in the gas. The resolution of the position measurement obtained
by the wires reaches about 3 to 4 mm perpendicular to the direction of the wires and thus
also perpendicular to the streamer tubes. The resolution for strip hits is about 10 to 15
mm along the sense wires and the pads define coarse space points with a precision of about
10 cm. The track reconstruction starts with the wire hits. The found track segments are
fitted by a straight line and to get a curve several track segments are connected. Then the
strip information is used to get a three-dimensional track. The strongly varying magnet
field inside the CMD and the large energy loss of at least 80 MeV in one iron plate is taken
into account for the track reconstruction. The pad information is used to resolve track
ambiguities and to detect hadronic energy leaking from the LAr and SpaCal calorimeters.
Details on the track reconstruction algorithm can be found in [86].

For trigger purposes the wire signals of layers 3, 4, 5, 8 and 12 are used. The endcap
modules are grouped into an inner part containing the modules 6-11 (forward endcap)
and 54-59 (backward endcap) and into an outer part. For each module a coincidence is
evaluated for the n planes used out of total 5.
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Figure 3.9: Overview of the trigger system.

3.2.5 Trigger System

The bunch crossing time of the electron and proton bunches at HERA is 96 ns, correspond-
ing to a frequency of 10.4 MHz. Only in a small fraction of bunch crossings does this lead
to an ep-reaction. Furthermore the rate of the background processes is several orders of
magnitude higher than the ep event rate. The background arises mainly from collisions of
the beam protons with rest gas atoms within the beam-pipe (beam-gas interactions). It
is also possible that off-orbit protons hit accelerator or detector components which lead
to so-called beam-wall background events. Furthermore cosmic muons and synchrotron
radiation have to be considered in addition. Due to the short time interval between two
bunch crossings of only 96 ns it is not possible to read out the whole detector and to select
afterwards the interesting events (the dead time would be too high). Thus a trigger system
is used. The task of triggers is to select in a short time (to minimise the dead time) the
physically interesting events and to reject the background events in order to reduce the
rate, at which the events are then later stored.

At H1 the trigger system consists of four levels (see figure 3.9), which reduce the rate in
several steps. The input rate decreases from about 100 kHz at the first level (L1) down
to 50 Hz at the fourth level (L4). At the same time the maximally allowed time on which
a decision is made increases from 2.3 μs on L1 to 100 ms on L4.

First trigger level L1: Since the decision time of some detector components is signifi-
cantly above 96 ns, the detector information of the last bunch crossings is stored interme-
diately in buffers (pipelines). This avoids dead time until the decision on L1 is made. The
pipeline storage depth is 2.5 μs and thus determines the maximum allowed L1 decision
time. In case of a positive trigger decision (L1 keep) no further signals are put into the
buffer and the dead time of the experiment starts. The L1 decision is based on special
trigger signals of the detector components, referred to as trigger elements. The 192 trigger
elements are logically combined to 128 so-called subtriggers. If an event is accepted by at
least one of the subtriggers the trigger decision is positive. L1 reduces the rate typically
from about 100 kHz to 1 kHz.
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Depending on the run and background conditions the level 1 subtriggers are prescaled to
get an acceptable output rate. A prescale factor of n means, that only every n-th event
which fulfills the subtrigger condition is accepted by L1.

Second trigger level L2: The second trigger level uses neural networks and topological
correlations to reduce the rate. The maximum allowed decision time on L2 is 20 μs.
In the case of a negative decision on L2 the writing of detector signals of the following
bunch crossings into the buffer starts again. Otherwise the detector readout starts. L2
reduces the rate to about 50 Hz. Trigger level L3, on which larger-scale analyses of the
detector signals can be done, was not implemented during the HERA I data-taking period
(1992-2000) but was an upgrade project for the HERA II data taking period.

Fourth trigger level L4: The fourth trigger level is a multi-processor farm, which
performs a fast event reconstruction.
Until 1997 a trigger verification was done, which mimicked the L1 subtrigger conditions.
Since 1997 a system of so-called hard scales and final state finders exists. Events, which
fulfill at least one of the hard scales, like a track with a high transverse momentum, a muon
with a transverse momentum above 1 GeV/c or a high energy cluster in the calorimeter,
are accepted directly. If not, the events have to pass one of the final state finders, which
depend on the verified L1 subtriggers. For this D∗μ analysis the open heavy flavour finder,
which looks for D-mesons in general, and the closed heavy flavour finder, which looks in
addition to the J/Ψ also for single muons, are important. In the context of this thesis the
closed heavy flavour finder is called the muon finder and the open heavy flavour finder the
D∗ finder.
In 1998 the trigger verification in its original sense was replaced by the system of hard
scales and finders. The event classification, which had been done previously on L5 until
1997, is performed since 1998 on L4. The hard scales were re-defined, but in general with
harder conditions than in 1997. Also the finder algorithms were changed partly. Only if an
event is assigned to at least one physics class, defined via a hard scale or finder requirement,
the event is accepted by L4 without a prescale. In case of prescale a L4 weight is assigned
to this event. For this analysis the relevant classes are class 15 (D-mesons) and class 16
(J/Ψ and single muons).

Offline Reconstruction L5: The last level performs a complete offline reconstruction
of the events accepted by L4 using the software package H1REC [87] and also the final
calibration. Until 1997 the events were classified in physics classes. Open heavy flavour
events with a muon were assigned to class 24 andD∗ events to class 16. If an event belonged
to at least one physics class the reconstructed data were stored on tape (physics output
tape, POT). If no class could be assigned to an event it was rejected. This procedure lead
to a reduction of about a factor 2. The part of the data used for analyses is stored in a
more compressed way on disc (data summary tape, DST).
Since the classification was taken over by L4 in 1998, no rejection of events have been
performed on L5 and all events originally assigned to a physics class on L4 are kept.
The offline reconstruction with the final calibration and the POT and DST storage are
retained.

Table 3.1 gives an overview of the trigger levels L4 and L5 in the years 1997-2000.
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1997 1998-2000
trigger verification

L4 hard scales and finders hard scales and finders
classification (class 15, 16)

L5 final reconstruction final reconstruction
classification (class 16, 24)

Table 3.1: Overview of trigger levels L4 and L5 in 1997 to 2000. The classes relevant for
this analysis are indicated in braces.



Chapter 4

Data Selection

In this chapter the selection of events with charm or beauty production in photoproduction
and in Deep-Inelastic-Scattering (DIS) are described. Data taken by the H1 detector
during the years 1997 to 2000 are used.

Charm and beauty events are selected by requiring at least one D∗ and at least one muon
in the final state. The D∗ is reconstructed via the decay channel D∗ → D0πs → Kππs

and for the muon the identification in the instrumented iron is essential to reduce hadron
mis-identification.

In this analysis several data sets are used (see table 4.1). The D∗ photoproduction and
DIS samples are used to check D∗ variables and also muon mis-identification. The final
data sets used for the cross section measurements are the D∗μ photoproduction and the
total D∗μ data sample including also events from DIS.

Due to the complex trigger and classification scheme at H1, which was in addition changed
after 1997, a rather complex selection chain using a different set of cuts for the inclusive
D∗ samples and the final D∗μ samples is necessary.

number of events

D∗ in photoproduction 955
D∗ in DIS 3351
D∗μ in photoproduction 184
D∗μ in DIS 45
D∗μ in photoproduction and DIS (total) 229

Table 4.1: Data samples. The D∗ data sets are used to check the D∗ variables and also
hadron mis-identification, while the D∗μ data sets are the final data samples used in this
analysis.

4.1 Run Selection and Detector Status

During the period 1997 to 2000 the beam energy of the protons changed from 820 GeV in
1997 to 920 GeV since 1998. The HERA storage ring was operated either with electrons

71
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Correction L [pb]−1

Delivered 124
Good and medium runs 112

Detector status 92
Satellite bunch correction 88.8

Table 4.2: Integrated luminosity (1997,1999-2000) before and after the applied corrections.

Year lepton Ep[GeV] L [pb−1]

1997 e+ 820 18.6
1999a e− 920 10.1
1999b e+ 920 13.8
2000 e+ 920 46.3∑

88.8

Table 4.3: Integrated luminosity after detector status and satellite bunch correction.

(1998 and first part of 1999) or with positrons. For this analysis no distinction between
positrons and electrons is made.

In the year 1998 a high beam-induced background during electron-running caused several
problems especially in the tracking detectors. Furthermore, the L4 triggering important
for this analysis was frequently changed. The useful luminosity for this data period is only
very small and therefore the data period is omitted. So-called minimum bias runs with
different trigger settings and runs with a shifted vertex are also excluded. Only runs with
a good or medium quality are selected. In poor runs, important detector components like
LAr or CJC were not operational or these runs contain only few events. This requirement
leads to a reduction of the luminosity from 124 pb−1 to 112 pb−1 (see table 4.2).

Only those data-taking periods are considered, where the detector components important
for this analysis were operational: central jet chambers (CJC1 and CJC2), central propor-
tional chambers (CIP and COP), liquid argon calorimeter (LAr), spaghetti calorimeter
(SpaCal), backward drift chamber (BDC), central muon system (CMD), time-of-flight
system (ToF) and the luminosity system (Lumi). With these High-Voltage (HV) require-
ments the luminosity reduces to L = 92 pb−1. In contrast to the final D∗μ data set the
HV condition is relaxed for the inclusive D∗ data sets. Here no requirement on the CMD
is demanded.

In the electron and proton beam so called satellite bunches exist before and after those at
the nominal interaction point. These bunches arise during electron or proton injection into
the HERA ring. To suppress background events from interactions in satellite bunches a
cut on the z-coordinate of the interaction point is applied. The distance of the z-vertex to
the nominal interaction point has to be smaller than 35 cm. The loss of events due to this
cut is considered in a correction of the luminosity. After the satellite bunch correction the
luminosity is L = 88.8 pb−1. Table 4.2 summarises the integrated luminosity after each
correction discussed above. In table 4.3 the integrated luminosities taken in the different
data-taking periods are shown after all corrections.
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Figure 4.1: Z-vertex histogram obtained by extrapolating rays, defined by hits in the pro-
portional chambers. Wrong combination of hits are marked by dotted lines.

ST Definition mean
prescaling

2 (SPCLe IET>1 || SPCLe IET Cen 2)&& DCRPh THig && zVtx sig 1.69
19 Mu Bar && DCRPh CNH && zVtx sig 1.06
22 Mu ECQ && DCRPh CNH && zVtx sig 1.06
56 Mu Any && DCRPh Ta && (SPCLe IET>1 || SPCLe IET Cen 2) 1.00
61 (SPCLe IET>2 || SPCLe IET Cen 3)&& DCRPh THig&& zVtx sig 1.16

eTAG && DCRPh Tc && zVtx sig (until 1997)83
DCRPh Tc && zVtx sig && LU ET !&& LU PD low (since 1999)

1.16

Table 4.4: Definition and mean prescaling factors of the subtriggers used in this analysis.
Only the most important trigger elements are shown. The symbols ||, && and !&& signify
a logical OR, a logical AND and a logical AND NOT.

4.2 Level 1 Trigger Selection

The photoproduction D∗μ data set is triggered by the muon subtriggers (ST) 19, 22 and
56 (since 1999), each requiring a signal in the central muon system, while the inclusive
photoproduction D∗ sample is triggered using the electron taggers. Here subtrigger 83
is used demanding an energy deposition in ET33 covering the region Q2 < 0.01 GeV2 in
contrast to Q2 < 1 GeV2 for the former sample.

DIS events for the D∗ inclusive as well as for the D∗μ samples are triggered using an
energy deposition in the SpaCal. Since the trigger conditions have been changed in the
middle of the year 1997, the subtrigger 61 is used after run 193442. For the first part
of 1997 subtrigger 2 is used. For the D∗μ sample in DIS the muon triggers are used in
addition.

In table 4.4 all subtriggers used in this analysis are shown. These subtriggers are made
up of the following trigger elements (see table 4.5):

• The DCRPh Trigger uses the tracks of the central jet chambers. Here 10 of the
56 wire layers are used for the trigger, 7 in CJC1 and 3 in CJC2. The signals of
these wire layers are compared with predefined masks in the rφ plane. Positive and
negative tracks with low (450 � pT � 800 MeV) or high (pT � 800 MeV) transverse
momentum can be separated. For the definitions of the different individual DCRPh
trigger elements see table 4.5.
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Trigger element Definition
Trigger elements of the central drift chambers CJC1 and CJC2

DCRPh Ta at least one fired track mask with pT � 450 MeV/c
DCRPh Tc at least three fired track masks with pT � 450 MeV/c

DCRPh TNeg at least one fired negative track mask with pT � 450 MeV/c
DCRPh THig at least one fired track mask with pT � 800 MeV/c
DCRPh CNH short cut for DCRPh Tc && DCRPh TNeg && DCRPh THig

Trigger elements to detect a significant vertex using CIP, COP and FPC
zVtx sig significant maximum in z-vertex-histogram
Trigger elements to detect the scattered electron in the SpaCal

SPCLe IET>1 measured electron in the SpaCal, E ≥ 2 GeV
SPCLe IET Cen 2 similar to SPCLe IET>1 but for the central region in SpaCal

SPCLe IET>2 measured electron in the SpaCal, E ≥ 6 GeV
SPCLe IET Cen 3 similar to SPCLe IET>2 but for the central region in SpaCal

Trigger elements of the instrumented iron
Mu FIEC muon candidate in the forward inner endcap
Mu FOEC muon candidate in the forward outer endcap
Mu BOEC muon candidate in the backward outer endcap
Mu BIEC muon candidate in the backward inner endcap
Mu Bar muon candidate in the barrel
Mu ECQ muon candidate in the endcaps except in the forward inner:

Mu FOEC || Mu BOEC || Mu BIEC
Mu Any muon candidate in the endcaps or the barrel:

Mu FIEC || Mu FOEC || Mu BOEC || Mu BIEC || Mu Bar
Trigger elements to detect the scattered electron in the ET33
eTAG signal in the ET33 and no large energy deposition in the PD
LU ET signal in ET33

LU PD low energy deposition in the PD

Table 4.5: Trigger elements, which are used for the subtriggers in this analysis.

• The zVtx Trigger uses the information of the central proportional chambers, CIP
and COP, and the first layer of the forward proportional chamber FPC to provide a
rough estimation of the z-coordinate of the ep interaction. In 16 φ sectors straight
’rays’ are fitted through the hits in the three proportional chambers. The intersec-
tions of these rays with the z-axis are filled into a histogram (see figure 4.1). All rays
which intersect the region around the nominal vertex lead in this histogram to z-
values close to the vertex. Wrong combinations of hits lead to randomly distributed
values in this histogram. The trigger element zV tx sig is set, if a histogram bin
exists containing significantly more entries than the average of the others.

• The inclusive electron trigger (IET) of the SpaCal sums the energy depositions
in 16 cells (4x4 arrangement), forming a trigger tower. Altogether 320 trigger towers
exist, half overlapping in size in both the x and y directions (the sliding window
method). This avoids trigger inefficiencies as a function of the impact point. The
energy deposition in the trigger towers is then compared to three adjustable energy
thresholds and the trigger elements are formed in an inner (IET Cen, R < 16 cm)
and an outer (IET, R > 16 cm) region. The detailed definitions of the SpaCal
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triggers used are given in table 4.5.

• The muon (or iron) trigger uses five layers (3, 4, 5, 8, and 12) of the central muon
detector (CMD), see chapter 3. The number of required layers differs between the
different detector regions. In the barrel (Mu Bar) two out of the innermost four
trigger layers are required, in the backward inner or outer endcap (Mu BIEC or
Mu BOEC) and in the forward outer endcap (Mu FOEC) three out of five layers
are required. In the forward inner endcap (Mu FIEC) four out of five layers are
required. The detailed definitions of the muon trigger elements are listed in table
4.5.

• The trigger of the electron tagger ET33 requires an energy deposition above
an adjustable threshold and at the same time the energy deposition in the photon
detector (PD) has to be smaller than a given threshold. In the year 1997 the trig-
ger element eTAG was used. For this trigger element the energy threshold for the
scattered electron was 4 GeV and the energy deposition in the photon detector had
to be smaller than 2 GeV. In the years 1999 and 2000 the trigger element LU ET
requiring an energy deposition in the ET33 above 6 − 9 GeV was used in combi-
nation with the veto of the trigger element LU PD low, which demands an energy
deposition in the photon detector below 5− 7 GeV.

4.2.1 L1 Prescales and Weights

Since the level 1 subtriggers used each carry a different prescale factor, this is taken into
account in the luminosity calculation for the used trigger set. The trigger set contains N
subtriggers. For the trigger set Ncomb possible combinations of fired triggers exist:

Ncomb =
N∑

k=1

(
N
k

)
(4.1)

For the case in which a trigger set contains only two triggers, for example s19 and s56,
the possible trigger combinations are: s19 only, s56 only and s19 and s56. Without
prescaling all triggers within a combination would have accepted the event. For each
trigger combination j the probability Pjk that the event was accepted by one of the
subtriggers of the combination is calculated for run k according to (see [88]):

Pjk = 1−
Nsubtr∏

i=1

(
1− 1

dik

)
(4.2)

Here Nsubtr is the number of subtriggers in the trigger combination j and dik indicates the
prescaling factor of a subtrigger i, which belongs to the trigger combination j in run k.

The data are divided into periods p with unchanged trigger definitions, for example the year
1997, 1999e− and 1999e+/2000. The periods consist of a huge number of runs k. To keep
the statistical errors as small as possible the run dependent prescale factors djk = 1/Pjk

for a trigger combination j are averaged over a period. The luminosity weighted average
prescale factor djp is:

djp =
∑

kεpLk∑
kεpLk · Pjk

(4.3)
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For each D∗μ-event the corresponding weight wjp = 1/djp is applied to the Monte Carlo
simulation to account for the L1 prescaling. The overall prescale factor d̄ for the selected
D∗μ events is determined from the corresponding weights for each event. The prescaled
luminosity in the data is obtained by applying the overall averaged prescale factor.

The averaged prescale factors djp are found to be very close to unity or even equal 1.0 for
all periods and all trigger combinations, except for the trigger combination s2 (used only
in the first part of 1997 data). For the trigger s2 a prescale factor of 1.69 is obtained.

4.3 Level 4 Trigger Selection and Level 5 Classification

The selection on the fourth trigger level is based mainly on the concept of “hard scales”
and “final state” finders. If an event does not fulfill any of the hard selections it has to
pass one of the finders.

In the year 1997 the most important hard scale condition for D∗μ events is: “at least one
reconstructed muon track in the CMD which matches to a track in the CTD or FTD in θ
and φ with a transverse momentum of pT (μ) > 1 GeV/c”. The D∗ final state finders did
not run on the used muon triggers, but on subtriggers like 61 (2) or 83. The muon finders
running on subtriggers 19 and 22 require a matching between the reconstructed CMD
track and a track in the CTD or FTD. Since only a J/Ψ muon finder ran on subtrigger 56
this trigger is not used for the year 1997. The physics classification is done on L5 using the
final calibrations. The important classes are the open heavy flavour class 16 (D mesons),
and the closed heavy flavour class 24 (J/Ψ, μ, e). For the year 1997, only D∗μ events,
which belong either to L5 class 16 or to L5 class 24, are selected. The D∗ inclusive events
are selected via the L5 class 16.

After 1997 the hard scales were tightened and were very rarely fulfilled by the D∗μ events.
Thus the influence of the final state finders is much stronger here than in the year 1997. The
D∗ finders did not run on the muon subtriggers but again on for example the DIS trigger 61
and on the ET trigger 83. The D∗ finder therefore in the case of the photoproduction data
set was running only if in addition to a muon trigger another trigger was set. For these
events both, the muon finder as well as the D∗-finder was running and the contribution
is non-negligible. The muon finder subclass AOPEN requiring a matching between the
reconstructed CMD or FMD track and a good inner track runs on all muon subtriggers 19,
22, 56. A transverse momentum pT (μ) ≥ 2.0 GeV/c for θμ > 20◦ and p(μ) > 5.0 GeV/c
for θμ < 20◦ was required. From the period 1999 e+ (since run 246240) this condition
was relaxed to pT (μ) ≥ 1.5 GeV/c for θμ > 18◦ and p(μ) > 5.0 GeV/c for θμ < 18◦.
Since 1998 the classification was performed directly during the online reconstruction on
trigger level four. The new classes are 15 (open heavy flavour class) and 16 (closed heavy
flavour class). In this analysis D∗μ events since 1999 are selected, if they belong to these
L4 classes 15 or 16. The D∗ inclusive events are selected via the L4 class 15.

Table 4.6 summarises the required L4 or L5 classes, the important finders together with
the L1 subtriggers on which the finders ran (here defined as precondition for the finders).
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Year Class Important finder Preconditions
(L1 subtriggers)

muon finder AOPEN:

24
matching of a muon track with an
inner track. Most important cut:
p(μ) > 1.0 GeV/c

19, 221997

16 D∗-finder 61, (2 until 193442), 83, ..
muon finder AOPEN:

16
matching of a muon track with an
inner track. Most important cut:
pT (μ) > 2.0 GeV/c (1.5 GeV/c
since run 246240)

19, 22, 56since 1999

15 D∗-finder 61, 83, ..

Table 4.6: Overview of L4 (since 1999) or L5 classes (until 1997) required in this analysis,
the associated L4-finders and the corresponding preconditions (L1 subtriggers, on which
the finders ran), separately for the year 1997 and 1999-2000. In addition to the DIS
subtrigger 61 (2 for first part of 1997) and the ET33 trigger 83 the D∗ finder also ran on
other L1 subtriggers, which are all based on the identification of a scattered electron, either
in the SpaCal (DIS) or in the electron taggers or the Very Low Q2 Spectrometer (VLQ).
In addition to these triggers the D∗-finder ran also on an untagged D∗ trigger, which is
highly prescaled.

4.4 Kinematic Selection

4.4.1 Selection of DIS Events

The kinematic variables of the event are reconstructed from the energy E′
e and the angle

θe of the scattered electron:

Q2
e = 4 ·Ee ·E′

e cos2
(
θe

2

)
(4.4)

ye = 1− E′
e

Ee
sin2

(
θe

2

)
(4.5)

xe =
Q2

e

s · ye
(4.6)

Here Ee is the energy of the incoming electron. The identification of the scattered electron
in the DIS sample is performed via the energy measurement in the SpaCal calorimeter.
The energy deposition in the calorimeter cells is combined to clusters and the cluster with
the highest energy in the electromagnetic part of the calorimeter is taken as the candidate
for the scattered electron. In this analysis only a very rough selection of DIS events is
performed. The main aim is to suppress photoproduction background. The energy of the
electron candidate has to be at least 8 GeV, the virtuality 2 < Q2

e < 100 GeV2 and the
inelasticity 0.05 < ye < 0.7. The cut on the virtuality corresponds approximately to the
geometric acceptance of the SpaCal. The upper limit of the accepted ye values corresponds
to the cut on the energy of the electron and the lower limit corresponds to the minimum
possible value if a lower cut on Q2

e = 2 GeV2 is applied. The DIS cuts are summarised for
the D∗ inclusive and D∗μ samples in table 4.7 and 4.9 respectively.
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4.4.2 Selection of Photoproduction Events

The kinematic variables of the event are reconstructed from the energy of the scattered
electron if it is detected in ET33. Here the polar angle of the electron candidate is large
and Q2 � 0.01 GeV2 (due to the ET33 acceptance). When θe ≈ 180◦, equation 4.5 reduces
to:

ye = 1− E′
e

Ee
=
Ee − E′

e

Ee
(4.7)

If an electron is identified in ET33 the energy deposition of the reconstructed electron
candidate has to be above 4 GeV to ensure a good signal and a cut on the position of the
electron | x0 |< 6.5 cm is applied to ensure a valid energy measurement. The requirement
of no large energy deposition (Eγ < 2 GeV) in the photon detector at the same time
reduces the background arising from bremsstrahlung and Bethe-Heitler events.
To ensure an ET33 detector acceptance above 10 percent for all periods a cut on the
inelasticity 0.29 < ye < 0.65 is applied. The mean acceptance is about 40%. This selection
is used in the following for the inclusive D∗ data set (see table 4.7).

For the D∗μ-sample photoproduction events are not defined via a scattered electron in the
electron taggers, but with an appropriate anti-tag condition (untagged photoproduction).
In this case the Jacquet-Blondel [89] method is used, which is based on the reconstruction
of the energy Ei and the momentum �pi of all particles i of the hadronic final state (HFS).
The kinematic variables are reconstructed as follows:

yJB =

∑
iεHFS

(Ei − pz,i)

2Ee
(4.8)

Q2
JB =

( ∑
iεHFS

px,i

)2

+
( ∑

iεHFS
py,i

)2

(1− yJB)
(4.9)

xJB =
Q2

JB

s · yJB
(4.10)

The hadronic final state is reconstructed from tracks and clusters in the calorimeter. Tracks
and clusters are combined in such a way, that no energy is counted twice [90, 91]. Central
tracks with a transverse momentum below 8 GeV/c are extrapolated into the calorimeter.
Energy depositions in a cylinder of radius 25 cm (electromagnetic calorimeter) and of
radius 50 cm (hadronic calorimeter) around the extrapolated track are considered. The
cell energies are assigned to the tracks in such a way, that the energy measurement in
the calorimeter and the momentum measurement, the resolution of which is better for
small energies, are consistent. Tracks with pT > 8 GeV/c are not used, since the energy
resolution of the calorimeter is at large energies better than the resolution of the tracking
chambers. These tracks as well as forward tracks and neutral particles are taken into
account using cluster energies in the calorimeter.

The untagged photoproduction events are selected by rejecting events with electromagnetic
energy clusters above 8 GeV in the SpaCal or the LAr calorimeter. This restricts the
photon virtuality to Q2 < 1 GeV2. For the inelasticity a cut 0.05 < yJB < 0.75 is applied.
For the D∗μ photoproduction data set the cuts are summarised in table 4.9.
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Figure 4.2: Invariant mass of the D0 candidates for D∗ candidates with a mass difference
ΔM = mKππs −mKπ of the D∗- and D0-candidate of 2.5 MeV/c2 arround the nominal
value of 0.1454 GeV/c2. Left: DIS selection. Right: Photoproduction selection. The sum
of a Gaussian and a straight line is used as fit function.

4.5 Selection of D∗ Events

Events with charm or beauty quark production are selected via the identification of the
charmed D∗ meson. TheD∗ meson is reconstructed via its decay products. In this analysis
the decay channels D∗+ → D0π+

s → K−π+π+
s and D∗− → D̄0π−s → K+π−π−s are used.

4.5.1 Reconstruction of the D∗

The tracks of charged particles are reconstructed in the CTD. The momentum vectors of
the charged particles are calculated using the track parameters. The tracks of theD∗ decay
products have to have a radial length R of at least 10 cm to ensure a good momentum
reconstruction. If a track traverses the CST and hits in the CST can be associated to this
track, these hits are used to improve the track parameters. Another improvement of the
track parameters comes from a fit to the primary and possible secondary vertices.

To reconstruct the D0 meson all possible two-track combinations from an event are con-
sidered. The two tracks must have opposite charges and the transverse momenta have to
be both above 300 MeV/c. Furthermore the distance in r-φ d′ca of the corresponding non-
vertex fitted track with respect to the primary vertex has to be less than 1 cm. Assuming
one of the considered particles is a kaon and the other a pion the invariant mass of the
pair is calculated. Figure 4.2 shows the distribution of the D0 candidate mass for events in
DIS and in photoproduction. If the invariant mass lies in a window ±80 MeV/c2 around
the nominal D0 mass (mD0 = 1.865 GeV/c2), the combination is kept as a D0 candidate.

To avoid the rejection of D0 candidates with a long radial decay length (b candidate
events) D0 candidates from track pairs fitted to the same secondary vertex are selected if
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DIS Photoproduction

Data taking period 1997 and 1999-2000

Run selection good and medium runs

Detector status CJC, CIP/COP, LAr, SpaCal, BDC, ToF, Lumi

Z-vertex | zvertex |< 35 cm

Trigger selection s61 or s2 (until run 19443) s83

L5 class 16 (1997) or L4 class 15 (since 1999)

Kinematic selection E′
e > 8 GeV E′

e > 4 GeV
0.05 < ye < 0.7 Eγ < 2 GeV

2 < Q2 < 100 GeV2 | x0 |< 6.5 cm
0.29 < ye < 0.65

D∗ selection Decay channel D∗ → D0πs → Kππs

pT (D∗) > 2.0 GeV/c
| η(D∗) |< 1.5

R(K,π, πs) > 10 cm
d′ca(K,π) < 1 cm

pT (K,π) > 0.4 GeV/c
pT (πs) > 0.12 GeV/c

| m(Kπ)−mD0 |< 80 MeV/c2

ΔM < 0.1685 GeV/c2

Table 4.7: Selection cuts of both inclusive D∗ data sets: DIS and photoproduction.

no D0 candidate from primary vertex fitted track hypotheses of the same tracks could be
reconstructed.

To reconstruct the D∗ candidate the D0 candidate is combined with a third track from the
same event. Only tracks with transverse momenta of at least 120 MeV/c and an opposite
charge to the kaon candidate are considered. The four-momentum of the D∗ candidate is
calculated using the momenta of the three decay particles. The mass difference ΔM =
m(Kππs)−m(Kπ) between the D∗ and D0 candidates has to be less than 0.1685 GeV/c2.
Furthermore only D∗ candidates with a transverse momentum of at least 1.5 GeV/c and a
pseudorapidity | η(D∗) |< 1.5 (central region) are selected. The pseudorapidity is defined
as:

η =
1
2

ln
(
p+ pz

p− pz

)
= − ln

(
tan

θ

2

)
(4.11)

This D∗ selection is used for the D∗μ event selection.

For the inclusive D∗ sample harder cuts on the transverse momenta of the decay particles
and on the D∗ itself are necessary especially in the photoproduction region to reduce the
combinatorial background. The cuts on the transverse momenta of the kaon and pion
candidates are both increased in the inclusive D∗ data sample to 0.4 GeV/c and the



4.5. SELECTION OF D∗ EVENTS 81

]
2

 [GeV/cπK-m
sππKm

0.14 0.15 0.16

)*
N

(D

0

500

1000

1500

2000

2500

3000

3500

Chi2 / ndf = 60.47 / 34
 1.225e+06 ±    = 1.238e+07 NU

 0.01229 ±  = 0.434 expU
  1.11 ±  = 18.44 corU
 95.63 ±   =  3351 D*N
 3.223e-05 ±      = 0.1454 μ

 3.248e-05 ±   = 0.0009396 σ

]
2

 [GeV/cπK-m
sππKm

0.14 0.15 0.16

)*
N

(D

0

500

1000

1500

2000

2500

3000

3500

Chi2 / ndf = 60.47 / 34
 1.225e+06 ±    = 1.238e+07 NU

 0.01229 ±  = 0.434 expU
  1.11 ±  = 18.44 corU
 95.63 ±   =  3351 D*N
 3.223e-05 ±      = 0.1454 μ

 3.248e-05 ±   = 0.0009396 σ

]
2

 [GeV/cπK-m
sππKm

0.14 0.15 0.16

)*
N

(D

0
200
400
600
800

1000
1200
1400
1600
1800
2000
2200

Chi2 / ndf = 52.95 / 34
 1.154e+06 ±    = 1.096e+07 NU

 0.01227 ±  = 0.4013 expU
 1.396 ±  = 15.95 corU
 85.78 ±   = 954.7 D*N
 9.804e-05 ±      = 0.1455 μ

 9.965e-05 ±   = 0.0008898 σ

]
2

 [GeV/cπK-m
sππKm

0.14 0.15 0.16

)*
N

(D

0
200
400
600
800

1000
1200
1400
1600
1800
2000
2200

Chi2 / ndf = 52.95 / 34
 1.154e+06 ±    = 1.096e+07 NU

 0.01227 ±  = 0.4013 expU
 1.396 ±  = 15.95 corU
 85.78 ±   = 954.7 D*N
 9.804e-05 ±      = 0.1455 μ

 9.965e-05 ±   = 0.0008898 σ

Figure 4.3: Mass difference ΔM = m(Kππs) − m(Kπ) for D∗ candidates (points) and
background events (histogram) with the fit. Left: DIS selection. Right: Photoproduction
selection.

transverse momentum of the D∗ has to be greater than 2.0 GeV. The selection cuts for
both inclusive D∗ data sets are summarised in table 4.7. The mass difference distributions
of the selected inclusive D∗ events in DIS or photoproduction are shown in figure 4.3.

4.5.2 D∗ Fit Method

The selected D∗ candidates consist of D∗ mesons and combinatorial background. The
number of D∗ events is obtained from the ΔM distributions. The ΔM values peak around
the nominal ΔM value of 0.1454 GeV/c2 forD∗ mesons and can be described by a Gaussian
distribution:

fD∗(ΔM) =
ND∗√
2πσ

· exp

(
−(ΔM − μ)2

2σ2

)
(4.12)

This D∗ signal function depends on three parameters: the number of D∗ mesons ND∗ ,
the mean ΔM value μ and the width σ. The combinatorial background can be described
approximately via a square-root function intersecting the x-axis at the pion mass. The pa-
rameterisation function for the background used is a power law with a quadratic correction
term in ΔM , which leads to a significant improvement of the fit quality [92]:

fBG(ΔM) = UN · (ΔM −mπ)Uexp · (1− Ucor ·ΔM2) (4.13)

The normalisation factor UN , the exponent Uexp and Ucor are fit parameters. The sum
of the D∗-signal and background functions is fitted to the measured ΔM distributions.
Taking the bin size dbin of the ΔM histogram into account the fit function is modified to:

fRC(ΔM) = dbin · (fD∗(ΔM) + fBG(ΔM)) (4.14)

For the fit the maximum-likelihood-method is used assuming a Poisson distribution. In
order to improve the background description the fit is done simultaneously to the ΔM
distribution of the D∗ candidates and background events.
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The background events are selected with the same algorithm described previously but with
the exception that the charge combination is different. The three-particle combinations
K+π+π−s or K−π−π+

s are selected. These are called wrong charge (WC) combinations
in contrast to right charge (RC) combinations in the case of a D∗ meson decay. For the
wrong charge combinations the kaon and pion pair would originate from a doubly charged
particle while for the right charge combinations the charge is zero. Since in both cases two
particles with the same charge and one with the opposite charge are selected, the same
combinatorial background distribution in ΔM is expected. For the total data sample
a scaling of the background distribution is not necessary. However, it is important for
some differential quantities so the scaling of the background is included in the fit. The fit
function to the wrong charge data set is given by:

fWC(ΔM) = dbin ·Nscal · fBG(ΔM) (4.15)

Nscal indicates the scaling factor between the right charge and wrong charge combinatorial
background:

NScal =
∑

binN
WC
bin∑

binN
RC
bin

for ΔM -bins between 0.155 and 0.1685 (4.16)

A simultaneous fit of the function fWC to the ΔM distribution of the background events
and of the right charge function fRC to the ΔM distribution of the D∗ candidates is
performed. In figure 4.3 the ΔM distributions of both data samples are shown together
with the result of this fit. For the total D∗ inclusive and D∗μ data set Nscal is approxi-
mately unity. In differential distributions deviations from one of up to 30% occur. This
is especially true for the correlation regions in the case of the D∗μ-sample.

For the inclusive DIS D∗ sample 3351± 96 D∗ signal events are obtained from the fit and
for the tagged photoproduction sample 955 ± 86 D∗ signal events. In the following the
signal region is defined using a window ±2.5 MeV/c2 around the nominal ΔM value for
the D∗ (ΔMD∗ = 0.1454 GeV/c2).

4.6 Selection of Muons in D∗ Events

The aim of this analysis is to tag both heavy quarks produced via the boson-gluon fusion
process. Therefore in addition to the reconstructed D∗ an additional muon is required to
tag the second heavy quark. Typically the energies of muons from heavy hadron decays
at HERA are smaller than 10 GeV. For muons from charmed hadrons the momentum is
on average smaller than for muons from beauty hadron decays (due to the smaller mass
of the charm quark and therefore the smaller charmed hadron mass). Only muons with
a momentum above 1.5 GeV/c can be identified in the central muon detector (CMD). A
good muon identification is possible if the muons traverse the whole CMD. This holds
if the energy of the muons is larger than 2.5 GeV. By identifying muons using the LAr
calorimeter only the reconstruction of muons is possible with momenta down to 0.8 GeV/c.

The muon selection in this analysis is performed using the program packages described
in [93, 94]. To ensure that the muon most likely originates from the decay of a charm or
beauty hadron the associated inner track is fitted to the primary vertex. This reduces the
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contribution of muons from the decay of strange particles like kaons since the lifetime of
these is large enough to be resolved in the CJC.

Only tracks classified as good tracks are used for the muon selection. Good tracks are
selected according to [93], which resolves track ambiguities and rejects bad and unphysical
track hypotheses. The cuts used in this selection are summarised in appendix B. For a iron
muon candidate the selected good track has to be linked to a track in the instrumented
iron. Often several good tracks reconstructed in the CJC can be linked to a reconstructed
iron track. The muon selection chooses the combination with the largest link probability.
Furthermore several quality criteria (see appendix B) are applied to the iron track, for
example a cut on the number of layers with hits. The identification of muons in the
calorimeter is based on the extrapolation of the track helix in the calorimeter and the
energy deposition within two cones with two different radii around this helix. In the
case of a minimum ionising particle (i.e. muon) the energy should be almost completely
deposited in the inner cone (Ra = 15 cm), while almost no energy should be deposited in
the outer cone (Rb = 30 cm). Different calorimeter muon qualities are defined [93]:

• QCal
μ = 3: very good quality

• QCal
μ = 2: good quality

• QCal
μ = 1: weak quality

• QCal
μ = 0: no calorimeter muon

Muons identified in the iron are given the muon quality Qiron
μ = QCal

μ +10. In this analysis
a new muon quality 10new is used. This quality is defined as muon quality 10 with the
additional requirement that the number of wire layers, which have hits, has to be above 5
and the first layer with hits has to be less than or equal 5, if the polar angle θμ is above
135◦. This additional requirement is similar to that already demanded for the forward
endcaps and is motivated by the fact, that at polar angles above this cut no hadronic
calorimeter exists and so more hadrons can reach the iron. Thus the following qualities
are considered:

0, 1, 2, 3, 10, 10new, 11, 12, 13

In the following muons are selected by requiring Qμ ≥ 2 or higher. To select muons in D∗

events a minimal momentum p(μ) of the muon of 2.0 GeV/c is required and only muons in
the central region with | η(μ) |< 1.735 are selected. To obtain a good signal to background
ratio in the D∗ signal region a cut on the ratio of the transverse energy fraction fET (D∗μ)
of the D∗μ-pair to the transverse energy of all particles with θ > 10◦ is applied:

fET (D∗μ) =
ET (D∗μ)∑
i, θ>10◦ ET (i)

> 0.15 (4.17)

Here ET (D∗μ) = pT (μ) + pT (D∗) and ET (i) = pT (i). Furthermore a cut on the track
length of the muon R > 10 cm is applied as for the decay particles of the D∗. In addition
all four tracks are required to be different ensuring four different particles and reducing
the number of kaons or pions mis-identified as muons.
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Figure 4.4: Distribution of the muon quality for muons in D∗ events in photoproduction
from the PYTHIA Monte Carlo simulation. For this plot the usual D∗μ cuts (see table
4.9) are used but the cut on the muon quality of Qμ ≥ 10new was relaxed to Qμ ≥ 2.

In figure 4.4 the number of real muons in the Monte Carlo simulation are presented for
each muon quality for the photoproduction D∗μ data set. The number of muons coming
from an inflight decay of light hadrons and the number of hadrons mis-identified as muons
are also shown. The sum of the two contributions is referred to as muon background or
as muon fake in the following.

The purity of the muons with calorimeter qualities is very low in the case of charm pro-
duction, 9% for Qμ = 2 and about 35% for Qμ = 3. Due to the muon triggers and the
L4 setup, where pT (μ) > 2.0 GeV/c or pT (μ) > 1.5 GeV/c is required in the muon finders
since 1999, the number of real muons reconstructed in the calorimeter only is relatively
small, about 8% for charm and about 10% for beauty. Therefore muons identified only in
the calorimeter are not used. Instead the normal iron muons with muon qualities 11, 12
and 13 and the iron muons with 10new are selected (Qμ ≥ 10new). With this selection the
purity improves from about 57% to 64% in the case of charm and the loss of real muon
events is about 5%. For beauty production the loss of real muon events is even smaller,



4.6. SELECTION OF MUONS IN D∗ EVENTS 85

Charm Beauty
Muon quality P [%] ε [%] P [%] ε [%]

2 9 1 42 1
3 35 7 84 9
10 44 39 86 17

10new 54 34 91 15
11 68 9 94 8
12 70 6 98 8
13 74 39 98 58

2+3,10,11-13 52 100 93 100
10,11-13 57 92 95 90

10new, 11-13 64 87 96 89

Table 4.8: Purity P and efficiency ε depending on the muon qualities (see text) for D∗μ
events. The quoted values are for the photoproduction sample. For the combined DIS and
photoproduction sample the values are almost the same.

only about 1%, and the already excellent purity improves from 95% to 96%.

Table 4.8 summarises the purities and the efficiencies for each muon quality and also for
the combined sets. The values are quoted for the photoproduction sample, but almost the
same values are obtained for the combined DIS and photoproduction sample.

For beauty production the purity predicted by the PYTHIA Monte Carlo for a D∗μ
photoproduction sample with Qμ ≥ 10new is 96% and therefore much larger than the
purity of 64% predicted for charm production (table 4.8). The muon background for
charm production is therefore predicted to be about a factor 9 larger than the muon
background for beauty production. The reason is, that the ratio of D∗ events with an
additional real muon in the visible range per D∗ event is for beauty considerably larger
than for charm production (see table 2.5). The total amount of muon background events
however is for beauty and charm production only slightly different. Therefore the purity
is for beauty production larger than for charm production.

In table 4.9 all cuts applied for the selection of D∗μ events are summarised separately
for the selection of the photoproduction data set and the DIS data set. The combined
photoproduction and DIS data sample is then obtained by applying a logical OR of the
two subsets. The kinematic range of the combined data set is Q2 < 100 GeV2 and
0.05 < y < 0.75. The requirement of p(μ) > 2 GeV/c together with the requirement of
D∗-mesons and muons identified in the central detector leads to a strong enrichment of
events from beauty production (see table 2.5).

Two events with a reconstructed D∗ and an additional muon are shown in figures 4.5 and
4.6. Both events are beauty candidates. More details of the events can be found in the
figure captions.

The distributions of the mass difference ΔM between the D∗ and the D0 particle can-
didates are shown for the final D∗μ data sets in figure 4.7. The distributions are shown
separately for both data classes in each figure, the right charge data (points) containing
the D∗ signal and the wrong charge data (histogram), together with the fit introduced
already for the inclusive D∗-meson data. 184 ± 26 and 229 ± 30 D∗μ events are obtained
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DIS Photoproduction

Data taking period 1997 and 1999-2000

Run selection good and medium runs

Detector status CJC, CIP/COP, CMD, LAr, SpaCal, BDC, ToF, Lumi

Z-vertex | zvertex |< 35 cm

Trigger selection s19, s22, s56 (since 1999), s19, s22, s56 (since 1999)
s61 or s2 (until run 19443)

L5 class 16, 24 (1997) or L4 class 15, 16 (since 1999)

Kinematic selection E′
e > 8 GeV E′

e < 8 GeV

D∗ selection Decay channel D∗ → D0πs → Kππs

R(K,ππs) > 10 cm
d′ca(K,π) < 1 cm

pT (K,π) > 0.3 GeV/c
pT (πs) > 0.12 GeV/c

| m(Kπ)−mD0 |< 80 MeV/c2

ΔM < 0.1685 GeV/c2

μ selection At least one iron muon with Qμ ≥ 10new

R > 10 cm
track(μ) �= track(K,π, πs)

D∗μ selection fET (D∗μ) > 0.15

Kinematic range pT (D∗) > 1.5 GeV/c
| η(D∗) |< 1.5
p(μ) > 2 GeV/c
| η(μ) |< 1.735

0.05 < y < 0.7 0.05 < y < 0.75
2 < Q2 < 100 GeV2 Q2 < 1 GeV2

Table 4.9: Selection cuts of the final D∗μ subsets: Photoproduction and DIS. The combined
photoproduction and DIS data set is the sum of both subsets. The kinematic range of the
combined data set is Q2 < 100 GeV2 and 0.05 < y < 0.75.

by the fit for the photoproduction sample and the total data set containing also DIS
events respectively. The values are within the expected deviations in agreement with the
number of D∗μ events obtained by subtracting the wrong charge distribution from the
right charge distribution in the signal region (±2.5 MeV/c2 around the nominal value of
ΔM = 0.1454 GeV/c2). In table 4.10 the parameters of the fits are presented for both
data sets.

To obtain a differential distribution in a particular arbitrary quantity the number of D∗
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Figure 4.5: Illustration of a D∗μ candidate, which belongs to the third correlation region.
Here the azimuthal angle between the D∗ and the muon is below 90◦ and the two particles
have opposite charges.
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Figure 4.6: Illustration of a D∗μ candidate, which belongs to the second correlation region.
Here the azimuthal angle between the D∗ and the muon is above 90◦ and the two particles
have same charges.



88 CHAPTER 4. DATA SELECTION

]
2

 [GeV/cπK-m
sππKm

0.14 0.15 0.16

)μ*
N

(D

0

20

40

60

80

100

120

140

160

180

Chi2 / ndf = 24.75 / 34
 4.888e+05 ±    = 1.125e+06 NU

 0.05168 ±  = 0.5269 expU
 5.883 ±  = 14.88 corU
 25.52 ±   = 183.9 D*N
 0.0001722 ±      = 0.1454 μ
 0.0002028 ±   = 0.00111 σ

]
2

 [GeV/cπK-m
sππKm

0.14 0.15 0.16

)μ*
N

(D

0

20

40

60

80

100

120

140

160

180

Chi2 / ndf = 24.75 / 34
 4.888e+05 ±    = 1.125e+06 NU

 0.05168 ±  = 0.5269 expU
 5.883 ±  = 14.88 corU
 25.52 ±   = 183.9 D*N
 0.0001722 ±      = 0.1454 μ
 0.0002028 ±   = 0.00111 σ

]
2

 [GeV/cπK-m
sππKm

0.14 0.15 0.16

)μ*
N

(D

0
20
40
60
80

100
120
140
160
180
200
220
240

Chi2 / ndf =  32.3 / 34
 4.729e+05 ±    = 1.192e+06 NU

 0.04581 ±  = 0.5015 expU
 5.875 ±  = 13.35 corU
  30.3 ±   = 229.3 D*N
 0.0001568 ±      = 0.1454 μ
 0.0002132 ±   = 0.001113 σ

]
2

 [GeV/cπK-m
sππKm

0.14 0.15 0.16

)μ*
N

(D

0
20
40
60
80

100
120
140
160
180
200
220
240

Chi2 / ndf =  32.3 / 34
 4.729e+05 ±    = 1.192e+06 NU

 0.04581 ±  = 0.5015 expU
 5.875 ±  = 13.35 corU
  30.3 ±   = 229.3 D*N
 0.0001568 ±      = 0.1454 μ
 0.0002132 ±   = 0.001113 σ

Figure 4.7: Mass difference ΔM = m(Kππs) −m(Kπ) for D∗μ candidates (points) and
background events (histogram) together with the fit. Left: photoproduction. Right: DIS +
photoproduction.

Parameter Photoproduction DIS + photoproduction
ND∗ 184 ± 26 229± 30
μ [MeV/c2] 145.4 ± 0.2 145.4 ± 0.2
σ [MeV/c2] 1.1± 0.2 1.1 ± 0.2
UN [106] 1.1± 0.5 1.2 ± 0.5
Uexp 0.526 ± 0.051 0.501 ± 0.046
Ucor [c4/MeV2] 14.9 ± 5.9 13.4± 5.9

Table 4.10: Fit parameters of the ΔM distribution for both D∗μ data sets.

or D∗μ events in a bin is determined by simultaneously fitting the ΔM distribution of the
right and wrong charge combinations in this bin. Since the number of events can be very
small in some bins, the number of free parameters is reduced for these fits. Only ND∗ and
UN are left as free parameters, the others are fixed to the values obtained from the fit to
the total samples (see table 4.10 (D∗μ) and figure 4.3 (inclusive D∗)). The mean value μ
is always fixed to the nominal value of 0.1454 MeV/c2.

Due to the ΔM fit the differential distributions do not contain combinatorial background
anymore. Nevertheless the distributions still contain muon background in addition to
signal events. This background is corrected later using the Monte Carlo simulation.

4.7 Investigations to increase the Number of Selected D∗μ
Events

Since the number of selected D∗μ events is small for a differential analysis, several inves-
tigations to increase the number of events were performed.
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Figure 4.8: Mass difference ΔM = m(K0πππs) − m(K0ππ) for D∗ candidates (points)
together with the fit. Left: All inclusive D∗ events without any trigger and DIS or photo-
production selection. Right: D∗μ events with photoproduction selection. The data taking
period 1999e+/2000 is used.

In addition to the “golden” D∗ decay channel D∗ → D0πs with D0 → K−π+, also two
other D0 channels, namely D0 → K̄0π+π− with K̄0 → π+π− and D0 → K−π+π+π−, can
be used for the reconstruction of D∗-mesons. The branching ratio of D0 → K̄0π+π− is
5.4%, larger than the 3.83% forD0 → K−π+. However, since less than half of the produced
K0 mesons can be reconstructed in the detector as K0

S and because of a K0
S → π+π− decay

rate of 67.7% the effective decay rate of the D0 is in this case only 2.02% and thus the
number of identified D0 mesons smaller than in the golden channel. The decay channel
D0 → K−π+π+π− has a larger decay rate of 7.49%, but due to the larger multipicity the
combinatorial background is also larger.

An explicit selection based on [95] was nevertheless performed for the decay channel D∗ →
D0πs → K0π+π−πs. Some cuts were relaxed: the minimal transverse momenta of the pion
candidates, from which the K0 is reconstructed, was required to be above 0.15 GeV/c,
no maximal start radius for all tracks was required, the mass of the D0 candidate was
allowed to be within a window of ±80 MeV/c2 around the nominal D0 mass. A cut on the
sum of the absolute transverse momenta of the two pion candidates forming the K0 was
however demanded: pT (π+) + pT (π−) > 0.4 GeV/c. For the inclusive D∗ data set a cut
pT (D∗) > 2.5 GeV/c was required however for the D∗μ data set this cut was relaxed to
1.5 GeV/c. In figure 4.8 the ΔM distribution obtained for this decay channel is shown for
the inclusive data sample and for the D∗μ sample selecting only photoproduction events
and taking only the data periods 1999e+ and 2000. Since the resulting number of events
is very small this decay channel was not included in this analysis.

In the case of the channel D∗+ → D0π+
s → K−π+π+π−π+

s the combinatorial background
is larger, because the D0 decays directly into four particles. A signal acceptable and
comparable to that obtained in the golden decay channel could only be obtained using
very hard cuts on the transverse momentum of the D∗ meson [96]. The gain in the number
of D∗μ events would therefore be relatively small. At the same time however the data set
would become completely inhomogeneous. Thus this channel is excluded as well.
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Another way to increase D∗μ statistics is to extend the muon reconstruction also to the
forward range. Muons identified in the forward muon detector (FMD) are reconstructed
generally with a momentum above 5 GeV/c and a polar angle between 8◦ and 16◦. The
muon momentum distribution is harder for beauty than for charm, but the beauty events
are produced more centrally in the detector. In the visible range, restricted in y, pT and
η, the estimated gain is only between 10− 15% according to the Monte Carlo simulation.
With the improved forward detector at HERA II the situation could be better. Detecting
D∗-mesons also in the forward region would increase the statistics but at the same time
more muons should also be found in the FMD in events with a forward D∗ since the heavy
quark event is boosted into the forward direction.

A third way to increase the statistics in double tagged events is to add D∗e events. No
trigger however was installed for electrons with such low energies as typical of heavy quark
events. Only tagged photoproduction can therefore be triggered with s83 or DIS events
with s61. These samples however only give a small part of the overall sample (untagged
photoproduction and DIS) and the cut on the transverse momentum has to be increased
strongly compared to the muon case. Also a cut on the minimum angular difference
between the electron track and a second track is necessary to ensure a small fraction
of mis-identified hadrons. In the future a technically improved electron finder and an
untagged trigger based on the Fast Track Trigger (FTT) at HERA II could improve this
situation. For this analysis no D∗e events were used. Thus this analysis will be based on
D∗μ events with a D∗ reconstructed via the golden decay channel in the central detector
and a muon reconstructed in the iron as discussed in the section before.

After selecting D∗μ events either in untagged photoproduction or in a combined sample
containing DIS events in addition the following chapters determine the beauty contribution
in the two data sets. For this purpose the charge and angle correlations between the D∗

and the muon are used. Due to the cut on the transverse momentum of the muon and also
due to trigger requirements the beauty contribution is enriched. First however the Monte
Carlo simulation is compared to the data. It is used later for the separation of charm and
beauty events, to correct for the muon background and also to monitor efficiencies and to
determine cross sections.



Chapter 5

Comparison of Data and
Simulation

In this chapter the description of the data by the Monte Carlo program is investigated,
since this is to be used for the separation of charm and beauty, the muon background
correction and the efficiency calculation.

The description of the kinematic variables in photoproduction and in DIS are checked first
using the inclusiveD∗ samples selected in the previous chapter, where the number of events
is relatively large. The kinematic variables are then also checked for the D∗μ samples.
Then event topological variables, for example the number of tracks or the number of D∗μ-
candidates, are considered. In a third step D∗ quantities are checked for the inclusive D∗

selection and the final D∗μ selection. Afterwards the muon variables and D∗μ quantities
are compared. In the last section the muon background in D∗ events is investigated in
more detail. For this purpose a D∗ sample containing a high-momentum track of the D∗

decay particles (kaon or pion) is selected and it is investigated whether-or-not this track
is falsely identified as a muon.

For all variables the data distributions are obtained using the simultaneous D∗ fit to
the ΔM distribution of the right and wrong charge data samples in each bin (see section
4.5.2). The Monte Carlo predictions for charm and beauty production are both normalised
to the data. A shape comparison between the data and the predicted distributions is
performed. For the inclusive D∗ sample the beauty fraction is negligible in the data and
good agreement between the data and the charm Monte Carlo distributions is expected.
For the D∗μ sample the beauty fraction is sizeable, about 30% as it will be obtained
in chapter 6. Quantities, which have different shape for charm and beauty, cannot be
described by only one Monte Carlo simulation. In the next chapter a comparison of the
most important D∗ and muon quantities are redone using the extracted beauty fraction.

5.1 Reweighting of the Monte Carlo Simulation

For photoproduction the MC generator PYTHIA [63] is used. As discussed in chapter
2 the “normal” resolved component in photoproduction is expected to be very small in
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Figure 5.1: Number of D∗μ events depending on the trigger combinations of the photopro-
duction sample. The numbers indicate the following trigger combinations: 1: s19 only, 2:
s22 only, 3: s56 only, 4: s19 and s22 but no s56, 5: s19 and s56 but no s22, 6: s22 and
s56 but no s19, 7: s19 and s22 and s56 (see table on the right hand side, here X indicates
a fired trigger). The points represent the data, the triangles the beauty and the squares
the charm Monte Carlo simulation. For the Monte Carlo simulation the total number of
events is scaled separately for charm and beauty to the number of events in the data. The
Monte Carlo simulation contains the final weighting procedure.

the D∗μ sample. Therefore in photoproduction only the direct component and the charm
(beauty) excitation component are taken into account. In the following the sum of the
direct and the excitation components as predicted by the Monte Carlo simulation is always
shown.

In DIS the remaining resolved components (normal and excitation) are neglected and
RAPGAP [64] is chosen as Monte Carlo generator. In the Monte Carlo generator RAP-
GAP the initial state radiation of the electron is simulated. For the total D∗μ data set
the Monte Carlo predictions shown always consist of the direct and excitation photopro-
duction part and the DIS part. In the total D∗μ sample the contribution of DIS events
is about 20% (see table 4.1). In order to adjust this contribution in the Monte Carlo
simulation to that of the data the DIS events are weighted by a factor 1.35 for charm
and for beauty production. For the final D∗μ sample several effects, which are not or not
correctly described in the Monte Carlo simulation, are taken into account via reweighting
of the Monte Carlo. In the Monte Carlo simulation the L1 prescale factors of the con-
sidered subtriggers are not modelled. Thus the prescale factors determined in the last
chapter for each trigger combination in the two different data sets (photoproduction: s19,
s22, s56; total: s19, s22, s56, s2 or s61) and for each data taking period are applied in
the Monte Carlo simulation. The number of D∗μ-events depending on the fired trigger
combinations is shown for the photoproduction sample in figure 5.1. The data contain
events from charm as well as from beauty production. The agreement between data and
Monte Carlo simulation is in most bins reasonable.

For the period 1999e+/2000 the efficiencies of the muon finder or the logical OR of both
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precondition of
μ finder both finders

γp
1999e+/2000 c-MC 1.69 0.50

b-MC 1.37 0.60
1999e− c-MC 1.09 0.93

b-MC 0.96 1.04
1997 c-MC 1.25 0.80

b-MC 1.20 0.83
γp + DIS

1999e+/2000 c-MC 1.74 0.69
b-MC 1.48 0.68

1999e− c-MC 1.0 1.0
b-MC 0.90 1.07

1997 c-MC 1.56 0.74
b-MC 1.35 0.79

Table 5.1: Weights for the Monte Carlo simulation of the two possible L4 finder precon-
ditions: events, where only the μ finder or where both finder preconditions are fulfilled.
The weights indicated in this table are obtained via the calculation of the fractions of the
two precondition classes (where the muon finder precondition is fulfilled alone or where in
addition also the D∗ finder precondition is fulfilled) in the data and in the Monte Carlo
simulation. For the determination of these fractions in the data the number of D∗ candi-
dates in the signal region is used.

finders are described by the Monte Carlo simulation, while for the other two periods
the efficiency of the muon finder has to be adjusted to the data. In the year 1997 the
efficiency of the muon finder is almost constant in pT (μ) at around 80%. In the Monte
Carlo simulation thus an overall efficiency of 80% is used. In the period 1999e− the
efficiency at threshold (pT (μ) > 2.0 GeV/c required in the L4 finder) is adjusted to the
20% value obtained in the data. For all other regions a good agreement between data and
Monte Carlo simulation is found.

The Monte Carlo simulation however does not describe correctly the fraction of events,
where only one of the both of the L4 preconditions for the muon finder and the D∗finder or
where the precondition for both finders are fulfilled. The L4 preconditions in this analysis
are defined as the L1 triggers, on which the L4 finders ran (see table 4.6). These numbers
are adjusted in the Monte Carlo simulation depending on the data set and the data taking
period. The case, where only the D∗-finder precondition is fulfilled, does not occur in the
data.

In table 5.1 the weights applied to the fraction of events, in which the muon finder L4
precondition or both D∗ and muon finder L4 preconditions are fulfilled, are shown. These
weights are determined after requiring the corresponding L4 finder. Since the efficiencies
of the muon finder or the logical OR of both finders are described by the Monte Carlo
simulation – at least in the adjusted Monte Carlo simulation – the applied correction
factors between data and Monte Carlo simulation do not change if the L4 finder is not
required. Different weighting factors are obtained for charm and beauty and for the
photoproduction or the total sample.
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Figure 5.2: Muon quality of D∗μ events in photoproduction. The Monte Carlo simulation
contains the final weighting procedure. In order to produce this figure the usual cut on the
muon quality Qμ ≥ 10 was relaxed to Qμ ≥ 2.

(link prob.)10log
-4 -3 -2 -1 0

)μ
N

(D
*

0
20
40
60
80

100
120
140
160
180
200

Data

Charm
Beauty

link prob.
0 0.2 0.4 0.6 0.8 1

)μ
N

(D
*

0
20
40
60
80

100
120
140
160
180
200

Data

Charm
Beauty

Figure 5.3: Link probability of the reconstructed muon track in the iron and the CJC track
for D∗μ events in photoproduction. The same data are shown twice in a logarithmic and
a linear scale. The Monte Carlo simulation contains the final weighting procedure.

An additional reweighting of the Monte Carlo simulation is performed in the transverse
momentum and the polar angle of the muon, depending on the muon qualities. Here the
same reweighting as used for an elastic J/Ψ→ μ+μ− analysis [97] is applied. Only small
differences between data and Monte Carlo simulation occur for muons reconstructed in the
iron before reweighting. For muons reconstructed only in the calorimeter the discrepancies
between data and Monte Carlo are significantly larger before the reweighting. The event
topologies of D∗μ events which have many tracks and elastic J/Ψ two-track events differ.
But the efficiency of muons reconstructed in the instrumented iron are equivalent since
iron muons are also in D∗μ events quasi isolated objects in the iron. The same weighting
as in the J/Ψ analysis is therefore applied, even if it has only a very small impact on the
muon distributions.

The muon quality and the link probability between the reconstructed muon track in the
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Figure 5.4: Reweighting of the photoproduction D∗μ sample in the Monte Carlo simulation.
a) Charm; b) Beauty. Weighting 1 includes the Monte Carlo simulation adjustment due
to L1 prescaling, L4 finder efficiencies and the fractions of the number of events fulfilling
the L4 finder precondition for the muon finder or for both finders (D∗ and muon finder).
Weighting 2 includes in addition the adjustment of the fractions for the different beauty
decay topologies.

iron and the track in the CJC are well described by the Monte Carlo in D∗μ events,
as shown in figure 5.2 and 5.3 for the photoproduction sample. For the total sample
the description is as good as in the photoproduction case. No further adjustments are
therefore applied.

As already discussed in chapter 2 weights for the branching ratios of the three different
beauty decay topologies, where the D∗ meson and the muon come either from different
quarks (here the cascade or direct decay of a beauty hadron into a muon are distinguished)
or from the same quark, are applied. This ensures the correct fractions of these beauty
topologies. In case of charm production no such weighting is applied.

To summarise, the D∗μ Monte Carlo samples used in the next sections and chapters are
always adjusted for the following quantities:

• DIS contribution in the case of the total sample

• L1 Prescaling

• Muon L4 finder efficiency for 1997 and 1999e−

• Fractions of the number of events fulfilling the L4 finder precondition for the muon
finder or for both finders (D∗ and muon finder)

• Momentum and polar angle distribution of the muon

• Fractions for the different beauty decay topologies
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Figure 5.5: Description of the important kinematic variables in photoproduction: y and
Wγp. The black dots indicate the inclusive D∗ data, the squares the charm Monte Carlo
and the triangles the beauty Monte Carlo prediction.

Figure 5.4 shows the population of the Monte Carlo simulation in the four correlation
regions without adjustment and with adjustment. The adjustments due to L1 prescaling,
L4 finder efficiencies and the fractions of the number of events fulfilling the L4 finder
precondition for the muon finder or for both finders (D∗ and muon finder) have only a
small impact on the relative population of the correlation regions, while the adjustment of
the fractions for the different beauty decay topologies, which is only applied to the beauty
Monte Carlo simulation, has a strong impact on the population as expected.

For the inclusive D∗ data sets (mainly charm) no such reweighting of the Monte Carlo
simulation was applied, since here only one subtrigger with one finder is used. For a shape
comparison the distributions directly obtained from the Monte Carlo simulation are thus
sufficient.

5.2 Description of ep Scattering

For photoproduction the description of the shape of the inelasticity y and the centre of
mass energy Wγp of the photon-proton system are checked using the inclusive D∗ data
set as well as the final D∗μ data set. In figure 5.5 the inclusive D∗ data set is compared
to the prediction of the charm and beauty Monte Carlo simulations. Here the number
of events in the Monte Carlo simulation is normalised to the number of events in the
data. The data of the inclusive D∗ sample contains mainly events from charm production.
The acceptance of ET33 is y-dependent and this detector acceptance is not simulated in
the Monte Carlo program. Here no ET33 acceptance weighting factors are applied, but
the description of the data by the Monte Carlo simulation is already reasonable. The
corresponding distributions obtained for the final D∗μ photoproduction data set is shown
in figure 5.6. The final D∗μ sample contains both, events from charm and events from
beauty production. The Monte Carlo simulations also describe this data quite well.
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Figure 5.6: Description of the important kinematic variables in photoproduction: y and
Wγp. The black dots indicate the final D∗μ data, the squares the charm Monte Carlo
and the triangles the beauty Monte Carlo prediction.

In DIS the correct description of the reconstruction of the electron candidate has to be
ensured in the Monte Carlo simulation. Thus for the inclusive D∗ as well as for the
D∗μ DIS sample the energy Ee′ , the polar angle θe′ and the azimuthal angle Φe′ of the
scattered electron are compared. Furthermore the kinematic variables obtained from those
quantities, like the virtuality of the photon Q2

e, the inelasticity ye and the Bjørken variable
xe are also compared.

Figure 5.7 shows these six variables for the inclusive D∗ sample and figure 5.8 for the
D∗μ DIS data sample. Especially in case of E′

e and ye larger differences between charm
and beauty production are obtained. Since the data in the case of the inclusive D∗

sample are expected to contain almost no beauty events the charm Monte Carlo simulation
describes the data well. For the D∗μ sample a reasonable description by the Monte Carlo
simulation is also obtained. From the energy distribution of the scattered electron, the
photoproduction background in the data can be estimated. For a data sample with a
sizable photoproduction background a large peak at small Ee′ would be obtained. Since
there is no apparent peak at small energies of the scattered electron Ee′ (see figure 5.7
and 5.8), the photoproduction background in the data is very small.

The number of reconstructed central tracks (with pT > 0.3 GeV/c), D∗-mesons, muons and
D∗μ-candidates are important variables, which characterise the topology of the event. The
description of these quantities is essential to get a correct estimation of any double counted
D∗ or D∗μ events in the Monte Carlo simulation. Furthermore, if the number of tracks
is not described by the Monte Carlo simulation, also the fraction of muon background
events will be incorrectly simulated. Figure 5.9 shows the number of muon, D∗ and
D∗μ candidates as well as the number of tracks per event for the photoproduction D∗μ
sample. Reasonable agreement between data and Monte Carlo simulation is obtained.
Good description of the data by the Monte Carlo simulation is obtained also for the total
D∗μ data sample, which is not shown here.
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Figure 5.7: Description of the important kinematic variables in DIS: Ee′, θe′, Φe′, Q2
e,

ye and xe. The black dots indicate the inclusive D∗ data, the squares the charm Monte
Carlo and the triangles the beauty Monte Carlo prediction.
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Figure 5.8: Description of the important kinematic variables in DIS: Ee′, θe′, Φe′, Q2
e, ye

and xe. The black dots indicate the D∗μ data, the squares the charm Monte Carlo and
the triangles the beauty Monte Carlo prediction.
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Figure 5.9: Event variables of the photoproduction D∗μ data sample. Shown are the
number of muon, D∗ and D∗μ candidates as well as the number of reconstructed central
tracks. The black dots indicate the data, the squares the charm Monte Carlo and the
triangles the beauty Monte Carlo prediction.

5.3 Description of D∗ Kinematical Variables

The D∗-meson is reconstructed via its decay products. The description of variables, on
which cuts are applied in the D∗ reconstruction – the radial track length R, the transverse
momentum pT and the minimal distance d′ca of the corresponding non-vertex fitted track
with respect to the primary vertex – are shown for the kaon together with the pseudora-
pidity η and the azimuthal angle φ, in figures 5.10 or 5.11. For the kaon in the inclusive
D∗ or D∗μ photoproduction samples the agreement between data and Monte Carlo simu-
lation for all distributions is reasonably good. For the other decay particles as well as for
the total data set a similar good description of the data by the Monte Carlo simulation
is obtained. For most variables the differences between charm and beauty Monte Carlo
are small, but for the distribution of the pseudorapidity larger differences occur. The
D∗μ data contain events from charm as well as from beauty production. A Monte Carlo
simulation containing a mixture of beauty and charm events should describe the data in
an acceptable way.

For the inclusive D∗ or the final D∗μ photoproduction data the transverse momentum,
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Figure 5.10: Description of the kaon variables in the inclusive D∗ photoproduction
sample. The black dots indicate the data, the squares the charm Monte Carlo and the
triangles the beauty Monte Carlo prediction. The transverse momentum pT , the pseudo-
rapidity η, the azimuthal angle φ, the radial track length R and the minimal distance d′ca
of the corresponding non-vertex fitted track with respect to the primary vertex of the kaon
are shown.
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Figure 5.11: Description of the kaon variables in the D∗μ photoproduction sample.
The black dots indicate the data, the squares the charm Monte Carlo and the triangles
the beauty Monte Carlo prediction. The transverse momentum pT , the pseudorapidity
η, the azimuthal angle φ, the radial track length R and the minimal distance d′ca of the
corresponding non-vertex fitted track with respect to the primary vertex of the kaon are
shown.
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the pseudorapidity and the azimuthal angle of the D∗-meson are shown in figure 5.12.
In addition to the D∗-variables which are shown, also the D0-variables are all described
reasonably by the Monte Carlo simulation. For the inclusive DIS D∗ data sample and the
overall D∗μ sample a similar description is obtained for the D∗ and D0-meson quantities.

5.4 Description of Muon and Combined Variables

In this section the same variables as considered for the decay particles of the D∗-meson
are checked for the muon: The transverse momentum pT (μ), the pseudorapidity η(μ), the
azimuthal angle φ(μ), the radial track length R(μ) and the minimal distance d′ca(μ) of the
corresponding non-vertex fitted track with respect to the primary vertex. These variables
are shown in figure 5.13 for the photoproduction sample and again reasonable agreement
between data and the Monte Carlo simulation is obtained. Also for the total D∗μ sample
including the DIS events in addition a similar description is obtained.

Further combined quantities obtained using the four-momentum of the D∗-meson and
the muon four-momentum are considered. Figure 5.14 shows for photoproduction the
transverse momentum p∗T (D∗μ), the rapidity ŷ(D∗μ) and the invariant mass M(D∗μ) of
the D∗μ-pair as well as the azimuthal angle difference ΔΦ∗ between the D∗-meson and the
muon. In addition the transverse energy fraction fET (D∗μ) of the D∗μ-pair with respect
to the transverse energy of all final state particles with a polar angle above 10◦ is shown.
For these variables reasonable agreement between data and Monte Carlo simulation is
obtained for the photoproduction sample as well as for the total D∗μ sample (not shown
here).

5.5 Description of the Muon Background

The remaining background in D∗μ events after performing a ΔM fit consist of hadrons,
mis-identified as muons, as well as muons from inflight decays. By reconstructing a D∗-
meson the background from u, d, s events is negligible. The description of the remaining
background, called muon background or muon fake, by the Monte Carlo simulation is
investigated in this section.

The probability P to mis-identify a hadron as a muon depends on the flight path and the
material traversed in the H1 detector and also on the hadron type itself. For example the
muon mis-identification probability is larger for kaons than for pions.

In the first measurement of open beauty at HERA [6, 98] the muon mis-identification
probability was obtained by an inline Monte Carlo generator, which simulates and recon-
structs only one hadron per event. With this method a large amount of Monte Carlo
events could be produced. The obtained mis-identification probabilities determined as a
function of p and θ are in good agreement with those obtained from the data. In the data
these probabilities were extracted using elastic Φ→ K+K− and K0 → π+π− events. The
hadron composition in the final data sample was taken from the Monte Carlo simulation
and the muon background in the final data sample was then obtained by applying the
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Figure 5.12: Description of the D∗ variables in the inclusive D∗ (left side) and in
the D∗μ (right side) photoproduction samples. The black dots indicate the data, the
squares the charm Monte Carlo and the triangles the beauty Monte Carlo prediction. The
transverse momentum pT , the pseudorapidity η, the azimuthal angle φ of the D∗-candidate
are shown.
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Figure 5.13: Description of the muon variables in the D∗μ photoproduction sample.
The black dots indicate the data, the squares the charm Monte Carlo and the triangles the
beauty Monte Carlo prediction. The transverse momentum pT (μ), the pseudorapidity η(μ),
the azimuthal angle φ(μ), the radial track length R(μ) and the minimal distance d′ca(μ) of
the corresponding non-vertex fitted track with respect to the primary vertex are sown.
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Figure 5.14: Description of the combined D∗μ variables in the D∗μ photoproduction
sample. The black dots indicate the data, the squares the charm Monte Carlo and the tri-
angles the beauty Monte Carlo prediction. Shown are the transverse momentum p∗T (D∗μ),
the rapidity ŷ(D∗μ), the invariant mass M(D∗μ) of the D∗μ-pair and the azimuthal angle
difference ΔΦ∗ between the D∗-meson and the muon. In addition the transverse energy
fraction fET (D∗μ) of the D∗μ-pair with respect to the transverse energy of all final state
particles with a polar angle above 10◦ is shown.
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muon fake probabilities on a data sample, with no real muons and a similar topology as
the final data set.

In this analysis a data sample with similar event topology as the final data set and without
real muons are the inclusiveD∗ samples in tagged photoproduction and DIS. Here, however
the obtained muon fake contribution would be statistically very limited. A further problem
in using these samples is, that a different kinematic reconstruction is used for the inclusive
D∗-selection and the D∗μ selection in photoproduction.

In a recent open beauty (b → μ) measurement [7], detailed studies [99] showed, that
the mis-identification probability depends not only on p and θ, but also on the energy
deposition in the calorimeter (important for hadrons, mis-identified as muons, so-called
punch through) and the decay kinematics of the hadrons (important for decay muons). In
principle these dependencies should be simulated also with an inline generator and prob-
abilities as a function of the energy deposition and the decay kinematics are in principle
calculable. However due to at least two more dependencies much more statistics is needed
to get precise probabilities and furthermore possible effects due to other particles or tracks
cannot be simulated.

Due to these reasons, in this analysis the muon background is taken directly from the
Monte Carlo simulation, which contains significantly more events than the data and which
takes care of all hidden dependencies of the mis-identification probability.

The hadron mis-identification probability is checked with the decay particles of the D0

meson using the inclusive D∗ samples. This method has the advantage that the mis-
identification probability is determined for particles in a realistic environment. The parti-
cles are in jets and correlations due to overlapping tracks or shower signals are taken into
account.

Since for the selected muon a cut p(μ) > 2.0 GeV/c is applied, only inclusive D∗ events
with a momentum of one of the two D0 decay particles – kaon or pion – of above
p(K or π) > 2.0 GeV/c are used. This sample is referred to as the starting sample.
For this starting sample the distribution in the azimuthal angle φ, the momentum p and
the polar angle θ of the kaon or pion are shown in figure 5.15. It is then checked, whether
the kaon or pion, fulfilling the above condition, is falsely reconstructed as a muon, leading
to the muon background distributions. To ensure that the kaon or pion of theD∗-candidate
is not a real muon, in each bin of the considered distributions, the simultaneous ΔM -fit
to the right and wrong charge combination distribution is performed. The hadron mis-
identification probability depending on a variable x is then obtained as the ratio of the
muon background distribution to the distribution of the starting sample.

The probabilities determined in this way hold for a certain ratio of kaons and pions in
the sample and it has to be ensured, that this ratio is also described by the Monte Carlo
simulation in the correct way. The ratio between reconstructed kaon and pion candidates,
obtained via the usual ΔM -fit to reduce the amount of wrong candidates, is about one
in the starting sample. For the data a ratio of 1.03 ± 0.05 is obtained and for charm or
beauty a ratio of 1.07 or 1.1 is obtained respectively in the photoproduction sample. Since
the momentum distribution of the heavier kaon is slightly harder than the momentum
distribution of the pion this ratio is slightly above one. However, this ratio is reasonably
described for both inclusive D∗-samples by the Monte Carlo simulation.
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Figure 5.15 shows the muon mis-identification probability P as a function of the azimuthal
angle φ, the momentum p and the polar angle θ of the kaon or pion for the inclusive D∗

DIS sample. The DIS sample is chosen, since it contains significantly more events. Good
agreement between data and Monte Carlo is obtained and as expected the single differential
hadron mis-identification probabilities do not depend strongly on the type of the heavy
quark. The small differences between the two heavy quark types can be explained by the
dependence of the muon mis-identification probability on θ and small differences in the θ
starting distribution.

After showing, that the hadron mis-identification probabilities and the muon-, event-, D∗-,
D∗μ-, and kinematic variables are described by the MC in a correct way, one can conclude,
that the Monte Carlo simulation describes the muon background reasonably well. Thus
the Monte Carlo simulation is used in the following to correct for the muon background
in the data. Due to the small differences observed between charm and beauty in the
muon mis-identification probabilities and the small discrepancies in η(μ) between data
and Monte Carlo simulation in the final D∗μ sample a relative systematic uncertainty of
20% is estimated for the muon background for charm as well as for beauty.

In this chapter the Monte Carlo simulation was compared to the data. Since there are
several effects for the D∗μ samples, which are not or not correctly described in the Monte
Carlo simulation, a reweighting of the Monte Carlo simulation was introduced. Using this
reweighting reasonable agreement between data and Monte Carlo simulation is obtained
in all variables. The muon background was checked with real data using the kaon and the
pion from the D0 decay. No discrepancy to the Monte Carlo simulation has been found. In
the next chapters the Monte Carlo simulation after reweighting will be used to determine
the beauty fraction in the D∗μ samples, for the correction of muon background and for
the calculation of efficiencies.
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Figure 5.15: Muon mis-identification probabilities for the inclusive DIS D∗-sample. A cut
on the momentum of the kaon or pion track of the D∗candidate above 2 GeV/c is applied.
On the left side the distributions of the azimuthal angle φ, the momentum p and the polar
angle θ are shown for the starting sample. On the right side the probabilities depending on
the azimuthal angle φ, the momentum p and the polar angle θ are shown. The black dots
indicate the data, the squares the charm Monte Carlo and the triangles the beauty Monte
Carlo prediction. In case of a zero entry for data, the number of events in the final sample
has not been sufficient to determine a probability with the ΔM -fit.



Chapter 6

Separation of Charm and Beauty
Production

In this chapter the charm and beauty fractions in the selected D∗μ-events are determined.
The four different charge and angle correlation regions are well suited for the separation
of charm and beauty. The fraction of charm and beauty events is determined using a two
dimensional Log-Likelihood-Fit. In the fit the mass difference between the D∗ and D0

candidate (ΔM) and the charge and angle correlations are used.

The beauty fraction determined in this way is then checked using control distributions,
where the data are compared to the normalised sum of the charm and beauty Monte Carlo
predictions, using the obtained beauty fraction. The Monte Carlo simulation used in this
chapter is always adjusted according to the procedure introduced in chapter 5.
It is shown, that the mean measured distance between the primary vertex and the D0

decay vertex increases with increasing beauty fraction due to the lifetime of the beauty
hadron.
Furthermore this method of separating charm and beauty in D∗μ-events is compared to
the results of other methods, which use slightly different variables for the separation or
which apply the separation only to a restricted range of the data.

6.1 Charge and Angle Correlations between the D∗ and the
Muon

As already introduced in chapter 2 charm and beauty production can be separated by ex-
ploiting the charge and angular correlations between the D∗ and the muon. The following
four correlation regions were defined (see chapter 2):

110
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Figure 6.1: Population of the four correlation regions for charm (left) and beauty (right)
photoproduction Monte Carlo events. All reconstructed D∗μ events (open histogram) and
the real D∗μ events (gray histogram) are shown.
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The expected population of the four correlation regions is shown for the selected photopro-
duction D∗μ-events in figure 6.1. On the left-hand side the charm prediction and on the
right-hand side the beauty prediction is presented. Both figures show this distribution for
reconstructed muons as well as for true muons. It is obvious, that the muon background
is much larger for charm than for beauty. This is expected due to the smaller amount of
real muons per D∗ events for charm production, as explained in section section 4.6. In
correlation regions 1 and 2 charm has contributions dominated by muon background.

In figure 6.2 the charm contribution is shown divided into the direct and excitation compo-
nents. For the selected D∗μ-events in photoproduction the charm excitation contribution
is 37% to the total charm contribution according to the PYTHIA Monte Carlo generator.
In case of charm excitation the event topology is different, due to a soft charm quark out
of the photon, which does not take part in the hard interaction. This leads to a different
shape of reconstructed and generated muons in the four correlation regions. In particular
the muon background is larger. For beauty production the contribution due to excitation
resolved events is 22% and only small differences in the shape of the correlation regions
occur. Table 6.1 summarises the direct and resolved excitation contributions for charm
and beauty production for the selected D∗μ events according to the PYTHIA Monte Carlo
simulation.
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Figure 6.2: Population of the four correlation regions for the direct (left) and excitation
(right) component for the charm photoproduction Monte Carlo events. All reconstructed
D∗μ events (open histogram) and the real D∗μ events (gray histogram) are shown.

Contribution [%] Charm Beauty

γp
direct 63 78

excitation 37 22
γp + DIS
γp direct 51 62

γp excitation 30 17
DIS direct 19 21

Table 6.1: Different contributions of the two D∗μ samples as predicted by the PYTHIA
Monte Carlo simulation after reweighting.

In general the muon background is larger in correlation regions 2 and 4 with ΔΦ∗ > 90◦

than in the other two correlation regions (see e.g. figure 6.2). The reason is that the decay
particles of the D∗ cannot be mis-identified as muons due to the requirement that the
muon track track(μ) �= track(K,π, πs). This leads to fewer possibilities for mis-identifying
a hadron as muon for ΔΦ∗ < 90◦ (correlation regions 1 and 3).

It is striking that the absolute values of mis-identified muons in charm is larger for corre-
lation region 2 than for correlation region 4 (both with ΔΦ∗ > 90◦). In the case that the
D∗-meson and the muon have opposite charges (correlation region 4), ”real” muons can
be found, while this is not possible if the D∗ and the muon have the same charge as in
correlation region 2 (at least for the direct component). In correlation region 2 the leading
particle carrying the same charge as the D∗, is mostly the kaon from the corresponding
charm hadron decay (c-hadron → K−, c̄ → D∗−). In correlation region 4 this possibil-
ity is excluded due to the charge requirement and almost only pions produced via the
semileptonic decay of the charm hadron are possible candidates for a mis-identification
(c-hadron → π+, c̄ → D∗−). Since the mis-identification probability is larger for kaons
than for pions the muon background is larger in correlation region 2 than in correlation
region 4.
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Figure 6.3: Correlation between (left) reconstructed ΔΦ and (right) ΔΦ∗ and the generated
ΔΦ∗

gen for the DIS sample. Variables marked with a star are calculated in the γp-rest frame.
The beauty Monte Carlo (triangles) and the charm Monte Carlo (squares) predictions are
shown separately.
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Figure 6.4: Correlation between reconstructed ΔΦ and ΔΦ∗ for DIS D∗μ events. Variables
marked with a star are calculated in the γp-rest frame. The black points indicate the data
(events in the D∗-signal region), the triangles the beauty Monte Carlo and the squares the
charm Monte Carlo prediction.

In photoproduction the azimuthal angle difference between the D∗-meson and the muon
measured in the laboratory frame is identical to that determined in the photon-proton
rest frame. The situation changes for DIS events since the scattered electron carries a
non-negligible transverse momentum. Therefore a Lorentz transformation into the photon-
proton rest frame is performed in this analysis for the DIS events. The differences between
the reconstructed ΔΦ determined in the laboratory frame and the reconstructed ΔΦ∗ cal-
culated in the γp-rest frame to the generated values ΔΦ∗ are shown in figure 6.3, respec-



114 CHAPTER 6. SEPARATION OF CHARM AND BEAUTY

]° [*ΦΔ
0 90 180 0 90 180

N
/N

Δ

0

0.1

0.2

0.3

0.4

0.5

]° [*ΦΔ
0 90 180 0 90 180

N
/N

Δ

0

0.1

0.2

0.3

0.4

0.5 Real muon

Muon BG

]° [*ΦΔ
0 90 180 0 90 180

N
/N

Δ

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

]° [*ΦΔ
0 90 180 0 90 180

N
/N

Δ

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7
Real muon

Muon BG

c-MC b-MC

Q(D∗) = Q(μ)

Q(D∗)
�=

Q(μ)

Q(D∗) = Q(μ)

Q(D∗)
�=

Q(μ)

Figure 6.5: Population of the four correlation regions for charm (left) and beauty (right)
Monte Carlo events (DIS + photoproduction). All reconstructed D∗μ events (open his-
togram) and the real D∗μ events (gray histogram) are shown.

ΔNrec/Nrec [%] fμ−BG [%]
corr. region 1 2 3 4 1 2 3 4 1-4
charm γp
dir.+exc. 3 21 6 70 100 98 66 13 36

dir. 1 21 1 77 100 99 89 11 31
exc. 5 23 13 59 100 96 62 17 45

c γp + DIS 3 21 6 70 96 98 58 13 37
beauty γp
dir.+exc. 3 24 54 19 14 7 1 5 4

dir. 2 27 50 21 16 7 1 5 4
exc. 7 16 66 11 12 9 2 4 4

b γp + DIS 3 25 53 19 13 7 1 5 4

Table 6.2: Population ΔN/N and muon background fraction fμ−BG of the four correlation
regions for the charm and beauty Monte Carlo simulations.

tively. As expected the correlation between the reconstructed and the generated variable
is much worse, if no transformation is performed. Resolution effects of the measured Q2,
polar angle θ′e and azimuthal angle φ′e of the scattered electron, which are used for the
boost into the γp-rest frame, are small compared to the effect of the boost itself. Figure
6.4 demonstrates, that the relation between the reconstructed ΔΦ and ΔΦ∗, and with that
also the boost in general, is described by the Monte Carlo. Due to the restricted number
of D∗μ events in the DIS sample all events within the D∗-signal region are considered.

The population of the four correlation regions for the total D∗μ-sample containing also
DIS events is shown in figure 6.5 for charm and beauty Monte Carlo predictions. A similar
behaviour as in the pure photoproduction case is observed.

Table 6.2 summarises the contributions and the muon background fraction in each corre-
lation region for the charm and beauty Monte Carlo. This is done separately for photo-
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production and the total data sample.

The distribution of the correlation regions is sufficiently different for reconstructed charm
and beauty D∗μ-events to use this quantity for a determination of the beauty fraction in
the data (see figures 6.1 and 6.5).

6.2 Determination of the Charm and Beauty Fraction

To extract the charm and beauty fraction in the data a two dimensional Log-Likelihood
fit is used. For the fit a two dimensional distribution of the data, depending on the
mass difference ΔM of the D∗ and D0-candidate and on a “separation variable” is used.
The corresponding two dimensional theoretical distribution is fitted to the data. This
procedure exploits the complete information of the ΔM and the separation variable and
a separation of charm and beauty is possible. As separation variables the four correlation
regions are used in this analysis.

The Log-Likelihood fit is based on the assumption of Poisson distributed data in the bins
and the following function has to be minimised in the case of a two dimensional binned
distribution [100]:

F (�P ) =
#i−bins∑

i=1

#j−bins∑
j=1

F (i, j) (6.1)

with:

F (i, j) = 2 ·
[
(μ(i, j) − r(i, j)) + r(i, j) · ln

(
r(i, j)
μ(i, j)

)]
(6.2)

Here r(i, j) indicates the observed number of events in an analysis bin(i, j) and μ(i, j) the
number of expected events in this bin. �P is the parameter vector. The function F (i, j)
behaves approximately like a χ2 function. A derivation of equation 6.2 is given in appendix
C.

As for the one dimensional ΔM -fit a simultaneous fit to the right charge (RC) and wrong
charge (WC) data samples is performed. The index i denotes the ΔM bins and j the
correlation region or in general the separation variable. The function, which has to be
minimised is therefore:

F (�P ) =
#ΔM−bins∑

i=1

#sep.var. bins∑
j=1

(
FRC(i, j) + FWC(i, j)

)
(6.3)

with:

FRC/WC(i, j) = 2 ·
[(
μRC/WC(i, j) − rRC/WC(i, j)

)
+ r(i, j)RC/WC · ln

(
rRC/WC(i, j)
μRC/WC(i, j)

)]
(6.4)

for the right or wrong charge data set.
In the fit 25 bins in ΔM and 4 bins for the correlation regions or another separation variable
are used. Altogether six free parameters are used, �P = (Nc, Nb, U(1), U(2), U(3), U(4)):
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Nc and Nb give the number of D∗μ-events from charm and beauty respectively, and one
background parameter U(j) is needed for each bin of the separation variable.

The data consist of true D∗μ-events and also background events. The signal can be
subdivided into real D∗μ events from charm and beauty production and the background
in combinatorial background (Ucomb.) of theD∗-selection and into realD∗ events, where the
reconstructed muon is either a mis-identified hadron or a decay muon (muon background:
Uμ = U c

μ + U b
μ). The combinatorial D∗ background however also contains real muons

as well as hadrons mis-identified as muons or decay muons. Therefore the reconstructed
D∗μ-events consist of:

C-D∗μ-signal + B-D∗μ-signal + comb. background + muon background

This can be rewritten as:

C-D∗μ-signal + U c
μ︸ ︷︷ ︸

’Charm D∗ signal’

+ B-D∗μ-signal + U b
μ︸ ︷︷ ︸

’Beauty D∗ signal’

+ Ucomb.

With the aid of the two dimensional Log-Likelihood fit the number of D∗μ-events from
charm and beauty-production in the signal is determined. For the fit the muon background
fractions for charm and beauty predicted by the Monte Carlo are used. In chapter 5 it
was shown that the muon background predicted by the Monte Carlo describes the data.

The normalised distribution in the separation variable (see for example figure 6.1) is mul-
tiplied with a ΔM dependent Gaussian function for charm and beauty. The width σ and
the position μ of the Gaussian function are fixed to the corresponding D∗ values obtained
from the fit to the ΔM distribution in chapter 4 (μ = 145.4 MeV/c2 and σ = 1.1 MeV/c2).
The background is described by the modified square root function, discussed in chapter
4, multiplied with a free parameter for each bin in the separation variable. The function
μRC(i, j), which is fitted to the right charge combination data set, therefore has the form:

μRC(i, j) = Nc · [fnorm.
c (j) · fnorm.

D∗ (i)]︸ ︷︷ ︸
Charm D∗ signal

+ Nb · [fnorm.
b (j) · fnorm.

D∗ (i)]︸ ︷︷ ︸
Beauty D∗ signal

+ U(j) · fnorm.
BG (i)︸ ︷︷ ︸

RC Background

(6.5)
and the equation for the function μWC(i, j) is:

μWC(i, j) = U(j)Nscal(j) · fnorm.
BG (i)︸ ︷︷ ︸

WC Background

(6.6)

Here the variables have the following definitions:

fnorm.
c (j): Normalised distribution of the separation variable for charm
fnorm.

b (j): Normalised distribution of the separation variable for beauty
fnorm.

D∗ (i) : Normalised Gaussian depending on ΔM
fnorm.

BG (i) : Normalised background function depending on ΔM
Nscal(j) : Scaling factor between the RC and WC combinatorial background

The scaling factor Nscal(j) is determined in the same way as for the one dimensional
ΔM -fit:

Nscal(j) =
∑

binN
WC
bin (j)∑

binN
RC
bin (j)

for ΔM -bins between 0.155 and 0.1685 (6.7)
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Figure 6.6: ΔM distribution of the photoproduction data (right charge combination
(RC): dots, wrong charge combination (WC): histogram) together with the function ob-
tained from the two dimensional fit (depending on the four correlation regions and
ΔM). The light line indicates the RC fit curve and the dark line the WC fit curve. At
large ΔM values the two curves are identical.

fnorm.
c (j) and fnorm.

b (j) can be expressed by two functions, one containing the real D∗μ
events f true

Q=c,b and one for those classified as muon background fμ−BG
Q=c,b :

fnorm.
Q (j) =

f true
Q (j) + fμ−BG

Q (j)∑#sep.var. bins
k (f true

Q (k) + fμ−BG
Q (k))

with Q = c, b (6.8)
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Figure 6.7: ΔM distribution of the photoproduction + DIS data (right charge combi-
nation (RC): dots, wrong charge combination (WC): histogram) together with the function
obtained from the two dimensional fit (depending on the four correlation regions and
ΔM). The light line indicates the RC fit curve and the dark line the WC fit curve. At
large ΔM values the two curves are identical.

The function fnorm.
D∗ (i) = fD∗(i)/

∑#ΔM−bins
l fD∗(i) is determined from:

fD∗(i) =
1
dbin

∫ ΔMu(i)

ΔMl(i)

1√
2πσ

exp

(
(ΔM − μ)2

2σ2

)
dΔM (6.9)

The background function fnorm.
BG (i) = fBG/

∑
i fBG(i) is obtained in a similar way:

fBG(i) =
1
dbin

∫ ΔMu(i)

ΔMl(i)
(ΔM −mπ)Uexp · (1− Ucor ·ΔM2)dΔM (6.10)



6.2. DETERMINATION OF THE CHARM AND BEAUTY FRACTION 119

]° [*Φ Δ
1 2 3 4 5

)μ
N

(D
*

0

20

40

60

80

100

120

140

]° [*Φ Δ
1 2 3 4 5

)μ
N

(D
*

0

20

40

60

80

100

120

140  from beautyμD*
 from charmμD*

Muon background in beauty
Muon background in charm

M fitΔData from 1dim. 

)μ) = Q(
*

Q(D )μ Q(≠) 
*

Q(D

0 90 180 0 90 180

Figure 6.8: Population of the four correlation regions in the photoproduction data
sample as obtained by the two dimensional fit. The black dots are the data, which are
obtained from a one dimensional ΔM fit in each correlation region.

Here dbin indicates the bin width, ΔMl(i) and ΔMu(i) the ΔM values of the lower and
upper limits of the i-th bin respectively.
The product of either fnorm.

c (j) or fnorm.
b (j) and fnorm.

D∗ in equation 6.5 is normalised in
such a way, that the parameter Nc (Nb) represents the number of reconstructed charm
(beauty) events. fnorm.

c (j) and fnorm.
b (j) are determined with the aid of the adjusted

Monte Carlo program, and they correspond to the ”open” histograms of figure 6.1 in case
of photoproduction and to figure 6.5 in case of the total sample.

Figures 6.6 (photoproduction) and 6.7 (photoproduction + DIS) show for the two dimen-
sional Log-Likelihood fit the ΔM -distributions of the RC and WC data and the functions
μRC(i, j) and μWC(i, j) obtained from the fit to the data in the four correlation regions.
The data are described reasonably well by the fitted function. The largest discrepancy
is observed for ΔΦ∗ > 90◦. The minimum Fmin of the function F (�P ) is 139.7 for the
photoproduction sample and 156.0 for the total sample. This is for both samples in good
agreement with the number of degrees of freedom ndf . ndf is given by the total number of
bins minus the number of bins which have a zero bin content in the data as well as in the
Monte Carlo simulation (2 · 4 · (25− 5) = 160), and minus the number of free parameters
(6), leading to 154. The probability P , that the distribution of the data is consistent with
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Figure 6.9: Population of the four correlation regions in the photoproduction + DIS
data sample as obtained by the two dimensional fit. The black dots are the data, which
are obtained from a one dimensional ΔM fit in each correlation region.

the theoretical curve obtained by the fit, can be calculated via the χ2 distribution [100]:

P = prob(Fmin, ndf) =
1√

2ndfΓ(ndf/2)

∫ ∞

Fmin

e−
1
2
tt

1
2
ndf−1dt (6.11)

For the photoproduction sample a probability of 0.789 and for the total sample of 0.444
is obtained. The correlation coefficient between Nc and Nb, which is a measure for the
separation power of a quantity, results in −0.447 for the photoproduction sample and
−0.473 for the total sample. The correlation coefficient value is 0, if both distributions
are completely separated.

The result of the two dimensional fit is shown in figures 6.8 (photoproduction) and 6.9
(photoproduction + DIS). The populations of the four correlation regions of the data
are shown subdivided into true D∗μ-events from charm and beauty production and those
events classified as muon background, again shown separated for charm and beauty. The
summed results are compared to the values obtained from the one dimensional ΔM fits.
Reasonable agreement between the one and two dimensional fits is observed. For the
photoproduction sample a total beauty fraction of fb = (31 ± 6)% is obtained, while
for the total sample the beauty fraction is fb = (32 ± 6)%. The statistical uncertainty
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correlation region

fit 1 2 3 4 Σ
rec. D∗μ

Nc 3.2 ± 0.5 26± 4 7± 1 84± 14 120 ± 20
γp Nb 1.4 ± 0.5 13± 4 29± 9 10± 3 54 ± 17

fb [%] 31 ± 6 34± 6 81± 4 11± 3 31± 6
Nc 4.3 ± 0.7 31± 5 9± 1 101 ± 16 145 ± 23

γp+DIS Nb 1.8 ± 0.5 17± 5 36± 11 13± 4 68 ± 20
fb [%] 30 ± 5 35± 6 80± 4 11± 3 32± 6

μ-BG corrected D∗μ
Nc 0 0.5± 0.1 2.2± 0.4 74± 12 76 ± 13

γp Nb 1.2 ± 0.4 12± 4 28± 9 10± 3 51 ± 16
fb[%] 100 96± 1 93± 2 12± 3 40± 7
Nc 0.16 ± 0.03 0.7± 0.1 3.6± 0.6 87± 14 92 ± 15

γp+DIS Nb 1.6 ± 0.5 15± 5 36± 10 12± 4 65 ± 19
fb [%] 91 ± 2 96± 1 91± 2 12± 3 41± 6

Table 6.3: Results from the two dimensional fits: Number of D∗μ-events from charm
and beauty production and the beauty fraction fb in the two data samples in the four
correlation regions. Both values, before and after muon background correction, are quoted.
Only statistical errors are indicated. Only the total number of D∗μ events from charm
and beauty production are a direct result of the fit (marked with bold font). The number
of charm and beauty events in the four correlation regions are scaled down from the total
fitted number of charm and beauty events using the Monte Carlo simulation. Therefore
the relative ratios between the correlation regions are assumed to be described by the Monte
Carlo simulation, while the total normalisation is obtained from the fit.

indicated is obtained via error propagation taking the correlation between the number of
charm and beauty events into account. Correcting for the muon background (using table
6.2) these fractions modify to fb = (40±7)% and fb = (41±6)% respectively, since charm
events contain more muon background than beauty events.

The fit result is once more summarised in table 6.3. The number of D∗μ-events from charm
and beauty production in the two selected data samples are stated. This is separately
shown for D∗μ events before muon background correction and after muon background
correction. Only the total number of D∗μ events from charm and beauty production are
direct results of the fit, while the number of charm and beauty events in the four correlation
regions are obtained by scaling down the total fitted number of charm and beauty events
using the Monte Carlo simulation. The relative ratios between the correlation regions are
taken from the Monte Carlo simulation, while the total normalisation is obtained from the
fit. In the next chapter total charm and beauty ep cross sections will be calculated using
the values summarised in the table 6.3.

6.3 Control Distributions

As a check whether the beauty fraction determined by the two dimensional fit is reasonable,
figures 6.10 (photoproduction) and 6.11 (photoproduction + DIS) show the transverse
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Figure 6.10: Differential distribution of the transverse momentum pT and pseudorapidity
η of the muon and the D∗-meson for the photoproduction data (dots). Furthermore the
sum of charm and beauty, using the beauty fraction fb = 31% as obtained from the two
dimensional Log-Likelihood fit, is drawn (upper black line). The individual contributions
of pure beauty, pure charm and muon background of beauty and charm are also shown.

momentum and the pseudorapidity of the D∗-meson and the muon together with the
corresponding Monte Carlo distribution obtained using the b-fraction obtained by the fit
(fb = 31% for the photoproduction sample and fb = 32% for the total sample). No
correction for the muon background is applied here. The total Monte Carlo distributions
are normalised to the data. The number of D∗μ events and the assigned statistical error
are determined in each bin of the considered variable from the simultaneous ΔM fit to
the right and wrong charge data.

All distributions of the two particles are described reasonably well by the Monte Carlo.
However, in both pseudorapidity distributions some small differences do appear. For the
D∗-meson an excess in forward direction (large η) is observed, similar to those reported in
previous measurements at ZEUS and H1 ([31, 30, 14]). The pseudorapidity distribution
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Figure 6.11: Differential distribution of the transverse momentum pT and pseudorapidity
η of the muon and the D∗-meson for the photoproduction + DIS data (dots). Fur-
thermore the sum of charm and beauty, using the beauty fraction fb = 32% as obtained
from the two dimensional Log-Likelihood fit, is drawn (upper black line). The individual
contributions of pure beauty, pure charm and muon background of beauty and charm are
also shown.

of the muon seems to be somewhat flatter in the data than predicted by the Monte Carlo.

The reasonable description of the data by the Monte Carlo using the charm and beauty
fractions determined from the fit shows that the separation procedure leads to a reasonable
result, which can be applied also to other distributions.

In order to check, whether the excitation contribution as predicted by the PYTHIA Monte
Carlo simulation is also reasonable, xγ(D∗μ) is considered as an approximation for the
relative momentum fraction of the parton, taking part in the hard interaction, with respect
to the photon momentum (see section 2.1.5, equation 2.20). In figure 6.12 the distributions
obtained using the Monte Carlo simulation with and without the excitation contribution
are compared to the data for the photoproduction sample. In the Monte Carlo simulation
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Figure 6.12: Check of the excitation resolved contribution in the photoproduction data.
Shown is the xγ(D∗μ) distribution (dots). a) Comparison with the PYTHIA Monte Carlo
simulation with resolved excitation contribution, b) without such a contribution. Further-
more the sum of charm and beauty, using the beauty fraction as obtained from the two
dimensional Log-Likelihood fit, is drawn (upper black line). The individual contributions
of beauty, charm and muon background from beauty and charm are also shown.

the beauty fraction obtained from the fit is again used. In the plot without excitation
contribution, the beauty fraction is determined by fitting only direct charm and beauty
Monte Carlo simulations, giving a beauty contribution of fb = (41± 6)%. Again no muon
background correction is applied. No large difference between the Monte Carlo prediction
with and without resolved excitation contribution is observed. There is a tendency, that
the data are described better by the Monte Carlo prediction with excitation contribution.

As a second check of the result of the two dimensional fit, the measured lifetime t(D0) of
the D0-meson is considered in the charm enriched correlation region 4, the beauty enriched
correlation regions 2+3 and in the total sample.
The lifetime of the D0-meson in its rest frame is related to its decay length l(D0) via:

t(D0) =
1
γ
· l(D

0)
βc

(6.12)

with β = v/c and γ = 1/
√

1− β2.

In charm events the D0-mesons are produced at the primary vertex. Since the lifetime
t(D0) of the D0-meson is defined in the rest frame of the D0-meson, the distribution t(D0)
corresponds to an exponential function convoluted with a resolution function. Negative
decay times can occur due to resolution effects.
In beauty events the D∗-meson is not produced directly at the primary vertex, but at the
decay vertex of a b-hadron. The large lifetime of the b-hadron contributes directly to the
measured lifetime. Thus the measured lifetime of the D0-meson is on average larger for
beauty than for charm events.
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Figure 6.13: Decay length r(D0) in an event with a b hadron B.

For the determination of the decay length the D0-decay vertex has to be reconstructed
precisely. Thus the kaon and pion track have to have associated hits in the central silicon
tracker (CST). The additional requirement on the number of CST-hits NCST−hits:

NCST−hits(K) ·NCST−hits(π) ≥ 2 (6.13)

is applied for this investigation. The decay length is defined by the distance vector �r(D0)
from the primary vertex to the D0-decay vertex. Since the measurement of the x and y-
coordinates of the vertices is much more precise than the measurement of the z-coordinate,
only the transverse component of the distance vector �rT (D0) is used (compare figure 6.13).
The D0-decay vertex is reconstructed from the intersection point of the non-vertex fitted
kaon and pion track in the xy-plane. The position of the primary vertex is determined
by a fit of the beam position and selected tracks. The kaon, pion and muon tracks are
not used in this fit, because they might bias the fit towards a secondary vertex. The
D0-decay length r(D0) is then defined as the projection of the distance vector �rT (D0) on
the transverse momentum direction �pT (D0) of the D0-candidate:

r(D0) = �rT (D0) · �pT (D0)
pT (D0)

(6.14)

The lifetime of the D0-meson can then be calculated using:

t(D0) =
1
γ
· l(D

0)
βc

=
r(D0)/ sin(θ(D0))

γβc
=

r(D0)
sin(θ(D0))p(D0)/m(D0)

=
r(D0)m(D0)
pT (D0)

(6.15)

The t(D0)-distribution in photoproduction data is shown in figure 6.14 for the correlation
regions 2+3 and 4 separately. It is obvious, that the distribution for the correlation
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Figure 6.14: Life time of the D0-meson t(D0) obtained for the photoproduction data. a)
Correlation region 2+3 , b) correlation region 4. In correlation region 2+3 a large beauty
fraction is predicted by the fit, while 4 is dominated by charm.

region 2+3 (t̄(D0) = (1.24 ± 0.09) ps) is shifted towards larger values compared to that
for correlation region 4 (t̄(D0) = (0.16 ± 0.28) ps), as expected for a strongly enriched
b-sample. Thus these studies confirm the result of the two dimensional fit further.

The number of D∗μ events is reduced significantly by applying the cut on the number of
CST-hits. About 35% of the data are rejected by this cut, due to the smaller acceptance
of the CST compared to the CJC and due to some inefficiencies of the CST.

A two dimensional fit to the CST photoproduction data using t(D0) as separation variable
yields a beauty fraction of fb = (31 ± 9)% (see figure 6.15). This is compatible with the
result obtained for this sample using the correlation regions: fb = (38 ± 7)%. For the
total sample the agreement between these two methods is even better: a beauty fraction
of fb = (34± 8)% is obtained if t(D0) is used as separation variable while fb = (39± 7)%
is obtained when the correlation regions are used as a separation variable. Due to the
relatively large absolute value of the correlation coefficient between the number of charm
and beauty events of 0.86 in case of using t(D0) the significance of the beauty fraction
and the number of charm and of beauty events is smaller than in the case of using the
correlation regions.

Even in the case of an increased number of D∗μ-events, it is questionable, whether the
separation of charm and beauty could be improved, if the two methods are combined. The
loss of events due to the CST requirement is quite sizable, while on the other hand the
gain in separation power is only small.

To use the lifetime information itself to separate charm and beauty, the description by
the Monte Carlo simulation of all quantities used for the lifetime determination, like the
primary and decay vertex, would have to be good. Since the Monte Carlo incorporates for
example an over-optimistic resolution of the primary vertex [91], the Monte Carlo would
have to be modified. Several other effects also have to be taken into account [99]. To get
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Figure 6.15: Result of the two dimensional fit to the CST photoproduction data sample
using the lifetime of the D0-meson as separation variable. The black dots are the data,
which are obtained from a one dimensional ΔM fit in each bin of t(D0).

a well measured lifetime, the data sample may have to be reduced further. Since no real
gain is expected, the D0 lifetime was not considered further in this analysis.

6.4 Comparison with other Methods

In this section the results of the separation of charm and beauty production based on the
four correlation regions are compared to those obtained with differently defined separation
variables.

The ZEUS collaboration uses a slightly different method for the separation of charm and
beauty production in D∗μ-events [101, 102], than the “correlation region method” used in
this analysis. The variable ΔR is used defined as:

ΔR =
√

ΔΦ2 + Δη2 , (6.16)

ΔΦ is measured in the laboratory frame and Δη is the pseudorapidity difference of the
D∗-meson and the muon. The beauty fraction is determined here by a fit in ΔR to a



128 CHAPTER 6. SEPARATION OF CHARM AND BEAUTY

 RΔ
0 1 2 3 4

)μ
N

(D
*

0

10

20

30

40

50

60

 RΔ
0 1 2 3 4

)μ
N

(D
*

0

10

20

30

40

50

60
Charm
Beauty
Muon BG (b)
Muon BG (c)

M fit)ΔData (1dim. 

Figure 6.16: Result of the two dimensional fit using ΔR =
√

ΔΦ2 + Δη2 as separation
variable. Only the unlike sign photoproduction data set is used. The black dots are data,
which are obtained from a one dimensional ΔM fit in each bin.

data subsample, which contains only D∗μ-events with unlike sign charge (called unlike
sign data). The data sample used by the ZEUS collaboration corresponds to the data of
correlation regions 3 and 4. Applying this fit method to the H1 photoproduction data
sample gives the result shown in figure 6.16. From the fit the following numbers of charm
and beauty events are obtained: Nc = 78± 14 and Nb = 30± 11. These values are to be
compared with 91 ± 15 charm and 39 ± 12 beauty events, which are obtained by scaling
the result of this analysis using the Monte Carlo simulation (table 6.4). A difference is
therefore observed not only in the separation of charm and beauty but also in the total
number of D∗μ events obtained between the two methods. The quality of the ΔR fit
yields a probability P of 0.167 and is significantly worse than the fit with the correlation
regions (P = 0.631). The quantity ΔR depends in addition to ΔΦ also on Δη. It is
therefore also susceptible to systematic effects in the Δη variable. The η distribution of
the D∗-meson as well as that of the muon are not so well described by the Monte Carlo
as the ΔΦ distribution. The separation power in ΔR is slightly better than in the four
correlation regions. The significance N/σ(N) of the number of charm events and beauty
events respectively is therefore only slightly worse with 5.6 and 2.7 compared to 6.1 and
3.1, although here the data set is reduced. Using the total data nevertheless leads to a
slightly improved significance.

For a consistency check also a fit in ΔΦ (measured in the laboratory frame) alone to the
unlike sign data sample is performed. In addition ”modified correlation regions” using
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fit cor. region Nc Nb fb P

γp
normal 1-4 120 ± 20 53± 17 31± 6 0.789
→ 3+4 91± 15 39± 12 30± 6
mod. cor 1-4 101 ± 19 71± 18 41± 6 0.543
→ 3+4 77± 15 52± 13 40± 6
ΔR 3+4 78± 14 30± 11 28± 7 0.308
ΔΦ 3+4 71± 14 37± 12 34± 7 0.868

γp+DIS
normal 1-4 145 ± 23 68± 20 32± 6 0.444
→ 3+4 110 ± 18 49± 15 28± 5
mod. cor 1-4 134 ± 23 74± 20 36± 6 0.314
→ 3+4 101 ± 17 54± 15 35± 6
ΔR 3+4 95± 16 31± 13 25± 7 0.446
ΔΦ 3+4 89± 16 39± 13 31± 7 0.788

Table 6.4: Comparison of different fit methods. For each method the number of charm
Nc and beauty Nb events as well as the probability of the fit P are shown. The arrow
indicates, that the numbers in this row are not obtained by an independent fit, but are
scaled down from the fit result of the total sample, which is given one row above. Here the
relative ratios between the correlation regions are assumed to be described by the Monte
Carlo simulation, while the total normalisation is obtained from the fit.

ΔR instead of ΔΦ are also used. They are defined as:

1. ΔR < 2 and Q(D∗) = Q(μ).

2. ΔR > 2 and Q(D∗) = Q(μ).

3. ΔR < 2 and Q(D∗) = −Q(μ).

4. ΔR > 2 and Q(D∗) = −Q(μ).

In table 6.4 a quantitative comparison of the results of these four fit methods is shown. The
comparison of the two methods based on ΔΦ (normal correlation regions and ΔΦ itself)
show similar discrepancies in the total number of events as the two methods based on
ΔR (modified correlation regions and ΔR itself) leading thus to an almost same quality
of consistency. However, the fit quality seems to be better for ΔΦ than for ΔR (see
probability P of the fit in table 6.4). Due to the potential additional source of systematic
errors and the fact, that the modified and normal correlation regions are quasi-identical
in terms of significance, the “normal” correlation regions are used in this analysis.

In this chapter the separation of charm and beauty was performed by using the charge
and angle correlations between the D∗-meson and the muon. Four correlation regions
have been defined, which then are used as separation variable in a Log-Likelihood fit.
The determined number of charm and beauty events will be used in the next chapter to
extract the total visible D∗μ cross sections for charm as well as for beauty production.
The beauty fraction is used to determine differential charm+beauty cross sections as a
function of several D∗μ quantities and as a function of xg, kT and q̄′t in photoproduction.



Chapter 7

Total Charm and Beauty Cross
Sections

In this chapter the total charm and beauty cross sections in the visible range are determined
and compared to theoretical predictions and to other measurements.

7.1 Cross Section Definitions

The visible range, in which the cross section measurement is performed, depends on event
kinematical quantities and on the muon and D∗-meson kinematics. The visible range for
the two data samples used differs only in the Q2 region as shown in table 7.1.

For both kinematic ranges however three different visible cross sections are defined. First
D∗μ-events from all four correlation regions are used. In events which contain more than
one D∗μ-pair each pair is included in the visible cross section. In the case of beauty
production the sample contains also D∗μ-events, which come from a single b hadron. The
second cross section uses only D∗μ-events with an azimuthal angle difference ΔΦ∗ > 90◦

and different charges (correlation region 4). Since this region is dominated by charm
the momentum of the D∗ meson and muon can be used to approximate the momenta of
the produced quark (antiquark). The third cross section uses D∗μ-events, which come
mainly from one b hadron (correlation region 3). The different defined cross sections are
summarised in table 7.2.

photoproduction photoproduction + DIS

Q2 < 1 GeV2 Q2 < 100 GeV2

0.05 < y < 0.75
pT (D∗) > 1.5 GeV/c
| η(D∗) | < 1.5

p(μ) > 2.0 GeV/c
| η(μ) | < 1.735

Table 7.1: Definition of the visible range of the total D∗μ cross sections.

130
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correlation additional quark contributing
region vis. cuts type Q event topologies

σQ,all
vis 1-4 - c, b all possible combinations

σQ,cor 4
vis 4 ΔΦ∗ > 90◦ c μ− ← c̄c→ D∗+

Q(D∗) �= Q(μ)

σQ,cor 3
vis 3 ΔΦ∗ < 90◦ b mainly b→ D∗+μ−

Q(D∗) �= Q(μ)

Table 7.2: Definition of the visible regions of total cross sections. The contributing event
topologies are indicated only in a simplified way. The muons come from a semileptonic
decay of a heavy hadron and the beauty quark first fragments into a b hadron before decaying
into the D∗-meson.

The visible cross sections are calculated according to:

σQ,i
vis (ep→ e′D∗μX) =

NQ,i
rec,trig,L4(D

∗μ)

εQ,i
rec · εQ,i

trig · εQ,i
L4 · BR(D∗ → Kππs) · Lpresc.

(7.1)

Here NQ,i
rec,trig,L4(D

∗μ) is the number of D∗μ-events from charm or beauty production
obtained in the previous chapter. The correction for the muon background is already
performed. The upper index i indicates which events are included: all = all events,
cor 4 = only the events of the correlation region 4, cor 3 = events of correlation
region 3. Lpres. is the integrated luminosity (prescaled) of the analysed data and εrec, εtrig

and εL4 are the efficiencies for reconstructing the D∗μ-events and selecting them by the
trigger or L4-finder respectively. BR represents the branching ratio of the decay channel
D∗ → Kππs.

7.2 Luminosity

Due to the prescaling of the subtriggers on level 1 the effective integrated luminosity
(Ltotal = 88.8 pb−1) after detector status and satellite bunch corrections is reduced further.
In order to obtain the prescaled luminosity Lpresc. for the selected D∗μ events the Monte
Carlo simulation is used to estimate the distribution of trigger combinations in the data.
In the Monte Carlo simulation the prescaling of the subtriggers is not simulated. Thus the
prescale factors dj,p, depending on the data taking period p and the trigger combination
j, were determined in chapter 4 for the two different data sets, photoproduction and the
total data sample. The prescale factor dn = dn,j,p of a D∗μ-pair n depends on the trigger
combination, which is set before the prescaling and the period p. The overall prescale
factor d̄ of the D∗μ-events is the average of the prescaling factor dn,j,p for each D∗μ-pair:

d̄ =
N(D∗μ)∑N(D∗μ)

n
1

dn,j,p

(7.2)

The sum runs over all D∗μ-pairs in the Monte Carlo simulation. The prescaled luminosity
L is then obtained by:

Lpresc. =
Ltotal

d̄
(7.3)
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For both data samples an overall averaged prescale factor d̄ = 1.04 is obtained, leading
to a prescaled luminosity of L = 85.4 pb−1. Since the prescale factors are all very close
to one, especially for the longest period 1999e+/2000, no difference in the overall prescale
factor of the two data samples is obtained. The averaged prescale factor in each correlation
region is to very good approximation identical to the overall averaged prescale factor. A
maximal relative difference of 0.2% is observed.

7.3 Efficiencies

Not all events in the visible range are reconstructed and analysed. Events are lost due to
inefficiencies of triggers, L4-finders and detector components as well as due to cuts during
the event selection. This loss is taken into account by the efficiencies. The total efficiency
is factorised as follows:

ε = εrec · εtrig · εL4 (7.4)

The single efficiencies are defined as:

εrec =
N rec(D∗μ)|vis

Ngen(D∗μ)|vis
(7.5)

εtrig =
N rec,trig(D∗μ)|vis

N rec(D∗μ)|vis
(7.6)

εL4 =
N rec,trig,L4(D∗μ)|vis

N rec,trig(D∗μ)|vis
(7.7)

The reconstruction efficiency εrec gives the ratio of the number of reconstructed D∗μ-
pairs N rec(D∗μ) (without muon background) after applying all selection cuts (excluding
trigger and L4-finder requirements) and all generated D∗μ-pairs in the visible range. The
trigger efficiency is defined as the ratio of the reconstructed D∗μ-pairs N rec,trig(D∗μ) with
a positive trigger decision and the number of reconstructed D∗μ-pairs. The L4-finder
efficiency is then defined in an analogous way. The number of reconstructed D∗μ pairs
N rec,trig,L4(D∗μ) found by the trigger and the L4-finder is divided by the number of
reconstructed and triggered D∗μ-pairs.

In the reconstruction efficiency the number of generated events in the visible range is
compared to those defined by the reconstructed quantities. The reconstructed transverse
momentum and the pseudorapidity of the D∗ and the muon reproduce the generated
quantities well. y, reconstructed via the Jacquet-Blondel method (see section 4.4.2), does
not reproduce the generated value as good as the other quantities. However, migration
effects are considered in the reconstruction efficiency as defined in equation 7.5.

The efficiencies used for the cross section calculation are determined using the Monte Carlo
simulation. As discussed in chapter 5 the Monte Carlo simulation does not describe all
aspects observed in the data and is therefore adjusted where necessary. For the efficiency
determination the weighting factors are taken into account.

As a cross check some efficiencies are determined also from the data and compared to
those determined by the Monte Carlo simulation. No correction for the muon background
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TE MT εc [%] εb [%] εcb [%] εdata [%]

zVtx sig 0,56,87 91± 4 95 ± 1 92± 3 92± 1
DCRPh Ta 0,56,87 97± 1 98 ± 1 98± 1 100

DCRPh CNH 0 91± 4 94 ± 1 92± 3 97± 0.4
Mu Bar 0,61,83 86± 2 86 ± 4 86± 2 85± 2
Mu ECQ 0,61,83 20± 6 41 ± 5 23± 6 30± 2
Mu Any 0,61,83 81± 1 84 ± 2 82± 1 82± 1

SPCLe IET>1 || 19,22 100 100 100 99± 1
SPCLe IET Cen>2

Table 7.3: Efficiencies of the trigger elements (TE) used for the photoproduction data set
and for all correlation regions. The subtriggers used as monitor triggers (MT) are also
quoted. Only statistical errors are shown.

contribution is applied in contrast to the efficiencies used later for the cross section calcu-
lation. Since the data contain charm as well as beauty events the efficiencies of the data
have to be compared with the combined efficiencies εcb, composed of the single efficiencies
for charm εc and beauty εb:

εcb =
εc · εb

fb · εc + (1− fb) · εb (7.8)

In this case fb is the beauty fraction of the data, where the muon background is not sub-
tracted. The statistical error of εcb is obtained by error propagation, taking the correlation
coefficient between the number of charm and the number of beauty events into account.

Table 7.3 shows the efficiencies of the trigger elements (TE) used in case of photoproduction
and for all correlation regions. In the data the number of D∗μ-events is not determined
via a ΔM -fit due to the low number of events, but is taken to be equal to the number of
D∗μ-events in the D∗ signal region. Only the binomial statistical errors are quoted:

σε =

√
ε · (1− ε)

N1
with ε =

N2

N1
and N1 ≥ N2 (7.9)

Here, N1 is the initial number of D∗μ-pairs and N2 the number of D∗μ-events after
applying the selection with efficiency ε. For the determination of the trigger element
efficiency monitor triggers are used. These are reference triggers, which do not require the
considered trigger element. For most trigger elements used in this analysis more than one
monitor trigger is used and thus the logical ”OR” of these monitor triggers is required.
For all efficiencies good agreement between data and Monte Carlo simulation is observed.
Since in photoproduction not all events have an energy deposition in the SpaCal, an energy
deposition of at least 2 GeV was required to determine the efficiency of the trigger element
SPCLe IET>1 || SPCLe IET Cen>2. For the determination of the barrel or endcap muon
trigger element (Mu Bar or Mu ECQ) only D∗μ events with a muon identified in the
barrel or endcap of the muon system are considered. However, the efficiencies of the
trigger elements Mu ECQ and SPCLe IET>1 || SPCLe IET Cen>2 cannot be checked
reliably due to the limited number of D∗μ-events. In the inelastic photoproduction of
J/Ψ mesons [103] good agreement was obtained also for these two trigger elements. For
the total sample and also for correlation region 3 and 4 in both samples the same picture
is obtained. The SpaCal trigger elements of subtrigger 2 and 61 used for the DIS data are
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L4 pre cond. εc [%] εb [%] εcb [%] εdata [%] rel. εsyst [%]

1997
μ-finder 80± 3 80± 1 80± 2 80± 7 −

D∗- or μ-finder 90± 3 97± 1 92± 2 90± 5 −
1999e−

μ-finder 67± 4 86± 1 72± 3 71± 11 −
D∗- or μ-finder 95± 2 99± 1 96± 2 93± 5 −
1999e+/2000

μ-finder 70.0± 1.5 87.9 ± 0.5 74.4± 1.1 84± 4 5
D∗- or μ-finder 93.3± 1.0 97.1 ± 0.3 94.4± 0.7 99± 1 3

Table 7.4: Efficiencies of the L4-finders for the photoproduction data set and for all corre-
lation regions. The efficiencies of the muon finder and of the logical OR of the D∗-finder
and the muon finder are quoted separately for the different data taking periods. εsyst is the
systematic uncertainty.

very efficient, almost 100%, but could not be checked reliably using D∗μ-data. In [91] this
was checked for inclusive D∗-events and no discrepancy between data and Monte Carlo
simulation was observed. Thus no systematic error is given for the trigger efficiency.

The efficiency of the L4 muon finder and of the logical OR of the L4 D∗-finder and the L4
muon finder are listed in table 7.4, again using as an example only the photoproduction
data in all correlation regions. To determine the efficiencies for the muon finder the L4
(L5 in the year 1997) open heavy flavour class (15 or 16 (1997)) has to be set:

εμ finder =
N(D∗μ) |μ class, D∗ class

N(D∗μ) |μ precond., D∗ class
(7.10)

Here N(D∗μ) |μ precond., D∗ class indicates the number of D∗μ events, which fulfill the L4
muon finder precondition and which are assigned in addition to the open heavy flavour
class. N(D∗μ) |μ class, D∗ class is the number of D∗μ events which are assigned to the closed
heavy flavour class as well as to the open heavy flavour class. In the case of the efficiency
of the logical “OR” of the L4 D∗ finder and the L4 muon finder L4 weights (see section
3.2.5) are considered, since no independent finder exists. Furthermore the L4 precondition
of the investigated finder has to be fulfilled (see table 4.6):

εμ||D
∗ finder =

N(D∗μ) |μ class or D∗ class∑N(D∗μ)|μ precond., D∗ precond.

i=1 L4-weight(i)
(7.11)

N(D∗μ) |μ precond., D∗ precond. is the number of D∗μ events, which fulfill the muon finder
as well as the D∗ finder precondition and N(D∗μ) |μ class or D∗ class is the number of D∗μ
events, which are assigned to the open or closed heavy flavour class in addition. The agree-
ment between data and Monte Carlo prediction is reasonable (table 7.4). The indicated
systematic error is obtained by calculating the probabiltity of the remaining difference.
If this probability is below 0.1 (corresponding to a 90% confidence level) a systematic
error is added, which yields a probability of 0.1. In the total sample and for the different
correlation regions the systematic errors for the muon-finder and the combined finder is
never larger than 5% and they are all of the same order of magnitude. Thus a systematic
error of 5% is taken for the L4-finder efficiency. A further systematic uncertainty entering
the L4-finder efficiency comes from the fraction of events which fulfill the muon finder, the



7.3. EFFICIENCIES 135

fET (D∗μ)-cut εc [%] εb [%] εcb [%] εdata [%]

γp
cor. 1-4 97.3 ± 0.4 95.6 ± 0.2 96.7 ± 0.3 95± 4
cor. 4 98.0 ± 0.5 96.5 ± 0.6 97.6 ± 0.4 95± 5
cor. 3 93.0± 3 96.8 ± 0.3 96.1 ± 0.6 79± 14

γp+DIS
cor. 1-4 91.5 ± 0.6 88.9 ± 0.3 90.7 ± 0.5 96± 3
cor. 4 92.7 ± 0.7 86.5 ± 0.7 91.9 ± 0.7 92± 5
cor. 3 83± 3 92± 4 90± 1 83± 12

Table 7.5: Efficiencies of the cut on the relative transverse energy fET (D∗μ) of the D∗μ-
pair. This is shown separately for the two data sets and for the different correlation regions.
The efficiencies of the data are obtained by a ΔM -fit of the data sample with and without
the cut on fET (D∗μ).

Charm Beauty

correlation region correlation region
1-4 4 1-4 3

N 76± 13 74± 12 51± 16 28± 9
εrec 0.220 0.225 0.252 0.272
εtrig 0.578 0.580 0.690 0.700
εL4 0.803 0.806 0.903 0.907

L [pb−1] 85.4
BR 0.0259

σ [pb] 337 ± 58 318 ± 52 147 ± 46 73 ± 23

Table 7.6: Total visible D∗μ cross sections in photoproduction, separately for the dif-
ferent correlation regions, together with all quantities entering the cross section formula.
Only the statistical error is indicated. The event numbers are taken from table 6.3.

D∗-finder or both finder preconditions. These fractions are adjusted in the Monte Carlo
simulation to the data for the two data samples, but the number of events is limited and
it is not done separately for each correlation region or any other variable. Varying these
fractions by ±10% for the μ-finder and combined finder class leads to variations of 1% in
the cross section for both samples. This uncertainty can be neglected compared to the
systematic uncertainty already indicated.

The next efficiency check concerns the efficiency of the cut on the relative transverse
energy fET (D∗μ). Table 7.5 shows this efficiency separately for the two data sets and
for the different correlation regions used. The efficiencies for the data are obtained by
a simultaneous ΔM -fit to the right and wrong charge data with and without the cut
on fET (D∗μ). The error of the efficiency is obtained by error propagation taking the
correlation coefficient between the initial and final data set into account. As can be seen
from table 7.5 good agreement between data and Monte Carlo simulation is obtained and
thus no systematic uncertainty concerning this cut is quoted.

With the efficiencies determined in this section and with the prescaled luminosity from
the last section the total visible D∗μ cross sections for charm and beauty production can
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Charm Beauty

correlation region correlation region
1-4 4 1-4 3

N 92± 15 87± 14 65± 19 36± 10
εrec 0.213 0.217 0.257 0.271
εtrig 0.658 0.659 0.753 0.759
εL4 0.832 0.832 0.915 0.919

L [pb−1] 85.4
BR 0.0259

σ [pb] 357 ± 58 331 ± 53 166 ± 49 86± 24

Table 7.7: Total visible D∗μ cross sections in γp + DIS, separately for the different
correlation regions, together with all quantities entering the cross section formula. Only
the statistical error is indicated. The event numbers are taken from table 6.3.

be calculated using equation 7.1. The result is given in table 7.6 for the photoproduction
data set together with all quantities entering this equation. The analogous result is shown
in table 7.7 for the total data sample. As expected the charm cross section obtained in
the correlation region 4 is only slightly smaller than the total charm cross section. For
beauty production however, the cross section in correlation region 3 is about half of the
total beauty cross section.

7.4 Systematic Errors

In addition to the statistical uncertainties several effects exist, which lead to a systematic
uncertainty on the cross section determination. These effects have been partly discussed
already in the last section. Below the systematic errors are summarised.

The systematic errors on the calculation of the total visible charm and beauty cross sections
are listed in table 7.8. A total relative systematic uncertainty of 16% (charm) or 19%
(beauty) is obtained.

Some systematic errors are estimated by varying uncertain parameters. For a uniform
distribution between two results a and b the variance is (a − b)2/12 [100]. Therefore a
systematic error of the maximum deviation, which occurs in a variation of an uncertain
parameter, divided by

√
12 is assigned to the measurement.

A first check concerns the definition of the correlation regions. For this purpose the
definition of the correlation regions was modified in ΔΦ∗ by moving the cut from 90◦ by
±2◦, ±5◦ and ±10◦ respectively. This was done for data and Monte Carlo simulation.
The variation by 2◦ for data and Monte Carlo simulation leads to a maximal difference of
the order of 5 (photoproduction) or 6 (total sample) events, which does not grow with a
larger movement of the ΔΦ∗-cut, but fluctuates as expected. The stability of the fit with
respect to the ΔΦ∗-cut was found to be reasonable. No systematic error is assigned.

The ΔΦ∗ model dependence is estimated by using the CASCADE Monte Carlo simu-
lation instead of the PYTHIA Monte Carlo simulation. From the difference of the number
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of reconstructed charm and beauty events as well as the difference of the beauty fraction,
obtained by the two different Monte Carlo simulations, for the photoproduction sample as
well as for the total sample a systematic uncertainty of 1.5% on the charm cross section
and of 8% on the beauty cross section and the beauty fraction is obtained.

The uncertainty of the muon background description has a direct impact on the number
of charm and beauty events determined by the fit and also on the muon background cor-
rection. Both effects were investigated together by varying the muon background fraction
by ±20% separately for charm and beauty. This leads to a systematic uncertainty of 1%
for the charm cross section, to a systematic uncertainty of 5% and 3% for the beauty cross
section and the beauty fraction respectively.

A further systematic uncertainty on the determination of the number of charm and beauty
events with the fit are the fragmentation fractions for the muons in the Monte Carlo.
The data consist in case of beauty of three types of D∗μ events. The D∗ and the muon
can come either from one b-quark or the two particles can come originally from different
b-quarks. For the latter case, the direct (b→ μ) or cascade (b→ c→ μ) decays have to be
distinguished. The distribution of the correlation regions depends on the fragmentation
fractions of the three classes. Therefore the fractions of the three D∗μ-classes in the Monte
Carlo simulation have been modified by varying one fragmentation fraction at the time
by the quoted uncertainty (see chapter 2). The two dimensional fit is performed for each
variation. The positive or negative deviations for the number of charm and beauty events
as well as for the beauty fraction obtained by the variation of the three fragmentation
fractions are added linearly. Dividing the total deviations by

√
12 an uncertainty of 1% for

the charm cross section and 6% for the beauty cross section and beauty fraction is obtained.
Adding the three systematic uncertainties in quadrature, a systematic uncertainty of 10.5%
is obtained for the beauty fraction.

The dependence of the result of the two dimensional fit – the number of charm and
beauty events Nc or Nb – on the procedure of the simultaneous ΔM -fit was checked. A
fit only to the right charge data was used as well as allowing more free parameters for the
simultaneous fit. In photoproduction the maximum obtained difference is, with one event
for Nc and Nb, much smaller than the statistical uncertainty. Also for the total sample
the differences are three events at most. Thus the behaviour of the ΔM -fit was found to
be reasonable and no systematic uncertainty is indicated.

The systematic uncertainty of the signal extraction with the two dimensional fit is
estimated by varying the width of the Gaussian assumed for the D∗ signal events. In the
analysis this width is fixed to the value obtained by a one dimensional ΔM fit to the total
data. An uncertainty of ±0.2 MeV/c2 for the width is obtained for both data samples.
Varying the width of the Gaussian by this amount an uncertainty of 4% for the charm
cross section and of 2.5% for the beauty cross section as well as for the beauty fraction is
obtained.

The reconstruction efficiency determined in the last section can be factorised into the
efficiency of the D∗-reconstruction, the muon reconstruction and the kinematic recon-
struction. The uncertainty on the muon reconstruction depends on the uncertainty of the
muon identification and the uncertainty of the muon track reconstruction. The muon
identification was extensively checked with elastic J/Ψ mesons [97]. The relative sys-
tematic uncertainty of 1.5% determined in this analysis, from which the muon weighting
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εsyst. [%]

source Charm Beauty

1. ΔΦ∗-model dependence 1.5 8
2. μ-BG 1 5
3. signal extraction 4 2.5
4. fragmentation fractions 1 6
5. reflections of D∗ 5
6. muon identification 1.5
7. track reconstruction for D∗μ 13
8. L4 finder efficiency 5
9. BR(D∗+ → K−π+π+

s ) 2
10. L 1.5

total syst. error 16 19

Table 7.8: Relative systematic errors of the total visible charm and beauty cross sections.

factors were taken, is applied here as well.
The D∗-reconstruction uncertainty depends again on the uncertainty of the track recon-
struction efficiency and on the momentum and mass resolution. Since the uncertainty of
the track reconstruction is smaller with larger pT of the particles, for the kaon, pion
and muon a relative uncertainty of the track reconstruction efficiency of 3% is assumed
[104], while for the slow pion a relative error of 4% is assumed. Assuming a maximal
correlation between the four particles a value of 13% is obtained.
The uncertainty on the kinematic reconstruction depends in the case of photoproduc-
tion events on the energy measured in the SpaCal and in case of the DIS selection also on
the polar angle of the scattered electron. To estimate the systematic uncertainty of the
efficiency of the selection of photoproduction events or DIS events, the measured energy
of the electron candidate was varied by ±3% and the polar angle was changed in addi-
tion by ±1 mrad. From the deviation in the number of selected D∗μ events a systematic
uncertainty of 0.5% is obtained, which is negligible.

The systematic error on the L4-finder efficiency is 5% as described in the previous sec-
tion. Any further systematic uncertainty on the trigger efficiency is found to be negligible.

A systematic effect on the ΔM -fit can be caused by reflections. Other D0 decay channels
apart from D0 → K−π+ can contribute in the D∗-signal region. In [105] this effect was
estimated for a D∗ selection in DIS to be (3.5 ± 1.5)%. In this analysis, the effect of
reflections is taken into account by a relative systematic untertainty of 5%.

The relative error of the branching ratio of the D∗ meson BR(D∗ → Kππs) is indicated
in chapter 2 as 2%. The integrated luminosity is with a systematic uncertainty of 1.5%
relatively precisely known [106].

Due to the small prescaling factors the impact of slightly wrong prescaling factors on the
cross section determination can be neglected.
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7.5 Comparison to Theoretical Predictions

After calculating the total visible D∗μ cross section for charm and beauty production and
after the determination of the systematic uncertainties of the cross section calculation,
the final result is compared in this section with the LO + parton shower prediction of
the Monte Carlo generators PYTHIA and CASCADE and with NLO calculations. A
comparison with the NLO predictions is performed only for the photoproduction data set.
The comparisons are given in table 7.9 for the photoproduction sample and in table 7.10
for the total sample including DIS events. The calculation of the NLO cross section in
photoproduction is extensively discussed in chapter 2. For the Monte Carlo cross section
the number of D∗μ events in the visible range was counted and the cross section is then
given by:

σQ, MC
vis =

NQ
vis(D

∗μ)
LMC

· f(QQ̄→ D∗μ)
fMC(QQ̄→ D∗μ)

(7.12)

The last factor takes into account, that the fragmentation factors and branching ratios in
the Monte Carlo simulation do not correspond to the most recent measurements quoted
in table 2.3 of chapter 2.

The ratios of data to theory are shown in table 7.9 (photoproduction) and 7.10 (total
sample). The charm cross sections are in good agreement with the Monte Carlo prediction
of the generator PYTHIA, taking the direct as well as the excitation resolved component
into account, and even better with the prediction of the Monte Carlo generator CASCADE.
The prediction of the NLO calculations in photoproduction, is in good agreement with
the measured charm cross section, too. For beauty production, a factor 3.1 between data
and NLO calculation is obtained in photoproduction using all correlation regions. For
correlation region 3 this factor is 4.2. The beauty cross section of the CASCADE Monte
Carlo prediction and of the PYTHIA Monte Carlo prediction (direct + excitation resolved
component) are larger than the NLO prediction. In case of the CASCADE Monte Carlo
generator only a factor 1.5 (all correlation regions) or 1.4 (correlation region 3) is obtained,
while for the CASCADE Monte Carlo generator for both cases a factor 2.0 is obtained. For
the total data set a similar factor between data and Monte Carlo prediction is obtained
as in photoproduction.

The theoretical uncertainties for the NLO calculations as indicated in table 7.9 are de-
termined as proposed in [107]. The heavy quark mass, the factorisation scale and the
renormalisation scale are each varied and the variations obtained are added linearly. The
charm mass is varied by ±0.2 GeV/c2 around the default value of mc = 1.5 GeV/c2, while
the beauty mass is varied by ±0.25 GeV/c2 around the default value of mb = 4.75 GeV/c2.
For the lower values of the scales half of the default value of the scales is chosen, while for
the upper value twice the default value for the scales is chosen. The relative theoretical
uncertainty of the NLO calulations for charm and beauty is about 40%.

A rough estimation of the theoretical uncertainties of the predictions of the two Monte
Carlo generators, by varying the heavy quark mass in the same way as for the NLO
calculations and the scales simultaneously, was performed in addition. The uncertainties
obtained are of the same order of magnitude or slightly smaller.

Figure 7.1 shows a comparison of the ratio of the measured b-cross section and the NLO
prediction for this analysis and other measurements of the H1 and ZEUS collaboration.
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Figure 7.1: Ratio of the measured b production cross sections at HERA and the theoretical
predictions based on NLO QCD calculations. The ratio for this analysis is indicated for all
correlation regions in photoproduction. The theoretical uncertainty of the NLO calculation
(error band) for photoproduction is about 25% and for DIS about 15%. These numbers are
only indicative. The estimated theoretical uncertainties for the NLO calculations for this
analysis is about 40% (table 7.10).

The ratio, obtained in this analysis, is in very good agreement with that from the D∗μ-
analysis of the ZEUS-collaboration. Although this ratio seems to be above the ratios,
obtained in the recent b→ μ measurements of the H1 and ZEUS collaboration [7, 8], they
are still compatible due to the large error.

In the recent b→ μmeasurement of H1 [7] the ratio between NLO and data was determined
to be 1.7. The ratios for the two Monte Carlo predictions are larger, 2.5 for the PYTHIA
Monte Carlo generator and 1.9 for the CASCADE Monte Carlo generator, than the ratio
for the NLO prediction in the b → μ measurement, while it is the other way around in
this analysis. In the b → D∗ measurement at HERA presented in [91] the ratio of data
to NLO calculations is 5.1. However, there the NLO cross section is a factor 0.65 smaller
than the prediction of the CASCADE Monte Carlo generator.
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γp cross section [pb−1] data/theory

Charm
data 337 ± 58± 54

PYTHIA direct 142 2.4
σc,all

vis μ− ← c̄c→ D∗+ PYTHIA 242 1.4
CASCADE 310 1.1

NLO 269± 118 1.3
data 318 ± 52± 51

μ− ← c̄c→ D∗+ PYTHIA direct 141 2.3
σc,cor 4

vis Δφ∗ > 90◦ PYTHIA 228 1.4
Q(μ) �= Q(D∗) CASCADE 271 1.2

NLO 242 ± 92 1.3
Beauty

data 147 ± 46± 28
PYTHIA direct 55 2.7

σb,all
vis all possibilities PYTHIA 72 2.0

CASCADE 100 1.5
NLO 47± 18 3.1
data 73± 23± 14

b→ D∗+μ− PYTHIA direct 26 2.8
σb,cor 3

vis Δφ∗ < 90◦ PYTHIA 36 2.0
Q(μ) �= Q(D∗) CASCADE 53 1.4

NLO 19± 7 4.2

Table 7.9: Comparison of the total visible D∗μ-cross section for charm and beauty produc-
tion in photoproduction with LO + parton shower predictions and with NLO calcula-
tions. The PYTHIA Monte Carlo generator (direct component alone or both components,
the direct and resolved excitation component) and the Monte Carlo generator CASCADE
are used for this comparison. For the NLO calculations only the direct component is used,
since the normal resolved component is negligible. For the data the statistical error (first
indicated error) and the systematic error (second error) are given separately.

The difference to the recent b → μ measuremenets might be explained by the different
visible range used in this analysis. The visible range of the two D∗μ-analyses is much
closer to the production threshold than for the b → μ analysis, since the required muon
momentum is considerably smaller than in the b → μ analysis and since the requirement
on the transverse momentum of the D∗ meson is also not hard.

The fragmentation as implemented in the code of the NLO program FMNR is performed
without any parton showers. For the transition of a b hadron into a D∗-meson only a
simplified model (Peterson function) is used. The uncertainty of the predicted NLO cross
section due to these effects is unknown but it can depend on the visible range and on the
considered particles (muons or D∗) in addition.
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γp+ DIS cross section [pb−1] data/theory

Charm
data 357 ± 58± 57

PYTHIA direct 155 2.3
σc,all

vis μ− ← c̄c→ D∗+
PYTHIA 255 1.4

CASCADE 339 1.1
data 331 ± 53± 53

μ− ← c̄c→ D∗+
PYTHIA direct 153 2.2

σc,cor 4
vis Δφ∗ > 90◦

PYTHIA 240 1.4
Q(μ) �= Q(D∗)

CASCADE 296 1.1
Beauty

data 166 ± 49± 32
PYTHIA direct 61 2.7

σb,all
vis all possibilities

PYTHIA 77 2.2
CASCADE 109 1.5

data 86± 24± 16
b→ D∗+μ−

PYTHIA direct 29 3.0
σb,cor 3

vis Δφ∗ < 90◦
PYTHIA 39 2.2

Q(μ) �= Q(D∗)
CASCADE 57 1.5

Table 7.10: Comparison of the total visible D∗μ-cross section for charm and beauty produc-
tion in phototproduction + DIS with LO + parton shower predictions. The PYTHIA
Monte Carlo generator (direct component alone or both components, the direct and re-
solved excitation component) is used for photoproduction and the direct RAPGAP Monte
Carlo generator for DIS. As an alternative Monte Carlo generator CASCADE is used
for photoproduction and DIS. The Monte Carlo generator combination of PYTHIA and
RAPGAP is indicated in the table as PYTHIA. For the data the statistical error (first
indicated error) and the systematic error (second error) are given separately.



Chapter 8

Differential Cross Sections

In this chapter normalised differential cross sections (sum of charm and beauty produc-
tion) for the photoproduction domain and differential charm and beauty cross sections for
the overall data set are determined in the visible range and are compared with theoretical
predictions. Differential distributions for quantities which characterise the D∗μ-system,
are presented: the transverse momentum p∗T (D∗μ), the rapidity ŷ(D∗μ) and the invariant
mass M(D∗μ) of the D∗μ-pair. Furthermore, the azimuthal angular difference ΔΦ∗ be-
tween the D∗ and the muon is considered. p∗T (D∗μ) and ΔΦ∗ are defined in the photon
proton rest frame and are sensitive to higher order contributions, to a possible non-zero
initial transverse momentum kT of one of the initial partons, taking part in the hard
interaction, and to fragmentation effects. M(D∗μ) is directly correlated to

√
ŝ, the centre-

of-mass energy of the two heavy quarks (LO picture). ŷ(D∗μ) contains information about
the direction of the D∗μ-pair. Furthermore M(D∗μ) and ŷ(D∗μ) are used for the cal-
culation of the quantities, on which the unintegrated gluon density depends. A detailed
description of these D∗μ-quantities can be found in section 2.1.5.

8.1 Differential Distributions

For both samples, the photoproduction and the total data sample1, the number of D∗μ-
events of all correlation regions are used for the differential distributions.

For the photoproduction domain no separation of charm and beauty is performed in each
bin of the D∗μ-variables. In order to obtain the number of D∗μ-events a simultaneous
ΔM -fit to the right and wrong charge data sets is used in each bin of the considered
variable. To illustrate the quality of the fits, figure 8.1 shows the ΔM -distributions in
bins of p∗T (D∗μ) for the right (data points) and wrong (histogram) charge combination
together with the fit.

The number of D∗μ-events obtained in this way still contains muon background. In order
to correct for the muon background from charm and beauty events, binwise correction
factors fcor(i) are applied. These factors are determined using the Monte Carlo simulation:
The muon background correction factor fQ

cor(i) (with Q = c, b) in the i-th bin of the

1The total data sample contains photopruction and DIS (about 20%) events.
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Figure 8.1: ΔM distribution in bins of p∗T (D∗μ) for the photoproduction data. The right
charge (dots) and wrong charge combination (histogram) data are shown together with the
fit.

considered variable is defined as the ratio of real D∗μ events NQ
gen(i) from charm or beauty

production respectively and the number of reconstructed D∗μ-events NQ
rec(i), containing

in addition also muon background events:

fQ
cor(i) = NQ

gen(i)/NQ
rec(i) (8.1)

The combined correction factor fcor(i) is then given by:

fcor(i) = (1− f rec
b (i)) · f c

cor(i) + f rec
b (i) · f b

cor(i) (8.2)

f rec
b (i) is the beauty fraction in the i-th bin of the reconstructed D∗μ-events. It is calcu-
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Figure 8.2: Muon background correction factors for the D∗μ-variables in photoproduction:
the transverse momentum p∗T (D∗μ), the rapidity ŷ(D∗μ), the invariant mass M(D∗μ) and
the azimuthal angle difference ΔΦ∗ of the D∗μ-pair. The combined correction factor (c+b)
and the correction factor for charm and beauty production are shown separately.

lated using the overall beauty fraction fb (before muon background correction):

f rec
b (i) =

fb ·N b
rec(i)/N

b
rec

fb ·N b
rec(i)/N b

rec + (1− fb) ·N c
rec(i)/N c

rec

(8.3)

In figure 8.2 the combined correction factor as well as the charm and beauty correction fac-
tors determined using the PYTHIA Monte Carlo simulation are shown: p∗T (D∗μ), ŷ(D∗μ),
M(D∗μ) and ΔΦ∗.

The differential distributions of the D∗μ variables after applying the muon background
correction factors fcor(i) are shown in figure 8.3. Due to the larger muon background
correction for charm events the beauty fraction is larger in the photoproduction D∗μ-
sample after this correction, fb = 40%. The data (points) in figure 8.3 are compared to
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Figure 8.3: Differential distributions of the D∗μ-variables in photoproduction after
muon background correction. Shown are the transverse momentum p∗T (D∗μ), the rapidity
ŷ(D∗μ), the invariant mass M(D∗μ) and the azimuthal angle difference ΔΦ∗ of the D∗μ-
pair. The data (dots) are shown together with the Monte Carlo distributions, normalised
to the data. The beauty fraction of the total photoproduction D∗μ sample is fb = 40%.
Only statistical errors are shown.

the sum of the charm and beauty Monte Carlo predictions. The Monte Carlo simulation is
normalised to the data and fb = 40% is used as beauty fraction. In all variables reasonable
agreement between the data and the PYTHIA Monte Carlo prediction is obtained.

The differential distributions have been compared to Monte Carlo predictions of the sum of
charm and beauty production which take the overall beauty fraction from the result of the
two dimensional fit. Only the normalisation of these two fractions is thus determined from
the fit, while the invidual shapes of the two contributions are given by the Monte Carlo
simulation. In order to get the shape of the different D∗μ variables separately for charm
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bin 1 bin 2 sum

variable fMC
b [%] f fit

b [%] fMC
b [%] f fit

b [%] Nc Nb

M(D∗μ) 54± 8 51± 7 21± 4 50± 9 78± 14 79± 17
ŷ(D∗μ) 35± 5 54± 7 46± 7 31± 10 93± 14 65± 17
p∗T (D∗μ) 25± 4 89± 7 62+9

−3 43± 10 47± 13 132± 20
total fit fb = (41± 6)% 92± 15 65± 19

Table 8.1: Fit result of the differential D∗μ variables. In the last column the sum of
charm and beauty events (after muon background correction) is compared to the number
of charm and beauty events obtained from the fit to the total data sample. In addition
beauty fractions fb (after muon background correction) obtained for the differential D∗μ
variables in comparison to the beauty fraction predicted by the Monte Carlo simulation
PYTHIA using an overall beauty fraction fb = (41 ± 6)%. The values are given for the
invariant mass M(D∗μ), the rapidity ŷ(D∗μ) and the transverse momentum p∗T (D∗μ) of
the D∗μ-pair.

and beauty a two dimensional fit in each bin of the distributions has to be performed.

Since the total data sample contains some more events than the photoproduction sample,
this sample is used to try such a separation of charm and beauty production in bins of the
D∗μ variables. Since for the two dimensional fit a larger amount of data is needed than
for the normal ΔM -fit, the number of bins is reduced to two. In figure 8.4 the results of
the two dimensional fit in two bins of M(D∗μ), ŷ(D∗μ) and p∗T (D∗μ) are shown together
with the result of a one dimensional ΔM -fit, which is fitted simultaneously to the right
and wrong charge data, in the four correlation regions. Good overall agreement between
the two dimensional and the one dimensional fit is obtained for both bins of the three
D∗μ variables except in the second correlation region. The discrepancy in the second
correlation region is presumably caused by a statistical fluctuation. The population of the
correlation regions changes strongly with the measured invariant mass M(D∗μ) and the
measured transverse momentum of the D∗μ-pair. At small p∗T (D∗μ) or large M(D∗μ) the
dominant contribution comes from events, which have a back-to-back topology (therefore
mainly charm), while at large p∗T (D∗μ) or small M(D∗μ) the dominant contribution is
given by beauty events, where the D∗-meson and the muon come mainly from the same
quark (usually the decay of a B0, mB0 = 5.28 GeV/c2).

As a cross check the number of charm and beauty events (after muon background cor-
rection) is compared to the number of charm and beauty events obtained from the fit
to the total data sample (see last column of table 8.1). A large discrepancy is observed
for p∗T (D∗μ). For the other two variables the agreement is better, for ŷ(D∗μ) excellent
agreement is observed. Furthermore the beauty fractions (after muon background correc-
tion) in each bin of the three D∗μ variables from the two dimensional fit are compared in
table 8.1 to the beauty fractions predicted by the Monte Carlo simulation PYTHIA, if an
overall beauty fraction of fb = (41± 6)% is used. A large discrepancy between the beauty
fractions is observed in the first bin of p∗T (D∗μ). For the other two variables the agreement
is somewhat better. The two dimensional fit is very sensitive to statistical fluctuations in
particular in bins where only two correlation regions are populated. For this reason, the
determination of differential charm and beauty cross sections will be attempted only as a
function of M(D∗μ) and ŷ(D∗μ).
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Figure 8.4: Result of the two dimensional fit for the two bins of M(D∗μ), ŷ(D∗μ) and
p∗T (D∗μ) using the total sample. The charm, beauty and muon background contributions
are drawn separately. The black dots are the result of a one dimensional ΔM -fit in bins
of the correlation regions.
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Figure 8.5: Differential D∗μ-distributions for charm (left) and beauty production (right)
for the total data set. Shown are the invariant mass and the rapidity (measured in the
laboratory frame) of the D∗μ-pair. The data (black dots) are compared to the Monte Carlo
prediction from PYTHIA, which is normalised to the data.

In figure 8.5 the number of D∗μ-events from charm and beauty production, as obtained
from the two dimensional fit and after muon background correction, are presented as a
function of the invariant mass and the rapidity of the D∗μ-pair. The shapes of both
distributions are described by the PYTHIA Monte Carlo simulation.

The differential cross sections dσ/dx as a function of a variable x are calculated in a similar
way as the total cross sections. The number of D∗μ-events in a bin of a quantity x, for
example p∗T (D∗μ), and the efficiencies have to be known. Since for the photoproduction
sample no separation of charm and beauty events is performed, the differential beauty
fraction has to be considered in the total efficiency. For the differential cross section
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dσvis/dx in the photoproduction visible range the following formula holds:

dσvis

dx
=

dσvis,c(ep→ e′D∗μX)
dx

+
dσvis,b(ep→ e′D∗μX)

dx

=
dN(D∗μ)

dx

L · BR(D∗ → Kππs) · εtrig(x) · εrec(x) · εL4(x)︸ ︷︷ ︸
εtotal(x)

(8.4)

The total efficiency εtotal(x) in a bin of x is given by:

εtotal(x) =
εctotal(x) · εbtotal(x)

f b(x)εctotal(x) + (1− f b(x))εbtotal(x)
(8.5)

f b(x) denotes the beauty fraction in the corresponding bin. This is calculated using the
overall beauty fraction fb and the normalised charm and beauty distributions (all after
muon background correction) according to:

f b(x) =
fb ·N b(i)/N b

fb ·N b(i)/N b + (1− fb) ·N c(i)/N c
(8.6)

For the total data sample a separation of charm and beauty events is possible and the
cross section formula reduces to:

dσQ
vis

dx
=

dNQ(D∗μ)
dx

L · BR(D∗ → Kππs) · εQtrig(x) · εQrec(x)ε
Q
L4(x)︸ ︷︷ ︸

εQ
total

(x)

(8.7)

The index Q indicates the type of the heavy quark, charm or beauty respectively. In
the next section the differential efficiencies are determined and then the cross sections are
calculated.

8.2 Differential Efficiencies

First, similar checks of the trigger, reconstruction and L4-finder efficiencies are performed
as already performed for the total cross sections (chapter 7). The only difference is that
the trigger element efficiencies, the L4-finder efficiencies and the reconstruction efficiency
of the cut on the transverse energy fraction fET (D∗μ) of the D∗μ have been calculated as
a function of some chosen variables, for example the transverse momentum pT (μ) of the
muon.

As an example the L4 muon finder efficiency for D∗μ-events in photoproduction and for
the period 1999e+/2000 together with the efficiency of the cut on the relative fraction
of the transverse energy fET (D∗μ) of the D∗μ-pair with respect to the total transverse
energy are shown in figure 8.6. The L4 muon finder efficiency is presented as a function
of pT (μ), while the efficiency of the cut fET (D∗μ) is shown as a function of pT (D∗).
Since in the data no separation of charm and beauty is performed, the beauty fraction
f b(x) (determined via equation 8.3), as obtained with the beauty fraction fb = 31% for
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Figure 8.6: Efficiencies of a) the L4 muon finder as a function of pT (μ) (period
1999e+/2000 only) and b) of the fET (D∗μ) cut as a function of pT (D∗) for the pho-
toproduction sample. The efficiencies were calculated according to equation 8.5 using a
b-fraction of fb = 31% (still containing muon background).

the photoproduction sample (still containing muon background), is used, and a combined
efficiency is calculated from the simulation. The agreement between data and Monte
Carlo simulation is good. The strongest dependence of the finder efficiencies is obtained
for the L4 muon finder and for the variable pT (μ). This is expected since the muon finder
cuts explicitly on this quantity. However the threshold behaviour is well described by the
Monte Carlo simulation. The efficiency of the L4 muon finder of the periods 99e− and 97
in the simulation has been adjusted to that of the data (see chapter 5). For the trigger
elements and the logical OR combination of the L4 D∗ and muon finder good agreement
between simulation and data was found within errors.

Figure 8.7 shows as an example the reconstruction, trigger and L4 efficiencies as a func-
tion of the invariant mass of the D∗μ-pair separately for charm and beauty production as
obtained by the PYTHIA Monte Carlo simulation for the photoproduction sample. Due
to the softer momentum spectrum of the muons in charm events the trigger and L4 effi-
ciencies are smaller for charm events than for events from beauty production. For charm
production all efficiencies increase strongly with M(D∗μ), since a small value of M(D∗μ)
is for charm directly related to a small momentum of the two particles. For beauty pro-
duction a clear rise is only observed for the reconstruction efficiency, while the other two
efficiencies show only a slight increase with M(D∗μ). For other variables like ŷ(D∗μ),
p∗T (D∗μ) and ΔΦ∗ weaker dependencies at least for the reconstruction efficiency are ob-
served. The weakestest dependence is observed as a function of the transverse momentum
of the D∗μ-pair. In general the dependence of the efficiencies on the selected variables is
stronger for charm than for beauty production.
The total efficiency for charm and beauty production as well as the combined total effi-
ciency (c+b) is presented in figure 8.8. For the combined efficiency the beauty fraction
fb = 40% (photoproduction, after muon background correction) is used.
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Figure 8.7: Reconstruction, trigger and L4 efficiencies as a function of the invariant mass
M(D∗μ) of the D∗μ-pair for the photoproduction sample. a) Charm production and b)
beauty production.
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Figure 8.8: Total efficiencies as a function of the invariant mass M(D∗μ) of the D∗μ-pair
for the photoproduction sample. The total efficiencies for charm and beauty production
and the combined efficiency (fb = 40%) are shown separately.

8.3 Systematic Errors

Many of the systematic uncertainties, as discussed for the total cross section (table 7.8),
cancel in the calculation of normalised differential cross sections. The uncertainties which
cancel are the uncertainty in the luminosity, in the branching ratio BR(D∗+ → K−π+π+

s ),
the uncertainty due to reflections, muon identification, track reconstruction for the D∗μ-
pair and the L4 finder efficiencies.
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For the combined charm and beauty production cross section, which is determined for the
photoproduction data set, the uncertainty in the beauty fraction affects not only the
total number of events, but also the combined efficiency. In the last chapter the systematic
uncertainty for the beauty fraction was determined to 10.5%. Taking the statistical error
of 20% (all correlation regions) into account this leads to a total error of the beauty
fraction of 23%. The systematic uncertainty on the normalised cross sections due to the
uncertainty for the beauty fraction and the uncertainty for the muon background, is
determined by varying simultaneously the beauty fraction by ±23% and the total fraction
of the muon fake of charm and beauty by ±20%. The systematic uncertainty obtained
from the maximum deviation assuming a uniform distribution between two extremes (see
section 7.4) is different for the four different D∗μ-variables. For p∗T (D∗μ) and ŷ(D∗μ) the
systematic uncertainty is 1%, while for M(D∗μ) a systematic uncertainty of 6% and for
ΔΦ∗ an uncertainty of 3% is obtained.

The systematic uncertainty due to the signal extraction via the one dimensional ΔM -fit
is determined by varying the width of the Gaussian by its uncertainty (±0.2 MeV/c2).
To estimate the effect of a possible change of the width in the different intervals of each
variable, which would affect the shape of the distributions, a linear change of the width
from the upper value to the lower value is assumed. Assuming a uniform distribution
between two extremes (see section 7.4), from the maximum deviations obtained by this
method a systematic uncertainty of 3% for each D∗μ variable is obtained.

Adding the uncertainties, discussed above for the photoproduction sample, in quadra-
ture a systematic uncertainty of 3% for p∗T (D∗μ) and ŷ(D∗μ), an uncertainty of 7% for
M(D∗μ) and of 4% for ΔΦ∗ is obtained. Compared to the statistical errors the systematic
uncertainties can be neglected.

For the differential charm and beauty cross section, as determined for the total data set,
the same investigations as performed for the total cross sections for the uncertainty of the
muon background, the signal extraction, the ΔΦ∗ model dependence and the fragmenta-
tion fractions are performed. Here this study is done in each bin of the D∗μ variables.
The systematic uncertainty for each source is estimated from the maximum deviations
obtained by the variation of the corresponding parameter and assuming a uniform distri-
bution between these two extreme results (see section 7.4). Here the same uncertainties
for the charm and beauty cross sections are used, since the large statistical error restricts
the estimation of the systematic uncertainty. The uncertainty in the muon background
leads to a systematic uncertainty of 3% in the normalised differential cross sections. For
the estimation of the uncertainty in the signal extraction a linear change of the width of
the Gaussian used in the fit from the upper value to the lower value along the intervals
is assumed. This leads to a systematic uncertainty of 4% in the case of M(D∗μ) and of
3% for ŷ(D∗μ). The uncertainty due to the ΔΦ∗ model dependence is estimated to be 4%
for all variables. The uncertainty due to the fragmentation fractions is different for each
variable. An uncertainty of 3% is obtained for M(D∗μ), while for ŷ(D∗μ) an uncertainty
of 5% is obtained.

Adding the uncertainties, discussed above for the total sample, in quadrature a systematic
uncertainty of 7% for M(D∗μ) and of 8% for ŷ(D∗μ) is obtained. Table 8.2 summarises
the systematic errors for the normalised differential cross sections.
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γp γp + DIS

εsyst. [%] p∗T M ŷ ΔΦ∗ M ŷ

μ-BG, fb 1 6 1 3 -
μ-BG - 3
signal extraction 3 4 3
ΔΦ∗ model dependence - 4
fragmentation fractions - 3 5

total syst. error 3 7 3 4 7 8

Table 8.2: Relative systematic errors of the normalised differential visible cross sections.
The uncertainties are shown separately for the photoproduction sample, where combined
charm and beauty cross sections are calculated, and for the total data set, where charm
and beauty cross sections are computed separately.

8.4 Normalised Differential Cross Sections

For photoproduction the normalised differential D∗μ cross sections are shown in figure
8.9 extracted in the visible range for the sum of charm and beauty production using the
muon background corrected differential distributions shown in figure 8.3. The differential
cross sections are presented as a function of the transverse momentum p∗T (D∗μ), the
rapidity ŷ(D∗μ), the invariant mass M(D∗μ) and the azimuthal angle difference ΔΦ∗ of
the D∗μ-pair. The data (points) are compared to the predictions of the two different
Monte Carlo generators PYTHIA and CASCADE and to the NLO prediction obtained
using the program FMNR. For the NLO calculation only the direct component is used,
since the normal resolved component is very small and can be neglected. The error band
assigned to the NLO calculations is obtained in the same way as for the total cross sections
(section 7.5). The mass, the renormalisation and factorisation scales are varied and the
deviations are added linearly. In the case of the PYTHIA generator the direct as well as
the resolved excitation component are contained in the prediction.

The predicted cross sections for charm and beauty production are normalised separately
to those of the data and a beauty fraction fb = 30%, as obtained from the total measured
charm and beauty cross sections, is used. In general the shape of the distributions is
described reasonably well by all three predictions. The prediction of the NLO calculations
or the CASCADE Monte Carlo generator for the shape of the variables p∗T (D∗μ) and ΔΦ∗

are smeared out stronger to larger (smaller for ΔΦ∗) values than the PYTHIA Monte
Carlo generator. The NLO prediction as well as the CASCADE Monte Carlo prediction
seem to describe the p∗T (D∗μ) and ΔΦ∗ distribution of the data somewhat better than
the PYTHIA Monte Carlo generator. The agreement between NLO calculation and the
data is worse for the ŷ(D∗μ) distribution compared to the agreement obtained for the two
Monte Carlo generators. Deviations in the forward direction are present between data and
predictions. In M(D∗μ) no large difference between the three theoretical predictions is
observed and for all predictions good agreement with the data is obtained. Considering all
four distributions the best description of the data is obtained for the CASCADE generator.

The CASCADE Monte Carlo generator is based on the CCFM evolution approach which
is related to kT -factorisation. Therefore the gluon taking part in the hard interaction can
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have a non-zero transverse momentum kT . This leads to a stronger smearing of p∗T (D∗μ)
and ΔΦ∗ than predicted by the PYTHIA Monte Carlo generator. NLO behaves in these
variables in a very similar way. However since the NLO calculations are based on the
DGLAP evolution approach, the ŷ(D∗μ) distribution is different.

With the data used for this analysis it is unfortunately not possible to make a clear
statement, whether the photoproduction data prefer the NLO prediction, the CASCADE
Monte Carlo prediction or the PYTHIA Monte Carlo prediction. All three predictions are
able to describe the shape of the data, even though it seems that the best description is
obtained by the CASCADE Monte Carlo generator. Nevertheless clear differences between
these three models do occur and with more statistics it should be possible to make a clearer
statement on this topic.

Figures 8.10 shows the normalised differential D∗μ charm or beauty cross sections respec-
tively for the total data set. The data are compared to the predictions of the Monte Carlo
generator PYTHIA/RAPGAP as well as to the Monte Carlo generator CASCADE. In
view of the large errors no firm conclusion is possible. Both distributions - M(D∗μ) and
ŷ(D∗μ) - are described reasonably by the two different Monte Carlo simulations.
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Figure 8.9: Normalised differential visible D∗μ cross sections (c+b) for photoproduction.
The distributions of the transverse momentum p∗T (D∗μ), the rapidity ŷ(D∗μ), the invariant
mass M(D∗μ) and the azimuthal angle difference ΔΦ∗ of the D∗μ-pair are shown. The
data (dots) are compared to the prediction of the Monte Carlo generators PYTHIA and
CASCADE as well as to the NLO calculation. In the PYTHIA generator the direct as
well as the resolved excitation component are used. For the NLO calculation the direct
component alone is used, since the normal resolved component is negligible. The predicted
cross sections for charm and beauty production are normalised to those of the data and
fb = 30% is the used beauty fraction as obtained from the total measured charm and
beauty cross sections. The systematic uncertainties are negligible compared to the statistical
errors.
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Figure 8.10: Normalised differential visible D∗μ charm (left) and beauty (right) production
cross sections for the total data set. The distributions of the invariant mass M(D∗μ) and
the rapidity ŷ(D∗μ) of the D∗μ-pair are shown. The data (dots) are compared to predictions
of the Monte Carlo generators PYTHIA (photoproduction) and RAPGAP (DIS) as well as
to the predictions of the Monte Carlo generator CASCADE. The Monte Carlo generator
mix of PYTHIA and RAPGAP is indicated in the plots as PYTHIA. The systematic
uncertainties are negligible compared to the statistical errors.



Chapter 9

Unintegrated Gluon Density

The aim of this chapter is the determination of the unintegrated gluon density, which
depends on the momentum fraction xg of the gluon with respect to the proton momentum,
the transverse momentum kT of the gluon and the maximum allowed angle q̄′t. Since the
number of D∗μ-events is limited only the dependence of the gluon density on at most two
variables is considered: the gluon density xg g(xg) as a function of xg, inclusively as well as
in bins of kT and q̄′t. For the extraction of the unintegrated gluon density the Monte Carlo
generator CASCADE is used, which is based on the CCFM evolution model. In section
2.5 the quantities xg, kT , q̄

′
t as well as the procedure for extracting the unintegrated gluon

density was described.

This measurement is carried out with the charm dominated sample, using only events
from correlation region 4. xg(D∗μ) differential distributions are determined inclusive and
in bins of p∗T (D∗μ) and in bins of q̄′t(D∗μ), where xg(D∗μ), p∗T (D∗μ) and q̄′t(D∗μ) are
related to the quantities xg, kT , q̄

′
t based on the quark momenta. The contribution of muon

background and also the contribution of beauty events, where a b-hadron decays directly
into a D∗μ-pair, will be corrected for. The latter correction ensures that the D∗-meson and
the muon come from different heavy quarks and that thus the D∗-meson and the muon are
related to the two quarks. Since theD∗μ-quantities represent the QQ̄ based quantities only
approximately, the D∗μ-quantities are unfolded in order to obtain distributions depending
on the QQ̄ based quantities. The unfolding procedure corrects only for detector effects
and fragmentation, and uses the Monte Carlo simulation PYTHIA. The technical details
of the unfolding procedure are described in appendix D and in [108, 109].

From the QQ̄ distributions which are the result of the unfolding cross sections are cal-
culated. The inclusive gluon density xg g(xg) as well as the gluon densities xg g(xg) in
bins of kT and q̄′t are then obtained by dividing this cross section by the visible D∗μ-cross
section, obtained for a flat gluon density. These cross sections are calculated via the CAS-
CADE Monte Carlo generator, since this Monte Carlo generator contains a kT -dependent
calculation of the cross section of the hard process.

The measured inclusive gluon density xg g(xg) and the gluon density in bins of kT and q̄′t,
are then compared to that used by CASCADE and also to that obtained from the NLO
calculations and from the PYTHIA Monte Carlo generator.

158
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9.1 Differential Distributions

In order to get a charm dominated data set only events belonging to correlation region
4 (ΔΦ∗ > 90◦ and Q(D∗) �= Q(μ)) are selected. This selection ensures a good relation
between the two quarks and the D∗μ-pair. Furthermore only events from photoproduction
are taken to make possible a comparison with NLO calculations.

The number of D∗μ-events obtained from a ΔM -fit are corrected for muon background,
b→ D∗μ events and events, which are reconstructed within the allowed 0.05 < yJB < 0.75
range but where the generated y-value is outside the visible range 0.05 < y < 0.75. For
b → D∗μ events it is impossible to get information about the quark pair final state. The
same is true for events, where a hadron is misidentified as a muon or where the muon is a
decay muon. The y-correction, which is about 10%, is applied to avoid a correction within
the unfolding procedure.

The binwise correction for the sum of muon background events, b→ D∗μ events and of y
migration is performed in a similar way as for the muon background correction alone. A
correction factor f c

cor(i) in bin i is calculated for charm as the ratio of generated D∗μ events
within the generated visible y-range N c

gen(i) to the number of reconstructed D∗μ-events
N c

rec(i), containing in addition also muon background events and events with a generated
y outside of the visible y-range:

f c
cor(i) = N c

gen(i)/N c
rec(i) (9.1)

For beauty events the correction factor f b
cor(i) in a bin i is the ratio of D∗μ-events

N b,no b→D∗μ
gen (i), without the b → D∗μ component, to the number of reconstructed D∗μ-

events N b
rec(i), which contain also muon background events and events with a generated

y outside of the visible y-range:

f b
cor(i) = N b,no b→D∗μ

gen (i)/N b
rec(i) (9.2)

The combined correction factor fcor is then given by:

fcor = (1− f rec
b (i)) · f c

cor(i) + f rec
b (i) · f b

cor(i) (9.3)

Here f rec
b (i) is the beauty fraction in the i-th bin (determined via equation 8.3). Figure 9.1

shows the combined correction factor fcor. In addition to the total combined correction
factor above also the combined correction factors for the muon background alone and for
the sum of muon background and b→ D∗μ events are shown.

Figure 9.2 shows the differential distributions of the observed quantity log10(xg(D∗μ)),
inclusively as well as in bins of p∗T (D∗μ) and q̄′t(D∗μ), after the muon background, b→ D∗μ
and y correction. The range in log10(xg(D∗μ)) is adapted to the number of D∗μ-events.
The beauty fraction in the data is now only fb = 5.8%. The data (black points) are
presented together with the PYTHIA Monte Carlo prediction. The Monte Carlo prediction
describes the xg(D∗μ)-distribution in bins of q̄′t(D∗μ) well, while there are some differences
in the other two distributions. In the next section these three distributions will be unfolded
to get the QQ̄ based quantities.

As explained in the appendix D the number of bins used for a variable has to be twice
as large as the desired final number of bins after the unfolding. As can be seen from
figure 9.2 this analysis starts with initially six bins and after unfolding three bins in the
corresponding QQ̄ based variables will be obtained.
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Figure 9.1: Correction factors for the observed quantity log10(xg(D∗μ)), inclusive (a) as
well as in bins of p∗T (D∗μ) (b) and q̄′t(D∗μ) (c) in photoproduction as predicted by the
PYTHIA Monte Carlo simulation. The full line is the total combined (c + b) correction
factor, the dashed line the correction factor for the muon background alone and the dotted
line is the correction factor for the sum of muon background and b → D∗μ events. The
total correction factor contains in addition also the correction for events with a generated
y outside of the allowed y-range (y-correction).

9.2 Unfolding of Gluon Variables

For the unfolding of the measured D∗μ quantity xg(D∗μ), inclusive as well as in bins of
p∗T (D∗μ) and q̄′t(D∗μ), the method explained in detail in appendix D is used (see also
[108, 109]).

The reconstructed D∗μ-quantities are related to the QQ̄ based quantities via a probability
matrix. The probability matrix describes the migration effects due to measurement errors
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Figure 9.2: Differential distributions of the observed quantity xg(D∗μ), inclusive (a) as
well as in bins of p∗T (D∗μ) (b) and q̄′t(D∗μ) (c) in photoproduction. The distributions are
corrected for muon background, events from b → D∗μ and for events with y out of the
visible range. Shown are the data (black dots) together with the PYTHIA Monte Carlo
prediction (fb = 5.8%), which is split into charm and beauty events.

and fragmentation and is obtained using the Monte Carlo simulation. In order to avoid
large fluctuations in the unfolded distributions a procedure based on the significance of
coefficients ci of the rotated solution function is applied. The number of bins of the
unfolded distribution is reduced to avoid large correlations between neighbouring bins.

In order to construct the probability matrix some technical details have to be considered.
Since the data contain events from charm as well as from beauty production, the beauty
fraction of fb = 5.8% has to be used for the production of the probability matrix in the
Monte Carlo simulation.
In the Monte Carlo simulation still a non-negligible amount of events is reconstructed
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Figure 9.3: Quality of the unfolding for xg(D∗μ). Shown are the QQ̄ based distribution
obtained by the unfolding (a), the coefficients ci (b), the fit result (d) and the final distri-
bution of the QQ̄ based xg obtained by reducing the number of bins (c). For the unfolding
only the first three coefficients ci are used.

outside of the log10(xg(D∗μ)) range used in the data. In the case of xg(D∗μ) an additional
bin at the lower and upper edge of log10(xg(D∗μ)) and log10(xg) is introduced. In data
no significant signal is obtained in the lower as well as in the upper additional bin and
the value is set to the small value of 1± 2. For the measurement of log10(D∗μ) in bins of
p∗T (D∗μ) and q̄′t(D∗μ) only one extra bin is used for the QQ̄ based and the reconstructed
quantities. This extra bin contains events, which belong to the lower and upper outside
bin for log10(xg(D∗μ)), p∗T (D∗μ), q̄′t(D∗μ) or log10(xg), kT , q̄′t respectively.
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correlation coefficients between bins
Quantity 1-2 1-3 2-3
xg 0.62 -0.24 0.58
xg in 2 bins of kT -0.33 0.61 0.55
xg in 2 bins of q̄′t -0.23 0.71 0.52

Table 9.1: Correlation coefficients between the various bins taking only the first three
coefficients ci.

In xg(D∗μ) a clear correlation between the QQ̄ based and measured variables is observed.
For the other two quantities this correlation is not as good (see chapter 2). Therefore in
these quantities only two intervals are used.

In figure 9.3 some properties of the unfolding procedure and the quality of the unfolding
are presented for xg(D∗μ). The unfolded distribution xg depends on the coefficients ci
shown in figure 9.3 b). Only the first three can be measured well enough, the others are
compatible with zero. The first three coefficients however are not very significant. This is
due to the lack ofD∗μ events. In order to avoid large statistical fluctuations in the unfolded
distribution only three coefficients are used which yields the unfolded distribution shown
in figure 9.3 a). The corresponding correlation coefficients for the data points are almost
100%, especially for the neighbouring bins. Taking again only these three coefficients and
reducing the number of bins the distribution of the QQ̄ based xg shown in figure 9.3 c) is
obtained. The corresponding correlation coefficients for the three bins between the data
points are presented in table 9.1. Here also the correlation coefficients for the other two
distributions are presented. The correlations are strongly reduced compared to the case,
where six bins are used. The figure 9.3 d) shows the fit result using only the first three
coefficients compared to the initial data. Reasonable agreement is obtained. The quality
of the fit might be improved with more events.

9.3 Differential Cross Sections

In order to calculate the differential cross sections from the QQ̄ based differential dis-
tributions obtained in the last section, the efficiencies for the QQ̄ based quantities are
needed. These efficiencies are determined from the PYTHIA Monte Carlo simulation in
an analogous way as in chapter 8 for the D∗μ cross sections. Since a correction for events,
reconstructed in the allowed yJB-range which originate from outside of the allowed visible
range in y, is already applied before unfolding, the efficiencies are always calculated with
respect to the number of D∗μ-events in the visible y range. As an example, the combined
total efficiency is shown as a function of xg in figure 9.4. The beauty fraction used for
the calculation of the combined efficiencies is fb = 5.8%, which is the beauty fraction in
correlation region 4 as obtained by the two dimensional fit after correcting for muon back-
ground, b→ D∗μ and y-migration. An increase of the efficiency towards large log10(xg) is
observed. A large xg is related to a large invariant mass of the heavy quark pair and this
leads to larger momenta of the single quarks and thereby the D∗-meson and the muon.
Especially for large muon momenta the reconstruction, trigger and L4-finder efficiencies
are relatively large and thus the total combined efficiency is large here too.
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Figure 9.4: Combined efficiency for xg.

The differential cross sections are presented as a function of the three gluon variables in
figure 9.5. They are compared to the PYTHIA and CASCADE predictions as well as
to NLO calculations. The Monte Carlo predictions as well as the NLO prediction are
normalised to the data. For the beauty fraction the value obtained from the total cross
section (correlation region 4 without b→ D∗μ) is used, fb = 4%, for all three predictions.
The error band of the NLO calculations indicated in all figures presented in this chapter is
obtained by varying the heavy quark mass, the factorisation scale and the renormalisation
scale and summing up the variations obtained linearly (see section 7.5). The agreement
of data and theoretical predictions is reasonable within statistics although the data are
somewhat more concentrated at larger log10(xg) than predicted by the theories. The
prediction of xg in the two bins of kT is closest to the data for the Monte Carlo generator
CASCADE.

Most of the systematic uncertainties, as discussed for the total cross section (table 7.8), also
apply to the cross sections discussed here and the gluon density in the next section. The
systematic uncertainties due to the luminosity, the branching ratio BR(D∗+ → K−π+π+

s ),
the uncertainty due to reflections, the muon identification, the track reconstruction for the
D∗μ-pair and the L4 finder efficiencies add up to a total systematic uncertainty of 15%.

The uncertainty in the muon background and the beauty fraction enters the cross section
calculation at the same places as for the differential cross sections (c + b) determined for
all correlation regions in photoproduction. In addition also a small uncertainty on the
correction of b → D∗μ events has to be taken into account. A possible uncertainty due
to the applied correction on events with a generated y outside of the allowed range, is
neglected, since the correction is with ≤ 10% small and since the y-distributions of the
D∗μ-samples as well as of the inclusive D∗-samples are well described by the Monte Carlo
simulation PYTHIA. In chapter 7 the systematic uncertainty of the beauty fraction was
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Figure 9.5: Differential cross sections for the gluon variables. Shown is log10(xg), inclusive
(a) as well as in bins of kT (b) and q̄′t (c). The measured data (dots) are compared to
the PYTHIA, CASCADE and NLO predictions. A beauty fraction of fb = 4% (obtained
from the total cross section) is used and the theory predictions are normalised to the data.
Statistical (inner error bars) as well as systematic uncertainties (outer error bars) are
shown in case of the data.

determined to be 10.5%. Taking the statistical error of 25% (correlation region 4) into
account this leads to a total error for the beauty fraction of 27%. Varying simultaneously
the beauty fraction fb by this uncertainty, the muon background correction factor by
±20% and the correction factor on b → D∗μ by the uncertainty of the corresponding
fragmentation fraction (±7%) the largest deviations in the number of events is found for
the variations, where the variation of the three effects is either all positive or all negative.
For these two combinations the unfolding as well as the efficiency calculation was repeated.
The maximum deviation in the cross section leads to an uncertainty of 2.5%, assuming a
uniform distribution between two extremes (see section 7.4).
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The systematic uncertainty due to the signal extraction via the one dimensional ΔM -fit
is determined by varying the width of the Gaussian by its uncertainty (±0.2 MeV/c2). A
systematic uncertainty of 3.5% is obtained.
Altogether a systematic uncertainty for the cross sections of the gluon quantities of 16%
is obtained. This value is later also assigned to the extracted gluon densities.

9.4 Extraction of the Unintegrated Gluon Density

In order to extract the gluon density xg g(xg) in the context of the CCFM evolution model
the differential cross sections shown in the last section (figure 9.5) are used. The measured
cross section dσ/dxg is divided by dσg=1/dxg, obtained in the considered log10(xg) interval
(see chapter 2):

xg g(xg) =
dσ

dxg
/
dσg=1

dxg
(9.4)

The “g=1” indicates that the corresponding cross section is obtained by a constant gluon
density, where the hard cross section used holds general for kT -factorisation. This cross
section is calculated in this analysis with the CASCADE Monte Carlo generator using a
flat gluon density. In case of the gluon density xg g(xg) in bins of kT and q̄′t this is done
for each interval of kT or q̄′t respectively.

The cross section dσg=1/dxg is based on the photon flux and on the hard scattering
cross section (within kT -factorisation), which are both known very well. The remaining
uncertainties are due to the uncertainty of the heavy quark mass as well as due to the
uncertainty of the scales. These uncertainties contribute to the theoretical uncertainty in
the extraction of the gluon density.

The gluon density xg g(xg) is shown as a function of log10(xg) inclusively and separately
for two bins in kT and for two bins in q̄′t in figure 9.6. The prediction from the CASCADE
generator, the PYTHIA generator as well as the NLO calculation for the gluon density
are compared with the data. The gluon densities are calculated for all three predictions
via equation 9.4 using the cross sections shown in figure 9.5. The same conclusion as
for the cross sections holds. The differences however between the shapes of the data and
the theory predictions are more pronounced. In case of the gluon density in bins of kT

CASCADE describes the data reasonably well and is closer to the data than the other
predictions.

The gluon density as a function of kT is very sensitive to the different evolution models or
NLO effects. For example in the high kT bin deviations of about a factor 3 between the
CASCADE and PYTHIA Monte Carlo prediction are obtained, while the NLO calculation
lies between them. The other distributions are also sensitive to the different theoretical
predictions. In the last bins (large log10(xg), kT or q̄′t) of these distributions a maximal
difference of a factor 2 between the different predictions is obtained.
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Figure 9.6: The gluon density xg g(xg) as a function of log10(xg) inclusive a) and separately
for two bins in kT b) and for two bins in q̄′t c). The prediction from the CASCADE
generator, the PYTHIA generator as well as the NLO calculation for the gluon density
are compared with the data (dots). Statistical (inner error bars) as well as systematic
uncertainties (outer eroor bars) are shown in case of the data.



Chapter 10

Summary and Outlook

In this analysis the production of charm and beauty quarks in ep-scattering at HERA has
been investigated. At HERA charm and beauty quarks are produced predominantly via
boson gluon fusion as quark antiquark pairs.

In this thesis both heavy quarks were tagged (double tagging) via D∗μ-pairs. In general
several possibilities for double tagging exist experimentally: DD, Dμ, μμ, ee, etc.. Using
the D∗ for the reconstruction of a heavy quark, a clean heavy quark sample was obtained
and a good approximation of the kinematic quantities of the corresponding quark was
ensured. The muon and heavy quark momenta, however, are not so closely correlated and
the purity of muon samples is lower. Since the branching ratios for D∗ decay chains, which
lead to D∗ identification, are about an order of magnitude smaller than the branching ratio
for the semileptonic decay of heavy quarks (about 10%), the requirement of a D∗ and a
muon in this analysis is a compromise between statistics and purity. An advantage of the
requirement of at least one D∗-meson is the absence of background from light quarks u,
d and s (after fitting a mass spectrum obtained from the reconstructed D∗ candidates).
If only the lepton signature is used, the uds-background would have to be considered in
addition.

In the case of charm production both heavy quarks are tagged either by the D∗-meson or
by the muon (double tagging). Therefore the kinematics of the heavy quark pair could
be approximated by that of the D∗μ-pair. For beauty there is also the possibility that
the D∗μ-pair originates from the same quark. This contribution however is useful for the
separation of charm and beauty production.

The D∗-meson was reconstructed via the decay D∗ → D0πs → Kππs and the muon was
identified in the central muon detector. This reduced the contribution of hadrons, which
are mis-identified as muons, to an acceptable level compared to the case, where the muons
are identified only in the calorimeter. For charm the muon background contribution was
about 35% and for beauty only about 4%. The requirement that muons are reconstructed
in the muon system automatically leads to muon momenta above 2 GeV/c. This require-
ment together with the requirement of D∗-mesons and muons identified in the central
detector led to a strong enrichment of events from beauty production.

The number ofD∗μ-events was obtained from a fit of the ΔM = mKππs−mKπ distribution
of the D∗ candidates. Afterwards a correction for the muon background was applied.
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Two kinematic regimes are distinguished at HERA: the photoproduction regime, where
the photon emitted by the incoming electron has almost zero virtuality Q2, and the DIS
regime, which was selected in this analysis via Q2 > 2 GeV2. Since the inclusive cross
section is proportional to 1/Q4, photoproduction is dominant. In this thesis D∗μ events
at Q2 < 1 GeV2 (photoproduction sample) and at Q2 < 100 GeV2 (total sample) are
analysed. The photoproduction sample is a subset of the total data set. The total sample
is used to perform measurements which require more statistics. The photoproduction
sample contains 184 ± 26 D∗μ events and the total sample contains 229± 30 events.

For both data sets the data were divided into charge and angle correlation regions. Here
it was distinguished, whether the charges of the D∗-meson and the muon were the same
or opposite and whether the azimuthal angular difference ΔΦ∗ between the D∗ and the
muon, measured in the photon-proton rest frame, was above or below 90◦:

1. ΔΦ∗ < 90◦ and Q(D∗) = Q(μ).

2. ΔΦ∗ ≥ 90◦ and Q(D∗) = Q(μ).

3. ΔΦ∗ < 90◦ and Q(D∗) = −Q(μ).

4. ΔΦ∗ ≥ 90◦ and Q(D∗) = −Q(μ).

According to the Monte Carlo simulation the D∗μ-pairs from charm production con-
tributed mainly in the fourth correlation region. For beauty production, the contributions
to the second, third and fourth correlation regions were all of the same order of magnitude.
In correlation region 2 the process b→ D∗+, b̄→ μ+ (and charge conjugated process) gave
the largest fraction, and in correlation region 3 the process b → D∗μ. The latter process
contributed also in correlation region 4 and was observed to be larger than the naively
expected from the process b→ D∗+, b̄→ c̄→ μ− (and charge conjugated process).

The charge and angle correlations were then exploited to separate D∗μ-events from charm
and beauty production. A two dimensional Log Likelihood fit in ΔM = mKππs −mKπ

and the correlation regions was used. For the fit function the normalised population of
the correlation regions as predicted by the Monte Carlo simulation PYTHIA was used.
The predicted muon background fraction was adopted from PYTHIA as well. The muon
background was checked with real data using the kaon and the pion from the D0 decay.
No discrepancy to the Monte Carlo simulation was found.

For both data sets, the beauty fraction obtained by the fit was about 30%. After correcting
for muon background this fraction increased to about 40%. In the charm dominated
correlation region 4 the beauty fraction was found to be only about 10%. Correcting there
for the b→ D∗μ contribution in addition, led to an even smaller beauty fraction (≈ 6%).
The b→ D∗μ correction was applied for the extraction of the unintegrated gluon density
(see below), because only for events b→ D∗, b̄→ μ and b→ D∗, b̄→ c̄→ μ the kinematics
of the QQ̄-pair can be deduced.

From the number of D∗μ-events from charm and beauty production corrected for muon
background, total cross sections in the visible range pT (D∗) > 1.5 GeV/c, |η(D∗)| < 1.5,
p(μ) > 2.0 GeV/c, |η(μ)| < 1.735 and 0.05 < y < 0.75 were determined for photoproduc-
tion, Q2 < 1 GeV2, and for the total data set, Q2 < 100 GeV2. The data of the years 1997
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and 1999-2000 were used, corresponding to an integrated luminosity of L = 85.4 pb−1.
The charm cross sections were found to be in good agreement with the Monte Carlo pre-
diction of the generator PYTHIA (direct and resolved excitation component) as well as
of the generator CASCADE and they are also in good agreement with the prediction of
the NLO calculation. The ratio between the measured b-cross section and the cross sec-
tion predicted by NLO was found to be 3.1 ± 1.2. This result is in good agreement with
the D∗μ-measurement from ZEUS [101] and it is still compatible with the recent b → μ
measurements at HERA [7, 8].

For the photoproduction data set differential D∗μ cross sections for the sum of charm
and beauty production have been determined in the visible region as a function of the
transverse momentum p∗T (D∗μ), the azimuthal angle difference ΔΦ∗, the invariant mass
M(D∗μ) and the rapidity ŷ(D∗μ) of the D∗μ-pair. The corresponding QQ̄ quantities of
the two first variables are strongly sensitive to NLO effects and to a possible non-zero
initial transverse momentum kT of one of the initial partons. The invariant mass M(QQ̄)
corresponds to the centre-of-mass energy of the initial partons, at least in LO, and the
rapidity ŷ(QQ̄) is related to the direction of the quark pair. The shape of the data is
described by the PYTHIA and CASCADE Monte Carlo predictions as well as by the
NLO prediction. The distributions predicted by the CASCADE Monte Carlo generator
however are closest to the data.

In the total data set (Q2 < 100 GeV2) a separation of charm and beauty was performed
in each bin of the differential distributions of M(D∗μ) and ŷ(D∗μ). Again reasonable
agreement between the measured normalised cross sections and the PYTHIA/RAPGAP
(PYTHIA for photoproduction, RAPGAP for DIS) and the CASCADE Monte Carlo pre-
dictions was found. Here no comparison to NLO calculations was possible, since no NLO
program for DIS exists, in which QQ̄ cross sections can be calculated.

The data of correlation region 4 of the photoproduction data set were used for an extraction
of the unintegrated gluon density. This more general gluon density does not only depend on
the momentum fraction of the gluon with respect to the proton momentum, as is the case
for the normal gluon density used in the DGLAP evolution scheme. It depends in addition
on the transverse momentum kT of the gluon and on the maximum possible angle q̄′t of
the produced quark pair. All three variables can be expressed in terms of QQ̄ variables.
The latter are obtained from the measured D∗μ-quantities by an unfolding procedure,
which corrects for detector and fragmentation effects. In contrast to single tag analyses
no theoretical assumption about the second quark is needed in this analysis. The gluon
density is then extracted as a function of xg, inclusively and also in bins of kT and in bins
of q̄′t. This procedure is applied to the data and to the theoretical predictions from NLO
calculations as well as from the PYTHIA or the CASCADE Monte Carlo generator. The
agreement of data and theoretical predictions is reasonable within statistics although the
data are somewhat more concentrated at higher xg. The prediction of the gluon density
in two bins of kT is closest to the data for the Monte Carlo generator CASCADE.

The analysis presented here was limited by the small number of D∗μ-events available.
At the end of the HERA II data taking period, the expected integrated luminosity is
of the order of 500 pb−1, which is about a factor five more than used for this analysis.
Due to the improved forward tracking device and the new forward silicon detector of the
H1 experiment, an extension of the reconstruction of D∗μ-events to the forward region
should become possible. Especially in case of charm production an increased number of



171

D∗μ events is expected. Using muons with a smaller minimum momentum would also
increase the number of events, especially for charm. However this requires a more efficient
triggering, and better muon identification at small momenta.

With more D∗μ-events, a separation of charm and beauty production could be performed
in each bin of the D∗μ-variables. In the case of charm all events could be used, while
for beauty production one could restrict the final sample to correlation region 2, where
the kinematic variables of the QQ̄-pair and those of the D∗μ-pair are well correlated.
More precise measurements of the D∗μ-variables and of the gluon density should become
possible as well as detailed determinations of the photon structure.

Another approach is to use other particles for the double tagging. A double tagging
analysis with two leptons is already in progress and this kind of analysis can also profit
from the larger integrated luminosity expected at the end of HERA II. For double tagging
usingD∗e the triggering ofD∗ events and the reconstruction of electrons, which is currently
being studied, has to improved considerably. For the double tagging of DD (D indicating
all charmed mesons, e.g. D∗, D0, D+) the triggering of events in the photoproduction
regime 0.01 < Q2 [GeV2] < 1.0 has to be developed, using the Fast Track Trigger (FTT)
in combination with trigger information of other detector components. The data of the
photoproduction regime would be needed to get a reasonable number of events. Such
a sample would be ideal concerning the relation between the quark-pair and the tagged
particle pair.

Figure 10.1 shows for an event sample with two selected D∗-candidates (D∗D∗ double
tagging), the correlation between the mass difference ΔM of the D∗- and D0-candidates.
Here both D∗ candidates are reconstructed via the “golden decay channel” D∗ → D0πs →
Kππs. An indication of a signal is already observed with the 1997, 1999-2000 data.
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Figure 10.1: D∗D∗ double tagging. Shown is the correlation of the mass difference
ΔM = m(Kππs) − m(Kπ) of two D∗-candidates in the same event (1997, 1999-2000
data). Double D∗ events contribute to the marked bin. From a two dimensional fit to the
ΔM distributions of the two D∗-candidates 7± 4 events are obtained.



Appendix A

Track Trigger for HERA II

The rate of some physics processes are so small that the luminosity of the accelerator
has to be large enough to be able to observe the desired physics process. This is true
for heavy quark production, especially for beauty production. For heavy quark double
tagging analyses such as presented here the rate is very small.
The aim of the HERA upgrade was to increase the luminosity by about a factor 5. For
the instant luminosity the following relation holds [110]:

L ∼ Ie · Ip
σxσy

(A.1)

Here Ie and Ip indicate the current of the electron or proton beam, respectively. σx, σy

are the transverse size of the particle bunches at the interaction region. During the HERA
upgrade two focusing magnets were installed in the detector to reduce the transverse size of
the beam profiles σx and σy in such a way that a factor 3-4 in luminosity is gained. Further
the proton and electron currents should be increased slightly compared to the HERA I
data taking period. More detailed information on the operation parameters planed for
HERA II can be found in [111, 112].
With increasing luminosity not only the physics rates but also the background rates will
increase and the triggering has to become more powerful. Otherwise high rate triggers
would have to be prescaled and no gain of the luminosity increase is obtained. For a
detailed analysis of the final state already on trigger level the Fast-Track-Trigger (FTT)
and the new jet trigger are built. With the FTT a third trigger level (L3) gets active,
which will perform a further reduction of the rate.
Below studies on the triggering of charm production events with the FTT for HERA II
are presented. Especially the third trigger level is considered, which allows the selection
of D∗-events. Investigations of the FTT resolution, the efficiency and the background
reduction are presented. First the principle of the FTT is explained.

A.1 The Principle of the FTT

The Fast-Track-Trigger (FTT) consists of three trigger levels and the aim is to provide on
each trigger level the best possible track information within the given decision time. The
FTT covers the central polar angular range of 25◦ ≤ θ ≤ 155◦.
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Figure A.1: Wire layers in the CJC used by the FTT. Four trigger layers consisting of
three wire layers each exist. Three of them are located in the CJC1 and one in the CJC2.

Trigger layer Chamber Wire layer mean radius number of cells
1 CJC1 3,5,7 25.1 cm 30
2 CJC1 10,12,14 31.3 cm 30
3 CJC1 18,20,22 38.7 cm 30
4 CJC2 4,6,8 58.7 cm 60

Table A.1: Wire layers used by the FTT.

The input data of the FTT originates from chosen wire layers of the central drift chambers
CJC1 and CJC2. Four trigger layers, consisting of three wire layers, are used. Three of
the trigger layers are located in the inner chamber CJC1 and one in the outer chamber
CJC2. Figure A.1 shows a rφ view of the CJC, whereby the trigger layers are marked.
The starting configuration is given in table A.1. A so called trigger group consists of
three sense wires in a drift cell and two sense wires out of the neighbour cells. Hence a
trigger group contains five sense wires. This is illustrated in figure A.2. More detailled
information about the FTT can be found in [113, 114, 115, 112].

Below a short overview of each FTT level is given:

• FTT L1: On the first trigger level hits in selected wire layers of the CJC are searched
and the obtained drift time spectra are compared with those from genuine vertex
constrained tracks. Track segments can be built, which are then roughly linked
together. On L1 it will be possible to define several thresholds based on the number
of tracks with a given transverse momentum. Further the charge of the tracks and
simple topologies like back-to-back topology or jet topology can also be exploited on
L1.

• FTT L2: On L2 the track segments found already by trigger level 1 are linked again
together with an improved technique and the three dimensional track parameters
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Figure A.2: Illustration of three trigger groups as used for the FTT.

are optimised with a fit algorithm. The r-φ resolution of the tracks, reconstructed
in this way, is only slightly worse than the resolution of the complete offline CJC
reconstruction. On L2 it is possible to use the improved transverse momentum of a
track, the number of tracks, the charges of the tracks and again simple topologies.
Furthermore it will be possible to look in events with low track multiplicity for vector
mesons like J/Ψ or Υ already on the second trigger level.

• FTT L3: The tracks reconstructed on L2 are the starting point of the third level
(PowerPC farm) and are used to search for particle decays. In the case of a D∗-
meson the most suitable decay channel D∗ → D0πs → Kππs will be used for the
D∗-meson reconstruction. First the invariant mass of the D0-candidate built up of a
kaon and a pion has to be calculated. If the invariant mass of the kaon and pion pair
candidate is consistent with the nominal D0-mass the invariant mass of the three
particle combination with an additional pion πs (s indicates the slow momentum
of this pion) has to be calculated and then the mass difference of the D∗ and D0

candidate ΔM has to be compared to the nominal value of ΔM = 0.1454 GeV/c2.
Hence it is possible on L3 to require for example a D∗ candidate with a specific cut
on the transverse momentum of the D∗-meson and on the decay particles. For this
task up to 100 μs can be used.

The simulation of the tracks obtained by the FTT reconstruction is performed by the
programm FTTEMU (version 3) [112]. For this study the package is used in such a
mode, that offline reconstructed tracks (only CJC information) were simulated. Then
FTT hits are calculated from the measured track parameters using calibration constants,
drift velocity and information on the chamber geometry. This method was checked by
comparing FTT hits to hits determined with the standard readout. A good performance
of this method was observed [112]. The noise in the chambers is considered by generating
randomly additional hits and also the small single hit inefficiency is taken into account.
Then almost the same procedure as used for the online FTT reconstruction is applied
and the obtained track parameters are stored in the same way as the offline reconstructed
data.
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L1 trigger rate [Hz]
Subtrigger HERA I (2000) HERA II L1 PF (2000)

61 6 30 1.2
83 12 60 1.2
84 25 125 4.5
108 12 60 1.3

Table A.2: Unprescaled L1 trigger rates of the main triggers for open charm analyses in
the year 2000 and the expected rates after the luminosity upgrade. The averaged prescale
factors (PF) for the subtriggers in the year 2000 are indicated in the last column.

A.2 Triggering Charm with D∗-Mesons

In the data taking period HERA I the main triggers for open charm analyses are subtrigger
61 and subtrigger 83. Subtrigger 61 requires an energy deposition of a scattered electron
candidate in the SpaCal, thus selecting DIS events (in analyses using subtrigger 61 usually
2 ≤ Q2 ≤ 100 GeV2 is applied). Subtrigger 83 demands a scattered electron in the electron
tagger ET33, selecting low Q2, Q2 � 0.01 GeV2. In table A.2 the unprescaled trigger
rates for some chosen subtriggers are shown for the year 2000 together with the expected
rates after the luminosity upgrade. The subtrigger 84 and 108 are also ET triggers, but
subtrigger 84 uses the ET at z = −44 m and s108 the ET at z = −8 m. All triggers
contain in addition to the above explained conditions also requirements on the tracks, like
transverse momentum and charge cuts, and on the z-position of the event vertex. No
L2 (and L3) requirement was applied for these subtriggers and the output rates on L1
correspond directly to the L4 input rate. The output rate of L4 of the subtriggers has to
be of the order of 1 Hz. After the luminosity upgrade the rate will be significantly too
high for all subtriggers. Without further trigger requirements the subtriggers would need
at least a factor five larger prescale factor and no gain of the increased luminosity would
be obtained. Furthermore the ET33 was removed due to the new focussing magnets near
the H1 detector and the electron taggers ET44 and ET8 were moved to 40 m and 6 m
respectively.

The FTT hit resolution in rφ is not much worse than the offline reconstruction and thus
also the resolution of the transverse momentum pT and the azimuthal angle φ. But the
resolution in the polar angle θ is about a factor 10 worse compared to the resolution of the
offline reconstruction, since the intrinsic z-resolution of the CJC is in case of the FTT not
improved by the Z-chambers. Figure A.3 shows the resolution of the transverse momen-
tum pT (D∗), the polar angle θ(D∗) and the azimuthal angle φ(D∗) of the D∗-candidate
obtained with the FTT. This is compared to the resolution of the offline reconstruction.
To ensure that in the FTT and offline reconstruction the same D∗-mesons are considered
the following cuts on the D∗ candidates are applied:

| pT (K,π)FTT − pT (K,π)offline | < 75 MeV/c
| pT (πs)FTT − pT (πs)offline | < 40 MeV/c

| φ(K,π, πs)FTT − φ(K,π, πs)offline | < 15◦

The resolution of pT (D∗), reconstructed by the FTT, is only slightly worse than the
offline resolution. This holds also for transverse momentum the decay particles of the
D∗-meson. The relative resolution for the πs is somewhat worse compared to the other
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Figure A.3: D∗ momentum and angular resolution. The full line indicates the offline
reconstruction and the dashed line the FTT reconstruction. The direct LO Monte Carlo
simulation AROMA for the year 2000 is used for these plots.

two decay particles, due to the small momentum of the pion, which is already in the
regime where multiple scattering becomes important. As expected the resolution of φ(D∗),
reconstructed by the FTT, is almost as good as the offline resolution. But the resolution
of θ(D∗), measured by the FTT, is much worse than the offline resolution. The worse
θ(D∗) resolution has direct impact on the resolution of the invariant mass mKπ of the
D0-candidate, shown in figure A.4. Again the FTT resolution is compared with the offline
resolution. Also in mKπ the FTT resolution is significantly worse than the resolution of
the offline reconstruction. The maximal shift obtained by the FTT reconstruction is about
200 MeV/c2. But in most of the cases the discrepancies between the generated values and
the values reconstructed by the FTT are smaller than 100 MeV/c2. On the right side of
figure A.4 the invariant mass distribution of the D0 candidate is shown for D∗-candidates,
which are in a range of ±3 MeV/c2 around the nominal mass difference of the D∗ and the
D0 candidate of ΔM = mKππs −mKπ = 0.1454 GeV/c2 (called signal region SR). This
distribution is obtained from offline reconstructed data. The bright inner lines give the
±100 Mev/c2 deviation from the nominal D0-mass and the outer grey lines correspond
to a deviation of ±200 MeV/c2. In order to be able to study the D0-sidebands in a D∗

analysis, one should not cut too hard on the invariant mass of the D0-candidate with the
FTT. A cut around the D0-mass of 200 MeV/c2 is at the limit.

In figure A.5 the ΔM resolution obtained with the FTT reconstruction is shown together
with that obtained by the offline reconstruction. The maximal shift towards larger values
is with about 5 MeV/c2 smaller than the maximal shift towards smaller values of about 9
MeV/c2. To obtain in an analysis the number of D∗ events a parameterisation containing
the D∗-signal and the combinatorial background is fitted to the ΔM distribution of the
data (see figure A.5b). For this, a large sideband on the right side of the signal is needed
to get a good handle on the background distribution. In most of the D∗ analyses the ΔM
cut lies between 0.165 and 0.17 GeV/c2. On trigger level this cut has to be slightly looser.

Several L3-FTT cut scenarios were tested, always with respect to usual analysis cuts
in a given kinematic regime. The FTT cut scenarios and the corresponding analyses cut
scenarios are presented in table A.3. On analysis level for all scenarios the same additional
cut on the radial track length of the decay particles of R > 15 cm was applied. Since the
background situation is much better in DIS events than in photoproduction harder cuts on
the transverse momentum of the D∗-candidate and its decay particles are applied in case
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Figure A.4: Left: Resolution of the invariant mass of the D0-candidate of the FTT re-
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LO direct Monte Carlo simulation AROMA with the simulation and reconstruction of the
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Figure A.5: Left: Resolution of the mass difference of the D∗ and D0-candidate of the FTT
reconstruction (dashed line) compared with that of the offline reconstruction (full line).
The LO direct Monte Carlo simulation AROMA with the simulation and reconstruction
of the year 1997 is used. Right: Mass difference ΔM = mKππs −mKπ of the D∗ and D0

candidate (analysis level).

of photoproduction, also on analysis level. For all investigated main open charm triggers
the L3-FTT achieves a good efficiency of above 80%. Hereby the L3-FTT efficiency is
defined as:

εFTT (i) =
NFTT (i)+Analysis i(D∗)

NAnalysis i(D∗)
(A.2)

In figure A.6 the efficiencies determined for the different data samples in DIS (s61) and
in photoproduction (s83, s84) as well as the corresponding efficiencies obtained with the
Monte Carlo generator AROMA are shown. As an example the ΔM distribution obtained
with the analysis cut set 1 is shown in figure A.7a) and with an additional FTT(1) cut
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scenario pT (D∗) pT (K,π) pT (πs) | m(D0)−m(Kπ) | ΔM
[GeV/c] [GeV/c] [GeV/c] [GeV/c2] [GeV/c2]

FTT(1) > 1.2 > 0.25 > 0.1 < 0.25 < 0.18
Analysis 1 > 1.5 > 0.3 > 0.12 < 0.06 < 0.17
FTT(2) > 1.8 > 0.3 > 0.1 < 0.2 < 0.18

Analysis 2 > 2.0 > 0.5 > 0.12 < 0.06 < 0.17
FTT(3) > 2.2 > 0.4 > 0.13 < 0.2 < 0.17

Analysis 3 > 2.5 > 0.5 > 0.15 < 0.06 < 0.17
FTT(4) > 4.5 > 0.5 > 0.15 < 0.2 < 0.17

Analysis 4 > 5.0 > 0.6 > 0.17 < 0.06 < 0.17

Table A.3: Different cut scenarios for the D∗ selection on the FTT and the corresponding
analysis cut scenarios. On analysis level a cut on the radial track length of the decay
particles of R > 15 cm was applied for all scenarios.
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Figure A.6: Selection efficiency of the third FTT level for different subtrigger and cut
scenarios. The dots indicate the data and the rectangles the Monte Carlo simulation.
This study was done with offline preselected D∗ data of the year 2000.

scenario in figure A.7b) for the DIS subtrigger s61. The corresponding D0-candidate mass
distribution for the D∗ signal region is presented in figure A.8a) and b). Both distribution
look very well also after applying the FTT(1) scenario. In photoproduction a nice ΔM
distribution is obtained if the FTT(2) scenario is applied (see figure A.7c) and d)), but the
m(D0) distribution looks much worse, as can be seen from figures A.8c) and d). However
it will not be possible to remove the m(D0)-cut for the FTT cut scenarios, since the rate
would increase strongly.

The expected rate of the main open charm triggers depending on the different FTT cut
scenarios is obtained from the unprescaled L1 subtrigger rate and the reduction factor
obtained with a FTT cut scenario. Only L4 transparent runs were used for this study. L4
transparent means, that the L4 trigger is operational but does not reject any events. The
rates obtained in such a way are illustrated in figure A.9. With the FTT(1) cut scenario
the L1 trigger rate is reduced by a factor of more than 10. Since the quoted rates are for
the year 2000 all values have to be scaled by a factor 5 to get the expected HERA II rates.
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Figure A.7: ΔM distribution (analysis level) obtained for analysis cut 1 and s61 (a,b) and
for analysis cut 2 and s84 (c,d) without and with corresponding FTT cut scenario.

All rates of the proposed FTT scenarios, FTT(1) for DIS (s61) and FTT(2) for tagged
photoproduction (s83, s84, s108), are acceptable. Thus no prescaling should be needed in
HERA II for these triggers if the FTT is used in addition.

Up to now, it is only possible to trigger at H1 D∗ photoproduction events via tagged
photoproduction events, where the scattered electron is identified in one of the electron
taggers. These events have all very small photon virtualities, for example Q2 < 0.01 GeV2

for the ET33. But the photoproduction regime is usually defined by Q2 < 1 GeV2. Due
to the limited Q2-range and the restricted y-acceptance of the electron taggers only a
small fraction of all photoproduction events can be selected with the electron taggers.
The trigger rate of an untagged photoproduction trigger is huge. Below some rate studies
are presented concerning an untagged D∗ photoproduction trigger using the FTT.

The starting point is the subtrigger s32, which requires only a certain number of tracks
above a pT threshold. Further a requirement on the z-position of the event vertex is
applied. The L1 trigger rate of 500 Hz of s32 is very high and in HERA I it was strongly
prescaled (averaged prescale factor of about 1600). Figure A.10a) shows the rate of the
subtrigger s32 depending on the FTT cut scenarios, which are applied in addition. With
the FTT(2) cut scenario the rate is reduced by more than a factor 25. And with the very
hard FTT cut scenario FTT(4) the estimated rate is smaller than 1 Hz. All the indicated
rates are obtained for the year 1997 and they have to be scaled with about a factor 5 (the
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Figure A.8: M(D0) distribution (analysis level) obtained for analysis cut 1 and s61 (a,b)
and for analysis cut 2 and s84 (c,d) without and with corresponding FTT cut scenario.
For these plots no cut on the m(D0) was applied and only D∗ events within the signal
region (SR) were considered.

factor should be for 1997 slightly larger than for 2000 due to the smaller centr-of-mass
energy in 1997) to get the expected HERA II rates. For this study the data of the year
1997 are used, since for this year more L4 tranparent runs exist. From figure A.10b) it is
clear that with the FTT(4) cut scenario only a very small fraction of the D∗ events can be
selected. A cut on the track topology of the event in addition to FTT(3), like at least one
track with θ > 110◦ (indicated as bwTr in the figure A.10a) can reduce the rate slightly
without rejecting a huge D∗ fraction, since most of the D∗-events are located centrally in
the detector.

The triggering of D∗ events in DIS and tagged photoproduction should be possible in
HERA II without a prescaling if the FTT is used in addition. An untagged D∗ photopro-
duction trigger should be possible without any prescale if the very hard cut scenario FTT4
is used. But to develop a D∗ trigger in untagged photoproduction with a more relaxed
FTT cut scenario further information from other detector components like the LAr are
needed to reduce the rate further. Nevertheless, the strong rate reduction by using the
FTT allows to consider the develpment of such a trigger.
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Figure A.9: Trigger rates determined without and with FTT cut scenarios for the subtrig-
gers 61, 83, 84 and 108. Since the trigger rates are indicated for the year 2000 all rates
have to be scaled with a factor 5 to get the expected HERA II rates.
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bwTr indicates the additional requirement of at least one track with θ > 110◦. The rates
are given for the year 97, and to obtain the expected HERA II rates all values have to
be scaled with about a factor 5. Right: Generated transverse momentum distribution of
D∗-mesons, as obtained by the AROMA Monte Carlo simulation.



Appendix B

Track and Muon Selection

B.1 Track Selection

Tracks matching the criteria listed in table B.1 are used in this analysis as basic selection
for muon candidates.

central tracks

Transverse momentum of the track pT > 0.1 GeV/c

Polar angle of the track 20◦ < θ < 160◦

Minimal distance of the track with
respect to the primary vertex

|d′ca| < 2.0 cm

Radial distance of the first hit with
respect to the origin

RStart < 50 cm

R > 10 cm for θ ≤ 150◦
Radial track length

R > 5 cm for θ > 150◦

Table B.1: Cuts of the track selection
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B.2 Muon Selection

Muon candidates matching the criteria listed in table B.2 are used in this analysis.

Forward endcap Backward endcap

ρx < 100 cm ρx < 100 cm

ρy < 100 cm ρy < 100 cm

NLayer ≥ 6 NLayer ≥ 3

ifirst layer ≤ 5 ifirst layer ≤ 8

ilast layer ≥ 6 ilast layer ≥ 3

Barrel Calorimeter muons

ρ < 100 cm μ-quality ≥ 2

z0 < 100 cm Separation angle > 12◦

NLayer ≥ 2

ifirst layer ≤ 5

ilast layer ≥ 2

Table B.2: Cuts of the muon selection

The meaning of the abbreviations is:

• ρ, ρx, ρy: Radial distance of the extrapolated iron track with respect to the event
vertex as well as its x- and y-component

• z0: z-coordinate at the starting point of the iron track

• ifirst layer, ilast layer: Number of the first or last hit layer in the muon chambers in
the instrumented iron

• NLayer: Number of hit layers in the muon chambers in the instrumented iron



Appendix C

Maximum Likelihood Method

For the two dimensional fit used in this analysis for the separation of charm and beauty
events a negative log-likelihood function F has to be minimised. Here the formula of F
will be derived.

The measured number of events in an interval of a differential distribution has a Poisson
distribution, which is given by:

Pμ(r) =
μre−μ

r!
(C.1)

The Poisson distribution gives the probability, that a certain event apears exactly r-times,
if μ is the mean value. The variance V = σ2 is equal to μ.

In general the data can depend on several variables. Below the special case of two variables
i and j is considered. In this analysis i corresponds to the mass difference ΔM of the
D∗ and D0-candidate and j stands for a separation variable. The probability, that r(i, j)
events in an interval (i, j) are measured, is given by the Poisson distribution Pμ(i,j)(r(i, j))
with the mean value μ(i, j). The overall probability, that in all intervals the corresponding
event numbers r(i, j) are obtained in a measurement, is then given by the product:

L = Pμ(1,1)(r(1, 1)) · Pμ(1,2)(r(1, 2)) · ...Pμ(n,m)(r(n,m)) , (C.2)

Here n is the number of bins in the variable i and m the number of intervals of the quantity
j.

If a function should be fitted to the data, the function L has to be maximised. For this
purpose the mean value μ has to be described by a suitable function with free parameters
�a, in this case �a = (Nc, Nb, U(1), .., U(m)). Here Nc or Nb is the number of D∗μ-events
from charm- or beauty-production respectively. U(1), .., U(m) are parameters for the
background. To emphasize, that the mean value μ depends on the free parameters, the
mean values is indicated as μ�a below. Usually the minimum of −2 ln (L(�a)) is determined
instead of L(�a). This is justified, since the logarithm is a monotonically increasing function.

F (�a) := −2 · ln (L(�a)) = −2 ·
∑
i,j

ln
(
Pμ�a(i,j)(r(i, j))

)
(C.3)
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Each term of the sum is transformed as follows:

−2 · ln(Pμ�a(r)) = 2 ·
(
μ�a − r · ln

(
μ�a
)

+ ln(r!)
)

(C.4)

The term ln(r!) is constant and can be omitted, since the minimum is not affected.

−2 · ln(Pμ�a(r)) = 2 ·
(
μ�a + r · ln

(
1
μ�a

))
(C.5)

The second term in equation C.5 is zero, if r = 0. To obtain a function, which behaves
asymptotically like a χ2 function, the equation above is modified by constant contributions.
The minimum is not affected by this and the following equation is obtained:

−2 · ln(Pμ�a(r)) = 2 ·
[
(μ�a − r) + r ln

(
r

μ�a

)]
︸ ︷︷ ︸

:= F (�a)

(C.6)

The total function F (�a), which has to be minimised, then is:

F (�a) =
∑
i,j

F (i, j) with

F (i, j) = 2 ·
[
(μ− r) + r ln

(
r

μ

)]
. (C.7)

For r = 0 the second term is set to zero.



Appendix D

Unfolding Method

The unfolding method used in this analysis, is described in this section in more detail.
Further information can be found in [108, 109].

The n measured histogram bin contents, given by the vector y = (y1, ..yn), are related
to the true values, expressed by the vector x = (x1, .., xm), by the resolution matrix A
(n×m):

Ax = y (D.1)

The j-th row is the response on the j-th component of x and can lead to a contribution
in each component of y. The matrix A can be interpreted as a probability matrix. The
sum of all elements within a row of the matrix A is 1, which means “no loss of events”.
Each element is the probability to yield an element in y.

In practice the resolution matrix A is obtained by the Monte Carlo simulation. Bins in
the observed quantity and in the true quantitiy are defined. This gives the index-pair for
the matrix A and fills a two dimensional histogram. Each row is then normalised to one
and the probability matrix A is obtained.

Due to measurement errors σi, equation D.1 in general does not hold precisely. Residuals,
indicated by the vector r = (r1, ..ri, .., rn), different from zero are obtained. Equation D.1
is modified to:

r = Ax− y (D.2)

In this analysis the components of y are the numbers of D∗μ-events, which are obtained
from a D∗-fit. The assigned errors σi to the data yi are obtained by the fit and thus
not equal to the square root of the measured number of D∗μ-events. Therefore the best
estimation for x is obtained by applying the least square fit method. The sum of the
squared error weighted residua F (x) =

∑
(r2i /σ

2
i ) has thus to be minimised. The sum

F (x) can be written via matrices as:

F (x) = rTWr = (Ax− y)T W(Ax− y) (D.3)
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W is the weighting matrix and since the data are uncorrelated it is of the form:

W =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

1
σ2

1

0 ... 0

0
1
σ2

2

0

: . :

0 ...
1
σ2

n

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

(D.4)

The minimisation requirement of F (x) can be mathematically formulated as:

∂F

∂x
= 0 (D.5)

Thus the minimisation of F (x) leads to the solution of the linear equation system Cx = b:

(ATWA︸ ︷︷ ︸) x = ATWy︸ ︷︷ ︸ (D.6)

C x = b (D.7)

In the last step a new m×m-matrix C = ATWA and a new vector b = ATWy is defined.
The formal solution x = C−1b often shows large fluctuations.

An improved solution is based on the orthogonal decomposition C = UDUT (UT U = 1)
of the matrix C. The rows of the matrix U are the eigenvectors of the matrix C and
the elements of the diagonal matrix D are the eigenvalues λi of the matrix C. The
eigenvalues in D are sorted in order of decreasing value in the procedure used in this
analysis. Multiplying equation D.7 from left with UT leads to:

C x = b

⇔ UDUTx = b | ·UT from left

⇒ D (UT x)︸ ︷︷ ︸ = (UT b)︸ ︷︷ ︸ (D.8)

D z = c (D.9)

U can be interpreted as a rotation matrix. The vectors c = UTb and z = UTx are the
rotated vector b and the rotated solution vector x. The coefficients ci are the scalar
product of the i-th eigenvector ui and the vector b: ci = uib.

Due to the diagonal matrix in equation D.9 each coefficient zi of the transformed solution
vector x is directly connected to the i-th coefficient ci of vector c:

zi =
ci
λi

i = 1..m (D.10)

Since the eigenvalues are in these equations in the denominator, the values of zi can
become very large for small eigenvalues and with that the statistical fluctuation of the
coefficient ci is magnified. Eventually, for very small eigenvalues (corresponding to large
i), the final result x = Uz will be dominated by one or a few of the coefficients zi with
small eigenvalues and large statistical errors, and the complete result is unsatisfactory.
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The solution of this problem is to omit the small λi. This is equivalent to setting zi to zero
for large i. This is possible, since the eigenvalues are sorted by the order of decreasing
values. The last ”true” zi are in general small and can be neglected. All coefficients zi,
for which the one standard deviation error of ci is larger or equal to the value, can not
be measured and should be set to zero. This leads to the transformed solution vector
z = (z1, z2, ..., zk, 0, ..., 0). x is then obtained via:

x = Uz (D.11)

The error matrix of the solution vector x of a linear transformation Ax = y is always
[100]:

V(x) = (ATWA)−1 = C−1 (D.12)

In the rotated system the error matrix of the transformed solution vector z is given by
the inverse of diagonal matrix, in which the diagonal elements from Vii are set to zero for
k < i ≤ m:

V(z) = D−1 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1
λ1

0 ... 0

.

:
1
λk

:

0
.

0 ... 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(D.13)

The rank of the matrix V(z) is k and thus smaller than m. The error matrix of x is then
obtained by backtransformation of D−1:

V(x) = UD−1UT (D.14)

The rank of V(x) is again equal to k and therefore smaller than m. This leads to large
positive correlations between adjacent coefficients xi.

These large positive correlations can be avoided, if the final transformation uses not all
initially made bins n in the data, but a number of bins, which corresponds to the degrees
of freedom k. Thus only a limited number of bins can be obtained in a measurement with
large migration effects. The standard deviations of the data points are almost unchanged
due to the positive correlations. But the error matrix is of full-rank and has only small
correlations. Practically the reduction of bins is achieved by averaging each two neighbour
bins: 1/2(x1 + x2), 1/2(x3 + x4),... .

It is clear that some resolution is lost due to the necessary bin reduction. Thus the number
of used bins n should be twice the number of desired bins k in the unfolded distribution.
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[63] T. Sjöstrand, PYTHIA 5.7 and JETSET 7.4: Physics and manual, 1995,
hep-ph/9508391.

[64] H. Jung, Hard diffractive scattering in high-energy ep collisions and the Monte Carlo
generator RAPGAP , Comp. Phys. Commun. 86 (1995) 147–161.



BIBLIOGRAPHY 201

[65] A. Kwiatkowski, H. Spiessberger and H. J. Mohring, HERACLES: An event Gen-
erator for ep Interactions at HERA Energies including radiative Processes: Version
1.0 , Comp. Phys. Commun. 69 (1992) 155–172.

[66] H. Jung, The CCFM Monte Carlo generator CASCADE , Comput. Phys. Commun.
143 (2002) 100–111, hep-ph/0109102.
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