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Abstract

A Monte Carlo analysis of the phase space of hard interacting gluons in ep-

scattering is presented. The event generator Cascade is used in combination

with the program HzTool to identify the accessible regions of phase space of

present HERA measurements. A map of the kt-xg-plane is presented to show

that in the region −3∼< log xg ∼<−1 transverse gluon momenta of up to kt ∼> 20

GeV are accessible to HERA measurements. Furthermore the observables xγ

and the transverse jet energy ET are found to be highly sensitive to the

transverse momentum and the longitudinal momentum fraction of gluons.
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Introduction

The standard model of particle physics describes three of the four basic in-

teractions of nature, excluding gravity. Its basic theoretical formalism con-

sists of quantum field theories (QFT). Interactions manifesting for example

in electrical and magnetic phenomena are described by quantum electrody-

namics (QED). Radioactive decay and certain phenomena related thereto are

described by the theory of weak interactions. In the standard model QED

and the theory of weak interactions are successfully unified in the electroweak

theory. Finally, the structure of protons and neutrons as well as the binding

of these in atomic nuclei is due to the so-called strong interaction, which is

described in quantum chromodynamics (QCD).

In QFTs particles are interpreted as excitations of quantum fields. All

particles that form matter are fermions, i.e. particles of spin h̄/2. All inter-

actions are described by an exchange of so called gauge bosons, which are

interpreted as excitations of the gauge fields describing the associated inter-

action. These gauge or exchange bosons have a spin of an integer multiple of

h̄. The exchange bosons of the electromagnetic, weak and strong interactions

are the photon, the W±- and Z0-boson, and the gluon, respectively.

There are twelve fermions in the standard model, six leptons and six

quarks, and twelve antifermions, each of which is the charge conjugate of a

particle. Of these particles only leptons are found as free particles in nature.

Up to now quarks have only been observed in bound states of two (e.g. the

π-meson) or three (e. g. protons, neutrons) quarks or antiquarks.

The concept of antiparticles is a natural part of quantum field theories

arising from creation and annihilation mechanisms. It allows a particle-
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2 INTRODUCTION

antiparticle pair to be created by gauge boson splitting and to annihilate

by forming a gauge boson in the interaction.

To study the structure of the proton beams of electrons and protons are

collided head-on in the storage ring HERA, located at the DESY laboratory

in Hamburg. The interaction of electron and proton is dominated by pho-

ton exchange where a photon is emitted by an electron and interacts with a

constituent of the proton, called parton. Gluons also may interact with the

photon via the creation of a quark and an antiquark, one of which then may

absorb the photon. In these processes, called boson gluon fusion, the mo-

mentum distribution of the gluons in the proton is of particular importance.

The so-called kt-factorisation approach, which uses so-called unintegrated

gluon distributions depending explicitely on the transverse momentum kt of

the gluons, is a central part of this thesis. It is analysed in which regions of

the gluon phase space present HERA measurements can constrain these gluon

densities in order to obtain a better understanding of the parton distributions

in the proton.

The first chapter presents the HERA collider ring and the particle detec-

tor of the H1 collaboration. Chapter 2 gives an overview of the theory needed

for an understanding of electron-proton scattering. Perturbative methods for

the calculation of the scattering cross section are presented, kt-factorisation

is introduced, and further theoretical aspects concerning hadronic final states

are shortly summarised.

Since this study was based entirely on Monte Carlo simulations of high en-

ergy physics events (event generators), chapter 3 outlines the basic methods

and features used therein. In chapter 4 the program HzTool is presented

which enables easy comparison of Monte Carlo simulations with measured

data. By using this program along with the Monte Carlo simulation Cas-

cade a total of 16 HERA measurements have been analysed to find out in

which regions of the gluon phase space they can be used to make assertions

about unintegrated gluon densities.

Chapter 5 finally discusses the results of this analysis and gives a short

outlook to a possible future measurement based on this thesis.



Chapter 1

HERA and the H1 Detector

The electron-proton collider ring HERA (HadronElektronRingAnlage)

at DESY in Hamburg accelerates electrons up to an energy of 27.5 GeV and

protons up to an energy of 920 GeV1. There are four interaction points in

the northern, eastern, southern, and western halls, where the experiments

H1, HERMES, ZEUS and HERA-B, respectively, are positioned (fig. 1.1).

HERMES investigates the spin structure of the nucleon by colliding po-

larised electrons from HERA with polarised gas targets, and HERA-B in-

vestigates CP-violation effects in B-meson decays by colliding protons from

the HERA storage ring with stationary nuclei. These experiments are not

considered in this thesis and will not be described any further.

The topic of this thesis is the investigation of the gluon structure of the

proton with the experiments ZEUS and especially H1. Therefor the H1

detector is described in more detail in this chapter.2

Since 1994 positrons have been used instead of electrons, since the beam

lifetime was increased significantly in this way. In 1998 and the first part of

1999 electrons had been in use again. When not stated otherwise the term

electron refers to both electrons and positrons in the following.

1Before 1998 the proton energy was 820 GeV.
2A description of the ZEUS detector can be found at http://www-

zeus.desy.de/bluebook/bluebook.html.

3
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Figure 1.1: The collider ring HERA is seen on the left with the four ex-

periments. The pre-accelerators PETRA, DESY II and III and the linear

pre-accelerators are depicted on the right.

1.1 The Electron-Proton Accelerator HERA

The electrons and protons are pre-accelerated in linear colliders and the small

storage rings DESY II and III, respectively, and PETRA II (fig. 1.1). They

are injected into the HERA ring at an energy of 12 GeV for the electrons

and 40 GeV for the protons. Electric fields then accelerate the particles up

to their final energy in HERA. Superconducting magnets of 4.68 T are used

to keep the protons on their orbit, while the electrons are kept on their path

by normal conducting magnets with a field strength of 0.164 T.

The beams consist of bunches of 0.4 · 1011 electrons and 0.7 · 1012 protons

each. A maximum of 210 bunches can be stored in HERA with a spacing

of 28.8 m. This leads to a bunch crossing frequency of ∼10 MHz at the

interaction points of ZEUS and H1.
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Figure 1.2: Side view of the H1 Detector. The main components of the

detector are indicated and a scale of the detector’s size is given.

1.2 The H1 Experiment at HERA

The main components of the H1 detector can be seen in figure 1.2. Also

indicated is the positive z-direction, often referred to as the ’forward’ region,

which coincides with the direction of the proton beam.

The tracking system surrounding the interaction point measures the tracks

of charged particles for momentum determination. The energy of the par-

ticles is measured in the liquid Argon calorimeter (LAr) surrounding the

tracking system. The SpaCal (spaghetti calorimeter) determines the energy

of electrons in the backward region. A superconducting coil surrounding the

calorimeters produces a magnetic field of 1.15 T parallel to the beam axis.

For the identification of muon tracks the central muon detectors (CMD) are

located in an iron yoke which also returns the magnetic field. The forward

muon detector is located in a toroidal magnet system at the front end of the

detector. Tracking system and calorimetry are now explained in more detail.
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Figure 1.3: Cross section of the tracking system in the x-y plane. The axes

originate from the interaction point. The central jet chamber CJC 1 and 2

are indicated as well as the central inner (CIZ) and outer (COZ) z-chambers

and the central silicon tracker (CST).

1.2.1 Tracking

The inner part of the detector contains the tracking system, which consists

of the two central jet chambers (CJC 1 and 2), the central inner (CIZ) and

central outer (COZ) z-chambers and the central silicon tracker (CST). The

layout is shown in figure 1.3.

The Central Silicon Detector

The innermost part of the detector, the CST, consists of two concentric

layers of silicon sensors that measure tracks of charged particles close to the

interaction vertex with high accuracy. This provides a possibility to measure
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the decay lengths of charmed or beauty hadrons, which are in the order of a

few hundred micrometers.

The Central z-Chambers

The CIZ, a drift chamber located between CST and CJC 1, and the COZ,

located between the two jet chambers, measure the z-coordinate of a track

with a typical z-resolution of 300 µm. Here the sense wires are strung per-

pendicular to the beam axis, so that the drift direction is parallel to that

axis.

The Jet Chambers

The jet chambers are drift chambers with sense wires parallel to the beam

axis. The drift cells are inclined against the radius so that electrons from

ionisations drift approximately perpendicular to high momentum tracks in

the magnetic field. The spacial resolution of the jet chambers is 170 µm in

the r-φ plane.

1.2.2 The Liquid Argon Calorimeter

The calorimetry system is divided into an electromagnetic and a hadronic

calorimeter (fig. 1.4). The calorimeters are build up of alternating layers

of showering and read out cells. For both electromagnetic and hadronic

calorimetry liquid Argon is used as active material in th cells.

Electromagnetic Calorimetry

The electromagnetic calorimeter uses lead as showering material and is lo-

cated around the tracking system. Electrons as well as photons interact with

the showering material electromagnetically, either radiating a photon in the

process or, if the particle is a photon, splitting into an e+e− pair. Electrons,

for example, mostly lose their energy by emitting bremsstrahlung, which than

splits further into an e+e− pair, which then may radiate bremsstrahlung as
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Figure 1.4: Longitudinal cross section of the liquid Argon calorimeter show-

ing the sections of the inner electromagnetic and the outer hadronic part.

WWP indicates the interaction point.

well. This showering continues until the shower particles are absorbed in the

read out material.

Hadronic Calorimetry

Hadrons passing the electromagnetic calorimeter deposit their energy in hadronic

showers in the outer part of the LAr calorimeter. Hadronic showers originate

from strong interactions of hadrons passing the calorimeter with the nuclei

of the showering material, here stainless steel. The showers created in such

interactions are broader than electromagnetic showers, but the hadrons also

interact by nucleon excitation or fission. That is why the energy deposited

in the detector by the hadrons is always below the actual hadron energy.

1.2.3 Muon Detection

Since muons do not lose much of their energy in the calorimeters they eas-

ily reach the iron yoke surrounding the detector. For this reason, and for

’tail catching’ of hadronic showers, the iron yoke is instrumented with drift

chambers sandwiched between the iron layers of the yoke. There muons are
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detected. The tracks can then be associated with tracks in the inner detector

parts which also determine the muon momentum.

The forward muon detector located at the forward end of the detector

is build around a toroidal magnet and works in a similar way to the central

muon detector.



10 CHAPTER 1. HERA AND THE H1 DETECTOR



Chapter 2

Theoretical Overview

This chapter serves as an overview of the theory of electron-proton (ep) and

positron-proton scattering. In the following the term ep-scattering always

includes positron-proton scattering, since all the theoretical aspects presented

below apply to both.

The first section gives a short introduction into the kinematics relevant

for collisions at HERA. Special features of lepton-hadron scattering are pre-

sented and its importance for the understanding of the structure of hadrons

in general and the proton in particular is emphasised.

After that mechanisms are presented to describe the contribution of par-

tons1 to the hadron momentum. These mechanisms include parton evolution

equations, which provide calculational methods for perturbative processes.

At the end of the chapter methods for describing the transition from

quarks to hadrons, called hadronisation, are introduced. Special features of

the photoproduction regime at low photon virtualities, heavy quark and jet

production are discussed.

2.1 Lepton-Hadron Scattering

In lepton-hadron scattering leptons are used to probe the structure of hadrons

by an exchange of either charged weak gauge bosons, i.e. W± (charged cur-

1The term parton always refers to quarks and gluons.

11



12 CHAPTER 2. THEORETICAL OVERVIEW

rent), or neutral gauge bosons, i.e. Z0 or γ (neutral current). Only neutral

current interactions are considered in this thesis, and because of the small

cross section of weak interactions photon exchange dominates most processes.

Therefore, when not stated otherwise, the term photon refers to both Z0 and

γ∗.

The following Lorentz invariants can be defined via the four momenta of

the incoming and outgoing particles:

s = (p + P )2 (2.1)

Q2 = −q2 = −(p − p′)2 (2.2)

Wγp = (q + P )2 (2.3)

xBj =
Q2

2P · q (2.4)

yBj =
P · q
P · p . (2.5)

As illustrated in figure 2.1, p, p′, P, and q denote the four momenta of the

incoming electron, the outgoing electron, the proton and the exchanged bo-

son, respectively. The squared energy of the electron-proton centre-of-mass

system (cms) is given by s, Q2 defines the negative squared four momentum

transfer, and Wγp is the squared cms energy of the photon-proton system.

Wγp is also often referred to as the hadronic cms energy, because hadrons

are produced in the interaction of the virtual photon and the proton. xBj

and yBj are the Björken variables which denote the longitudinal momentum

fraction with respect to the hadron and the inelasticity, respectively. In the

proton rest frame the latter can be interpreted as the fraction of the electron

energy carried by the virtual photon, yBj = Erest
γ∗ /Erest

e .

The kinematics of ep-scattering are fully described by only three of these

five variables, because they are not independent and can be related by

Q2 = s · x · y (2.6)

Wγp = y · s − Q2 . (2.7)
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Figure 2.1: Illustration of Lorentz invariants and four momenta relevant in

ep-scattering

2.1.1 The Parton Model

The following considerations are based on textbook [1], which is a good

introduction into the subject, and textbooks [2, 3], which both present the

subject in more detail.

In the so-called naive parton model (PM) hadrons consist of non-interacting

quarks, or more generally partons. The cross section for a charged lepton

scattering electromagnetically off one of those quarks is

d2σlq

dxdQ2
=

2πα2

xQ4

[

1 + (1 − y)2
]

e2
i x , (2.8)

which by summing over all quarks i in the proton becomes

d2σlp

dxdQ2
=

2πα2

xQ4

[

1 + (1 − y)2
]

∑

i

e2
i x fi(x) . (2.9)

Here, fi(x) is called parton distribution (or density) function (PDF) and

denotes the probability density of finding a quark of flavour i and charge ei

and a fraction x of the proton momentum.

The general form for the differential cross section of electromagnetic

lepton-proton (lp-) scattering is given by

d2σep

dxdQ2
=

2πα2

xQ4

[(

1 + (1 − y)2
)

F ep
2 (x, Q2) − y2F ep

L (x, Q2)
]

(2.10)
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with F ep
2 being the proton structure function and F ep

L its longitudinal com-

ponent2. Compared to this equation (2.9) predicts

F em
2 (x, Q2) = F em

2 (x) =
∑

i

e2
i x fi(x) and F lh

L = 0 . (2.11)

Equation (2.11) states that the naive parton model leads to a structure

function independent of Q2. That the longitudinal contribution of the virtual

photon to the cross section vanishes here is a consequence of scattering from

spin-1/2 particles which cannot absorb longitudinally polarised vector bosons.

The independence from the scale Q2 is called Björken-scaling. Measure-

ments at HERA confirmed earlier experiments at other accelerators that

proved deviations from this scaling behaviour. These scaling violations seen

in HERA and other data were only seen because higher energies made avail-

able a wider range in x = Q2/sy (eq. (2.6)). They cannot be explained by

the naive parton model but need an improvement which takes into account

not only the static quark content of the proton, but also contributions of

gluon radiation where quarks interacting with the photon radiate gluons be-

fore the interaction. To show how this non scaling behaviour is predicted

by perturbative quantum chromodynamics (pQCD) is the aim of the next

section.

2.2 The Improved Parton Model and the

Collinear Approach

In order to describe the scaling violations observed in many experiments one

has to take into account perturbative corrections to the process shown in

figure 2.2a. First order corrections include gluon radiation in the initial and

in the final state (fig. 2.2b and 2.2c respectively). To illustrate how these are

treated perturbatively the structure function F2 of (2.11) is first related to the

scattering amplitude for the photon-quark scattering before the corrections

2In contrast to real photons, which only occur in transverse polarisation due to their

vanishing mass, virtual photons with an invariant mass 6= 0 can aquire a longitudinal

polarisation.
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Figure 2.2: Scattering of an electron off a parton in a) the naive parton

model and the parton model improved by b) initial state gluon radiation and

c) final state gluon radiation.

are added. At the end of this section gluons are included in the evolution

equations.

2.2.1 First Order Corrections to the Structure Func-

tion

The structure function F2 of equation (2.11) describes the subprocess γ∗q →
q, , and can be written as

F2(x, Q2)

x
=
∑

i

e2
i

∫ 1

x

dx′

x′
fi(x

′)δ
(

1 − x

x′

)

=
σ(γ∗q → q)

σ0

. (2.12)

where σ0 = 4π2α/ŝ depends on the fine structure constant α and the cms-

energy ŝ of the γ∗q-system.

In the γ∗q-centre-of-mass frame the quark would leave the interaction

collinear to the photon as illustrated in figure 2.3a. By radiating a gluon ei-

ther before or after interacting with the virtual photon the quark can acquire

a transverse momentum component relative to the virtual photon momen-

tum (fig. 2.3b), so that the resulting cross section would depend on this

transverse momentum.

The real first order corrections shown in figure 2.4b and c picture the

process γ∗q → q g. Evaluating the matrix elements of these processes gives
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Figure 2.3: Photon-quark collision in the γ∗q-cms. The scattered quark

is a) collinear with the virtual photon if gluon radiation is neglected and b)

acquires transverse momentum relative to the γ∗ if gluon radiation is taken

into account.

a differential cross section as a function of the transverse momentum of the

outgoing quark, pt:

1

σ0

dσ

dp2
t

(γ∗q → q g) ≃ e2
i

1

p2
t

αs

2π
Pqq(z) , (2.13)

with αs representing the strong coupling constant. Pqq(z) is called ’splitting

function’ and describes the probability of a quark radiating a gluon and

thereby becoming a quark with a fraction z of its original momentum.3 It is

given by

Pqq(z) =
4

3

(

1 + z2

1 − z

)

. (2.14)

It is important to note the infrared divergencies arising from the 1/p2
t

term in (2.13) and from the (1− z) term in (2.14). The latter gets cancelled

out by virtual corrections pictured in figure 2.4a. The treatment of the

divergence at p2
t → 0, which represents the long range or soft part of the

strong interaction4, is outlined below.

The cross section for γ∗q → q g would then be (to first order in αs):

σ(γ∗q → q g)

σ0
≃ e2

i

∫ p2

t,max

κ2

dp2
t

dσ

dp2
t

(γ∗q → q g) (2.15)

3A splitting function Pfi(z) describes the probability of a final state parton f originating

from an initial state parton i and carrying a fraction z of of the initial state’s momentum.
4see for example [2], p. 104
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Figure 2.4: Diagrams for virtual (a) and real (b, c) first order corrections

≃ e2
i

∫ p2

t,max

κ2

dp2
t

p2
t

αs

2π
Pqq(z) . (2.16)

The transverse momentum of the outgoing quark is kinematically limited

because of four momentum conservation by p2
t,max = ŝ/4 = Q2(1 − z)/4z in

the γ∗q-centre-of-mass frame. Furthermore the lower cut-off scale κ2 ensures

that the cross section is finite. The cross section may now be written as

σ(γ∗q → q g)

σ0
≃ e2

i

αs

2π
Pqq(z)

[

ln

(

Q2

κ2

)

+ ln
1 − z

4z

]

≃ e2
i

αs

2π

[

Pqq(z)ln

(

Q2

κ2

)

+ C(z)

]

, (2.17)

where the non-singular (in pt) term is absorbed in the constant C(z). This

result can now be added to the structure function of (2.12) as a correction

of first order in αs (neglecting the non-singular term C(z), which does not

give a leading contribution):

F2(x, Q2)

x
=

∑

i

e2
i

∫ 1

x

dx′

x′
f 0

i (x′) ·

·
[

δ
(

1 − x

x′

)

+
αs

2π
Pqq

(

x

x′

)

ln

(

Q2

κ2

)]

(2.18)
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Here z = x/x′ is the fraction of the initial quark momentum of the quark

after gluon emission, while x′ and x represent the proton momentum fractions

of the quark before and after gluon emission, respectively. The integral over

x′ sums the contributions from all possible initial momentum fractions. The
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delta function now represents a parton carrying the same fraction as the

initial parton, so that it corresponds to γ∗q → q without gluon radiation. In

analogy to renormalisation the initial parton density f 0
i (x) can be see as an

unmeasurable parton distribution, similar to the ’bare’ charge e that appears

in the coupling constant.

2.2.2 Long and Short Range Contributions and Parton

Evolution

The resulting structure function (2.18) now contains contributions of the long

range part pt → 0 of the strong interaction represented by the cut-off scale κ,

and the short range part taking place at a scale Q2 induced by the interaction

with the virtual photon. Since the long range part cannot be calculated

by perturbative methods it is desirable to factorise the cross section into a

short range and a long range part. This is done with a formalism similar to

renormalisation: by introducing a so-called collinear factorisation scale µ the

dependence on lnQ2 and lnκ2 can be separated by ln(Q2/κ) = ln(Q2/µ) +

ln(µ/κ), so that the parton densities depend on the cut-off scale representing

the long range part,

fi(x
′, µ2) = f 0

i (x′) +
αs

2π

∫ 1

x′

dx′′

x′′
f 0

i (x′′)Pqq

(

x′

x′′

)

ln

(

µ2

κ2

)

, (2.19)

so that the structure function becomes:

F2(x, Q2)

x
=

∑

i

e2
i

∫ 1

x

dx′

x′
fi(x

′, µ2)
[

δ
(

1 − x

x′

)

+

αs

2π
Pqq

(

x

x′

)

ln

(

Q2

µ2

)]

(2.20)

In this way the structure function and with it the cross section is factorised

into a perturbatively calculable term and a parton density including terms

that cannot calculated by perturbative methods. However, it can be exam-

ined perturbatively how the parton densities evolve with a change in the scale

µ by taking the derivative of (2.19):

∂fi(x, µ2)

∂ ln µ2
=

αs

2π

∫ 1

x

dx′

x′
fi(x

′, µ2)Pqq

(

x

x′

)

(2.21)
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Figure 2.5: Diagram of boson-gluon-fusion

This type of parton evolution equation is mostly referred to as a DGLAP-

(Dokshitzer, Gribov, Lipatov, Altarelli, Parisi) or Altarelli-Parisi-

equation. By now it only accounts for the quark content of the proton while

the gluon content is left out.

Note that the parton densities fi(x, Q2) are not physical observables like

the structure function F2. They can be determined, of course, from the

observable structure function at any particular scale, because F2(x, Q2) =

x
∑

i e
2
i fi(x, Q2).

2.2.3 Including Gluons in Parton Evolutions

Since the virtual photon probes the quark content of the proton the process

γ∗g → qq̄ known as boson gluon fusion (BGF) also contributes to the struc-

ture function. It is this process that is studied in this thesis. The associated

diagrams diagrams are shown in figure 2.5. The quark that interacts with

the virtual photon now originates from a gluon inside the proton. In analogy

to the case of quarks these diagrams contribute to the structure function by

adding an extra term:

F2(x, Q2)

x
=

F2(x, Q2)

x

∣

∣

∣

∣

∣

γ∗q→qg

+
F2(x, Q2)

x

∣

∣

∣

∣

∣

γ∗g→qq̄

=
F2(x, Q2)

x

∣

∣

∣

∣

∣

γ∗q→qg

+

+
∑

i

e2
i

∫ 1

x

dx′

x′
fg(x

′)
αs

2π
Pqg

(

x

x′

)

ln

(

Q2

µ2

)

(2.22)

The splitting function Pqg(z) for gluons splitting into a quark-antiquark
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Figure 2.6: Crossed diagrams of gluon splitting where the momentum frac-

tion z and 1 − z are interchanged.

pair is given by

Pqg(z) =
1

2

[

z2 + (1 − z)2
]

. (2.23)

The second term describes the crossed diagram (fig. 2.6b) of the first (fig.

2.6a) where the momentum fractions are interchanged and the quark inter-

acting with the virtual photon carries the fraction 1 − z instead of z. This

also effects the evolution of the quark densities, now given by

∂fi(x, µ2)

∂ ln µ2
=

αs

2π

∫ 1

x

dx′

x′

[

fi(x
′, µ2)Pqq

(

x

x′

)

+ fg(x
′, µ2)Pgq

(

x

x′

)]

. (2.24)

To express an evolution equation for the gluon density one has to take

into account the processes and that correspond to the splitting

functions Pgq and Pgg, respectively. This then gives the evolution equation

for gluon densities:

∂fg(x, µ2)

∂ ln µ2
=

αs

2π

∫ 1

x

dx′

x′

[

fg(x
′, µ2)Pgq

(

x

x′

)

+ fg(x
′, µ2)Pgg

(

x

x′

)]

, (2.25)

with the splitting functions

Pgq(z) =
4

3

[

1 + (1 − z)2

z

]

and (2.26)

Pgg(z) = 6
[

1 − z

z
+

z

1 − z
+ z(1 − z)

]

. (2.27)

With these evolution equations a tool exists for calculating the contribu-

tion of parton emission to the structure function. To do this the DGALP-

formalism re-sums leading lnµ2 contributions in successive gluon emissions
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Figure 2.7: Successive emission of gluons in BGF.

(fig. 2.7). This approximation is equivalent to a region of phase space where

the virtualities ki of the propagating gluons are strongly ordered:

µ2 ≪ k2
1 ≪ k2

2 ≪ · · · ≪ k2
n ≪ Q2. (2.28)

It is this strong ordering that gives the collinear ansatz its name, because it

states that the gluon entering the hard interaction with the virtual photon

has a negligible transverse momentum compared to the scale of the hard

interaction and can therefore be taken as collinear with the incoming proton.

2.2.4 DGLAP at small x

In the collinear factorisation scheme the transverse momentum of the partons

entering the hard interaction is neglected. The evolution of parton densities

is examined in dependence of leading logarithms of Q2 (a common choice for

µ2).

At small momentum fractions,x ≪ x′ ⇒ x
x′

= z ≪ 1, the splitting

functions can be approximated by5

Pqq →
4

3
, Pqg →

1

2
, Pgq →

8

3z
, Pgg → 6

z
, (2.29)

5cf. eqs.(2.14), (2.23), (2.26) and (2.27)
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which shows that here the gluon splitting functions give the biggest contri-

bution and that Pgg dominates the gluon evolution. The DGLAP equation

for the gluon density now reads

∂fg(x, Q2)

∂ ln Q2
=
∫ 1

x

dx′

x′
fg(x

′, µ2)P
(

x

x′

)

, (2.30)

where the factor αs/2π has been absorbed into the splitting function P (z) =

(αs/2π) ·Pgg(z). P (z) can now be expanded into a power series which at low

x is dominated by powers of ln1/x . In DGLAP these are neglected, so that at

low x the DGALP equations obviously need some modification.

2.3 kt-Factorization

In the DGLAP ansatz a process dependent coefficient function, Ci(x/z), and

a collinear parton density fi(z, µ
2
f ), are convoluted to form the cross section:

σ ∼
∫

dx′

x′
C i

(

x

x′

)

fi(x
′, µ2

f), (2.31)

where the parton density does not depend on the transverse momentum of

the partons.

To account for the larger phase space available at low x the kt-factorisation

scheme [4] factorises the cross section into a scattering cross section σ̂ and a

kt-dependent, so-called unintegrated parton density (uPDF) G(z, kt), where

the parton’s transverse momentum kt now plays a role similar to the factori-

sation scale µf in the DGLAP approach. The cross section then becomes

σ ∼
∫

dx′

x′

∫

dk2
t σ̂
(

x

x′
, kt

)

G(x′, kt), (2.32)

where the transverse momentum is allowed to take on any kinematically al-

lowed value. Here the matrix element of the hard scattering is taken off-shell,

which means that the virtuality of the gluon entering the hard scattering is

not neglected as it is the case in the collinear factorisation.

In the following two approaches for unintegrated parton densities are

presented: the BFKL (Balitsky, Fadin, Kuarev, Lipatov) approach
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valid at small x, and the CCFM-approach (Catani, Ciafaloni, Fiorani,

Marchesini), which is an attempt for an interpolation between DGLAP

and BFKL valid both at small and large x.

Unintegrated gluon densities G(x, kt) of the kt-factorisation approach can

be compared to the gluon densities fg(x, µf) of the collinear approach by:

xfg(x, µf) ≃
∫ µf dk2

t

k2
t

G(x, kt) . (2.33)

This is, however, not an exact equation since the integration over the

transverse momentum for the calculation of the cross section also includes

the kt-dependent matrix element.

In the following x always denotes a parton’s momentum fraction with

respect to the proton. zi stands for the momentum fraction of a propagating

parton after the ith splitting relative to the mother parton. Hence, 1 − zi

always denotes the momentum fraction of the parton emitted from the ith

splitting.

Furthermore, it is convention to use G(x, kt) for DGLAP-like uPDFs,

F(x, kt) for uPDFs in the BFKL approach, and A(x, kt, q̄) for uPDFs in the

CCFM approach.

2.3.1 BFKL

Due to the dominating contributions of gluon splitting at small x the BFKL-

approach only includes gluon density evolution. In this ansatz the emitted

gluon takes a large fraction (1 − z)z→0 of the momentum of the incoming

gluon, and the momentum fraction of the propagating gluon is small. There-

fore the BFKL approach offers a calculational scheme for soft propagating

gluons (z → 0) for which perturbative techniques may not be applicable

anymore.

If the momentum fraction zi = xi/xi−1 after gluon emission is small,

z ≪ 1, the momentum fractions x of the propagating gluons in a gluon

ladder become strongly ordered (fig. 2.8):

x0 ≫ x1 ≫ · · · ≫ xn. (2.34)
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Figure 2.8: Gluon ladder in BFKL. The momentum fractions zi = xi/xi−1

of each emission are assumed to be small, z ≪ 1, and the longitudi-

nal momentum fractions relative to the proton momentum become ordered,

x1 ≫ · · · ≫ xn. The transverse momenta of the propagating gluons, kt,i, are

not ordered.

The transverse momenta of the gluons, however, are left arbitrary and may

perform a ’random walk’. The resulting large ln1/x -terms are re-summed to

all orders in BFKL, in contrast to the collinear approach where the splitting

functions are truncated at a fixed perturbative order. The splitting functions

here naturally become more complicated.

The BFKL evolution equation [5–7]

∂F(x, kt)

∂ ln1/x
=
∫

dk′

t
2
K(kt, k

′

t)F(x, kt) (2.35)

includes the ’BFKL-kernel’ K(kt, k
′

t), which can be found in [8] and [9], and

the unintegrated gluon density F(x, kt), which can be related to the DGLAP

parton density by

xfg(x, µf) ≃
∫ µf dk2

t

k2
t

F(x, kt) . (2.36)
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Figure 2.9: CCFM gluon ladder with angular ordering ξi > ξi−1, where the

variable ξ is related to the emission angle θ relative to the proton axis by

ξ = tan2 (θi/2). Ξ is related to the angle of the qq̄ pair in the electron-proton

cms with respect to proton direction and defines the upper scale for gluon

emission.

2.3.2 CCFM

The CCFM approach is an attempt to unify the DGLAP ansatz, valid at

large and medium x, and the BFKL approach, valid at small x. Similar

to BFKL it contains kt-unintegrated parton densities, which are the main

subject of this analysis. Therefore CCFM is presented here in more detail.

CCFM provides parton evolutions ordered in the emission angles of the

partons arising from colour coherence effects in the emissions. This is illus-

trated in figure 2.9. In the electron-proton cms the variable ξ is connected

to the emission angle θ by ξ = tan2 (θ/2), and therefore θi > θi−1 leads to

ξi > ξi−1.

The maximum angle allowed for emission in the gluon evolution6 is now

taken to be the angle of the quark-antiquark (qq̄) pair in the electron-proton

6Since the Monte Carlo event generator Cascade only includes gluon ladders, other

parton evolutions are not treated here. In general CCFM provides evolution equations of

gluon and quark densities.
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cms with respect to the proton axis, Θ, which defines the upper boundary

for gluon emission, Ξ = tan2 (Θi/2).

The four-momentum of the quark pair can be written as

pq + pq̄ = Υ(P + Ξp) + Qt = xg(P + Ξp) + Qt, (2.37)

where P and p represent again the four-momenta of proton and electron,

respectively, Qt is the transverse momentum of the qq̄ pair in the electron-

proton cms, and the variable Υ is the longitudinal momentum fraction with

respect to the proton entering the hard interaction. In case of boson gluon

fusion, which is studied here, Υ ≡ xg, where xg is the longitudinal momentum

fraction of the gluon entering the hard scattering. In the same manner the

four-momenta of the emitted gluons can be written as

pi = vi(P + ξip) + pt,i, (2.38)

with ξi =
p2

t,i

svi

and vi = (1 − zi)xi−1 , (2.39)

where pt,i is the transverse momentum of the ith emitted gluon.

The definition of the angular ordered region of phase space is then

ξ1 < · · · < ξn < Ξ. (2.40)

With a rescaled transverse momentum defined by

qi = xi−1

√

s · ξ =
1

1 − zi

pt,i

this becomes

zi−1qi−1 < qi . (2.41)

The variable Ξ related to the maximum emission angle then gives an

upper scale for the evolution:

q̄2 = x2
gs · Ξ = ŝ + Q2

t , (2.42)

so that the angular ordering in CCFM can be written as:

q0 < q1 , · · · , zi−1qi−1 < qi , · · · , znqn < q̄ . (2.43)
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It can easily be shown that this angular ordering leads to strong ordering

of x for small x and to ordering in kt at large x, so that CCFM indeed covers

the regions of phase space in which DGLAP and BFKL are valid.

Equation (2.42) also shows the relation of q̄ to the factorisation scale µf

in the collinear approach.

Evolution Equation of CCFM

The CCFM evolution equation for the gluon density can be written in integral

form:

A(x, kt, q̄)=A0(x, kt, q̄) +
∫

dz

z

q̄
∫

q2

0

d2q

πq2
Θ(q̄−zq)∆s(q̄, zq)P̃gg(z, q, kt)A

(

x

z
, k′

t, q
)

.

(2.44)

Here
⇀

k ′

t = |
⇀

k t +(1 − z)
⇀
q |, and the angular ordering is given by

q0 < q1, zi−1qi−1 < qi, znqn < q̄ (2.45)

The Sudakov form factor ∆s(q̄, q0) gives the probability for no emission

between a starting scale q0 and q̄. Thus, in the evolution equation (2.44)

it represents the probability of no gluon emission between zq and q̄ and

therefore ensures the ordering (2.45) of the emission scales. It is defined as

∆s(q̄, q0) = exp



−
∫ q̄

q2

0

dq2

q2

∫ 1−
q0
q

0
dz

ᾱs

(

q · (1 − z)
)

1 − z



 , (2.46)

where ᾱs = 3αs/π. The Sudakov form factor is a re-summation of large z

contributions and thereby cancels the collinear singularity 1/(1 − z) of the

splitting functions.

The splitting functions of CCFM are given by3

Pgg(zi, qi, kt,i) =
ᾱs(kt,i)

zi
∆ns(zi, qi, kt,i) +

ᾱs(pt,i)

1 − zi
(2.47)

3The choice that ᾱs depends on the transverse momentum pt = q (1− z), or kt, respec-

tively, is made because the strong ordering in kt is not applied, so that small values of kt

leading to large ᾱs may occur. These would not be included if the scale in ᾱs would be

fixed e. g. at Q2.
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with the non-Sudakov form factor ∆ns defined by

ln∆ns(zi, qi, kt,i) = −αs

∫ 1

zi

dz′

z′

∫ dq2

q2
Θ(kt,i − q)Θ(q − z′qi) . (2.48)

Equivalent to the Sudakov form factor it resums contributions of small z and

thereby cancels the 1/z-singularity. Equation (2.48) can now be written as

ln∆ns(zi, qi, kt,i) = −αskt,iln
(

z0

zi

)

ln

(

k2
t,i

z0ziq
2
i

)

, (2.49)

because the Θ-functions limit the integral over z′ by zi ≤ z′ ≤ min (1, kt,i/qi).

Here z0 is an upper cut-off for zi depending on the ratio of emitted and

propagating transverse momentum. With this the non-Sudakov form factor

can be written as an exponential series corresponding to a series of Feynman

amplitudes

1 + αs(kt,iln
(

z0

zi

)

ln

(

k2
t,i

z0ziq2
i

)

+

(

1

2!
αs(kt,iln

(

z0

zi

)

ln

(

k2
t,i

z0ziq2
i

))2

+ · · ·

The CCFM gluon densities can be compared to the DGLAP like gluon

densities by

xfg(x, µf) ≃
∫ µf dk2

t

k2
t

A(x, kt, q̄) . (2.50)

The Soft Region of Phase Space

In the DGALP approach the non-perturbative terms of the soft region were

included in the initial parton distribution as outlined in section 2.2.2. Due

to the strong ordering the transverse momentum of partons in the evolution

cannot fall below the cut-off scale κ. In the CCFM approach a lower cut-

off kcut
t is used for calculation of the initial parton density A0(x, kt, q̄), but

the transverse momentum of partons in the evolution can still achieve values

in the non-perturbative soft region below kcut
t where the coupling constant

ᾱs(µ) becomes large. A practical solution is to simply restrict the evolution

in kt to values kt > kcut
t , while ᾱs(µ) is fixed for µ < q0.
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A Closer Look at the Splitting Functions

The splitting function (2.47) contains only collinear and soft singular terms

1/zi and 1/(1 − zi), respectively. Although at asymptotically high energies

effects from non-leading contributions can be neglected, they might play a

role at energies currently available at colliders. This can be taken care of

by including non-singular terms in the splitting functions, but ∆s and ∆ns

then have to be changed accordingly. How this is done is presented in [10]

and [11].

Another possible modification of the splitting function effects ᾱs: instead

of using different scales for the soft and the collinear term in (2.47) one can

also use pt,i in both scales:

Pgg(zi, qi, kt,i) =
ᾱs(pt,i)

zi

∆ns(zi, qi, kt,i) +
ᾱs(pt,i)

1 − zi

, (2.51)

which also has to be considered in the non Sudakov form factor [10, 11].

How the inclusion of non-singular terms as well as changes to the splitting

functions effect the unintegrated gluon densities of CCFM is examined in the

next section.
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Figure 2.10: Comparison of three sets of CCFM gluon densities xA(x, kt, q̄)

as functions of log x at three different k2
t (a-c), and the ratios of set 2 and

set 3 with respect to the first set (d-f).

2.4 Unintegrated Gluon Densities

Three different sets of unintegrated gluon densities are used in this thesis

(taken from [12]):

• J2003 set 1

This set of unintegrated gluon densities contains the splitting function

(2.47) and a collinear cut-off kcut
t = q0 = 1.33 GeV.
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Figure 2.11: Comparison of three sets of CCFM gluon densities xA(x, kt, q̄)

as functions of log k2
t in bins of xg (a-d), and the ratios of set 2 and set 3

with respect to the first set (e-h).

• J2003 set 2

Here the improved splitting function containing non-singular terms was

used and the collinear cut-off was kcut
t = q0 = 1.18 GeV.

• J2003 set 3

The change to the scale in ᾱs was included here in a splitting function

excluding non-singular terms (eq. 2.51). kcut
t = q0 = 1.35 GeV was

taken as a collinear cut-off and ᾱs(µ) was fixed for µ < 0.9 GeV.
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Figure 2.12: The formation of hadrons by quarks is illustrated using a) the

independent fragmentation model and b) the Lund string model.

These uPDFs are compared in figures 2.10 and 2.11. Figures 2.10a to c show

the gluon distributions xA(x, kt, q̄) as functions of log x for three different

values of kt, while figures 2.10d to f show the ratio of set 2 and 3 with respect

to the first set. Figures 2.11a to d and figures 2.10e to h, respectively, show

the same as functions of log k2
t for four different values of xg.

At low xg the gluon densities show a certain saturation behaviour, which

is most distinct for k2
t = 1 GeV2.

From figures 2.10d to f and 2.11e to h it is obvious that the non-singular

contributions included in set 2 lead to significant deviations from the gluon

density using the original splitting function (set 1). Furthermore the con-

tribution of the non-singular parts in the splitting functions effect the soft

region most, in which set 2 exceeds the other gluon densities. In comparison

the effect of changing the scale in ᾱs is not as large.

2.5 Fragmentation and Hadronisation

The process of forming hadrons out of partons is called hadronisation, but

sometimes also referred to as fragmentation. In a more differentiated termi-

nology fragmentation describes the QCD processes occurring after the hard

scattering but before the hadronic final state is formed. It is then said that
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the partons fragment by gluon radiation, gluon splitting and similar QCD

processes before hadrons are actually formed. But since it is not clear ’when’

a group of partons may be considered a hadron, these terms are mostly used

in a similar manner. In addition hadrons may also radiate gluon and thereby

fragment further, so that a clear distinction is not possible. The only distinc-

tion that can be made is that between parts that can and parts that cannot

be treated perturbatively.

2.5.1 Parton Showers

In Monte Carlo generators the perturbative part of fragmentation is usu-

ally described by final state parton showers. The methods are similar to the

methods used in the initial state parton evolution, except that parton emis-

sions are now time like, whereas they are space like in initial state parton

evolution. This part usually treats the transition from partons off mass-shell,

meaning that their masses may differ from their actual mass, to partons on

mass-shell.

2.5.2 Independent Fragmentation

The independent fragmentation model describes fragmentation and hadro-

nisation by assuming that a quark combines with quarks created from vac-

uum fluctuations to hadrons as sketched in figure 2.12a. The picture also

illustrates that the last quark is left over concerning colour and flavour con-

servation, so that a treatment of colour and flavour neutralisation has to be

introduced. In the hadronisation model described in the next section colour

neutralisation is always ensured.

2.5.3 The Lund String Model

The Lund string model is sketched in figure 2.12b. In QCD the colour force

between two coloured objects increases with distance. This is modelled by

strings connecting two coloured objects that break up when the distance be-

tween the objects becomes too large. The colour strings are treated as colour
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Figure 2.13: Lund strings illustrated in two processes: in BGF (a) both

quarks of the diquark system are still connected to the proton remnant via a

colour string, while in a QCD Compton process with a valence quark (b) the

scattered quark is not connected to the proton remnant anymore. The solid

and the dashed lines illustrate the colour and anticolour flow, respectively,

and r, b and b̄ indicate the colours red, blue and antiblue.

singlet states that connect either a quark-antiquark pair or three quarks that

are combined to a colourless state. Thus no net colour charge can be created

in the process, so that the colour neutrality is already assured.

Figure 2.13 illustrates the situation in ep-scattering: after the hard inter-

action the quarks are connected to the proton remnant by a colour string.

The difference between BGF (fig. 2.13a) and QCD Compton (QCDC) in-

volving a valence quark (fig. 2.13b) is the following: in BGF the gluon carries

colour from the proton, and the quarks q and q̄ both obtain this colour. In

this way, both quarks are connected to the proton remnant by a colour string.

In QCDC including a valence quark vq this carries colour, but no anticolour

that is connected to the proton remnant. The anticolour is not created until

the gluon is emitted, and then it is associated with the colour of the former

valence quark. In this way, the antiquark q̄ originating from the gluon is

connected to the former valence quark vq′, and the quark q originating from

the gluon is connected to the proton remnant.
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Figure 2.14: Illustration of matrix elements of a) collinear LO, b) collinear

NLO, c) collinear resolved processes and d) kt-factorisation. The dashed

boxes indicated the matrix elements.

2.6 Photoproduction

The kinematic region of low virtualities, usually defined by Q2 < 1 GeV2, is

called photoproduction because then the photon can be considered as quasi-

real. In this region of low photon virtualities the virtuality of the gluon

entering the hard scattering might play a role. Since in the collinear approach

the gluon virtuality is always neglected so-called resolved photon processes

have to be introduced. In this model the photon fluctuates into either a

quark-antiquark pair (anomalous resolved case) or a vector meson with a

hadronic substructure (normal resolved case).

In the first case the hard scattering is described by the interaction of,

e. g., a gluon from the proton with neglected virtuality and a quark or

antiquark from the photon by the exchange of a gluon. This is indicated in

figure 2.14. Collinear LO (fig. 2.14a) neglects the gluon virtuality. Collinear

NLO (fig. 2.14b) includes processes where the incoming gluon virtuality is

still neglected, but the emission of another gluon is included in the hard

scattering matrix element. The resolved model (fig. 2.14c) now treats the

hard scattering as an interaction between a quark from the photon and a

gluon from the proton, as indicated by the dashed box. Thereby the gluon

which in collinear LO is treated massless and collinear to the proton, kt ≈ 0,

can now attain finite virtuality and kt. The gluon entering the hard scattering,

however, is still considered massless and collinear to the proton.
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Figure 2.15: Resolved photon processes: In a) an example of the anomalous

resolved case is shown, where a gluon from the proton interacts with a quark

from the photon. In b) the normal resolved case is shown in an example of

gluon gluon fusion, where two gluons from both proton and photon interact.

The normal and anomalous cases are illustrated in figure 2.15a and b,

respectively. To describe the hard scattering in the resolved photon model a

parton distribution function fi/γ(xγ , µf) is introduced. Here xγ is the frac-

tion of the photon momentum entering the hard interaction and µf is the

factorisation scale. In the hard scattering a parton from the proton then in-

teracts with a parton from the quasi-real photon, be it a quark or antiquark

in the anomalous case or a quark, antiquark or gluon in the normal resolved

case.

The cross section for resolved processes can be written as a convolution

of parton densities from the proton and a hard scattering cross section, but

now the quasi-real photon structure also has to be considered by including

its parton density:

σ ∼
∫ dxp

xp

∫ dxγ

xγ

∑

i,j

fi/p(xp, µf)fj/γ(xγ , νf)σ̂ij , (2.52)

where σ̂ij describes the hard interaction of a parton i from the proton and a
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parton j from the photon. The momentum fraction xγ can be written as4

xγ =

∑

i ET,ie
ηi

2yEe
, (2.53)

where the sum is taken over the particles leaving the hard interaction. In

figure 2.15a these are the antiquark q from the photon and the emitted gluon

g, while in figure 2.15b they are indicated by q and q̄. Ee is the energy of

the electron beam and y the inelasticity. The transverse energy of a particle

is defined by

ET,i :=
√

E2
i − p2

z,i , (2.54)

and the pseudo-rapidity η = −1/2 ln( tan (θ/2)) is a measure for the angle θ

between particle and proton.

The momentum fraction xγ can also be interpreted as the momentum frac-

tion of the photon entering the quark-antiquark (qq̄) pair in BGF. In direct

collinear processes four-momentum conservation dictates that the quarks of

the qq̄ pair cancel in transverse momentum. This forbids further gluon emis-

sions in the hard scattering, because transverse momentum would not be

conserved by such an emission. Therefore direct processes are characterised

by xγ = 1, because the full photon momentum enters the diquark system.

Resolved processes, on the other hand, are characterised by xγ < 1, since

this is only possible when the gluon is allowed finite virtuality and transverse

momentum.

Note that the resolved model is only considered in collinear LO. In kt-

factorisation as well as collinear NLO the introduction of such a model is

not necessary because the gluon is treated off mass-shell and may therefore

have finite virtuality. Processes with xγ < 1 are therefore naturally included

in the matrix elements. The hadronic component of the photon, however, is

not considered. w

2.7 Heavy Flavour Production

Since the centre-of-mass energy at HERA is not large enough two produce a

top quark pair, only charm and beauty production are considered here.

4In [13] a derivation of xγ is can be found.
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Figure 2.16: Direct boson gluon fusion process where the photon is consid-

ered to be point like

The production of heavy quarks differs from light quark production in

that the mass of the heavy quarks provides a hard scale for the scattering

while the masses of the light quarks u, d and s are always neglected. Be-

cause of this heavy quark production ensures that perturbative methods can

be applied, but the treatment of the heavy flavour now depends on the energy

scale. At HERA most heavy quarks are produced at scales near production

threshold, µ ≈ mQ (the capital Q indicates heavy flavour), where BGF pro-

cesses make the dominant contribution. At moderate x heavy quarks are not

treated as partons of the proton but as particles created in the hard process.

In the collinear approach at scales µ ≫ mQ heavy quarks are treated similar

to light quarks and are therefore considered partons of the proton.

In the study of heavy flavours the properties of the quarks are recon-

structed by investigation of hadrons formed by the quarks or of decay par-

ticles of the quarks. Charm quarks, for example, are often reconstructed

via the study of D∗±-mesons, but also tagging one one quark by a D∗ and

the other by muon (fig. 2.17). Beauty quarks are mainly reconstructed by

studying muons from their decay. If jets are used in heavy flavour they are

associated with a D∗ and muons.

In most heavy flavour studies the transverse momentum and the pseudo

rapidity η of D∗-mesons or muons are measured. To find out if these ob-

servables are sensitive to the phase space of the gluon entering the hard

interaction is one of the main goals of this thesis.
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Figure 2.17: Example of charm production via BGF: a charm quark decays

semileptonically while the anticharm hadronises into a D∗−-meson.

2.8 Jet Production

As described above particles in the final state are subject to fragmentation,

parton showers and hadronisation. A final state parton may radiate gluons

that further split into quarks, and out of all these particles the hadronic final

state is build. Thus many hadrons may originate from one quark of the final

state of the hard scattering and to reconstruct the properties of the final

state quarks one now combines hadrons moving approximately in the same

direction into a jet.

2.8.1 Jet Algorithms

The definition of a jet is not unique because one has to decide whether two

particles are ’close enough’ to be considered part of the same jet or whether

two sub jets have to be considered as two different jets. For a clear identifi-

cation of jets certain jet algorithms are used. In the kt-jet algorithm [14], for

example, user defined objects are treated as so-called proto jets, which are

compared in transverse momentum pt, pseudo-rapidity η and azimuthal angle

φ. These objects may be partons in Monte Carlo simulations, hadrons recon-

structed from tracks and calorimeters or tracks and clusters in the calorime-

ters5. The masses of the proto jets are neglected. If the distance of two proto

jets i and j defined by

dij := min (p2
t,i, p

2
t,j)

(

(ηi − ηj)
2 + (φi − φj)

2
)

, (2.55)

5Experimental methods to detect particles are discussed in section 1.2
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is greater than the transverse momentum of at least one of the proto jets,

the proto jet is considered a jet and removed from the list of proto jets to

be compared. If dij is smaller than both transverse momenta of the proto

jets, they are merged into one proto jet by determining combined transverse

momenta, pseudo-rapidity and azimuthal angle depending on the proto jet

variables. The comparison then continues until no proto jets are left.

2.8.2 Jet Variables

In this thesis jets are studied in heavy quark production or in dijet events

which contain at least two jets. Instead of the transverse momentum jet

analyses study the transverse jet energy defined by

ET,jet :=
√

E2
jet − p2

z,jet (2.56)

The energy Ejet of the jet is measured in the calorimeter, and the projection

on the z axis defines pz,jet. Since the mass of a jet is not properly defined,

transverse momentum and transverse energy are taken to be equal.

Comparing this with equation (2.53) one can now use the transverse en-

ergy and the pseudo-rapidity of the jets to approximate xγ by

xobs
γ =

∑

jetsE
jet
T e−ηjet

2Eey
, (2.57)

where the sum runs over the jets in the final state.

Figure 2.18 illustrates why xγ is expected to be a variable sensitive to the

transverse momentum of the hard interacting gluon. It is assumed that in a

dijet event the jets with the highest transverse energy are studied. If xγ ≈ 1

(direct process, fig. 2.18a), the transverse momenta of the two jets balance,

as already stated in section 2.6. The gluon, therefore is collinear with the

proton and on-shell, i. e. massless. Here the measured jets originate from

the diquark system.

If, on the other hand, xγ < 1 (resolved process in collinear factorisation,

fig. 2.18b), four momentum conservation forbids that the diquark system can

be the source of two jets with high transverse energy. Thus one of the jets
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Figure 2.18: Sensitivity of xγ to the transverse momentum kt of the hard

interaction gluon: In a) the transverse energy of the jets balance and no

virtuality and transverse momentum are required from the incoming gluon,

kt ≈ 0. In b) 4-momentum conservation forbids the production of high ET

jets from the diquark system.

with large ET has to originate from the emitted gluon. But if the transverse

momentum of the emitted gluon is large, four momentum conservation re-

quires a propagating gluon with large transverse momentum. This is why low

xγ are sensitive to large kt and high xγ are sensitive to small kt. Therefore

xγ presents the opportunity to study the transverse momentum of gluons in

different regions of phase space.
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Chapter 3

Monte Carlo Event Generators

Simulating processes of high energy physics with Monte Carlo techniques is

a common way to compare theoretical predictions to measurements and to

fit theoretical parameters to data that cannot be predicted by theory itself.

These simulations are often referred to as event generators or simply Monte

Carlos (MCs).

In this chapter the basic mechanisms of event generators and the gener-

ators used in this thesis are presented and important parameters are intro-

duced.

3.1 Mechanisms of Monte Carlo Event Gen-

erators

Monte Carlo event generators calculate hard scattering matrix elements and

branching probabilities with Monte Carlo methods to generate partons and

then final states on hadron level. The generation process can roughly be

divided into a few elementary steps shown in figure 3.1: First the matrix

element of the hard scattering is calculated, then initial parton showers are

applied via the corresponding evolution equations. After that parton show-

ering is applied to the final state out of which, finally, hadrons are build.

For the initial state radiation a forward evolution approach is possible,

where parton showers are calculated with evolution equations from starting

43
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Figure 3.1: Schematic division of event generation into calculation of hard

scattering matrix, initial state parton showers, final state parton showers and

hadronisation.

values until some stopping conditions are met. In this case the matrix element

would be calculated after the momentum of the parton entering the hard

interaction is calculated. However, this turns out to be inefficient because it

is possible that the available phase space does not allow for a hard scattering,

and because it is too likely to create branchings that contribute insignificantly

to the cross section. Therefore the backward evolution method is chosen.

3.1.1 Backward Evolution

In this approach the hard scattering matrix element (dashed boxes in fig.

3.2) is evaluated first, giving for example the upper scale for the parton

evolutions.
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Figure 3.2: Backward evolution of initial state parton emission in event

generators. The matrix element is indicated by the dashed box.

Backward Evolution for DGLAP

In the collinear approach the evolution equations give no restrictions for

the emitted gluons. Thus, after the matrix element is generated and the

factorisation scale calculated, the evolution starts by generating the final

parton f of the evolution according to xf > x, where x is the longitudinal

momentum fraction of the quark struck by the photon, and k2
t,n ≪ µf by

using random numbers to calculate the momenta. After that, the backward

evolution repeats this step according to the strong ordering of virtualities k2

in DGLAP (eq. (2.28)), and considering xi−1 > xi until a lower cut-off for

k2 or an upper cut-off for xi is reached. The emitted gluons are generated in

the process according to momentum conservation.

Backward Evolution for CCFM

In CCFM q̄ is given by the opening angle Θ of the diquark system. From

here on the evolution is done backwards by calculating the scale qn of the

last emission in the ladder (fig. 3.2.II) with the probability of emission given

by the Sudakov form factor ∆s(q̄, qn) (eq. (2.46)). As already mentioned

above this gives the probability of no emission between q̄ and qn, so that qn

is chosen according to the Sudakov form factor. With kt,n and qn already

known zn can now be determined via the splitting function, and after that

xn−1 and kt,n−1 are calculated (fig. 3.2.III).
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This procedure is then repeated until a lower cut-off scale is reached.

Initial momentum fraction x0 and transverse momentum kt,0 are determined,

the proton remnant is build and kt,0 is added to the quark-diquark system of

the proton remnant.1

This procedure is very well suited for initial state parton showering, be-

cause here it is more efficient than the forward approach. However, compli-

cation arise because the transverse momentum is actually a vector, so that

the azimuthal angle φ also has to be considered. In addition the transverse

momentum of an incoming gluon enters the non-Sudakov form factor, the

splitting function and the parton density, which also causes difficulties in

this approach.

3.1.2 Final State Parton Showers - the Forward Method

For parton showers in the final state a forward method is used. Here this is

easier to do since there are no parton densities that have to be considered in

the evolution.

The showering is also described using the Sudakov form factor to give the

probabilities of the splittings, and the splitting is repeated until all partons

are on mass shell, where the upper scale for emission is, for example, given

by the proton-photon cms energy Wγp. After that hadronisation models are

applied to the partonic final state.

3.2 The Event Generator Rapgap

The Monte Carlo event generator Rapgap [15] implements the DGLAP evo-

lution equations and the Lund string model for hadronisation. It is applicable

in ep-scattering in various kinematic regimes. Processes in direct photo-

production as well as in deep inelastic scattering can be simulated. Resolved

processes, also for DIS, can be chosen separately. In addition diffractive QCD

1If a valence quark is interacting with the photon, e.g. in γ∗q → q g, the proton remnant

is treated as a di-quark system, while in BGF it is treated as a system of a single quark

and a di-quark.
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Parameter Value Function

IPRO 13/14 selecting BGF-processes for light/heavy quarks

INPR 1004046 proton structure function CTEQ 5L

PARU 112 0.192 ΛQCD

PARJ 54 0.05 ǫc for Peterson fragmentation function

PMAS 4 1.5 mass of the charm quark in GeV

PMAS 5 4.8 mass of the beauty quark in GeV

Table 3.1: Main steering parameters for the Rapgap Monte Carlo event

generator.

processes are implemented where a colour singlet state is exchanged in the

interaction processes and hence a gap in rapidity is observed in the data.2.

In this thesis the Rapgap Monte Carlo was used to compare description

of the data by the CCFM approach to standard DGLAP. This was done with

the steering parameters displayed in table 3.1.

The parameter ΛQCD is the scale at which the coupling gets large and

enters the matrix element as well as as the parton and gluon densities. The

choice depends on the structure function used and was chosen to account for

the structure function CTEQ 5L from the CTEQ collaboration.

In Rapgap only boson gluon fusion processes are selected. Since BGF

is the dominant production mechanism of heavy quarks, and since the Cas-

cade event generator includes only boson gluon fusion processes, this still

provides the possibility to compare the results from the two event generators

to heavy quark data.

The energy of the electron and the proton beam were tuned to Ee =

27.5 GeV and Ep = 820 GeV, respectively. The latter choice was made for

considering that most of the measurements that are studied here took place

with that proton energy.

2For a detailed description see [15]
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Figure 3.3: On the left hand it is illustrated how the collinear approach

sums over all final states of the gluon cascade, while angular ordering gives

explicit information about this (right hand figure). In addition the former

approach takes the incoming gluon in the hard scattering to be on-shell, while

in the latter it is taken to be off-shell.

3.3 Cascade - an Implementation of CCFM

The Event Generator Cascade also uses the Lund string fragmentation

model but implements CCFM unintegrated gluon densities to simulate the

proton structure. Up to now this excludes processes like γ∗q → q g and only

boson gluon fusion processes, γ∗g → q q̄, are taken into account.

The gluon evolution is done via the backward method as described in

section 3.1.1. The CCFM evolution is suited especially well for Monte Carlo

Simulation, because evolution equations using angular ordering give explicit

informations about the final state in the gluon evolution, meaning the emit-

ted gluons (fig. 3.3). In contrast to that the collinear approach sums over all

possible final state configurations and therefore cannot give explicit informa-

tion about the final states of partons emitted in the evolution.

Also the collinear approach uses on-shell matrix elements, meaning that
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Parameter Value Function

IPRO 11/12 selecting light/heavy flavours

IGLU 1001 - 1003 gluon densities J2003 set 1 - 3

PARU 112 0.2 ΛQCD

PARJ 54 -0.05 ǫc for Peterson fragmentation function

PARJ 55 -0.005 ǫb for Peterson fragmentation function

PMAS 4 1.5 mass of the charm quark in GeV

PMAS 5 4.8 mass of the beauty quark in GeV

Table 3.2: Main steering parameters for the Cascade Monte Carlo event

generator.

the mass of the gluon entering the hard interaction vanishes. Since the gluon

at the upper end of the evolution must have a finite virtuality for kinematical

reasons, this leads to problems when implementing the DGLAP approach

into Monte Carlos, because the evolution then has to be fit to the matrix

element. In kt-factorisation the matrix elements are calculated off-shell with

a gluon with finite virtuality, so that these problems do not arise.3

The most important steering parameters are given in table 3.2. The

parameters mostly agree with the ones used in Rapgap, with exception of the

structure function, which here are replaced by the gluon densities presented

in section 2.4, and the scale ΛQCD. As in Rapgap ΛQCD is chosen to match

the scale used in the uPDFs. The parameters ǫc and ǫb are needed for the

Peterson fragmentation function used in the Lund fragmentation model and

are chosen according to [17].

Up to now the event generator Cascade only implements gluon evo-

lution following the CCFM equations. Before quark densities can also be

included, a detailed knowledge of the gluon behaviour is desired. In this the-

3However, in [16] the authors argue that kt-factorisation still does not consider the full

4-momentum of the gluon, because the parton densities depend only on the longitudinal

momentum fraction and the transverse momentum. The gluon virtuality still does not

enter the kinematics. For a correct treatment of the hard scattering fully unintegrated

parton densities are necessary that include the full four momentum of the hard interacting

parton.
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sis it will be shown which region of the phase space of the hard interacting

gluon is available to present HERA measurements. This will indicate which

measurements can be used to further constrain unintegrated gluon densities,

and in which region further measurements are needed for such a constraint.



Chapter 4

Hadronic final state

measurements

In chapter 5 differential cross sections as functions of kt and xg are inves-

tigated to identify regions of the gluon phase space which is accessible to

present HERA measurements.

To accomplish this for several measurements the Monte Carlo interface

HzTool is used.1 HzTool implements a set of Fortran routines to com-

pare Monte Carlo predictions with measured data. Each HzTool routine

contains data of the associated publication and allows the user to compare it

with the Monte Carlo predictions. This is done by applying kinematical cuts

or other selection criteria of the measurement (e.g. demanding at least two

jets for dijet events) to the hadronic final states from a Monte Carlo event

generator.

To investigate the sensitivity of HERA measurements to the gluon phase

space the HzTool -routines have been modified to calculate distributions

of kt and xg in kinematic regions of the measurements. In addition kt and xg

are investigated in bins of certain observables which are used in the measure-

ments, like pT,D∗ and ηD∗ , to study their sensitivity to the gluon variables.

1A manual containing a short description of all available routines can be found at

http://hepforge.cedar.ac.uk/hztool/docs/hztool.pdf.
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The data studied here were published and also printed in DESY red

reports. For easy reference the DESY numbers of the publications are given.

4.1 Analysed Measurements and Comparison

of Monte Carlo Predictions to Data

This section gives an overview of the measurements of both H1 and ZEUS

which are investigated in this analysis. Objectives and certain specialities of

the measurements are described for each publication. Furthermore selected

control plots are presented to show how accurately the individual measure-

ments are described by the Monte Carlo calculations. The Cascade cal-

culations are shown without error bars, because only statistical errors occur

which are very small for most of the analyses. Whenever statistical errors

are of noticeable size they are shown in the plots.

Heavy flavour and dijet processes are covered in the separate sections 4.1.1

and 4.1.2. The HzTool routine for the investigation of charm events with

D∗-muon tagging developed during the course of this analysis is presented in

more detail in section 4.2. This also serves as an example of the structure of

an HzTool analysis routine.

4.1.1 Investigation of Heavy Quark Production

Heavy flavours are analysed in photoproduction regime as well as in deep

inelastic scattering. Also heavy flavour measurements including dijets are

introduced at the end of the section.

DESY 98-085: Inclusive D∗± and associated Dijet Measurement in

photoproduction (ZEUS)

In an inclusive D∗-meson analysis two jets were used in [18] to tag the qq̄

system of the boson gluon fusion process. One of the jets was associated with

the D∗-meson. The centre-of-mass energy of the photon-proton-system was
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restricted to 130 GeV < Wγp < 280GeV. The selection criteria for the jets

are |ηjet| < 2.4 for both jets and ET,jet 1 > 7 GeV for the jet with the highest

and ET,jet 2 > 6 GeV for the jet with the second highest transverse energy.

At least one D∗ was requested to fulfil pT,D∗ > 3 GeV and |ηD∗| < 1.5. A

comparison of the measured data to three unintegrated gluon densities in

Cascade is given in section 4.3.

DESY 03-015: Dijet Angular Distributions in Photoproduction of

Charm at HERA (ZEUS)

Angular distributions of dijets associated with D∗ production has been mea-

sured in photoproduction (Q2 < 1 GeV2) with the ZEUS detector. The

hadronic cms energy was restricted to 130 < Wγp < 280 GeV2. The jets were

restricted to Ejet
T > 5 GeV and |ηjet| < 2.4, and the D∗-meson had to fulfil

pt,D∗ > 3 GeV and |ηD∗| < 1.5.

DESY 99-101: D∗± Production and the Charm Contribution to F2

in DIS (ZEUS)

A measurement by ZEUS of the charm contribution to F2 in DIS (1 GeV2 <

Q2 < 600 GeV2) was investigated in [19]. The events were required to fulfil

0.02 < y < 0.7

1.5 GeV < pT,D∗ < 15 GeV

|ηD∗| < 1.5 .

The data are compared to Cascade computations in figure 4.1. Figure

4.1a shows the charm contribution to the structure function of the proton,

F c
2 , as a function xBj , for low virtualities of Q2 = 7 GeV2 and for higher

virtualities of Q2 = 60 GeV2. All the calculations are in good agreement

with the data
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Figure 4.1: DESY 99-101: a) shows the charm contribution to F2(x) for

Q2 = 7 GeV2 (solid line, dense hatching) and Q2 = 60 GeV2 (dashed line,

light hatching). The dots represent the data points and the hatched areas

represent bins of Cascade calculations. In b), c) and d) differential cross

sections as functions of log Q2, log x and pT,D∗, respectively, are shown,

where the dots represent the data with systematic and statistical errors added

in quadrature.
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DESY 01-100: Inclusive D∗± Meson Production and F c
2 Measure-

ment in Deep Inelastic Scattering (H1)

The charm contribution to the structure function F2 was analysed with the

H1 detector in deep inelastic scattering [20] at virtualities of 1 GeV2 < Q2 <

100 GeV2 and at 0.05 < y < 0.7. The D∗ meson is restricted to the visible

region of pT,D∗ > 1.5 GeV and |ηD∗| < 1.5.

DESY 99-126: Open Beauty Production tagged with Muons (H1)

The semileptonic decay of b-hadrons in muons was used at H1 to reconstruct

the QQ̄ system in open beauty production [21]. At least two jets were re-

quired, one of which had to contain a muon. The events were selected in

photoproduction (Q2 < 1 GeV2) with an inelasticity range of 0.1 < y < 0.8.

The muons were required in the central region (35 ◦ < θµ < 130 ◦) with a

transverse momentum pµ
T of at least 2 GeV. The transverse energy of both

jets, ET , had to be above 6 GeV, and the jet cone radius2 was restricted

to R < 1. The beauty contribution was determined with the spectrum of

the transverse momentum of the muons relative to the jet thrust axis, pµ
T,rel,

which is harder for muons originating from b-quarks than from lighter quarks.

DESY 00-166: Open Beauty and Dijet Production Tagged with

Electrons (ZEUS)

At ZEUS the semileptonic decay of b-hadrons inside a jet into electrons was

used to study open beauty production [22]. As above two jets were re-

quired, but in contrast to that measurement no jet was required to contain

the electron from the semileptonic decay. The kinematics were restricted to

Q2 < 1 GeV2, 134 < Wγp < 269 GeV (corresponding to 0.2 < y < 0.8) and

E
jet 1(2)
T > 7(6) GeV. The b-quark was reconstructed from the electron tag

by fitting the measured distribution of the electron’s transverse momentum

relative to the jet axis, pt,rel, to summed charm and beauty contributions.

The reconstructed quark then had to fulfil pT,b > 5 GeV and |ηb| < 2.

2The radius R of the jet cone is defined as R :=
√

(∆η)2 + (∆φ)2
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4.1.2 Investigation of Dijet Processes

In addition to heavy quark analyses Dijet measurements both in photopro-

duction and deep inelastic scattering are presented.

DESY 97-164: Inclusive Dijet Cross Section in Photoproduction

(H1)

An inclusive dijet measurement in photoproduction (Q2 < 4 GeV2) was made

with the H1 detector [23]. Selection criteria were a jet with transverse energy

of at least ET > 6 GeV and a single cluster3 in the hadronic calorimeter of

at least 2 GeV. The inelasticity was restricted to 0.2 < y < 0.8, and the

pseudo-rapidity of the jets was found in the region −0.5 < ηjet < 2.5.

Figure 4.2 show the Cascade predictions compared to the data. In

figure 4.2a, which shows the differential cross section as a function of the

logarithmic transverse energy of the jets for 0.4 < xγ < 0.5, the calculation

is in good agreement with the data. But figure 4.2b, presenting dσ/dxγ

for 17.8 < ET < 22.4 GeV, again shows that Cascade overestimates the

contribution of high xγ .

DESY 97-179: Low Q2 Jet Production at HERA (H1)

To study parton distributions of the virtual photon at the H1 experiment the

transition between the photoproduction regime and deep inelastic scattering

was investigated [24] at low photon virtualities (0 < Q2 < 49 GeV2) and

inelasticities of 0.3 < y < 0.6. Since three different data samples were

analysed, each of which taken in a different region in Q2. The cuts on the

jets in the γp-frame were E∗

T > GeV and −2.5 < η∗ < −0.5.

DESY 97-196: Dijet Cross Section in Photoproduction (ZEUS)

Dijet cross sections were measured at ZEUS [25] in photoproduction for jets

with ET,jet > 6GeV, −1.375 < ηjet < 1.875 and a difference in η of maximal

|∆η| < 0.5.

3see section 1.2.2
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Figure 4.2: DESY 97-164: The graph in a compares Cascade calculations

of double differential cross sections as functions of log ET in a representative

bin of xγ to measured data, while b shows similar comparisons for differ-

ential cross sections of xγ in a representative bin of log ET . Dots represent

measured data with total errors, while the boxes show statistical errors of the

Cascade calculations. For better comparison the differential distributions

are normalised by the total cross section.
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Figure 4.3: Parton level picture of forward jet production at small xBj .

DESY 98-018: High ET Inclusive Jet Cross Sections in Photopro-

duction (ZEUS)

The process e+p → e+ + jet + X was studied with the ZEUS detector for

pseudo-rapidities in the range −1 < ηjet < 2 and for 134 GeV < Wγp < 277

GeV. [26] The comparison of the data to Monte Carlo simulations was done

for cone radii of R = 1 and R = 0.7 and four minimal transverse jet energies,

ET > 14 GeV, ET > 17 GeV, ET > 21 GeV and ET > 25 GeV. In the original

publication the Monte Carlo simulations below 21 GeV and at R = 1 did not

describe the data properly, whereas cone radii of 0.7 do.

DESY 98-143: Forward Jet and Forward Single Particle Production

at small xBj (H1)

At small xBj the main contribution to the cross section is BGF, and the

parton interacting with the virtual photon faces a hard restriction in longi-

tudinal momentum. Thus the longitudinal momentum of the quarks is too

small to form forward jets, so that contributions from forward quark jets are

negligible compared to contributions from forward gluon jets (cf. fig. 4.3).

The transverse momentum of these gluon jets is now required to be of

the same order of magnitude as the photon virtuality (p2
T ∼ Q2). Since in

the collinear approach (DGLAP) the incoming gluon only carries a negligible



4.1. ANALYSED MEASUREMENTS AND COMPARISON TO DATA 59

transverse momentum (k2
t,1 ≈ 0), the emission of a gluon with p2

T ∼ Q2 causes

the propagating gluon to obtain a transverse momentum of the same order

of magnitude as the emitted one, k2
t,2 ∼ p2

T ∼ Q2. This leads to a vanishing

contribution of DGLAP parton evolution, because a transverse momentum

close to the upper scale of the evolution strongly limits the available phase

space of the collinear approach, where parton emissions are strongly ordered

in transverse momenta.

Since partons in BFKL evolution are not restricted in transverse momen-

tum but strongly ordered in longitudinal momentum fraction (x0 ≫ x1 ≫
... ≫ xn) gluons with high longitudinal momenta occur at the lower end of

the evolution ladder with arbitrary transverse momenta and in this way con-

tribute to forward jet production at small xBj . Effects from CCFM are also

expected in this region, because CCFM provides an interpolation between

BFKL and DGLAP and at small xBj should give an approximation to BFKL.

This is why differences in parton evolution models are expected to arise

at HERA in forward jet and forward single particle measurements. In the

H1 collaboration this was studied in two ways, via measuring forward jet

production and forward single particle production, both in deep inelastic

scattering [27].

The scattered electron was demanded to have an energy of at least Ee′ >

11 GeV for jet production and Ee′ > 12 GeV for single particle production.

The scattering angle with respect to the proton axis had to fulfil θmin < θe′ <

173 ◦, where θmin = 160 ◦ and 156 ◦ for jet production and single particle

production, respectively. When the mass of the electron is neglected Q2

can be approximated by Q2 = 4EeEe′cos
2(θe′/2). The kinematics were thus

restricted to the DIS regime. In addition it was demanded that y > 0.1.

The jets had to fulfil

ET,jet > 3.5 GeV

xjet > 0.035

7 ◦ < θjet < 20 ◦

0.5 < p2
T,jet/Q

2 < 2,
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Figure 4.4: DESY 98143: Differential cross section as a function of the

Björken variable xBj is shown in b). The distribution of the angle ∆φ between

jet and scattered electron is shown in a).

where xjet : = Ejet/Ep is the energy fraction of the jet with respect to the

proton energy Ep. The transverse momentum of the jets was taken to be

equal to the transverse energy, pT,jet ≡ ET,jet.

The single particles (sp), either neutral pions or charged particles all have

to fulfil

pT,sp > 1 GeV

xsp > 0.01

5 ◦ < θsp < 25 ◦.

In analogy to the jet case xsp is defined as xsp : = Esp/Ep, and for neutral

pions the transverse momentum is also taken to be equal to the transverse

energy.

Figure 4.4 now shows that Cascade is able to describe the xBjörken-

distribution well, but the distribution of the opening angle ∆φ between jet

and scattered electron deviates from the data for large angles.
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DESY 98-050: Forward Jet Production at small xBj (ZEUS)

The validity of the BFKL evolution dynamics at HERA was also studied

with the ZEUS detector via forward jet production [28]. The forward jets

are selected by

ηjet < 2.6

ET,jet > 5 GeV

xjet > 0.036

pBreit
z,jet > 0 GeV,

where xjet := pz,jet/Ep is the scaled longitudinal momentum fraction of the

jets, and pBreit
z,jet is the z-component of the jet momentum in the Breit frame.

As above the region where BFKL effects are to be expected is restricted

by 0.5 < p2
T,jet/Q

2 < 2 and the cut on xjet, and also the transverse jet

momentum is taken to be equal to the transverse jet energy.

These cuts constrain the virtuality of the measurements to about

Q2 ≈ 12 GeV. In addition the inelasticity is restricted to y > 0.1 and the

scattered electron is demanded to have at least an energy of Ee′ > 10 GeV.

DESY 00-017: The Q2 Dependence of Dijet Cross Sections in Pho-

toproduction (ZEUS)

The virtual photon structure was studied with the ZEUS detector via dijets in

the virtuality ranges Q2 ≈ 0 GeV2, 0.1 < Q2 < 0.55 GeV2 and 1.5 < Q2 < 4.5

GeV2 [29]. The ratio of the resolved virtual photon contribution to the direct

contribution was studied via dσ/dxγ in the three different Q2 regions. Two

jets with at least ET,jets > 5.5 GeV and a pseudo-rapidity in the range

−1.125 < ηjet < 2.2 were demanded, and inelasticity cuts of 0.15 < y < 0.45

were applied.
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DESY 00-035: Dijet Cross Sections and Virtual Photon Structure

(H1)

At H1 the resolved structure of the virtual photon was investigated with dijet

events at low virtualities (Q2 < 0.01 GeV2) [30]. Two jets with transverse

energy of at least 4 GeV were demanded in the pseudo-rapidity range of

−0.5 < ηjet < 2.5 with an invariant jet mass of at least 12 GeV. To enhance

the resolution of the jet energy measurement a rather small jet cone radius

(R=0.7) reduced the influence of the underlying event energy. The virtual

photon was required to carry a fraction ye of the electron energy in the range

0.5 < ye < 0.7. As a result of these cuts xγ was restricted to xγ > 0.03.

In addition gluon densities of the virtual photon have been derived from

effective parton densities f
γ,eff = [q(xγ) + q̄(xγ) + 9/4g(xγ)] in LO QCD.

These have been measured down to xγ = 0.05 in a data sample restricted to

ET,jet > 6 GeV.

DESY 01-120: Measurement of Virtual Photon Structure with Di-

jets (ZEUS)

Dijet cross sections that are sensitive to the virtual photon structure were

measured with the ZEUS detector in photoproduction (Q2 < 1 GeV2) to

constrain the parton distribution functions of the virtual photon [31]. In an

inelasticity range 0.2 < y < 0.85 two jets were required to have ET,jet1 > 14

GeV and ET,jet2 > 12 GeV and to be found in the angular region defined by

−1 < ηjet1,2 < 2.4.

DESY 01-125: Measurement of Dijet Cross Sections (H1)

Dijet event cross sections were measured with the H1 detector in photopro-

duction in an inelasticity range of 0.1 < y < 0.9 [32]. The jets with the high-

est and second highest transverse energy were demanded to have ET,jet1 > 25

GeV and ET,jet1 > 15 GeV, respectively. The jets’ pseudo-rapidity was re-

stricted to −0.5 < ηjet1,2 < 2.5. For its high invariant jet mass of up to

180 GeV and transverse jet energies of up to 80 GeV this measurement took
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place in a kinematic region where non-perturbative effects including multiple

interactions and hadronisation effects are small and direct comparisons to

NLO QCD calculations were possible.

4.2 An Example of the Analysis: Quark Dou-

ble Tagging with D∗µ-Processes

In [33] and [34] an analysis of events containing a D∗ and a muon to tag

both charm quarks of the diquark system is presented. In the scope of this

thesis the HzTool routine HZ050404 has been developed that enables the

user to directly compare the results of that measurement to Monte Carlo

predictions.

4.2.1 Analysing Charm Production with D∗ and Muon

The double tagging analysis uses a D∗ particle and a muon to tag both charm

quarks produced in boson gluon fusion, either charm or beauty. Tagging,

for example, both charm quarks with two D∗ particles is not very efficient

because, even though the branching ratio c → D∗ is 23.5 ± 0.7 ± 0.7%, the

branching ratio for the ’golden channel’ which is used for the reconstruction

of D∗s, D∗ → D0πs → Kππs, is only (2.56 ± 0.06)%. The decay of charm

quarks into muons occurs with a significantly higher probability (branching

ratio (9.8±0.5)%), so that the analysis of events containing a D∗ and a muon

is more effective than the study of events containing two D∗s.

A non-negligible fraction of D∗µ-events will also originate from beauty

quarks decaying into charm quarks which then fragment into a D∗. In this

case the muon may originate either from beauty or from charm decay, as

illustrated in 4.5. In case I the D∗ and the muon originate from the same

beauty quark. Here the charges of the D∗ and the muon differ, ∆Q 6= 0.

Muon and D∗ may also originate from different beauty quarks, where the

muon may either come directly from the decay of beauty quark (case II),

4In appendix A a short description of the routine can be found.
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Figure 4.5: Charge and angle correlations in D∗µ production

where the charges are the same, or from the decay of a charm quark (case

III), where the charges differ. In case IV the case of charm production is

illustrated where the charge of the two particles differ.

In addition to the charge correlations the opening angle also provides an

opportunity to distinguish the four cases: when the particles originate from

the same quark the opening angle ∆φ of the two particles is ∆φ < 90◦,

whereas ∆φ > 90◦ when D∗ and muon are daughter particles of different

quarks of the BGF process.

These angle and charge correlations were used in the thesis to separate

charm and beauty contributions and to get a beauty corrected ’quark anti-

quark tag’ sample where the detected particle are tags for the charm quark

and antiquark in BGF.

4.2.2 The HzTool Routine HZ05040

In general HzTool subroutines are divided into three steps:

1. Initialisation: histograms are declared with bin sizes matching the

bins of the corresponding measurements. Also histograms containing

the measured data are declared.

2. Event Generation: events are selected by applying cuts matching

the cuts of the measurements. After that histograms declared under 1.

are filled.
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3. Termination: in the final step histograms are normalised and data

histograms are filled with data and errors.

The following cuts defining the visible range of the D∗µ measurement

were applied in the second step during the event generation:

pT,D∗ > 1.5 GeV

|ηD∗| < 1, 5

pµ > 2 GeV

|ηµ| < 1.735

0.05 < y < 0.75

Q2 < 1GeV2

All generated events have to fulfil these cuts in order to be selected and to

calculate the variables of interest like pt,D∗µ, and to fill the histograms with

these values.

D∗µ Variables

The transverse momentum of the diquark system is approximated by the

transverse momentum of the D∗µ system:

pt,D∗µ =
√

(px,D∗ + px,µ)2 + (py,D∗ + py,µ)2 . (4.1)

The invariant mass of the diquark system is approximated by M(D∗µ), the

rapidity5 of the diquark system by

ŷ =
1

2
ln

(

E(D∗µ) + pz(D
∗µ)

E(D∗µ) − pz(D∗µ)

)

, (4.2)

and the opening angle of the quark antiquark pair is approximated by the

opening angle ∆φ of the D∗µ pair.

The longitudinal momentum fraction of the gluon, xobs
g , was approximated

by [33]:

xobs
g =

M(D∗µ)2

sy
. (4.3)

5A derivation of the rapidity can be found in [35]
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Comparison with Data

In the original thesis Cascade calculations were done with fragmentation

parameters ǫc = 0.078 and ǫb = 0.008. The results of these calculations were

used as a cross check for the HzTool routine, and in figures 4.6 to 4.8 the

comparison of the HzTool routine to the original calculation is shown.6

It can be seen that the calculations taken from the original thesis are

in general in good agreement with the simulation presented here. Good

agreement is found in the pt- and η-distributions of the D∗ (fig. 4.6b and d)

as well as the beauty corrected pt,D∗µ (fig. 4.8b). The largest deviations are

found in the xg distribution (fig. 4.8a).

The contribution of beauty quarks is still to be analysed. Up to now there

was no indication that this could be responsible for the deviations. Despite

this the routine has already been included in the analysis of the gluon phase

space of this thesis.

6Thanks to Jeannine Wagner for help with the calculations.
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Figure 4.6: Normalised differential cross sections as functions of a) pt,µ, b)

pt,D∗, c) ηµ and d) ηD∗ are shown for a comparison of Cascade calculations

with the HzTool routine (dashed line, denoted ’new’) to data (dots). In

addition the Cascade calculations as presented in the original publication

are also plotted (dotted line, denoted ’old’).
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Figure 4.7: Normalised differential cross sections as functions of a) pt,D∗µ,

b) the opening angle of D∗ and muon, ∆φ(D∗µ), c) the invariant mass

M(D∗µ) and d) the rapidity ŷ(D∗µ) of the D∗µ system are shown. A compar-

ison is made between Cascade calculations with the new HzTool routine

(dashed line), measured data (dots) and Cascade calculations as presented

in the original publication are also plotted (dotted line).
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Figure 4.8: Normalised differential cross sections as a function of a) the

longitudinal momentum fraction xobs
g , b) pt,D∗µ and c) ŷ(D∗µ) are shown for

a ’quark antiquark tag’ sample.
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4.3 Comparison of Cascade to Rapgap

A short comparison of the calculations of Rapgap to the ones from Cascade

is now given. The later analysis of the gluon phase space will be based upon

Cascade calculations with same parameters.

In figure 4.9 the predictions of Rapgap and Cascade are compared in

calculations for D∗ production in DIS of DESY 01-100. The data are shown

as dots, Cascade is represented by dashed and Rapgap by dotted lines.

Differential cross sections are shown as functions of a) the hadronic centre

of mass energy Wγp, b) the transverse momentum of the D∗-meson, pt,D∗ , c)

its pseudo-rapidity ηD∗ and d) the inelasticity zD∗
7.

The distributions of the hadronic cms energy and the transverse mo-

mentum of the D∗ are described equally well by Cascade and Rapgap ,

although Cascade lies closer to the data at low Wγp. The pseudo-rapidity

of the D∗, on the other hand, is described very well by Cascade , whereas

Rapgap fails to describe the data properly. The distributions in the Rap-

gap calculations is shifted to the backward region.

The description of the inelasticity of the D∗ is problematic in both gen-

erators. Rapgap as well as Cascade show a harder spectrum than the

measurement, and only between zD∗ = 0.2 and 0.4 the calculations match

the data roughly.

Using kt-unintegrated gluon densities therefore enables to describe the

measured data as well as and in some cases even better than using inte-

grated gluon densities of the collinear approach. In the next section it will

be shown that there are still large differences between the different approaches

for uPDFs.

7The inelasticity is defined by zD∗ := P · pD∗/P · q, where P , q and pD∗ represent the

four momenta of the incoming proton, the exchanged photon and the D∗, respectively.
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Figure 4.9: DESY 01-100: Differential cross sections as functions of a) the

invariant hadronic centre of mass energy Wγp, b) the transverse momentum

of the D∗-meson, pT,D∗, c) the pseudo-rapidity of the D∗, ηD∗, and d) the

inelasticity of the D∗, zD∗. Dots represent data points with total errors, while

the dashed line shows the Cascade calculation and the dotted line shows the

Rapgap calculation.
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4.4 Comparison of Different Gluon Densities

Differential cross sections are shown as functions of xγ (4.10a), pt,D∗(4.10b)

and ηD∗ (4.10c-f). ηD∗ is plotted in three bin of pt,D∗ . The three sets of gluon

densities described in section 2.4 are compared: the solid line shows J2003

set 3, which is used in the analysis of the gluon phase space in this thesis.

The dashed and the dotted line are set 2 and 1, respectively.

In figure 4.10 the differences between the three gluon densities are clearly

visible. All three overestimate the contributions of high xγ (fig. 4.10a), but

set 1 and 3 are in good agreement with the data for pt,D∗ (fig. 4.10b). At low

pt,D∗ set 2 falls below the data. The differential cross sections as a function of

ηD∗ confirm that set 2, which includes non-singular terms in the calculations,

fails at describing the data, while set 3 and 1, come close to the data with

deviations mainly in the region ηD∗ ∼> 1.

This comparison shows that different approaches for unintegrated gluon

densities can lead to very different results, so that further constraints on the

gluon densities from experiment are necessary. One of the goals of this thesis

is to show in which regions of phase space existing measurements can be used

for these constraints, and where new measurements are needed.
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Figure 4.10: DESY 98-085: differential cross sections as functions of a)

xγ and b) pT,D∗. In c) to f) the cross section is plotted as a function of

ηD∗ for different minimal values of pT,D∗. The solid line represents the gluon

density J2003 set 3, the dashed and the dotted line represent set 2 and set 1,

respectively.
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Chapter 5

Investigation of the

kt − xg−plane

The transverse momentum and the longitudinal momentum fraction of the

hard interacting gluon are now investigated with HzTool and Cascade in

the measurements presented in the previous chapter. The aim is to identify

the accessible gluon phase space of the measurements, so that they can be

used to further constrain unintegrated gluon densities in their specific region

of phase space.

Differential cross sections as functions of the transverse momentum and

the longitudinal momentum fraction of the gluon are derived on parton level

as calculated by the event generators.

5.1 Sensitivity of Observable Quantities

In order to study the gluon phase space it is useful to find observables that

are sensitive to the transverse gluon momentum and the longitudinal gluon

momentum fraction.

Therefore differential cross sections as functions of kt and xg are investi-

gated in bins of observables commonly used in heavy flavour or dijet event

measurements. Examples of such observables are the transverse momentum

75
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Figure 5.1: Example of an observable sensitive to kt. The distribution

without a constraint on xγ peaks at low kt (sketch on the left). A cut on

xγ brings out the contribution of low xγ to the cross section (sketch on the

right), which shows a harder kt-spectrum.

of a D∗-meson, pt,D∗ , and the transverse energy of jets, ET . The idea is to

apply cuts on observables and by that restrain the kt- and xg-distributions.

Figure 5.1 gives an example where a cut of xγ , as explained already in section

2.8.2, selects events in which the gluon on average carries a higher transverse

momentum.

5.1.1 Heavy Quark Production

To reconstruct the properties of heavy quarks produced in boson gluon fu-

sion D∗ mesons, muons and are jets are used. Thus the sensitivity of trans-

verse momentum and pseudo rapidity of D∗s and muons are studied first.

Afterwards jets are included in the investigations and the sensitivity of xγ

calculated from jet quantities ((2.57)) as well as the transverse jet energy ET

(eq. (2.56)) are studied.

The Transverse Momentum of D∗± in DIS

Figure 5.2 shows the sensitivity of the transverse momentum pt,D∗ as mea-

sured in DESY 01-100. In three bins of pt,D∗ differential cross sections as
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Figure 5.2: DESY 01-100: In a) differential cross sections as functions

of kt are shown in three different bins of pt,D∗. Differential cross sections

as functions of xg are shown in b) in the same pt,D∗-bins as in a). The

distributions are obtained by Cascade and normalised to unity for better

comparison.

functions of transverse momentum (a) and the longitudinal momentum frac-

tion of the gluon (b) have been investigated. Figure 5.2 reveals a slight

sensitivity of pt,D∗ to both variables. The mean values of kt and xg both rise

towards higher pt,D∗ . In figure 5.2a this is due to a harder distribution at

higher pt,D∗ , while in figure 5.2d the peak of the distribution shifts.

The sensitivity of pt,D∗ arises from the relation between pt,D∗ and the
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upper scale for gluon emission in CCFM:

q̄ = ŝ + Q2
t (5.1)

with Q2
t = (pt,c + pt,c̄)

2 , (5.2)

and since pt,D∗ serves as an approximation of one of the charm quark’s trans-

verse momentum, it indirectly enters the upper scale. Thus larger transverse

D∗ momenta enhance the phase space available for gluon emission.

A similar statement is true for xg, since q̄ can also be written as (eq.

(2.42)):

q̄ ≃ xg

√
s · Ξ (5.3)

⇒ xg ∼ q̄ ∼ pt,D∗ , (5.4)

so that larger pt,D∗ also lead to larger xg, which is seen in figure 5.2b.
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Figure 5.3: DESY 01-100: In a) differential cross sections as functions of

kt are shown in three different bins of ηD∗. Differential cross sections as func-

tions of xg are shown in b) in the same ηD∗-bins as in a). The distributions

are normalised to unity for better comparison.

The Pseudo-Rapidity of D∗± in DIS

Figure 5.3 shows differential cross sections as functions of kt (a) and xg

(b) in different bins of ηD∗ . In fig. 5.3a it can clearly be seen that the

pseudo-rapidity ηD∗ is not sensitive to the transverse momentum of the hard

interacting gluon, but (b) shows that a sensitivity of ηD∗ to xg is found. The

mean value of lnxg shifts by half an order of magnitude from −2.7 to −2.2.

This is understood by realising that particles of large longitudinal momentum

fractions are expected to be found in the forward region.
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Figure 5.4: DESY 05-040: Differential cross section as a function of kt

and xg in bins of pt,µ and pt,D∗: in a) the kt-distributions are plotted for the

lowest bins of pt,µ and pt,D∗, while in b) they are plotted in the highest bins

each. The graphs in c (d) show the xg-distribution in bins of pt,µ (pt,D∗).

The Transverse Momentum of D∗ and Muons in Double Charm

Tagging in Photoproduction

In section 4.2 a method was presented to tag both charm quarks of a diquark

system by a D∗ on one hand and a muon on the other. Ideally the properties

of the quarks should be reconstructable from both tags in the same manner.

Figure 5.4 now shows a comparison of the sensitivity of the transverse mo-

mentum of the D∗ and the muon for bins covering roughly the same regions.

Differential cross sections as functions of kt (fig. 5.4a,b) and xg (fig. 5.4a,b)
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are presented.

In figure 5.4a the transverse momentum of the muon is restricted to 2 <

pt,µ < 3 GeV, while the transverse momentum of the D∗ is restricted to

2.4 < pt,D∗ < 3.8 GeV, which is referred to as low transverse momenta in

the following. At low muon transverse momentum a harder spectrum is

observed than at low transverse momentum of the D∗, the mean value of

the kt-distribution 〈kt〉 = 3.5 GeV in the pt,D∗-bin is slightly below the mean

value 〈kt〉 = 4.3 GeV in the pt,µ-bin.

The same is true for figure 5.4b, where 3 < pt,µ < 8 GeV and 3.8 <

pt,D∗ < 7.8, referred to as high tranverse momenta. The kt-spectrum in the

pt,µ-bin is again harder than the spectrum in the pt,D∗-bin. Also the mean

value is different: 〈kt〉 = 5.6 GeV in the pt,µ-bin and 〈kt〉 = 4.2 GeV in the

pt,D∗-bin.

Comparing the xg-distributions in bins of pt,D∗ and pt,µ (fig. 5.4c and

d) reveals that the differences there are much smaller. The mean values

of log xg for low transverse momenta of D∗ and muon lie close together,

〈log xg〉 = −2.2 in the pt,D∗-bin and 〈log xg〉 = −2.2 in the pt,µ-bin. For high

transverse momenta the mean values are even identical, 〈log xg〉 = −1.9 for

both the pt,D∗- and the pt,µ-bin. All in all this shows that D∗ and muon

tagging do not give the same kt-distribution.

For both muon and D∗ tagging the sensitivity of the transverse momen-

tum to kt is comparable to the sensitivity of pt,D∗ in DIS as presented above.

The same can be said for the sensitivity of pt,D∗ and pt,µ to the longitudinal

momentum fraction of the hard interacting gluon, xg, when considering that

here only two bins of pt,D∗ and pt,µ are analysed instead of three.

The Pseudo-rapidity of D∗ and Muons in Double Charm Tagging

Figure 5.5 shows the comparison of the sensitivity of ηµ and ηD∗ to kt and xg

represented by differential cross sections in bins of these observables. Figure

5.5b agrees with the previous observation (fig. 5.3) that the pseudo-rapidity

of D∗ particles is not sensitive to kt. In contrast to that muons in the central

region (dashed line in fig. 5.5a) show a slightly harder kt spectrum. Here

again a difference between D∗ and muon tagging becomes visible.
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Figure 5.5: DESY 05-040: Differential cross section as a function of kt and

xg in bins of ηµ and ηD∗: the graphs in a (b) show the kt-distribution in bins

of ηµ (ηD∗), the graphs in c (d) show the xg-distribution in bins of ηµ (ηD∗).

Both ηD∗ and ηµ show a sensitivity to xg comparable to the sensitivity of

ηD∗ in DIS (DESY 01-100). The differences between D∗ and muon tagging

is only found in the kt-distributions in bins of pt.

The Transverse Momentum of the D∗-Muon System

The transverse momentum of the D∗-µ system pt,D∗µ (eq. (4.1)) shows a

clearer sensitivity to the gluon transverse momentum than pt,D∗ and pt,µ,

which can be seen in figure 5.6. In figure 5.6b it is obvious that at 3.5 <

pt,D∗µ < 6 GeV the differential cross section as a function of kt has a much
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Figure 5.6: DESY 05040: Cross section as functions of kt (a-c) and xg

(d-f) are presented in three different bins of pT,D∗µ.

broader shape than at 2 < pt,D∗µ < 3.5 GeV (fig. 5.6a). Also compared to

figures 5.4a and b and 5.2a the kt spectrum at high pt,D∗µ is significantly

harder.

This leads to the conclusion that the transverse momentum of the quark

box, which in the double charm tagging method is approximated by pt,D∗µ,

gives a quantity that is highly sensitive to the transverse momentum of the

hard interacting gluon. This was expected because, as argued in section 2.6,

the gluon kt has to be finite in order to create a quark-antiquark pair that

does not cancel in transverse momentum.

In the figures 5.6c and d, on the other hand, pt,D∗µ shows no sensitivity

to the longitudinal gluon momentum fraction.
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Figure 5.7: DESY 98-085: Normalised inclusive D∗± and associated dijet

[18] cross section as a function of kt and xg in different regions of xγ on

generator level: in a) xγ < 0.75, in b) xγ > 0.75

xγ in Charm Photoproduction

If dijets are used in combination with charm production, the fraction xγ

of the photon momentum that enters the hard interaction can be used to

become sensitive to different regions in kt. In section 2.8.2 the motivation

behind this was already explained. Figure 5.7a confirms the expectation that

xγ is sensitive to kt: the solid line represents the differential cross section as

a function of kt for xγ < 0.75, and the dashed line represents the same

distribution for xγ > 0.75. It can be seen that high xγ are sensitive to low kt
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Figure 5.8: DESY 99-126: Differential cross sections as functions of kt (a)

and xg (b) in different bins of pt,µ, indicated by different line styles. The

mean values are given for each distribution.

(〈kt〉 = 5.2 GeV), and low xγ are sensitive to high kt (〈kt〉 = 10.2 GeV), as

expected from section 2.8.2.

Transverse Momentum of Muons in Beauty Production

Figure 5.8 shows differential cross sections as functions of kt (a) and xg (b)

in different bins of the transverse momentum of muons from beauty decay as

measured in DESY 99-126. The figure illustrates that pt,µ is neither sensitive

to kt nor to xg.
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5.1.2 xγ and ET in Dijet Events

The momentum fraction xγ of the diquark system may also be studied in

inclusive diquark events that are not restricted to heavy quarks. At low xγ

different mean transverse energies of the jets can be used to become sensitive

to different regions of high kt.

Dijets at Low Q2

For DIS at low Q2 (< 80 GeV2) this is shown in figures 5.9e to h, where

the cross section as a function of kt in two bins of xγ is represented by the

solid (0.15 < xγ < 0.6) and the dashed (0.6 < xγ < 0.75) line. For both

xγ-bins the mean kt rises with increasing ET . The kt-region covered here

ranges from about 〈kt〉 = 4 GeV (fig. 5.9e) to about 〈kt〉 = 13 GeV (fig.

5.9h). The transverse energy of jets therefore presents an opportunity to

choose the kt-region to study. It is also interesting to note that the difference

between the distributions of the two bins becomes smaller at high transverse

jet energies.

At xγ > 0.75 the mean transverse momentum of the hard interacting

gluon increases from about 〈kt〉 = 3 GeV at 30 < Ē2
T < 45 GeV2 to about

〈kt〉 = 5 GeV at 45 < Ē2
T < 65 GeV2. Thus the conclusion that the sensitivity

to high kt increases at high ĒT remains true for xγ > 0.75.

Figure 5.10 now shows differential cross sections as functions of xg. As can

be seen there the sensitivity of Ejet
T shown in figure 5.10 is not as pronounced,

but still the mean value 〈log xg〉 increases from 〈xg〉 = −2.2 in the lowest bin

to 〈log xg〉 = −1.6 in the highest bin. If the width of distribution is taken

into account, the measurement becomes sensitive to roughly one order of

magnitude in xg by changing the transverse energy of jets.

Dijets in Photoproduction

In figures 5.11 the same sensitivity of xγ to kt can be observed. Again,

differential cross sections as functions of kt are shown for xγ < 0.75 in figures

5.11a to d, and for xγ > 0.75 in figures 5.12e to h (the dashed lines only
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serve for better illustration). Figures 5.11a to d show that large kt become

accessible with increasing transverse energy at low xγ (up to kt ∼20 GeV for

10.0 < ET < 20.0 GeV).

Differential cross sections as a function of xg are shown in figure 5.12.

The graphs confirm that with increasing transverse jet energies higher lon-

gitudinal momentum fractions, here up to log xg ≈ −1, become available,

which was already shown for dijet events in DIS at low Q2 (fig. 5.10).
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Figure 5.9: DESY 98205: Normalised dijet cross section at low Q2 as a

function of kt in bins of xγ and the mean transverse energy of the jets, ĒT .

Plots a to d are at high xγ with ĒT rising from a to d. Plots e to f are at low

xγ with ĒT rising from e to f, where the solid line represents 0.15 < xγ < 0.6,

and the dashed line 0.6 < xγ < 0.75
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Figure 5.10: DESY 98-205: Differential cross sections as functions of xg

in different bins of the transverse energy of jets. The mean values 〈xg〉 of the

distributions are also given.
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Figure 5.11: DESY 97-196: Differential cross sections as functions of kt

in four different bins of ET . The distributions are shown at xγ > 0.75 (a-d)

and at xγ > 0.75 (e-h). The dashed lines serve for better illustration.
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Figure 5.12: DESY 97-196: Differential cross sections as functions of xg

in four different bins of ET .
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Figure 5.13: Illustration of the method to obtain the accessible gluon phase

space of the investigated measurements.

5.2 Mapping of Gluon Phase Space

A ’map of the phase space’ of hard interacting gluons is rendered to display

the accessible gluon phase space of the measurements presented in chapter

4.

The accessible phase space of a measurement is indicated by the mean

values 〈kt〉 and 〈log xg〉 of the total distributions. The boundaries of the ac-

cessible phase space are obtained by varying the quantities investigated in the

previous section (xγ , pt,D∗ , etc.) and studying the kt- and xg-distributions.

Figure 5.13 illustrates this in an example where xγ is used to study kt.

There the lower boundary of the accessible phase space is obtained from

the high xγ-bin, while the upper boundary is obtained from the low xγ-bin.

The mean value, on the other hand, is always the mean value of the total

distribution, namely the sum of all distributions.

Figures 5.14 and 5.15 show the accessible kt- and xg- regions of the mea-

surements presented in section 4.1. The curves show the three sets of gluon

densities presented in section 2.4 as a function of kt for log xg = −2 and

serves merely as an illustration of the studied gluon densities. The dots rep-

resent the mean values 〈kt〉 and 〈xg〉 respectively, while the horizontal error

bars indicate the accessible phase space.

It can be seen in figure 5.14 that the inclusion of jets enhances the avail-
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Figure 5.14: Available regions of the gluon transverse momentum of previ-

ous HERA measurements. The three unintegrated gluon densities presented

in section 2.4 are shown as a function of kt. The dots mark the mean values

〈kt〉 while the error bars mark the accessible kt-region.

able kt-region in charm as well as in beauty production. Heavy quark mea-

surements mostly cover the region of low kt, while dijet measurements stretch

over a wide range in kt up to values of kt = 20 GeV.

Figure 5.15 presents the regions of xg accessible to the investigated mea-

surements. There it can be seen that measurements in DIS can access lower

xg in comparison to measurements in photoproduction.
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Figure 5.15: Available regions of the longitudinal gluon momentum fraction

of previous HERA measurements. The three unintegrated gluon densities

presented in section 2.4 are shown as a function of log xg. The dots mark the

mean values 〈log xg〉 while the error bars mark the accessible regions in xg.

It is also interesting to note that measurements of beauty quarks face a

restriction to rather high xg because the mass 2·mb ≈ 10 GeV to be produced

by the photon and the gluon puts a lower threshold ‘on the longitudinal

momentum fraction of the gluon. Charm measurements, on the other hand,

cover a wider region in longitudinal momentum but are also restricted in the

region of high transverse momentum. There dijet measurements provide an

opportunity for more detailed analysis.
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Figure 5.16: Gluon phase space available to present heavy flavour and dijet

measurements at HERA. The boxes indicate the individual measurements.

In figure 5.16 the accessible xg-regions are now plotted against the ac-

cessible kt-regions to display the phase space accessible by present HERA

measurements. The area with the lighter hatch represents the phase space of

the gluon in dijet measurements while the darker hatch represents the gluon

phase space in heavy flavour production.
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5.3 Dedicated Measurement of Unintegrated

Gluon Densities

In figure 5.16 it is interesting to note the regions of phase space which have

not been made available yet. As can also be seen from figure 5.15 the region

of xg < 10−3 is not even available to forward jets studied at HERA.

The region of xg > 0.1 is especially interesting because none of the in-

vestigated measurements covers this. Dedicated heavy flavour measurements

would provide an opportunity to study gluon densities in this region because

the main production mechanism is boson gluon fusion even at high xg. In

combination with jets regions of high kt at high xg would also become avail-

able.

Since up to now gluon densities are the main focus in current research

of kt-factorisation, such a measurement would be a profitable and natural

continuation of this thesis.



Chapter 6

Conclusions

In this thesis it has been emphasised that for a deeper understanding of un-

integrated gluon densities further constraints from experiment are needed.

A map of the gluon phase space accessible to HERA measurements has been

presented, which also indicates the regions of phase space where new mea-

surements are desirable. The measurements presented here can be used to

constrain the uPDFs in their particular region of phase space. Furthermore

it has been shown that the observables xγ and Ejet
T are both sensitive to the

transverse momentum of the gluon.

Measurements of Heavy quark production are suited to determine uninte-

grated gluon densities at xg ∼> 0.1 from experiment. In addition a combination

of heavy flavours and dijets gives the opportunity to use xγ and ET to access

a large region in transverse momentum.
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Appendix A

Description of HZ05040

The following short description of the HzTool subroutine HZ05040 will be

published in the HzTool -manual. The current version of the manual is

available at http://hepforge.cedar.ac.uk/hztool/docs/hztool.pdf.

HZ05040: Measurement of Charm and Beauty

Photoproduction at HERA Using D∗µ Corre-

lations

Purpose:

Produces the histograms for the D∗µ analysis of the measurement presented

in the paper DESY 05-040.

Event selection:

pT (D∗) > 1.5 GeV

|η(D∗)| < 1.5

p(µ) > 2 GeV

|η(µ)| < 1.735

0.05 < y < 0.75

Q2 < 1 GeV2

Structure:

HZ05040 is callable at any time.
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HZ05040 calls the subroutine btype(id1,id2,type) to determine angle and

charge correlations for beauty corrections.

Usage:

*

INTEGER IFLAG

...

call HZ05040(IFLAG )

Input arguments

IFLAG=1: Initialisation

IFLAG=2: Histogram Filling

IFLAG=3: Termination

Histograms

ID=101: 1/σ dσ/dpT (µ)

ID=102: 1/σ dσ/dpT (D∗)

ID=103: 1/σ dσ/dη(µ)

ID=104: 1/σ dσ/dη(D∗)

ID=105: 1/σ dσ/dpT (D∗µ)

ID=106: 1/σ dσ/dpT (D∗µ), finer binning

ID=107: 1/σ dσ/d∆φ(D∗µ)

ID=108: 1/σ dσ/d∆φ(D∗µ), finer binning

ID=109: 1/σ dσ/dM(D∗µ)

ID=110: 1/σ dσ/dŷ(D∗µ)

ID=111: 1/σ dσ/d log (xg), b-corrected

ID=112: 1/σ dσ/dpT (D∗µ), b-corrected

ID=113: 1/σ dσ/dŷ(D∗µ), b-corrected

The histograms −101 to −113 contain the data of the distributions. The

finer binning of histograms 106 and 108 has to be compared to the data in

−105 and −107, respectively, because in the data no finer binning is available.

Histograms 111 to 113 contain the distributions after correcting for angle

and charge correlations as presented in the paper.
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