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Abstract

This thesis studies the performance of statistical learning methods in high energy and
astrophysics where they have become a standard tool in physics analysis. They are used to
perform complex classification or regression by intelligent pattern recognition. This kind of
artificial intelligence is achieved by the principle “learning from examples”: The examples
describe the relationship between detector events and their classification.

The application of statistical learning methods is either motivated by the lack of know-
ledge about this relationship or by tight time restrictions. In the first case learning from
examples is the only possibility since no theory is available which would allow to build an
algorithm in the classical way. In the second case a classical algorithm exists but is too
slow to cope with the time restrictions. It is therefore replaced by a pattern recognition
machine which implements a fast statistical learning method. But even in applications
where some kind of classical algorithm had done a good job, statistical learning methods
convinced by their remarkable performance.

This thesis gives an introduction to statistical learning methods and how they are ap-
plied correctly in physics analysis. Their flexibility and high performance will be discussed
by showing intriguing results from high energy and astrophysics. These include the de-
velopment of highly efficient triggers, powerful purification of event samples and exact
reconstruction of hidden event parameters.

The presented studies also show typical problems in the application of statistical learn-
ing methods. They should be only second choice in all cases where an algorithm based
on prior knowledge exists. Some examples in physics analyses are found where these me-
thods are not used in the right way leading either to wrong predictions or bad performance.
Physicists also often hesitate to profit from these methods because they fear that statistical
learning methods cannot be controlled in a physically correct way. Besides there are many
different statistical learning methods to choose from and all the different methods have
their advantages and disadvantages – compared to each other and to classical algorithms.

By discussing several examples from high energy and astrophysics experiments the
principles, advantages and weaknesses of all popular statistical learning methods will be
analysed. A focus will be put on neural networks as they form some kind of standard
among different learning methods in physics analysis.



x ABSTRACT

Zusammenfassung

Die vorliegende Arbeit untersucht die Leistungsfähigkeit von statistischen Lernmethoden in
den Bereichen der Hochenergie- und Astrophysik, wo sie heute zu einem Standardhilfsmittel
der physikalischen Analyse geworden sind. Sie werden für komplexe Klassifikations- oder
Regressionsaufgaben eingesetzt, die sie durch intelligente Mustererkennung bewältigen.
Diese Form der künstlichen Intelligenz wird durch das Prinzip “Lernen an Beispielen”
erreicht, wobei die Beispiele den Zusammenhang zwischen den Detektordaten und deren
Klassifikation darstellen.

Gründe für die Anwendung von statistischen Lernmethoden sind entweder ein Man-
gel an Wissen über diesen Zusammenhang oder zeitliche Beschränkungen. Im ersten Fall
ist das Lernen an Beispielen der einzig gangbare Weg, da keine Theorie vorhanden ist,
die das Erstellen eines Algorithmus’ auf klassischem Wege erlauben würde. Im zweiten
Fall existiert ein klassischer Algorithmus, der aber zu langsam und damit angesichts der
vorgegebenen Zeitanforderungen ungeeignet ist. Er wird deshalb von einer Mustererken-
nungsmaschine ersetzt, die eine schnelle statistische Lernmethode implementiert. Aber
sogar in Anwendungen, in denen ein klassischer Algorithmus gute Dienste tat, überzeugten
die Ergebnisse statistischer Lernmethoden.

Diese Arbeit gibt eine Einführung in statistische Lernmethoden und ihre korrekte An-
wendung in der physikalischen Analyse. Ihre Flexibilität und hohe Leistungsfähigkeit
werden diskutiert, indem eindrucksvolle Resultate aus der Hochenergie- und Astrophysik
gezeigt werden. Darunter fallen die Entwicklung hoch effizienter Trigger, die effiziente
Bereinigung von Datensätzen und die exakte Rekonstruktion versteckter Parameter eines
Ereignisses.

Die vorliegende Untersuchung zeigt darüber hinaus auch typische Probleme der An-
wendung statistischer Lernmethoden auf. Sie sollten in jenen Fällen nur die zweite Wahl
sein, in denen ein auf Vorwissen basierender Algorithmus vorhanden ist. Bei nicht korrek-
ter Anwendung führen sie zu falschen Vorhersagen oder schlechten Leistungen, wie leider
Beispiele in physikalischen Analysen belegen. Physiker zögern auch oft von diesen Metho-
den zu profitieren, weil sie befürchten, dass statistische Lernmethoden nicht in physikalisch
adäquater Weise kontrolliert werden können. Außerdem gibt es viele verschiedene statis-
tische Lernmethoden, unter denen ausgewählt werden muss. Jede einzelne Methode hat
– verglichen mit den anderen Lernmethoden und klassischen Algorithmen – ihre eigenen
Vor- und Nachteile.

Die Diskussion zahlreicher Beispiele aus Experimenten der Hochenergie- und Astro-
physik analysiert die Prinzipien, Vorteile und Schwächen aller gängigen statistischen Lern-
methoden. Ein Schwerpunkt liegt dabei auf neuronalen Netzen, da diese eine Art Standard
unter den verschiedenen Lernmethoden in der physikalischen Analyse darstellen.



ABSTRACT xi

Résumé

Cette thèse de doctorat étudie la performance d’approches de l’apprentissage statistiques
dans les domaines de la physique des hautes energies et de l’astrophysique où elles sont
devenues un outil standard pour l’analyse physique. On les utilise pour des problèmes de
classification ou de régression complexes qu’elles surmontent à l’aide de Reconnaissance
de Formes intelligente. Cette forme d’intelligence artificielle est atteinte par le principe
de “l’apprentissage à partir d’exemples”, c’est-à-dire les exemples représentent la relation
entre les donnés du détecteur et leur classification.

Les raisons pour l’application d’approches de l’apprentissage statistiques sont soit un
défaut de savoir sur cette relation soit des limitations dans le temps. Dans le premier cas,
l’apprentissage à partir d’exemples est la seule possibilité car il n’existe aucune théorie qui
permettrait d’élaborer un algorithme sur la voie classique. Dans le deuxième cas, il y a un
algorithme classique qui travaille trop lentement et qui est incapable de remplir les con-
ditions temporelles. C’est pour cela qu’il est remplacé par une machine à Reconnaissance
de Formes qui implante une approche de l’apprentissage statistique rapide. Même pour
les applications où un algorithme classique convenait bien, les résultats des approches de
l’apprentissage statistiques ont convaincu.

Cette thèse de doctorat donne une introduction aux approches de l’apprentissage statis-
tiques et à leur application correcte dans l’analyse physique. Leur flexibilité et puis-
sance seront discutées en montrant de résultats impressionnants de la physique des hautes
énergies et de l’astrophysique. Parmi ces résultats on trouvera le développement de
déclenchements très efficaces, l’épuration effective d’enregistrements et la reconstruction
exacte de paramètres cachés d’un événement.

En plus, cette enquête montre des problèmes typiques de l’application des approches de
l’apprentissage statistiques. Elles devraient être seulement le second choix dans tous les cas
où un algorithme basé sur la connaissance des dépendances fonctionnelles existe. Utilisées
de fa con incorrecte, les approches de l’apprentissage statistiques conduisent à de fausses
prédictions ou à des performances médiocres comme le montre, hélas, des exemples dans
des analyses physiques. Des physiciens hésitent aussi souvent de profiter des ces approches
car ils craignent qu’on ne peut pas contrôler les approches de l’apprentissage statistiques
de fa con physicalement adéquate. De plus, il y a beaucoup d’approches de l’apprentissage
statistiques entre lesquelles il faut choisir. Chaque approche a – comparée avec les autres
et avec les algorithmes classiques – ses propres avantages et inconvénients.

La discussion de nombreux exemples tirés d’expériences de la physique des hautes
énergies et de l’astrophysique analyse les principes, avantages et défaillances de toutes les
approches de l’apprentissage statistiques habituelles. Un accent sera mis sur les réseaux
neuronaux, car ils représentent une sorte de standard parmi les différentes approches de
l’apprentissage dans l’analyse physique.
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Chapter 1

Introduction and Motivation

Statistical learning methods arise from the idea to leave pattern recognition tasks to the
computer that could only be done by humans so far. They are used in physics analysis to
perform a classification (usually to suppress some kind of background) or a regression (to
reconstruct quantities which have not been measured directly).

All kinds of statistical learning methods have found their way into physics analysis
because experimental data – especially the large amount of data coming from modern high
energy and astrophysics experiments – demands sophisticated human-like analysis done
by computers. While most of this analysis is done offline, i.e. stored data is processed,
online applications can already be found where a statistical learning method decides within
fractions of milliseconds whether an event coming from the detector should be stored or
whether it should be considered as background which should be rejected.

The application of statistical learning methods in physics analysis has three roots: The
basis of mathematical statistics, the fascination of artificial intelligence and of course the
need of physics analysis.

Mathematical statistics provides reliable methods to analyse data from stochastic
processes. Based on the underlying theory of probability and sampling, mathematical
statistics is the foundation for a correct description of statistical learning. Apart from the
basis of any theoretical treatment of statistical processes it also provides basic methods to
describe models and make predictions.

The field of artificial intelligence is driven by the goal to make machines as intelligent
as humans. Naturally, this target has its own fascination and motivation. But as soon as
machines were able to cope with at least basic tasks they were immediately employed
in all kinds of problems due to their high performance, speed, predictability and finally
cheapness compared to human workers. The field of statistical learning is one of the major
components of current research in artificial intelligence. The different fields of application
range from industrial processes and banking over medicine to science.

Analysis of physics experiments, especially in high energy and astrophysics, is a
part of science that has always required the most recent developments in computational
power and analysis methods. The branch of computer aided physics emerged from this
constantly rising need for fast, reliable, understandable and clever algorithms in modern
physics analysis.

The complexity of pattern recognition problems leads to the principle of “learning from
examples”: Every statistical learning method needs to be trained with examples of the
correct behaviour. Mathematically examples (~xi, yi) of inputs ~x and corresponding target
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y are given and a rule ~x → out(~x) should be inferred where out(~xi) should come as close
to yi as possible. In a classification problem the target value distinguishes typically two
classes, the signal and the background. Any event given to the trained learning method
is classified by using the complex detector information inside the input vector: An event
decision is performed by pattern recognition based on the event signature.

Choosing a statistical learning method instead of some classical algorithm may have
different reasons. One big advantage of statistical learning methods is their ability to con-
struct a functional dependence only by using examples. If the detector response is not
completely understood, if measured data does not match theoretical predictions or no the-
ory is available at all: In all these cases the lack of knowledge forbids the development of
any algorithm by hand, whereas statistical learning does not need this knowledge. Fur-
thermore, classically developed algorithms often turn out to perform much worse than a
statistical learning method in the same place because the available knowledge was either
not sufficient to build a better algorithm or the prediction did not agree with the mea-
sured data. If a classically developed algorithm performs at least as good as a statistical
learning method finally the need for a very fast processing may result in the decision to
use statistical learning for which very fast hardware implementations exist.

Although there may be convincing arguments to use a statistical learning method,
physicists sometimes hesitate to do so because they fear that this kind of algorithm is
not well understood, introduces some kind of additional uncertainty or cannot be handled
or controlled in an appropriate way. In addition the large variety of statistical learning
methods makes the choice difficult.

In this thesis an introduction to statistical learning with all its finesses will be given,
common problems and questions will be discussed and a clear guide to the successful and
correct application of these methods to physics experiments will be provided. Furthermore
a comparative study among statistical learning methods and classical algorithms will reveal
the huge potential of statistical learning which will then lead to physics results that could
not have been obtained without the help of these methods.

A completely new kind of intimate connection between artificial intelligence and its
application in physics analysis will be presented. The existing literature does not cover the
large gap between algorithms and their theory on the one side and the needs of physics
analysis on the other side. Typical papers or PhD theses describe the application of one
specific algorithm to one specific problem in physics analysis. Almost no background of
general concepts of such kind of algorithms or a theoretical analysis of their properties is
presented. Also no overview over different fields of application of these methods and their
general behaviour in physics applications is given. This thesis provides the missing overview
and generalisation, the complete discussion of typical problems and their solutions. Many
new physics results will be presented as a direct product from the successful application of
different statistical learning methods in different physics experiments.

Chapter 2 (Experiments, Detectors and Physics Motivation) will start with a descrip-
tion of all the experiments from high energy and astrophysics on which the following
analysis will be based. Chapter 3 (Statistical Learning for Physics Experiments) will then
provide a complete practice oriented introduction to the application of statistical learning
methods while chapter 4 (Statistical Learning Theory) covers the basics of the theoreti-
cal description of these methods based on mathematical statistics. Chapter 5 (Statistical
Learning Methods) presents the most popular learning methods in detail by emphasising
the underlying ideas and geometrical interpretations. The software framework which was
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created to perform the studies presented in this thesis is introduced in chapter 6 (Software
Development). Chapter 7 (Analysis and Results) provides a description of all analysis steps
and their results for each of the experiments. Since this chapter will present all results and
all insights into the successful application of statistical learning methods experiment-wise,
chapter 8 (Discussion) summarises the most important results by allowing an overview over
the similarities among the different applications. Finally, chapter 9 (Conclusion) gives a
brief summary of the main results of this thesis.



4 1. Introduction and Motivation



Chapter 2

Experiments, Detectors and Physics
Motivation

The experiments which will be discussed in this chapter will fulfil different purposes. With
their broad range from high energy physics to astrophysics they provide valuable examples
for different aspects of statistical learning as discussed in chapter 3. Furthermore, they
form the basis for the analysis of different statistical learning methods and their comparison
among each other and to classical methods. Finally, the application of statistical learning
methods in these experiments results directly or indirectly in intriguing physics results that
could not have been obtained without statistical learning.

The following section 2.1 will start with the H1 experiment at the electron-proton
collider HERA. Two different applications for statistical learning methods at H1 will be
introduced: background suppression is needed on the one hand already inside the trigger
system and on the other hand in any analysis which needs a pure event sample. Section 2.2
continues with high energy physics: the determination of the Higgs boson parity at a future
linear collider is discussed. Section 2.3 will then introduce a neutron detector: here the
incident position of the neutron needs to be reconstructed. In section 2.4 the MAGIC
telescope will be introduced. This Cherenkov telescope can make use of statistical learning
methods in the suppression of events which have been induced by a cosmic hadron and in
the estimation of the energy of a cosmic photon. Finally section 2.5 moves on to another
astrophysics experiment: the XEUS satellite. The X-ray pixel-detector which will be used
on this satellite poses two problems to statistical learning methods: Pileup events in which
the signals of two or more photons overlay have to be rejected and the incident position of
each photon should be reconstructed with sub-pixel resolution.

2.1 The H1 Experiment at HERA

At HERA, which will be described in the following section, electrons/positrons and pro-
tons are brought to collision. In lowest order (Born approximation) their interaction (ep-
scattering) is described by the exchange of a gauge boson (γ∗, Z0, W+, W−) between the
electron/positron and a parton of the proton. This exchange is called neutral current if the
exchanged boson is neutral (γ∗ or Z0) or charged current if the exchanged boson is charged
(W+, W−). The interaction of the point-like electron/positron with the proton makes it
possible to probe the partonic structure of the proton and to investigate electroweak effects
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at the same time.
The classification of events which are observed in the detector is one of the most impor-

tant analysis steps. The trigger system has to make sure that all interesting ep-interactions
are logged but that the background, coming mostly from interactions of the proton beam
with residual gas or detector components, is suppressed enough to have an acceptable log-
ging rate. Fast statistical learning methods can cope with this task since they can recognise
the patterns of different event types. This “online” trigger application will be introduced
in section 2.1.4.

Classifying events is also very important in any analysis which relies on very clean
datasets in which a specific class of events should be enriched and all competing background
should be suppressed as much as possible. Section 2.1.6 will introduce the search for
instantons as an “offline” analysis where this kind of background suppression is important.

2.1.1 HERA

The HERA collider (Hadron-Elektron-Ring-Anlage) [1] at DESY (Deutsches Elektronen
Synchrotron), Hamburg, accelerates electrons/positrons and protons up to 27.5GeV and
920GeV respectively in 6.3km long storage rings. Figure 2.1 shows the ring, the pre-
accelerators and the experiments. There are two colliding experiments H1 (north) and
ZEUS (south) and two fixed target experiments HERMES (east) and HERA-B (west).

Figure 2.1: The HERA collider with its four experiments (right) and the structure of the
pre-accelerators magnified (left).

The electrons/positrons and protons travel in small packets (bunches) through the rings.
Every 96 ns a pair of them is brought to collision (bunch-crossing) at the two interaction
points inside the H1 and ZEUS experiment. Figure 2.2 shows a typical fill of positrons and
protons in the HERA collider in 2004. The positron current decreases strongly over time
because of synchrotron radiation. The time of data-taking is given by the luminosity which
starts shortly after both beams have been injected and stops when the beams are dumped
after the positron current has decreased below a certain value. This time of data-taking
during one fill is separated into many runs. Each run defines a period of (more or less)
stable detector operation.
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Figure 2.2: HERA currents on 01.05.04: Proton currents around 90 mA and initial positron
currents around 40 mA were reached. The fill in the middle allowed data-taking from 08.00
am to 04.30 pm.

With the end of 2003 the data taking of the HERA II period started with the completion
of a major upgrade of HERA. Two important changes were done: The instantaneous
luminosity was increased by installing additional focusing magnets around the colliding
experiments and it was made possible to use polarised electrons/positrons by installing
spin rotators1 and instruments which measure the polarisation. The idea of the luminosity
upgrade is of course to collect more physics events (the rate is expected to increase about a
factor 3-5) but, much more dramatic, it may lead to much higher background rates because
of increased synchrotron radiation and beam-beam effects. This trigger-problem will be
discussed below.

2.1.2 H1 Experiment

The H1-Experiment [2] is shown schematically in figure 2.3. The layered structure is
cylindrically symmetric to the beam axis. Because of the high proton energy the centre-of-
mass system is boosted in the positive z-direction (forward) with respect to the laboratory
frame. Therefore the instrumentation in the forward and backward region differs.

The H1 detector was designed to study high-energy interactions between electrons and
protons provided by the HERA collider. Many different types of ep-interactions will be
discussed in section 2.1.4 where they are introduced as physics classes which should pass the
trigger system. The data transfer rate from the detector readout system to mass storage
manages around 10 events per second (≈ 1.1 MByte/s). This bandwidth limit means that
by far not all interactions can be written to permanent storage. With an initial rate of
about 10 MHz (96ns bunch crossing time) the rate must be reduced by a factor one million.

The largest contribution to the initial event rate are background events which result
from non ep-interactions. They consist of beam-gas or beam-wall interactions (protons
collide with nuclei of the residual gas, with the beam pipe or with detector components),
synchrotron radiation and cosmic radiation. These background events should be filtered
out to be able to record real physics events. A much smaller contribution to the initial

1The electrons/positrons are naturally polarised in longitudinal direction due to synchrotron radiation.
The spin rotators rotate the spin of the electron/positron from its natural orientation to obtain transversely
polarised leptons.
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Figure 2.3: The H1 experiment with a list of detector components.
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event rate are genuine ep-interactions. The larger part of them is photoproduction (cross
section of several µb), and events which one is really interested in (high Q2) are again a
minor contribution. The multi level trigger system which copes with the rate reduction
problem will be described in the following section.

Some of the detector components will now be discussed in more detail as they are part
of the trigger system:

• The main components of the central tracking chambers are two central jet cham-
bers (drift-chambers) [3] which provide a good resolution in the rφ(xy) plane and the
multi wire proportional chambers [4] which provide a good resolution in z-direction.
The tracking chambers are used to determine the interaction vertex, the momenta
and types of produced charged particles.

• The liquid argon calorimeter (LAr) [5] surrounds the central tracking system and
is divided into an inner electromagnetic and an outer hadronic part. In both parts
liquid argon is the active medium, the absorber material is lead in the electromagnetic
part and steel in the hadronic part. The calorimeter has a very fine granularity, the
coarsest segmentation has three barrels: inner forward (IF, positive z), forward (FB)
and central (CB). The calorimeters are used to measure electromagnetic and hadronic
energies and to identify the particles which generated the measured energies.

• The spaghetti calorimeter (SpaCal) [6] is located in the backward (negative z)
region. It is also separated into an electromagnetic and a hadronic part, both consist
of grooved lead plates as absorbers with grooves containing scintillating (spaghetti
like) fibres which lead the scintillation light to photomultipliers.

• The central muon detector forms together with the forward muon detector the
muon system. It is part of the instrumented iron yoke which returns the magnetic
flux of the main solenoidal coil. The central muon detector is used to detect muons
with an energy of at least 1.2GeV .

2.1.3 Trigger System

A multi level trigger system copes with the rate reduction task by selecting interesting
physics events on the one hand and rejecting obvious background on the other hand.
Figure 2.4 shows the four trigger levels implemented in the H1 experiment. The trigger
system performs a stepwise reduction of the event rate by increasing the level of analysis
from one trigger level to the next. It starts with the very fast but also simple first trigger
level which selects events if they match one of the predefined conditions to certain detector
components (simple AND/OR of threshold conditions for energies or counters) and ends
with the very slow but also very sophisticated fourth trigger level on which a full event
reconstruction is done. Each trigger level consists of many sub-triggers which are dedicated
to one or a few special kinds of ep-interactions. An event is passed on to the next trigger
level if one of the sub-triggers of the previous level “fires”.

L1: First Trigger Level

Most detector components provide fast trigger information for each bunch-crossing (every
96ns). Pipelines store this information to provide a dead-time free level 1 trigger. The
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Figure 2.4: The H1 Trigger System: A very important bottleneck is given by the bandwidth
with which the complete readout can be transferred to level 4, hence the maximum input
rate to this trigger level cannot be increased by using more processors in the farm. Trigger
level 3 was not used up to end of 2004.
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level 1 decision is derived with a latency of about 2.3 µs. This decision is the logical OR of
128 pre-scaled level 1 sub-triggers each of which is a logical combination of simple queries
to the trigger information of any detector component (threshold conditions to energies or
counters).

L2: Second Trigger Level

Trigger level 2 has 20 µs to derive its decision. At this level all level 1 information is
available, thus correlations between the level 1 trigger information from different detector
components can be used to judge the event which was triggered by level 1 in more detail.
Two independent systems are used to validate specific level 1 sub-triggers: The neural
network trigger (L2NN) and the topological trigger (L2TT). The latter uses matrix oper-
ations and logical combinations to come to a conclusion while the neural network trigger
evaluates mostly feed forward neural networks as discussed below in detail. If at least one
level 1 sub-trigger is validated successfully or a level 1 sub-trigger fired which does not
need a validation on level 2 the event is read out and sent to trigger level 4 (trigger level
3 is not used).

L4: Fourth Trigger Level

About 30 parallel processors take over the complete detector read-out for any event that
reaches the fourth trigger level. On trigger level 4 the full detector information is available,
a full event reconstruction can thus be done and the previous trigger levels are verified. A
set of finders is then applied to the reconstructed data. Each finder is dedicated to a specific
physics class and the event is kept if one of the finders is successful. The fourth trigger level
is thus the first software-based level while the first and second level are hardware-based.
With a rate of about 10 Hz events are logged to mass storage.

A simple way to limit the trigger rate especially of level 1 sub-triggers with a high rate
is pre-scaling. A sub-trigger can be pre-scaled which means that only every nth trigger is
processed, all others are ignored. This is the simplest way to reduce a too high trigger rate
by a certain factor (from pre-scale 2: factor 0.5 to arbitrarily high pre-scales). Of course it
is important to note that pre-scaling throws away physics and background equally – from
the trigger point of view the selection is done randomly.

To keep track of the trigger behaviour and to monitor the decisions specific trigger levels
can be switched off for some time or can be by-passed for a certain fraction of events:

• Under normal conditions each trigger level is active. For trigger studies transparent
runs can be taken for which a specific trigger level is ignored. For a level 2/4
transparent run for example all events triggered by the first trigger level are written
to tape with a high dead time ignoring the other trigger levels.

• A small percentage of events which would be rejected by trigger level 2 or 4 are kept
nevertheless for monitoring purposes – they should allow to watch and control the
trigger behaviour. These events are called override or by-pass events.

The neural network trigger on the second trigger level will now be discussed in detail
since the analysis presented in section 7.2 will be based on the development of new neural
network triggers in the HERA II period.
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2.1.4 The Level 2 Neural Network Trigger

The second trigger level offers the possibility to combine pieces of information from different
sub-detectors and evaluate their correlations to get a clearer picture about the actual event.
The neural network trigger hosts up to 13 feed forward neural networks which take the
values from various sub-detectors as inputs and either deliver or refuse a confirmation of the
L1 decision. A neural network is a particular example for a statistical learning method and
will be discussed together with other methods in chapter 5 (section 5.4.2). In appendix A
we will shortly discuss the hardware which is used to fetch the inputs from the various
sub-detectors, to calculate the output of the neural networks and to send it back within
only 20 µs.

Especially after the luminosity upgrade, the trigger system as a whole and the level
2 neural network trigger in particular become even more important. The primary rate is
increased but there is no possibility to also increase the logging rate (bandwidth limit of
the readout hardware). The rate thus has to be reduced within the trigger system more
than before the upgrade.

The neural network trigger is perfectly suitable for this task because it is designed
to reject the background triggered by those level 1 sub-triggers which have a very high
rate. It is important to note that this background rejection cannot be done for example by
increasing the number of processors on level 4 because the input rate to level 4 is technically
restricted to about 40 Hz. Therefore the rate reduction must be done very early in the
trigger system.

The quantities which are available for the level 2 trigger are generated by the level 1
triggers of each subsystem:

• For the calorimeters fast sampled energies (LAr and SpaCal) or counted cells above
thresholds (SpaCal) are available. The energies are summed over the electromagnetic
and hadronic part and come in four quadrants in φ. The liquid argon calorimeter is
in addition divided into three regions (central, forward and inner forward).

• The drift chamber rφ-trigger (DCrφ) applies masks to 10 of 56 wire layers and finds
thereby track candidates which are grouped to positive and negative and to high and
low energy tracks according to their curvature.

• The z-vertex trigger uses the hits in the inner and outer z-chambers (CIP and COP,
part of the multi-wire proportional chambers). All combinations of hits in the same
φ-bin (16 bins in total) are projected back onto the z-axis and fill a histogram of 16
bins covering the region between −44cm and +44cm for the projected z-positions.
The track-candidates (called “big-rays”) are also counted and grouped according to
their z-direction (forward, forward central, backward central, backward).

• The central muon trigger counts in four z-regions (forward end-cap, forward, back-
ward, backward end-cap) how many of the 16 modules have been hit (by muons
which passed the liquid argon calorimeter or by cosmic muons).

Table 2.1 shows an overview of the most important quantities available for the level 2
neural network trigger which are built by the level 1 triggers as described above.

The neural network trigger successfully reduces the rate of many different level 1 triggers
since its installation in 1996. The analysis presented in section 7.2 will discuss neural
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Liquid Argon Calorimeter (electromagnetic and hadronic summed)
larife Total energy in the inner forward region
eifq0 Energy in quadrant 0 of the inner forward region
eifq1 Energy in quadrant 1 of the inner forward region
eifq2 Energy in quadrant 2 of the inner forward region
eifq3 Energy in quadrant 3 of the inner forward region
larfbe Total energy in the forward region
efbq0 Energy in quadrant 0 of the forward region
efbq1 Energy in quadrant 1 of the forward region
efbq2 Energy in quadrant 2 of the forward region
efbq3 Energy in quadrant 3 of the forward region
larcbe Total energy in the central region
ecbq0 Energy in quadrant 0 of the central region
ecbq1 Energy in quadrant 1 of the central region
ecbq2 Energy in quadrant 2 of the central region
ecbq3 Energy in quadrant 3 of the central region

Spaghetti Calorimeter (electromagnetic and hadronic summed)
spcent1 Number of trigger cells in the central area above a certain threshold

(0.5 GeV before 16.03.04, 9 GeV afterwards)
spcent3 Number of trigger cells in the central area above a certain threshold

(6 GeV, stayed the same)
espq0 Energy in quadrant 0 (operable since 05.06.04)
espq1 Energy in quadrant 1 (operable since 05.06.04)
espq2 Energy in quadrant 2 (operable since 05.06.04)
espq3 Energy in quadrant 3 (operable since 05.06.04)

Drift Chambers
trtot Total number of track candidates
trlopos Number of negative track candidates with low momentum
trhipos Number of positive track candidates with high momentum
trloneg Number of negative track candidates with low momentum
trhineg Number of positive track candidates with high momentum
Multi Wire Proportional Chambers
cpvmax Maximum number of entries in the z-vertex histogram
cpvsum Total number of entries in the z-vertex histogram
cpvpos Bin with the maximum number of entries in the z-vertex histogram
nbigray Total number of track candidates
nbigfwd Number of track candidates in the forward region
nbigfce Number of track candidates in the forward-central region
nbigbce Number of track candidates in the backward-central region
nbigbwd Number of track candidates in the backward region
Central Muon Detector
irontot Total number of muons
ironfe Number of muons in the forward end-cap region
ironfb Number of muons in the forward region
ironbb Number of muons in the backward region
ironbe Number of muons in the backward end-cap region

Table 2.1: Most important quantities available for the level 2 neural network trigger: all
these quantities are calculated and provided by the level 1 trigger of the respective sub-
detector.
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network triggers developed in 2004 which cope with the task of a high background rejection
combined with an equally high efficiency for the interesting physics. In the following we
will dicuss those physics channels for which new networks have been developed since the
beginning of the HERA II period.

2.1.5 Important Physics Channels for L2NN

In the following sections different kinds of ep-interaction will be discussed which are trig-
gered by L1 sub-triggers that need a rate reduction. These physics channels form thus
the “signal” which should pass the neural network that validates the respective level 1
sub-trigger. The underlying physics ranges from diffractive events to the production of
heavy quarks.

Deeply Virtual Compton Scattering

Deeply virtual Compton scattering (DVCS) is defined as the elastic scattering of a virtual
photon off a proton with a real photon in the final state. In the case of H1 photons with
virtualities Q2 > few GeV2 are emitted by the incoming electron/positron leading to the
reaction ep → eγp. Figure 2.5 shows perturbative approximations: In Quantum Electro
Dynamics (QED) the virtual photon scatters off a quark from the proton which is re-
absorbed in the proton after emission of the real photon. In Quantum Chromo Dynamics
(QCD) the virtual photon interacts via a quark loop with two gluons from the proton. The
quark loop also emits the real photon. At HERA energies the QCD graph dominates and
thus provides the possibility to study the gluonic structure of the proton.
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Figure 2.5: Perturbative approxima-
tions of deeply virtual Compton scat-
tering: (a) QED and (b) QCD.

DVCS is triggered by the level 1 sub-trigger 41 which requires a significant energy
deposition (the electron) in the SpaCal within a certain time window. Figure 2.6 top
shows a DVCS event triggered by this condition, the energy deposition in the SpaCal is
clearly visible, in addition the energy deposition of the photon in the LAr calorimeter can
be seen. On the bottom we see also an energy deposition in SpaCal, this event was also
triggered by the level 1 sub-trigger 41. But this event is an upstream beam-gas interaction.

The analysis in section 7.2.3 will investigate the possibility to reduce the rate of level
1 sub-trigger 41 while maintaining a high efficiency for DVCS. The rate of this sub-trigger
reached 8-9 Hz, much too high compared to the overall (from all L1 sub-triggers) maximum
input rate to level 4 of 40 Hz.

Charged Current Interactions

Figure 2.7 shows an electron-proton interaction in which either a neutral boson (γ or
Z0) or a charged boson (W±) is exchanged. The interactions are named neutral and
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Figure 2.6: Detector view of deeply virtual Compton scattering (top) and competing back-
ground, here an upstream beam-gas interaction (bottom).
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charged current interactions, respectively. In the case of an exchanged W± boson the
positron/electron converts into an (anti)neutrino which leaves the detector unobserved.
This neutrino carries some part of the transversal energy which leads to an unbalanced
observed energy in the detector. Charged current interactions can therefore be triggered
by requiring a missing transverse energy in the LAr calorimeter.
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Figure 2.7: Neutral current vs. charged
current interactions: important kine-
matic variables are the momentum
transfer Q2 = −q2 and the fraction of
the proton momentum carried by the
struck quark x.

Charged current interactions (CC) are very rare compared to neutral current interac-
tions (NC) as can be seen from the cross sections:

d2σe±
NC

dxdQ2
=

e4

8πx

[

1

Q2

]2

φ±
NC(x,Q2) (2.1)

where the neutral current “structure function term” φ±
NC is a linear combination of the

generalised structure functions F̃L, F̃2 and xF̃3.

d2σe±
CC

dxdQ2
=

g4

64πx

[

1

Q2 +M2
W

]2

φ±
CC(x,Q2) (2.2)

where φ±
CC consists of the structure functions for CC interactions W̃L, W̃2 and xW̃3 in

analogy to NC. The Q2 dependence of the cross sections mainly results from the propagator
terms which is 1/Q4 for NC and 1/(Q2 + M2

W )2 for CC. While the NC cross section
decreases very rapidly with increasing Q2, the CC cross section falls much less steeply
until Q2 ≈M2

W . At the electroweak unification scale (Q2 ≈M2
Z ≈M2

W ) the cross sections
are similar: φ±

NC ≈ φ±
CC . From this point of view the neutral current cross section rises

much quicker with decreasing Q2.

Therefore a very high efficiency of a trigger for charged current interactions is manda-
tory. The level 1 sub-trigger 77 which needs a validation by a level 2 neural network is
based on missing transverse energy in the liquid argon calorimeter. For high transverse
energy triggering is no problem but the threshold for sub-trigger 77 is set to a medium
level to be sensitive also to the low pT part of the cross section. This results in a trigger
rate which climbs up to the order of 10 Hz for high currents. The rate reduction which
is needed in the analysis in section 7.2.4 is only about a factor two (50%) while the main
target is a near 100% efficiency.

Figure 2.8 shows how a charged current event and competing background (a cosmic
event) look like in the detector. In both cases a missing transverse energy is detected,
therefore both types are triggered by level 1 sub-trigger 77.
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Figure 2.8: Detector view of a charged current interaction (top) and competing background,
here an event with a cosmic muon passing the detector from top to bottom (bottom).
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J/ψ Production

The electron/positron beam of HERA can be viewed as a source of virtual photons like
for DVCS. Figure 2.9 shows that a J/ψ is formed by a virtual photon, e.g. according
to the vector meson dominance model, in which the photon is viewed as a composition
of an electromagnetic field and hadronic parts, both with the same quantum numbers
J PC = 1−−. Hadronic particles with these quantum numbers are vector mesons of which
a heavy one is the J/ψ. The J/ψ scatters off the proton and can be detected via its
subsequent decay, for example into an e+e− or µ+µ− pair.

Figure 2.9: J/ψ production and subse-
quent decay into electron and positron,
important kinematic variables are the
energy in the photon-proton centre-
of-mass system Wγp and the four-
momentum transfer squared at the pro-
ton vertex t.

Depending on the decay type and on the kinematic region different level 1 sub-triggers
are designed to trigger the production of J/ψ’s. Two level 1 sub-triggers which have a high
rate and thus need background suppression on the second trigger level will be discussed in
the analysis. Sub-trigger 15 (section 7.2.6) triggers inelastic photoproduction of J/ψ’s and
their decay into muons. Sub-trigger 33 (section 7.2.5) triggers exclusive photoproduction
of J/ψ’s and their decay into electrons where one electron leaves a track in the tracking
system and ends up in the LAr calorimeter, the other electron produces an energy cluster
in the SpaCal (Track-Cluster configuration).

D∗ and Dijet Production

A last example of a physics channel, whose level 1 trigger needs background reduction, is
the production of heavy quarks, in particular D∗’s, and dijet production. Both of them
are triggered by level 1 sub-trigger 83 (analysis in section 7.2.7) which requires activity in
the central trackers in combination with the tagged beam electron. Figure 2.10 shows the
production mechanism for heavy quarks. D∗+’s consist of an charm and anti-down quark,
D∗−’s thus consist of an anti-charm and down quark.

Like the J/ψ production also this kind of ep-interaction provides direct access to the
gluon structure. Whereas the J/ψ production delivers an experimentally very clean signal,
the heavy quark production is experimentally difficult because of the fragmentation process.
On the other hand the process shown in figure 2.10 is theoretically well described by known
QCD matrix elements whereas the bound J/ψ state is difficult to describe theoretically.
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Figure 2.10: Heavy quark production
by direct photon-gluon-fusion, left in
leading order and right in next to lead-
ing order.

2.1.6 Offline Analysis: Instantons

Instanton-induced processes [7] in ep-collisions are a good example for a (possible) small
signal above a huge background. QCD predicts a rare class of events with special kinematic
properties (compare the “fireball-like” structure shown in figure 2.11). Instantons are
characterised by the production of a large number of charged particles and an enhanced
fraction of strange hadrons. The resulting energy depositions in the calorimeter with the
characteristic instanton band is shown in figure 2.12.
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Figure 2.11: Feynman-like diagram of
an instanton-induced process in deep
inelastic scattering.

Since this kind of search for a rare event type is done offline we have the possibility
to choose variables as inputs which describe the instanton-processes best or, to be more
precise, which describe the differences between the instanton-like events and the competing
QCD background in the best possible way2. An even more important requirement is often
given by the usage of Monte-Carlo simulations. Only those quantities should be used
as inputs for a training with simulated data whose distributions match in simulated and
experimental data. Otherwise the derived results may not be valid.

In this analysis (which is a follow-on of an earlier analysis [8]) Monte-Carlo simula-
tions are used for the training of the classifier which should separate instanton-induced

2The free choice of inputs is one of the major differences between online and offline applications. The
preprocessing (and thus the generation of well-suited inputs) has to be kept at a minimum for online
applications due to the tight time restrictions.
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Figure 2.12: Energy depositions in
the LAr calorimeter for an instanton-
induced event with the characteristic
instanton band [8].

events from the competing background. The signal (simulated instanton-induced events)
is generated by “QCDINS” [9] and for the background two different simulations for the
standard perturbative QCD event classes exist: “MEPS” (Matrix Element plus Parton
Shower, calculated with RAPGAP [10]) and “CDM” (Colour Dipole Model, calculated
with ARIADNE [11]). The perturbative simulations were checked to reproduce the exper-
imental data and three kinematic quantities were chosen as basic inputs: band sphericity
sphB, band multiplicity nB, and the virtuality Q′

rec
2. These three inputs can be used to

distinguish signal from background, are reproduced well and are thus first choice as inputs
for the classifier. Two additional quantities, the transverse energy of the current jet ET,Jet

and the transverse energy of the band ET,B can also be used to distinguish signal from
background, but they show slightly different behaviour in the simulation with respect to
the experiment.

For the further analysis we regard this selection of inputs as given. We now try to find
a method which accepts instanton-like events but rejects standard perturbative QCD event
classes which look similar. The target of this analysis is to apply this classifying method
to the experimental data and compare the number of kept events with the number of kept
events in the perturbative background (and with the number of kept instanton-induced
events). The instanton hypothesis would be confirmed if the number of kept events in
the experimental data shows an excess over the kept perturbative QCD events from the
simulation.

A very good background reduction is needed to be able to compare these numbers
as the instanton-induced events are expected to be several hundred among over hundred
thousand of perturbative events. Statistical uncertainties alone make it impossible to com-
pare these numbers without a prior background reduction leaving systematic uncertainties
unconsidered. A high background rejection combined with an equally high efficiency for
instanton-like events with the help of statistical learning methods is the main target of the
analysis presented in section 7.3.
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2.2 Higgs Boson Parity Measurement at a Future Lin-

ear Collider

The origin of particle masses is one of the major scientific questions of our time. The
experimental verification of the Higgs mechanism as proposed by the Standard Model [12]
is therefore an important goal. But not only a discovery is aspired, the determination
of all the properties of the Higgs mechanism is among the central tasks for future linear
colliders. The Standard Model Higgs boson H is a scalar (J PC = 0++) while extensions like
the Minimal Super-symmetric Standard Model predict in addition a pseudo-scalar partner
A (J PC = 0−+). It is therefore important to be able to distinguish between these two
cases.

The analysis on which the following discussion is based [13] uses a future experimental
setup which is based on the TESLA proposal [14]. A linear e+e− collider with a centre-
of-mass energy of 500 GeV is assumed with an accumulated luminosity of 500 fb−1. The
Higgsstrahlung production process shown in figure 2.13 left and a Higgs boson mass of
120GeV are used in the simulation. The assumptions about the detector lead to certain
resolution properties which are respected in the Monte Carlo simulations. Gaussian spreads
are, for example, applied to the generated energies as well as angular spreads to the angles.
The detector effects have been approximately verified by a full detector simulation [15]. A
study of background which competes with the decay channel presented below is planned
but not used in the analysis as presented here.
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Figure 2.13: Main Higgs boson production mechanisms in an e+e− collider: Left Hig-
gsstrahlung and right W+W− fusion.

The strategy to recognise which type of Higgs boson was found is to study the decay
products. One of the most promising decay channels which allows equal sensitivity to the
CP-even and CP-odd components is H → τ+τ−. Although the decay to bb̄ has a much
higher branching ratio, the extraction of information about the b polarisation state is very
difficult due to depolarisation effects in the fragmentation process. This makes the τ+τ−

decay mode important from the spin correlations point of view.
The propagation of the transversal spin correlations in the subsequent decays τ± →

ρ±ν̄τ (ντ ) and ρ± → π±π0 leads to a characteristic angular distribution which depends on
the parity of the Higgs boson. Figure 2.14 shows the distribution of the acoplanarity angle
φ∗ between the plane spanned by τ+ρ+ and the plane spanned by τ−ρ− in the Higgs boson
rest frame for a scalar and a pseudo-scalar Higgs boson.

Figure 2.15 tries to give an intuitive interpretation why this acoplanarity angle distri-
bution depends on the Higgs boson parity. Since the parity is given by

P = (−1)lPτ+Pτ− = (−1)l+1 (2.3)
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Figure 2.14: Acoplanarity φ∗ distribu-
tions in the Higgs boson rest frame
(defined as the angle between the
plane spanned by τ+ρ+ and the plane
spanned by τ−ρ−). The thick line de-
notes the case of a scalar Higgs bo-
son, the thin line the pseudo-scalar one.
Taken from [13].

the τ -pair is in a p-wave (l = 1) for a scalar Higgs boson H and in an s-wave (l = 0) for a
pseudo-scalar Higgs boson A. The transversal spin components (in the respective τ± rest
frames) induce a favourite decay direction for the ρ± because the weak decay of τ± can only
result in left-handed neutrinos and right-handed anti-neutrinos. A favourite configuration
of back to back ρ’s for a scalar Higgs boson H results in the cosinus-distribution shown
in figure 2.14 with the maximum at 180 degrees. For a pseudo-scalar Higgs boson A the
favourite configuration is parallel with a most probable φ∗ of 0 degrees.

Figure 2.15: Propagation of spin cor-
relations from the transversal τ± spins
to the preference of decay directions of
the ρ±.

Since the φ∗ distributions are not directly observable a different angle is defined which
can be reconstructed in a similar way. The observable which promises the best distinction
between the two cases is defined in the rest frame of the ρ+ρ− system [16]: The acoplanarity
angle ϕ∗ is the angle between the two planes spanned by the immediate decay products
(the π± and π0) of the two ρ’s as shown in figure 2.16.

The distribution of ϕ∗ does not differ directly depending on a scalar or pseudo-scalar
Higgs boson. But it does depend on the parity after dividing events according to y1y2 > 0
and y1y2 < 0 where

y1 =
Eπ+ − Eπ0

Eπ+ + Eπ0

; y2 =
Eπ− − Eπ0

Eπ− + Eπ0

. (2.4)

and Eπ± and Eπ0 are the π±, π0 energies in the respective (replacement) τ± rest frames
(for a full description of the observables see [16]). Figure 2.17 shows the distributions of ϕ∗

for y1y2 > 0 left and right for y1y2 < 0. In a simple interpretation y1 and y2 determine how
the ρ± energies are distributed among the charged (π±) and neutral (π0) products. These
distributions determine how the angle φ∗ defined above is propagated. A product y1y2 ≈ 0
means that the spin correlation gets lost due to almost equal energies for the products of at
least one decay. The spin correlation is on the other hand preserved if one decay product
gets almost the full ρ± energy in both decays. In this case y1y2 is either smaller or greater
than zero and the ϕ∗-distributions differ. The sign of y1y2 is then only used to distinguish
between the two cases shown in figure 2.17 which result from the definition of the angle ϕ∗
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Figure 2.16: Definition of acoplanarity
ϕ∗ as the angle between the two planes
spanned by the immediate decay prod-
ucts (the π± and π0) of the two ρ’s in
the ρ+ρ− rest frame.

in figure 2.16: The orientation of each normal vector depends on the energy distribution of
the two π’s and thus on y1/y2. In summary, sign(y1y2) determines, whether a phase-shift
of 180◦ has to be applied to the acoplanarity ϕ∗ before the respective event is filled into
the histogram.
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Figure 2.17: Acoplanarity ϕ∗ distributions in the ρ+ρ− rest frame. Left events with y1y2 > 0
are plotted for a scalar (thick) vs. pseudo-scalar (thin) Higgs boson, right events with
y1y2 < 0 are plotted in the same way. Taken from [13].

There are some additional ideas which allow to reconstruct y1 and y2 with better preci-
sion or which select special event types to intensify the significances shown in figure 2.17.
They will be explained shortly in section 7.4.

Two competing targets control the significance which allows to decide whether a scalar
or a pseudo-scalar Higgs boson is observed: On the one hand as many events as possible are
needed in the analysis since the statistics given by the luminosity and cross section of the
chosen decay channel is very limited. On the other hand a strong selection on those events
that show a clear signal, i.e. a favour for only one of the two parity states, may enhance the
significance. The determination of the observed Higgs boson parity at a maximum possible
level of significance with the help of statistical learning methods is the main target of the
analysis presented in section 7.4.
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2.3 Small-Angle Neutron Scattering Detector

Small-angle neutron scattering is an essential tool for the investigation of structural and
dynamical properties of condensed matter. Almost any fluctuation in composition, density
and magnetisation on a scale between 5 and 5000 Å can be detected by this method [17].
Measurements are usually carried out with large area position sensitive detectors. This
allows an efficient exploitation of the expensive beam-time by a simultaneous measurement
of the total scattering regime.

The small-angle neutron scattering instrument KWS-1 [18] at the research reactor FRJ-
2 at the Forschungszentrum Jülich uses the principle of the Anger camera [19] to detect
neutrons by collecting scintillation light in a two-dimensional array of photomultipliers.
Figure 2.18 illustrates this principle: A 6Li-glass scintillator doped with Ce as an activator
leads via the nuclear reaction

n+ 6Li→ 3H + α + 4.78MeV (2.5)

to the production of light which is dispersed on an array of photomultiplier tubes.

Reflector
Scintillator
Air gap

Light disperser

Light cone

Photomultiplier

Neutron

Figure 2.18: Cross sectional view of the
detector showing the light distribution
of a neutron event.

The photomultiplier tubes are arranged in a two-dimensional grid and capture a large
part of the produced scintillation light. Figure 2.19 illustrates that the produced light
cone illuminates typically 3 × 3 photomultipliers. The individual photomultiplier signals
undergo an amplification, shaping and digitisation step and can then be used to derive the
exact incident position of the neutron as the reconstructed centre of the light cone.
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Figure 2.19: Projection of a light cone
from a neutron capture event on the
plane of the photomultiplier cathodes.

The active area of 60× 60 cm2 is formed by 4× 4 glass-scintillator plates behind which
8 × 8 photomultipliers are placed (see figure 2.20). For the reconstruction of the neutron
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incident position the total scintillation surface is divided into 128 × 128 channels. Any
reconstructed position is given in these channel coordinates. The resolution given by this
binning is sufficient and probably better than the precision which can be achieved by any
reconstruction method.

Figure 2.20: Structure of the neutron
detector: The detector surface is phys-
ically divided by the scintillation plates
and the photomultipliers. It is divided
into a fine binning for the reconstruc-
tion of the neutron incident position.

The currently implemented position reconstruction [20] uses the quotient qi to describe
the light asymmetry around the central photomultiplier signal Si:

qi =
Si+1 − Si−1

Si+1 + Si + Si−1

. (2.6)

Si−1 and Si+1 are the photomultiplier signals of the neighbouring columns or rows (de-
pending on whether the x or y coordinate is estimated). The shape of qi, depending on
the position coordinates x and y, is assumed to be linear after a calibration measurement
was used to equal the signal responses to neutrons of the different photomultipliers. The
positions x and y within the central photomultiplier (i, j) are then linear functions of their
respective light asymmetry values qi and qj.

Another reconstruction method investigated is a maximum likelihood method which will
be called “naive Bayes” in its description in section 5.3.4. For any pair (x, y) of the 128×128
positions the expected signals from all 64 photomultipliers have to be determined. For an
observed event the 64 photomultiplier signals then determine the correct pair (x, y) as the
position for which the observed photomultiplier signals match the memorised expectations
best (maximum probability):

(x, y) := argmax(x,y)

[

64
∏

i=1

P
(

Si = Ei(x, y)
)

]

(2.7)

where Ei are the memorised expectations given a certain “true” position and Si are the
observed signal values. Unfortunately it is difficult to get the “training” data, i.e. the
expectation values for any position. The simulation of the detector is not suited well to be
used for this because there are some effects observed in experimental data which are not
simulated and thus lead to differences in the final photomultiplier values.

The problem of the missing training data will be discussed further in the analysis in
section 7.5. The exact reconstruction of the neutron incident position with the help of
statistical learning methods is the main target of the analysis presented there.

The time constraints make this application especially interesting. Since only histograms
of the reconstructed positions can be stored, the position reconstruction has to be done
online. The full detector readout cannot be stored for every event because of count rates of
several kHz. The hardware for the position reconstruction currently used in the detector
system consists of 16 Digital Signal Processors (DSPs) which all work in parallel (see
appendix A).
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2.4 The MAGIC Telescope

Figure 2.21: The MAGIC Telescope by the time of its inauguration in October 2003.

The MAGIC (Major Atmospheric Gamma ray Imaging Cherenkov) telescope [21] is
located on the Canary island La Palma. Figure 2.21 shows the MAGIC telescope by the
time of its inauguration in October 2003. The main goal of this experiment is to close the
observational gap in the energy region between 10 GeV and 500 GeV of the astronomical
γ-ray flux because this window is not covered well at the moment neither by satellite-based
experiments, which measure at lower energies, nor by ground based experiments, which
measured up to now at higher energies (compare figure 2.22).

A wide range of astronomical phenomena from the non-thermal universe is covered
by these observations in the energy range between 10 GeV and 500 GeV, ranging from
Active Galactic Nuclei and SuperNova Remnants over Gamma Ray Bursts to Dark Matter.
Important observation targets are given by the EGRET catalogue shown in figure 2.23.
Unidentified sources need to be identified and the energy spectra of all sources have to be
analysed – a cut-off is expected in many of them because there are so much less sources
discovered by Cherenkov telescopes (figure 2.24).

There are several key points to reach the 10 GeV energy threshold, which is very low
compared to all existing Cherenkov telescopes:

• The large mirror surface of the 17m diameter reflector dish collects enough Cherenkov
light even from very small (low energy) showers.

• A high photon detection efficiency is guaranteed by highly reflective mirrors and
photomultipliers (PMTs) with a high quantum efficiency.

• A sophisticated background rejection is applied which can identify shower images
induced by charged particles, mainly protons, and keeps a large fraction of the γ-
induced events.
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Figure 2.22: The flux sensitivity of MAGIC reaches down to the energy range of the satellite
based experiments.

Figure 2.23: Sources detected by EGRET in the energy range 100MeV < E < 10GeV .
Taken from [22].
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Figure 2.24: Sources detected by Cherenkov telescopes in the energy range E > 300GeV .
Red symbols indicate sources detected with certainty, blue symbols need further confirma-
tion.

Besides the tasks that are directly related to the collection of Cherenkov light some technical
issues have led to innovations:

• The carbon fibre frame is both lightweight and rigid so that the telescope can be
positioned to point at any source in the sky within only 30s.

• The lightweight aluminium mirrors are produced fast and cost effective, they have a
longer lifetime compared to conventional glass mirrors and can be heated to prevent
the formation of dew and ice.

• The Active Mirror Control allows to counteract small residual deformations of the
frame by monitoring a laser spot in a CCD camera.

2.4.1 Extensive Air Showers and Imaging of Cherenkov Light

A high energy γ-ray or cosmic ray nucleus which enters the atmosphere interacts the first
time at a height of about 10 to 25 km, producing secondary particles which themselves
interact, leading to a cascade called “extensive air shower”. Since the energy of the primary
particle is distributed over all secondary particles the cascade development stops when the
energy of a single particle falls below the threshold for further particle production. The
shower then dies out and energy losses due to ionisation processes become dominant.

Figure 2.25 shows the differences of the principal development of extensive air showers,
depending on the type of the primary particle.

• A γ-induced shower starts with the production of an electron-positron pair in
the electromagnetic field of an atmospheric nucleus. Produced electrons or positrons
radiate new γ-rays (bremsstrahlung) which themselves produce pairs of electrons and
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positrons. Since only electromagnetic interactions take place this kind of shower is
called electromagnetic. Below a critical value for the mean energy of the electrons
and positrons (83MeV in air) ionisation replaces bremsstrahlung as the dominant
process of energy loss. In addition the cross section for pair production becomes of
the same order as for Compton scattering and photo absorption at energies of a few
MeV . Thus the shower reaches its maximum development at a mean particle energy
around 10-100 MeV .

• A hadron-induced shower starts with the collision of the cosmic hadron with
an atmospheric nucleus producing pions, kaons and nucleons. About 90% of all
secondary particles produced in the shower are pions which continue to multiply in
nuclear collisions until their mean energy falls below the threshold for pion production
(about 1 GeV ). Through the quick decay of π0’s into two γ-rays electromagnetic sub-
showers are created. Though having a hadronic core of nucleons and mesons even
hadronic showers are thus dominated at their tail by photons and electrons.
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Figure 2.25: Development of extensive air showers induced by a γ-ray (left) or by a charged
cosmic ray (right).

Cherenkov light is emitted by charged particles which travel through a medium (here
air) with a speed greater than the speed of light in this medium:

v = βc with β >
1

n
. (2.8)

A net polarisation of the medium along the trajectory of the particle occurs as shown in
figure 2.26 (b) and the superposition of all the wavefronts according to Huygens’ principle
leads to a fixed radiation angle

cos(θ) =
1

βn
(2.9)

as shown in figure 2.26 (c). To compute the Cherenkov light emitted in extensive air
showers the variation of the air density (and thus of he refractive index) with the height
has to be taken into account. Calculating the energy thresholds for emission of Cherenkov
light shows that nearly all light in an extensive air shower is produced by electrons due to
their small rest mass compared to muons or protons.
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Figure 2.26: Development of Cherenkov light: The polarisation of the dielectric medium is
shown for a charged particle with (a) low speed and (b) high speed. The Cherenkov light
cone for (b) is derived by Huygens’ principle (c).

Figure 2.27 visualises the differences in the shower development between an electro-
magnetic and a hadronic shower (upper part of the picture) and shows the Cherenkov
light as projected into the camera of a Cherenkov telescope (lower part of the picture).
The energies of the primary particles were chosen so that the total number of Cherenkov
photons is almost the same in both pictures. Nonetheless clear differences in the shape of
the projected light can be seen which will be the basis for the suppression of the hadronic
background, to be discussed in the next section.

Figure 2.27: Two simulated air show-
ers allow the comparison of a photon-
induced shower (left) with a proton-
induced shower (right) in terms of their
shower development (upper part) and
the produced Cherenkov light as seen
in the focal plane of a Cherenkov tele-
scope (lower part). The energies are
chosen such that the amount of pro-
duced Cherenkov light is comparable
for both cases.
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2.4.2 Shower Image Analysis and Background Rejection

Emphasis was put on the differences between extensive air showers induced by a photon
on the one hand and induced by a hadron on the other hand. This difference becomes
essential as soon as the measurement of properties of astronomical objects – which was
the primary objective – comes into focus. Charged hadrons which enter the atmosphere
do not point back to their origin – the information about the location of their emission is
lost due to the deflection in the weak galactic and intergalactic magnetic fields3. Therefore
hadron-induced showers have to be separated from the photon-induced showers which form
the basis for any physics analysis. Even though there are large differences in the shower
images, a factor 104 more hadron-induced showers than photon-induced showers makes
sure that there will be enough hadron-showers which look like photon-showers and the
rejection of all hadron events will be impossible. A high background rejection combined
with a high γ-efficiency by means of statistical learning methods is the main target of the
analysis presented in section 7.6.

Figure 2.28 shows in more detail how the Cherenkov light emitted by a photon-induced
extensive air shower is projected into the camera. The shower trajectory is parallel to the
pointing axis of the telescope which means that the photon comes from the direction the
telescope is pointing to. The Cherenkov light emitted at large altitude will therefore be
found near the camera centre while the light emitted later (close to the surface) is seen
more and more towards the outer part of the camera.

The resulting ellipsoidal shape of the γ-induced Cherenkov light is described in the
standard Hillas analysis [23] with the geometrical properties of the resulting Cherenkov
ellipse as shown in figure 2.29. In addition to the geometrical quantities shown in the
picture an important parameter is for example size, the total number of photons in the
shower image. The calculation of the geometrical quantities is usually not done by fitting
but by calculating the first and second moments of the light distribution (pixel-positions
weighted by the number of Cherenkov photons counted there).

Since there is usually much noise in the camera image (both from electronics and real
light from the night sky background) an image cleaning procedure is performed before
doing the Hillas analysis. The image cleaning rejects those pixels in which the number of
photons is in the order of the fluctuations of the noise. Figure 2.30 shows the effect of
the image cleaning on photon- and proton-induced simulated events at different energies.
It can be seen that only very few pixels “survive” the image cleaning for low energies –
too few for a Hillas analysis as discussed above. This suggests that in the low energy
region methods which operate on the uncleaned image may be better suited to perform a
γ-hadron separation.

A standard method to perform the γ-hadron separation is the supercuts method [24].
This method applies a set of cuts in the Hillas parameters which may depend on other
Hillas parameters. For example a cut in width is done depending on the value of size

(compare figure 2.29). The dependences are parameterised and the optimal parameters
are found in an optimisation process. This optimisation process varies the parameters and
thus the dynamical cuts in the Hillas parameters until a (potentially local) maximum or
minimum of the optimisation target has been found.

A typical optimisation target is the significance of the detected photon signal [25] which

3Only for very high energies (> 1019eV ) they could point to their sources but the flux in this energy
region is extremely small.
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Figure 2.28: The principle of Imaging Air Cherenkov Telescopes. The stated dimensions
are typical for a 1 TeV γ-induced shower. The numbers in the camera pixels denote the
amount of detected Cherenkov photons.
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Figure 2.30: Image cleaning at different energies (left below 100GeV and right above
300GeV ) for photons (upper row) and protons (lower row).
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is derived from the α-plot shown in figure 2.31. The Hillas parameter α (see figure 2.29)
measures the angle between the shower axis and the line connecting the reference point
with the centre of gravity of the shower. For photons this angle α is usually very small
as their Cherenkov ellipses point towards the source position. The hadronic background
on the other hand produces a quite flat distribution in α as these events do not point to
the source position. In figure 2.31 the peak towards small α contains the γ-induced events
while the flat background over the whole range of α is generated by the hadron-induced
events. The peak is much clearer and thus the significance much higher after application of
the supercuts method because the background was dramatically reduced but the amount
of γ-events stayed similar.
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Figure 2.31: α-plots before and after γ-hadron separation: the γ-excess for small α’s in the
ON dataset (crosses) compared to the OFF dataset (grey bars) is clearly seen only after the
background suppression has been done, the background is fitted by a 2 or 4 dimensional
polynomial (without odd powers due to symmetry), the signal is fitted in the same way
with a Gaussian centred at α = 0 added.

Plotting the distribution of α for all events can therefore be used to measure the signifi-
cance of the photon signal contained in the whole dataset and especially contained in those
events that remain after the application of some method for the γ-hadron separation. A
few details have to be noted: α must of course not be used in the method which performs
the γ-hadron separation because it is used here for an independent check. Furthermore the
analysis of the α-plot is more reliable if two datasets are used like in figure 2.31. Although
it is possible to check the γ-hadron separation with only one dataset that contains the pho-
ton signal and of course the background (called ON dataset because the telescope points
onto the source) the analysis is more reliable if a second dataset is used in addition (called
OFF dataset because the telescope does not point onto the source). This OFF dataset
contains no or only a marginal amount of photons and can thus be used to monitor the
background for small α for which the photon excess is seen in the ON dataset.



2.4 The MAGIC Telescope 35

2.4.3 Energy Estimation

After the background has been reduced as much as possible, the remaining events (assuming
they have been induced by a photon) have to be analysed. There are two basic quantities
of each event which are essential for physics analysis: The arrival time, for measuring
variations of the γ-flux with time, and the energy of the primary photon, for measuring
the energy dependence of the γ-flux. The arrival time is measured quite easily by logging
a time stamp together with the event data. The energy of the primary photon, however, is
much more difficult to find out because it is not measured directly but has to be estimated
from the Cherenkov light which was collected. One of the most important quantities for
this energy estimation is of course the size parameter which shows a strong correlation
with the energy of the primary photon in the simulation as shown in figure 2.32 (a large
size – a large number of observed Cherenkov photons – corresponds to a large energy).
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Figure 2.32: Dependence of size on
the energy of the primary photon from
the simulation after passing the trigger
of the telescope and the image clean-
ing procedures. The scatter plot shows
the broad range of energies which could
belong to a measured size.

The estimation of the energy of the primary photon is not possible by using only size,
as figure 2.32 demonstrates. Complex parameterised relations between the energy of the
primary photon and the Hillas parameters are usually used like:

Eest = a+ b · size + c · conc + d · length + e · width
+f · dist + g · width

length
+ h · size

width·length + i · leakage (2.10)

where conc describes the concentration of the Cherenkov light among the illuminated
pixels and leakage tells about the estimated amount of Cherenkov light which missed the
detector.

As already seen in figure 2.30, the determination of the Hillas parameters is quite
difficult for low energy events. Thus methods which do not rely on image cleaning and
Hillas parameters may be better suited to estimate the energy of the primary photon in
the low energy region. A precise reconstruction of the energy of the primary photon with
the help of statistical learning methods is the main target of the analysis presented in
section 7.6.
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2.5 The XEUS Satellite

The X-ray Evolving Universe Spectroscopy (XEUS) mission [26] is a potential follow-up
project to ESA’s cornerstone X-ray Multi-Mirror mission (XMM-Newton) [27]. The science
goal of the XEUS mission is the hot universe at far redshift, the first massive black holes,
the first galaxy groups and the evolution of heavy elements. The satellite will probably be
launched after 2015.

Figure 2.33 shows an artist’s view of the XEUS satellite which will consist of two
independent spacecrafts: the mirror spacecraft and the detector spacecraft which fly with
a 50m focal length distance aligned by a laser tracking system (see also figure 2.34).

Figure 2.33: The XEUS satellite with its two components (mirror spacecraft and detector
spacecraft) in an artist’s view.

Figure 2.34: Components of the XEUS
satellite: The mirror spacecraft and de-
tector spacecraft will be aligned by a
laser tracking system.
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The collection area is planned to be 30 m2, corresponding to an increase in the photon
count rate of a factor 200, compared to XMM-Newton. Different detectors will be placed
in the detector spacecraft which can be rotated into the focal plane. To match the optical
requirements for a wide field imager on XEUS, an APS array with 1024 x 1024 pixels of
75×75µm2 is being developed [28]. The intrinsically fast read-out of the APS allows frame
rates of 500 Hz, corresponding to 0.5 GigaPixel/s.

The specific type of pixel detector will not be relevant in the analysis presented in
section 7.7. This analysis works with any kind of pixel detector, charge-coupled devices
(CCDs) or active pixel sensors (APSs), which deliver imaging and spectroscopic information
about incident radiation. MOS- and pn-CCDs [29] e.g. are implemented as focal plane
instruments on the XMM-Newton satellite. Together with Active Pixel Sensors (APS)
they remain first choice devices also for future X-ray space telescopes like XEUS or, for
example, the ROSITA (ROentgen Survey with an Imaging Telescope Array) mission [30].

To transform the raw data stream coming from the pixel detector into scientific infor-
mation, a processing scheme has to be applied which will be discussed in the following
exemplary for a CCD device as shown as schematic cross section in figure 2.35. The analy-
sis presented in section 7.7 will mostly be based on a generic simulation which can simulate
different types of pixel detectors from CCDs to APSs.

Figure 2.35: Schematic cross section of a fully depleted pn-CCD like the one used on the
XMM satellite.

An X-ray of a few hundred eV to more than 10keV enters the semiconductor from
the backside (lower side in figure 2.35) and converts into an electron-hole pair. This pair
generates in a small cascade further electron-hole pairs until their mean energy drops
below the energy threshold for the production of electron-hole pairs (3.68 eV in Si). The
holes drift to the back side while the electrons drift into the potential minimum under
the front side. This vertical potential minimum is horizontally divided into pixels so that
the electron-cloud generated by one X-ray photon is typically distributed over up to four
neighbouring pixels. Figure 2.36 shows which patterns can be generated after a threshold
is applied which suppresses the noise.

The main target of the processing of the data stream is to measure precisely position
and energy for each single photon. Therefore detector effects have to be corrected and
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single double triple quadruple

Figure 2.36: Patterns which can be
generated by single photons: Shown
are the illuminated pixels (above some
threshold). In the upper row the cross
marks the maximum charge and the cir-
cle the minimum charge. In the lower
row the generation of the pattern is
visualised with the generating charge
cloud. Triples can be generated if the
fourth signal is below the event detec-
tion threshold.

background has to be rejected. The correction of detector effects is an important pre-
processing step to any further analysis. This step includes the correction of pixel-wise
and row-wise (“common mode”) offsets, different column-wise gains and charge transfer
inefficiencies (see appendix B.1 for a detailed description). The main background is due
to noise which is simply cut away by applying an event detection threshold of e.g. 5σ.
The illuminated pixels (those with a value above threshold) are then grouped to patterns.
The second kind of background are minimum ionising particles which are identified by the
large charge deposition which is far above the energy band of interest. The third kind of
background are pileups meaning that two photons hit the CCD during the same exposure
time and close together so that they are recorded in the same frame and their patterns
are at least adjacent or even overlap. Figure 2.37 shows examples of four levels of pileup
formation from pattern pileup to complete charge pileup. At least in the cases (b), (d) and
(e) the energy information of each single photon is lost, the event cannot be used in the
analysis.

Figure 2.37: Pileups from pure pattern
pileup (a) and (c) over mixed pattern
and charge pileup (b) and (d) to pure
charge pileup (e).
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Case (d) in figure 2.37 cannot be filtered out by using simple patterns like those from
figure 2.36. A more sophisticated analysis may be able to recognise the differences between
a pileup and a single photon whose charge distributions look almost the same. The reliable
recognition and rejection of pileups with the help of statistical learning methods is the
main target of the analysis presented in section 7.7.

The information about the position and the energy of the event is finally derived from
the pixel coordinates and the digitised electron count, respectively. The energy resolution
is limited by the noise of the detector. After the above mentioned corrections the energy
of the photon is determined by simply adding up the charges of the illuminated pixels.
The position, however, can be determined more precisely than just in pixel-coordinates4

by taking into account the splitting of the generated charge cloud among the neighbouring
pixels. The incident position of the photon or to be more precise the exact position of
the centre of the generated charge cloud can then be estimated with sub-pixel resolution
(compare figure 2.38). The exact reconstruction of the centre of the generated charge cloud
with the help of statistical learning methods is the main target of the analysis presented
in section 7.7.
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Figure 2.38: Resolution improvements by using the distribution of the charge over up to four

pixels. A sharp edge is simulated in a pixel detector with 50 × 50µm2 pixel size. On the left

only the position in pixel coordinates of the maximum energy deposition per event is used. In

the middle a centre-of-mass method is used to estimate the incident position from the charge

distribution. On the right the η-method (presented in section 7.7.2) is used to estimate the

incident position from the charge distribution. The binnings of the histograms are adapted to

the obtained resolutions.

To be able to train a statistical learning method for the reconstruction of the incident
position some kind of training data is needed. The problem of generating training data
to train a statistical learning method will be discussed generally in section 3.10. The next
section presents an experiment with the pixel detector which allows us to generate training
data for the problem of the reconstruction of the centre of the generated charge cloud.

4The analysis of the XMM data, for example, uses only pixel coordinates i.e. the coordinates of the
maximum charge. Sometimes the analysis is even restricted to use those events only which did not split
over more than one pixel (for XMM with 150 × 150µm2 pixels this is still a fraction of more than 60%)
because this improves the energy resolution. Using the coordinates of the maximum charge only is also no
problem from the detector point of view: The resolution given by the mirrors is already worse than one
pixel. Therefore any determination of a position with sub-pixel resolution seems useless. However this is a
general analysis which is also applicable to pixel-detectors which are for example used as tracking devices
in a colliding experiment. Any additional resolution is welcome in such an application.
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2.5.1 The Mesh-Experiment

The mesh in our experiment is a 10µm thin gold foil with small holes of 5µm diameter
which are arranged in a rectangular grid pattern with spacings equal to or a multiple of
the CCD structure e.g. 150µm in x and y direction for a CCD with 75 × 75µm2 pixels.
The mesh is placed directly in front of the CCD and blocks the homogenous illumination
with X-rays from entering the CCD except for the given holes. A slight rotation of the
mesh with respect to the CCD structure leads to different placements of the holes over
the respective pixels as shown in figure 2.39. Under the assumption that all pixels behave
equally the holes sample thus the whole area of a pixel and define isolated incident positions
for photons.

Figure 2.39: The mesh-experiment: A small rotation of the mesh structure with respect
to the pixel structure places the holes over different parts of the individual pixels.

The main target of the mesh-experiment is to understand the detector behaviour. The
charge splitting is caused by diffusion and electrostatic repulsion of the charge carriers
during their drift time. The charge splitting thus also depends on the electric field which
affects the electrons as they drift to the front side into the potential minimum. Knowing
how the electron cloud is split among different pixels due to the electric fields for each
specific incident position will help to understand the detector behaviour.

An interesting byproduct of the mesh-experiment is the possibility to generate training
data for the reconstruction of the incident position. Real experimental data could then
replace the data coming from Monte Carlo simulations. As will be discussed in section 3.10
the usage of experimental data should of course be preferred. To have training data means
to know the correct incident position for each event. This information is then used to teach
a reconstruction method. The mesh experiment offers this unique possibility: to see real
events in the detector and to know in addition where they come from because the position
of the respective mesh hole is known (appendix B.2 will show how the position and angle
of the mesh relative to the CCD can be determined).



Chapter 3

Statistical Learning for Physics
Experiments

In this chapter the basic concepts and properties of statistical learning will be explained.
The emphasis is put on the motivation why and in which case statistical learning methods
should be used and on the way they are applied correctly. Most of the mathematical
background is skipped here and will be dealt with in the next chapter.

The terminology and all the examples are closely related to the application of statistical
learning to physics experiments. Nevertheless all comments and advices apply also to other
fields of application.

The next few sections (3.1 to 3.6) start with an introduction to statistical learning and
present the most basic concepts and notions. Afterwards (sections 3.7 to 3.10) the classi-
cal alternatives to statistical learning and the most common motivations to use statistical
learning methods will be discussed. In the following sections (3.11 to 3.13) the correct
handling and control of statistical learning methods during the training and in the perfor-
mance evaluation will be explained including the calculation of statistical und systematic
uncertainties. This chapter ends with a description of the data mining capabilities of sta-
tistical learning methods (section 3.14) and with a guide to compare learning methods in
a statistically correct way (section 3.15).

3.1 Statistical Learning in the World of Artificial In-

telligence

Historically the development of artificial neural networks as simplified models of the human
brain was one of the fundamental starting points of artificial intelligence and signified the
desire to make machines “intelligent”, similar to humans. Other starting points made
use of knowledge databases or tried to induce logical rules. Whereas the structure of
neural networks was derived from the first insights into the structure of the brain (mainly
of animals but also of humans), the idea behind the neural network training is clearly
induced by psychology. Supervised learning, the interaction between a flexible learner and
a precise teacher, is still one of the most fundamental and successful paradigms of today’s
artificial intelligence (AI). Although the focus of current AI research shifted to agent-based
systems, distributed learning and parallel systems, statistical learning – the principle of
learning by examples – remains a very important building block [31].
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A common problem with statistical learning methods is the need for a teacher (compare
the introduction in section 3.3) who gives a feedback for every single decision which is made
by the method. In real world applications we often have only a global reinforcement which
means that the feedback is given after a time-dependent series of decisions. A major
focus of current AI research is to break down the global feedback to the local decisions.
Unfortunately the methods which generate the local from the global feedback are mostly
application dependent (see for example [32]).

General overviews of the relation between machine learning, artificial intelligence and
statistical learning can for example be found in [33, 34, 35, 36, 37].

3.2 Inputs

The common basis of all statistical learning is the desire to extract some kind of information
for later usage (“learning”) from a dataset consisting of N examples (or events, patterns)
drawn from some ensemble (“statistics”). In other words we want to create and choose
among hypotheses on the basis of evidence given by examples. The information coming
from these examples is usually written as a list of vectors ~xk, k = 1 . . . N . The vector ~x is
called input vector and is complemented by the target y in the case of supervised learning
as discussed in the next section.

The components of the input- or feature-vector ~x can represent any information we
have about the dataset from which we want to learn. The datatype can be

• categorical, e.g. “which experiment?” (H1—ZEUS—CDF),

• ordinal, e.g. “run quality?” (poor—medium—good) or

• numerical either discrete or continuous, e.g. “energy?” (0-100GeV ).

For physics applications, the inputs for the statistical learning method usually char-
acterise an event which was seen in some kind of detector. Inputs can be raw values of
different detector components but they can also consist of derived quantities, which have
not been measured directly but which describe the structure of the event on a higher level
(compare the discussion of preprocessing in section 3.6).

In the following, all inputs will be assumed to have a numerical datatype. While ordinal
inputs can be easily transformed by simply numbering the states, the case is more difficult
for categorical inputs: Binary representation may be a better choice for some statistical
learning methods than simple numbering since this does not create an artificial ordering
of the categories.

Example: Categorical Inputs
If the name of the experiment (as mentioned above) should be encoded in the input

vector of each event there are basically two possibilities: Either we use one input

value with the values 0 (H1), 1 (ZEUS) and 2 (CDF) or three inputs are used which

are either 0 or 1 (binary representation): 1-0-0 for H1, 0-1-0 for ZEUS and 0-0-1 for

CDF. The first method has the disadvantage that some learning methods may try to

interpret the artificial ordering H1<ZEUS<CDF.
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Choosing the right inputs is an important task. Usually higher level quantities (after
using prior knowledge) are better suited. The data compression step from “raw” data –
which usually consists of many inputs – to a higher level of abstraction with usually fewer
inputs is called preprocessing (discussed in section 3.6).

Careful consideration of the known meanings and interactions of the inputs that are
available are typically combined with many cycles of trial and error in which different
combinations of inputs are tried out. For supervised learning (see below) the correlation
between each input xi and the target value y

ρi =
cov(xi, y)

σxi
σy

=
1

N

N
∑

k=1

(xik − x̄i)(yk − ȳ)

σxi
σy

(3.1)

gives an indication which input may be suited well to describe the target because of a high
correlation. A technique called relevance which estimates the importance of each input
after the training has been done will be discussed in section 3.14.

Too many inputs with only a moderate number of training examples lead to serious
problems. The curse of dimensionality means that too few training examples distributed
in a very high dimensional space result in such a sparse density that the learning task will
be very difficult, especially overtraining (see section 3.11) will be a problem. Section 3.6
will discuss some algorithms which try to reduce the dimensionality of the input space
while trying to not loose information.

To deal with missing values for some components of the input vector in some events is
a task that is important, for example, in medical applications (e.g. a specific test was not
done on some of the patients). Therefore some learning methods have the capability to
deal with missing information. In the further discussion, however, the data will be assumed
to be complete.

A weight might also be part of the information that is available for each event. The
weight does not serve the purpose to describe each example but to tell about its importance.
Usually all examples have the same importance and thus always weight 1. But for some
datasets some events may be regarded as being more important than others resulting in
a weight wi > 1 for some and wi < 1 for others. These weights may come from Monte
Carlo simulations or may be introduced by purpose to modify the behaviour of the learning
method (the boosting method does so as described in section 5.5.4). Weights must not be
used like normal inputs to distinguish one event from another but they should be used to
steer the learning process and to evaluate the performance (see section 3.12).

3.3 Supervised and Unsupervised Learning

Supervision of a statistical learning method means that each input vector ~x gets a label,
the target value y. These target values have to be predicted by the learning method and
a teacher is available who provides feedback about the errors which are made.

For unsupervised learning the only available information is the sampled distribution
of data points in the input space. Naturally the task is then to derive statements about
the underlying probability distribution from which the data points were sampled. Typical
statements that result from unsupervised learning tell about local densities and clusters.
Unsupervised learning is sometimes useful as a preprocessing step to supervised learning.
Section 3.6 discusses, for example, clustering as a way to reduce the dimensionality of a
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problem. Typical unsupervised learning methods are discussed for example in [38, 31]. In
the following we will concentrate on supervised learning.

Supervised learning means that N pairs of input and corresponding target (~xi, yi),
i = 1 . . . N are given to the learning method. The special case where the learning method
itself can decide at which position ~x in the input space the corresponding target value y
should be given by the teacher is called active learning. Throughout this thesis we will
always assume the more general case where the N pairs (~xi, yi), i = 1 . . . N are fixed in
advance.

The inference from these N pairs of input and target to some kind of output function
out(~x) will be called the training of the statistical learning method. In chapter 5 we will
see that some methods do not require a training step: They derive the output directly
from the given examples without building a model in advance. Figure 3.1 shows a scheme
of the usual process of training and evaluation for a classification problem.

Figure 3.1: Supervised learning methods (here for classification) which build a model are
trained resulting in a classifier which is then used to evaluate new events.

Example: Radial Basis Function Neural Networks
Radial Basis Function neural networks (figure 3.2) are usually trained in two steps.
The first step consists of unsupervised clustering of the data. The centres and vari-
ances of the radial basis functions are determined, for example, with a Gaussian
mixture model (see [31]).

The second step consists of supervised learning for which the found clusters remain

fixed and only the influence of each cluster on the output is determined. Since only

the weights of all basis functions in the final sum have to be determined this can be

done by a simple multi-linear regression.

Figure 3.2: Structure of a Radial Basis Function Neural Network: The activation ai of
each hidden neuron depends on the distance of the input event to the centre ci and on the
radius ri. The output is the (positively or negatively) weighted sum of all activations.
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3.4 Classification vs. Regression

Depending on the given problem the datatype of the target y can be either dichotomic,
for example 1 for the signal class and 0 for the competing background, or continuous, for
example in the range [0, 100] referring to the energy range 0-100 GeV .

In the first case we speak of classification: The statistical learning method should be
able to distinguish between (at least) two classes. Problems with more than two classes are
also quite frequent. Some examples where one statistical learning method handles many
different classes can be found in literature: The digit database (images showing one of
the digits 0-9) of the United States National Institute of Science and Technology is for
example discussed in [31]. Nonetheless we will restrict to the case of two classes because
the decomposition of a multi-class problem into different two-class problems is easy and
often leads to even better performance. Hsu [39] states that the decomposition into “one

vs. one” problems (k(k−1)
2

classifiers for k classes) performs better than the decomposition
into one vs. others problems (k classifiers). The goal for a classification problem is for
example given by the minimisation of misclassifications as discussed in section 3.12.

In the second case we speak of regression: Here the task is to estimate the value of some
quantity of interest. For example an energy could not be measured directly but is hidden
in the correlation of geometric quantities of each event. The typical goal for a regression
problem is the minimisation of the squared error as discussed in section 3.12.

Example: Classification
A very simple classification problem in two dimensions is shown in figure 3.3. The

squares should be separated from the circles – a possible solution (without any mis-

classification) is shown by the curved decision boundary. Any new event given by two

coordinates would be classified according to the two sides of this decision boundary.

Figure 3.3: A simple two-dimensional
example for a classification problem,
the circles symbolise the “signal”,
events with y = 1, the squares stand for
the “background”, events with y = 0.

Example: Regression
A one-dimensional regression problem is shown in figure 3.4. The seven crosses

represent the data points (“examples”) and the smooth curve may be a solution

formed by a statistical learning method. Any new event given by an x-coordinate

will result in a y-coordinate output according to the learned curve.

3.5 Online vs. Offline

The concept of a trigger is well known in physics experiments. It selects events which should
be recorded and skips others (either background or uninteresting events) to reduce the total
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Figure 3.4: A simple one-dimensional
example for a regression problem.

rate which must be logged onto mass storage. An online classification is nothing else than
a trigger where “classification” reminds us of the fact that the trigger knows only two basic
event classes: “good” ones should be kept and “bad” ones should be rejected. “Online”
reminds us that the decision must usually be available within a very short timescale (µs
to ms).

Offline classification mostly has to do with purification which means that a dominant
background should be suppressed to make a weak signal visible. All this takes place when
the data is stored on mass storage and the time restrictions for the classification are less
demanding.

Example: Online vs. Offline – Trigger vs. Purification at the
H1 Experiment
The trigger system of the H1 experiment including the neural network trigger was
discussed in section 2.1. Within less than 20µs information from the different level
one subsystems is received, the data is preprocessed to form useful inputs, and the
decision is made by calculating the outputs of 13 feed forward neural networks in
parallel. The trigger decision is very closely related to the hardware of the detector
since the fast decision allows only minimal abstraction from the specific detector
components.

Things are completely different for an offline analyses: Variables which describe the

event after the full reconstruction was done have a much higher level of abstraction.

Very specific quantities which describe the kinematics of the interaction can then be

taken as inputs for statistical learning methods.

3.6 Preprocessing

Preprocessing data means transforming raw inputs ~x which are directly measured by the
detector into new inputs ~x′ which are better suited to describe the event in one or more of
the following senses:

• The transformed inputs may make use of prior knowledge as we will discuss in sec-
tion 3.9. Usually such a transformation leads to quantities which describe the event
on a higher level and are better suited to distinguish different classes (classification)
or different values (regression).

• The transformation may reflect a certain symmetry that is inherent to all events. In
such a case resolving the symmetry by a rotation, mirroring, normalisation1 or other

1A normalisation of each input to mean value 0 and standard deviation 1 can already simplify the
learning task a lot.
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transformation like a Fourier analysis frees the statistical learning method of discov-
ering this property on its own. The learning method is usually capable of discovering
such kind of symmetries. Nevertheless, typically an increased performance or shorter
training times can be achieved if the job is made easier by preprocessing.

• If the input space is very high-dimensional and it is unknown how to reduce the
dimensionality, a transformation based on automatic procedures can be very help-
ful. Such transformations are, for example, clustering (see for example [38, 31]) or
principal component analysis (see for example [40]). These methods reduce the di-
mensionality of the problem while trying to maintain all the essential characteristics.

Like the search for the best raw inputs, also the search among different preprocess-
ing techniques requires some studies if one wants to be sure that optimal inputs for the
statistical learning method have been found.

Example: Symmetry – Charge Distribution in a Pixel Detector
A pixel detector which may be used aboard the XEUS satellite was introduced in
section 2.5. An event usually consists of a charge cloud that is distributed over up
to 2 × 2 pixels as shown in figure 3.5. To treat such a structure optimally (given a
very homogeneous detector) one can swap left, right, up and down without changing
the event topology. Resolving this symmetry, for example by setting the maximum
charge always to the lower left corner, will help the learning method.

The fact that the four pixel signals sum up to the total charge generated by the

photon can also be regarded as a symmetry. A normalisation to the total charge

event by event would resolve this symmetry.

Figure 3.5: The charge generated in
the pixel-detector by an X-ray photon
is usually distributed over up to 2 × 2
pixels.

3.7 Standard Approach to Classification: “Cuts”

“Cuts” are on the one hand only a synonym for classification because a cut does nothing
else than separate one side from the other, one class from another. On the other hand
the word “cuts” is very strongly connected to a sequence of conditions applied to one-
dimensional histograms which present the distribution of events depending on different
quantities.

This sequence consists of univariate classifications whereas one multivariate classifica-
tion is – if possible – always the better decision. The key point is the correlation between
the different quantities in which the one-dimensional cuts are done. Projections of the mul-
tidimensional distribution onto the various coordinate axes ignore any correlations between
the coordinates. Figure 3.6 shows a special example where a simple line – a correlated cut
in two dimensions – performs much better than one-dimensional cuts.
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x1

x2
x1

x2

Figure 3.6: In this example the two-dimensional cut performs much better than any se-
quence of one-dimensional cuts. Almost no sensible cut could be found in the two projec-
tions shown on the right. There the crosses (×) are shown as a dotted line and the circles
(◦) have a solid line.

In terms of available inputs xi for two classes “good” (y = 1) vs. “bad” (y = 0) the
standard approach first tries to find a value for x1 which separates best good from bad
events. Events of both classes which “survived” the first cut are filled into a histogram
depending on x2 , a new cut is defined there and so on until all available inputs have been
used (see figure 3.7).

Figure 3.7: Sequence of cuts to reduce background (dotted) while keeping as much signal
(solid) as possible.

A correlated cut, meaning a decision depending on all inputs xi simultaneously, is surely
a better decision if one is able to construct it. Specific knowledge about the multidimen-
sional dependences of all inputs are necessary to build such a classifier by hand. As will be
discussed in section 3.9, ignorance of these dependences naturally leads to the application
of statistical learning methods because they are using correlated cuts and they learn the
multidimensional dependences from examples.

Example: Enrichment of Instanton Events
Figure 3.8 shows in three rows three steps of a cutting procedure. The distributions
of signal and background for two inputs (virtuality Q′

r
2 and band multiplicity nB) of

the instanton dataset (introduced in section 2.1.6) are plotted for each step.

The original distributions are plotted in the first row. Since no cut has been per-
formed at this point all events are taken. Black histograms mean “correctly iden-
tified” while “misclassified” events are plotted with grey histograms. Because all
events are taken at this point all signal events are in a black histogram and all back-
ground events in a grey one. In addition to the histograms the first cut which will
be done is indicated in the Q′

r
2 histograms.

In the second row the cut in Q′
r
2 was done. We see that signal events are misclas-

sified for too low Q′
r
2 and background is still misclassified for high Q′

r
2. In the nB

distributions the effect of the cut in Q′
r
2 can be seen. Especially in the background
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distribution for nB it becomes clear that Q′
r
2 and nB are not independent because

the shape of the background that is still left over (grey) differs significantly from the
shape of the background that was cut out (black). In addition to the histograms the
second cut which will be applied is indicated in the nB histograms.

The third row finally shows the resulting distributions after both cuts have been

done. Since the second cut had a quite high rejection rate and low efficiency we see

that most of the background is correctly recognised (black) while a still significant

amount of signal remains (also black).
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Figure 3.8: A three step cut process with the instanton dataset, two quantities are used
here: Q′

r
2 is plotted in GeV 2 and nB is the number of tracks. The three rows are explained

in the example.

3.8 Standard Approach to Regression: “Fit”

Motivated by theoretical predictions or by observed distributions, a certain functional de-
pendence is mostly the basis to cope with a regression problem. This functional dependence
is usually not fully understood and may contain many free parameters whose values have
to be determined by a fitting procedure to describe the observed data correctly. Once this
is done a formula has been obtained that can predict for a certain input-vector ~x the corre-
sponding target value y. For example a sinus function with a certain y-offset, wavelength,
phase and amplitude was fitted to the data shown in figure 3.9.

The main problem of this approach is the necessity that some functional dependence
must be known. The fitting cannot be done if either no functional dependence is known
or the theoretically predicted relations do not describe the measured data. Besides, the
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Figure 3.9: A simple one-dimensional
example showing a histogram with er-
rors and a fitted sinus function.

known dependence may only include some but not all of the quantities xi which would be
available for discrimination.

In each of these and similar cases it is again ignorance that leads to the application of
statistical learning methods as will be discussed in section 3.9 because they will extract
the needed functional dependence from the examples given to them.

Example: Energy Estimation in the MAGIC Detector
The Hillas parameters describe the shape of the Cherenkov ellipse in the telescope
(see section 2.4). These quantities can be used to determine the energy of the primary
photon in a simple linear model:

Eγ = a + b · size + c · size2 + d · dist + e · length + f · width + g · width

length
.

The parameters a to g are determined by minimising the sum of squared relative

errors
(

Eest−Etrue
Etrue

)2
where the sum runs over many events of different energies. The

following table shows the values for the parameters which have been obtained:

parameter a b c d e f g
value 38.7 0.120 −4.38 · 10−6 −0.244 0.621 −1.90 21.1

We choose an event like the one shown in figure 3.10 with a true energy of 269GeV .
Plugging in its Hillas quantities

input size dist length width

value 1352 205 52.0 17.5

leads to an estimated energy of 170GeV , much lower than the true energy of 269GeV ,

but still within the average relative error which is usually around 30%.

3.9 Knowledge and Time

As mentioned above, the amount of knowledge about the dataset which should be ana-
lysed is the most important criteria whether a multidimensional cut or function can be
constructed that will meet the requirements in terms of both the description of the data
and the performance of the resulting classification/regression. If this is not the case, sta-
tistical learning methods are for sure worth considering.

This means that statistical learning methods can always only be the second choice.
Either one has nothing at hand or one has only some method which does not perform as
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Figure 3.10: The Cherenkov light
as projected into the camera of the
MAGIC telescope has an ellipsoidal
shape for high energies – here about
270GeV . The energy estimation may
be performed with the parameters of
the Cherenkov ellipse.

well as wished. Then statistical learning offers the possibility to leave the development of
a good classifier/regression to the computer.

In section 3.6 it was discussed how knowledge that is existing (but is not sufficient to
completely analyse the data) can be used in statistical learning methods by preprocessing
the data. This offers the possibility to make knowledge from the theoretical background or
experimental observation directly available to the learning method and may improve the
performance drastically.

Example: Prior Knowledge – The Cherenkov Ellipse in the MAGIC
Telescope
Section 2.4 described the MAGIC Telescope and how the Cherenkov light forms an

ellipsoidal image in the camera. The Cherenkov light is emitted by a shower which

was induced by a high energy photon. For energies below 50GeV the ellipsoidal

shape might not be recognised. But for energies around 1TeV the high-level Hillas

parameters, which result from the analysis of the ellipsoidal shape, will provide statis-

tical learning methods most probably with better information than raw pixel values

(compare figure 3.10).

There is only one reason to apply statistical learning to a problem for which a very
good analysis based on prior knowledge exists: time consumption. If the existing analysis
is a time consuming offline analysis and a faster decision is needed, for example, to create
a trigger, then the well performing offline analysis can act as a teacher for training a fast
statistical learning method. Of course, the statistical learning method will not outperform
but only approximate the decision of the offline analysis. Nevertheless a very similar
classifier can be obtained which is many orders of magnitude faster.

Usually experiments from high energy or astrophysics have some kind of trigger which
applies a number of thresholds. An event gets triggered if the thresholds are exceeded. If
the thresholds should then be lowered to obtain more events, or to obtain events from a
lower energy region, then this trigger system gets into trouble: The trigger rate becomes
much too high. Especially in such a case a trigger based on statistical learning methods is
worth considering.
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Example: Fast Trigger Decision with the Neural Network Trig-
ger at the H1 Experiment
The neural network trigger (see section 2.1.4) was already presented as an example for

a statistical learning method working online. It was compared to an offline analysis

for the same experiment where high level quantities from the complete reconstruc-

tion of the event can be used. These abstract event descriptors are not available for

triggering but they can be used as the teaching information for the training of the

trigger. Therefore the neural network will approximate the correct decision (which

would be made after full reconstruction) on the second trigger level with only the

quantities which are available at this point.

3.10 Prerequisite: Training Data

The most important demand of any statistical learning method is, of course, the training
data. As discussed in section 3.3, supervised learning requires that examples are avail-
able which consist of inputs and their associated target values. The correct target values
represent the information coming from the teacher. If such kind of teacher or correctly as-
signed target values are missing completely then there is no chance of applying a supervised
statistical learning method.

However, in practice there are several ways to obtain the needed training examples. A
simple example was discussed in the last section where a time consuming offline analysis
acts as a teacher for a statistical learning method which will then perform similarly but
much faster.

Monte Carlo simulations are also a standard way of generating training examples. But
they must be used with care: Both underlying physics and the detector response have to
be understood very well to create a simulation which generates events matching the exper-
imental observations. Even very small deviations, “features” – correlations or deviations
that exist in the simulation but not in reality (vice versa may be less important) – may
result in a trained method that handles simulated events perfectly, but shows a behaviour
like random guessing on real data.

Example: Monte Carlo Simulations in the Search for Instantons
at H1
Non perturbative QCD predicts a very small number of instanton-induced events
which could be detected in the H1 experiment. As discussed in section 2.1.6, two
different Monte Carlo simulations, MEPS and CDM, for the standard perturbative
QCD event classes can be used. To enrich the number of instanton-like events in the
measured dataset only a small fraction of the events from the standard perturbative
QCD event classes is selected.

Independent of the used classification method discrepancies between these two sim-
ulations are revealed, since the number of selected events (for a fixed instanton effi-
ciency) after the purification differs significantly. Of course, the differences become
even larger when the number of inputs for the purification is increased: The more in-
puts are available for discriminating instantons from perturbative QCD event classes,
the more special the selected region in phase space will be.

If different simulations lead to contradictory results no final conclusion can be drawn.

Therefore one or more reliable and consistent simulations are really essential if there
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are no other ways to generate training data.

Finally, training data can be generated by temporarily modifying the experiment. This
means that the correct classification or value of the regression is fixed and known after
changing the experimental setup. To obtain examples for all classes of a classification
or for all values of a regression problem the experiment may have to be modified several
times. It is important that the modification only controls the target (class or value) and
does not change the detector response. When enough examples have been collected, the
experiment can be run in “normal” mode which then means that any class or value for a
regression may appear in the events. The statistical learning method can then make its
decision based on the examples from the modified versions.

Example: Modifying a Pixel-detector – The Mesh-Experiment
The pixel-detector which will be part of the XEUS satellite was presented in sec-

tion 2.5. To improve the position resolution of this pixel-detector examples for the

charge distribution, depending on the incident position of the photon, are needed.

To obtain events for which the incident position is known, a mask with small holes

in a regular rectangular pattern is placed slightly rotated in front of the detector as

was described in section 2.5.1. The small angle between the pixel structure and the

so-called mesh places the holes over different parts of the underlying pixels as shown

in figure 3.11. Since the photons will only come through the holes, their incident

positions are known. From different pixels we get different positions covering the

whole pixel area.

Figure 3.11: The mesh-experiment: A small rotation of the mesh structure with respect
to the pixel structure places the holes over different parts of the individual pixels. Assum-
ing that all pixels behave identically, training data can be generated that covers incident
positions for the whole area of a pixel.

3.11 Overtraining and Regularisation

Controlling a statistical learning method is quite similar to controlling any analysis: One
has to make sure that it does what it should do, which means that one checks whether
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everything what one puts into the method is correct, checks the output of the method for
a few examples “by hand”, compares the behaviour of simulation with real data, compares
the results with theoretical predictions and so on.

What is peculiar to controlling statistical learning methods originates from the “statis-
tics part”: Only a certain – potentially very low – number of examples is available which
can be used to teach a – potentially very complex – target function to the learning me-
thod. The obviously ill-defined attempt to learn a very complex function from only a few
examples will result in a behaviour called overtraining.

Overtraining means that the function space which was searched by the statistical learn-
ing method was too large compared to the low number of examples which could define such
a function. The result is a method which performs perfectly on all the training examples
because they were learned by heart. But no generalisation was done and thus the perfor-
mance for new events will be generally bad.

Example: Overtraining like in Function Fitting
Figure 3.12 shows a fitting example in which in the left picture a function with too

many adjustable parameters was chosen. This leads to a perfect fit, but without any

generalisation. In the right picture the number of free parameters is appropriate. The

number of free parameters and thus the size of the function space which is searched

shows here the same influence like for a statistical learning method.

function space
too large

appropriate number
of parameters

Figure 3.12: Like in function-fitting overtraining is due to too many free parameters.
Regularisation reduces the searched function space by restricting the parameters. The
training examples are fitted no longer exactly after regularisation but the generalisation is
much better.

A very basic concept to detect overtraining is the division of the available examples into
(at least) two groups which will be called the training set and the test set. By using only
the examples from the training set to train the method, the application to the test set can
act as an independent evaluation of how well the learning method performs. Overtraining
can then be detected directly as a large disagreement between the good performance on
the training set and the bad performance on the test set.

But the detection of overtraining is not enough, we need some handle to control this
behaviour: Regularisation means that the size and type of function space which should be
searched by the statistical learning method can be controlled (penalisation of complexity)
by the adjustment of certain parameters of the method. These parameters depend on the
method and will be discussed for each method in chapter 5.
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By adjusting the regularisation parameters the optimal type of function space can
be searched, for which the contradicting demands of precision on the training set and
generalisation for the test set lead to an optimal behaviour. But this introduces a new
problem: A new bias is introduced if one of the many parameter sets which have been
tried out is selected by looking for the best performance on the test set. The behaviour on
the test set is then no longer an independent measure of the performance of the method.
Therefore we finally need to divide the available examples into three groups: training set,
test set and selection set which can be used to select the best performance among different
parameter sets.

In summary the division into training and test set is enough for the training of only
one classifier (with the training set) and the independent measurement of its performance
(with the test set). But if the optimal performance should be chosen among many different
trainings then the division into three sets is necessary. The training set is used as before
only to train the different classifiers. The selection set is then used in between to choose
the optimal performance among the different trainings. Finally the test set is also used
as before to have an independent measurement of the true performance of the selected
classifier/regression model.

Figure 3.13: Usually the available examples should be split up into three sets: the training
set is used to train the statistical learning method, the selection set is used to choose
the optimal generalisation behaviour among different parameter settings, and the test set
provides an independent estimate for the true performance. The splitting could typically
be 50%:25%:25%.

We have seen that model selection (by choosing one of the parameter sets) and model
assessment (estimating the true performance) are two independent steps which can both
be done with the help of estimates from held-back events. How the selection and test set
are used to estimate the true performance will be discussed in the next section. However
it is important to note that there are also several theoretical frameworks coping with the
tasks of model selection and model assessment that do not require a selection or test set.
A short introduction to theoretical aspects will be given in chapter 4.

3.12 Performance Evaluation

Since the training of statistical learning methods depends on the method itself we will
discuss in chapter 5 how the different methods work and how in each case the learning of
a classification or regression problem is done. What is nearly independent of the learning
method is the performance evaluation.

As discussed in the last section, overtraining may lead to a very good performance
on the training set but to a very bad performance on the test set. This means that the
training set should never be used for the measurement of the true performance (on new
events). But there exist methods by which the whole dataset can be used for training AND
evaluation in very specific ways.

Three different methods are commonly used to estimate the performance:



56 3. Statistical Learning for Physics Experiments

• Bootstrapping creates k different training sets of the same size as the original training
set by drawing with replacement from the original training set. In the limit of
infinitely large training sets each of the k new sets consists of about 63% of the
events in the original set, the rest are replications (compare the Bagging procedure
in section 5.5.2). The learning method is then trained for each of the k newly created
training sets resulting in k slightly different classifiers2. Each of the training events
can now be used to evaluate the performance by processing it with exactly those l
classifiers for which it did not appear in the training set. The output for each event
is thus an average over the outputs of l classifiers. This average output is unbiased
since each event is only processed with those l of the k classifiers for which it did
not appear in the training set. Since averages over many training results are used
bootstrapping tends to overestimate the performance.

• Cross-Validation splits the training set into k subsets (the case where k equals the
number of training events is called Leave-One-Out). k different training sets are then
created by leaving out each part once and the learning method is trained k times
resulting in k slightly different classifiers. Each of the training events can now be
used to evaluate the performance by processing it with that classifier for which it did
not appear in the training set. This output is taken to measure the performance.

• Train-Test was already presented as a way to discover overtraining. About half of the
events are separated from the training set, never presented to the learning method
and only used to measure the performance independently. Since the test set blocks
about 50% of the available events from being used in the training this method tends
to underestimate the performance compared to a training which could use the whole
dataset.

The problematic point about bootstrapping and cross-validation is that they do not give
a performance estimate of a specific trained classifier or regression method but about the
general behaviour of the learning method (using many different trainings). If we want to
measure the performance of a specific training result the train-(selection)-test procedure
has to be used which will be done throughout this thesis3.

All that is needed to measure the performance is the output of the learning method for
all examples of the test set. From this the performance can be determined depending on
the type of application.

3.12.1 Performance Evaluation for Classification

For the performance evaluation of a classifier, histograms of the output distributions for
signal and background form the basis (compare figure 3.14). If the weights are not all
equal the events are filled with their associated weights into the histograms. Well designed
classification methods do not only give outputs 0 or 1 (representing the guess for the class
an event belongs to). But they give continuous values in the interval [0, 1] which could be
interpreted as a probability. A value of 0.5 then means that this event could be either class
with almost the same probability.

2When we speak in this section about a classifier it can as well be a regression model.
3Concerning the difference of comparing learning methods vs. comparing specific hypotheses see also

the discussion in section 3.15
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Example: Output Histograms
Figure 3.14 shows an example of output distributions for signal and background. The

output for the signal class should peak at 1 while the output for the background class

should peak at 0. However, one notices that for a typical dataset from physics analysis

there are background events which look almost exactly like signal events (their output

is around 1) and there are also signal events which look like background (their output

is around 0).
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Figure 3.14: An example of output distributions for signal and background on a logarithmic
scale.

The great advantage of a continuous output between 0 and 1 shows up when a cut
is defined to do the actual classification. The signal efficiency ε is then given by the
percentage of recognised (output>cut) “good” events and the background rejection r is
given by the percentage of recognised (output<cut) “bad” events. If the outputs are either
0 or 1 the classifier can only be used in one single way.

If the output is distributed in [0, 1] any cut in between defines its own efficiency and
rejection. All signal events with an output above the cut and all background events with an
output below the cut are correctly classified. Naturally the graph in the efficiency/rejection
plane which results from choosing different cut values starts with no rejection and 100%
efficiency for cut = 0 and ends at 100% rejection and no efficiency for cut = 1 (compare
figure 3.15). Random guessing or pre-scaling would mean that in between ε + r = 1, a
straight line between the two endpoints (see figure 3.15). Good classifiers try to reach the
upper right corner with full efficiency and full rejection.

The free choice of the efficiency/rejection pair makes it also easy to account for weights
per class or cost matrices, i.e. the relative weighting of an accepted background event to
a rejected signal event. While weights per event are respected as mentioned above, the
costs for misclassifying signal as background and vice versa are respected by choosing an
appropriate pair of efficiency and rejection4.

4Simple algorithms which return only either 0 or 1 have to incorporate these cost matrices in advance
because they fix efficiency and rejection by their output.
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Example: Efficiency vs. Rejection Graph
Choosing a cut in the output distributions of figure 3.14 results in the efficiency vs.

rejection graph shown in figure 3.15. Because of the tails in both output distributions

the optimal point of 100% efficiency and 100% rejection cannot be reached. This is the

typical case in datasets from physics experiments as they are usually not completely

separable: The signal and background classes overlap. Nevertheless, with only a loss

of 3% efficiency a rejection of 80% is achieved in the example. The corresponding

cut in the output distributions has a value of 0.23. The separation power of 4.9 is

calculated as the quotient of signal and background efficiency (SP = ε
1−r

).
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Figure 3.15: The efficiency vs. rejection graph which results from the output distributions
shown above – at the marked point an efficiency of 97% is achieved with a cut at 0.23 and
results in a background rejection of 80%. The separation power is 4.9.

To finally evaluate a classifier or to compare different classifiers among each other the
curves may be compared as a whole or, depending on the application, the most interesting
numbers may be extracted like

• the minimum percentage of misclassifications: min(1 − ε+ 1 − r)

• the efficiency at a rejection of a predefined percentage

• the rejection at an efficiency of a predefined percentage

Furthermore the separation power as defined above can be used to compare classifiers,
where usually a minimum efficiency is required. Each of these criterions fixes a specific cut
and sets thus a “working point” for the classifier.

The performance of a classifier might also be measured with a more complicated analysis
involving pseudo experiments or calculating a significance. These methods choose a cut by
taking into account the signal over background ratio as well as the efficiency itself which
scales the significance with

√

Nsel. This is the statistical uncertainty of the number of

selected signal events (which passed the cut).



3.13 Calculation of Uncertainties for Statistical Learning Methods 59

Example: Different Demands to Classifiers
For the H1 Neural Network Trigger (see section 2.1) usually a certain rate reduction is
required. The efficiency for a rate reduction of, for example, a factor 20 is determined
by a rejection of 95%.

For other applications like for the rejection of pileups in a pixel-detector (see sec-

tion 2.5) a very high efficiency may be important. Then the rejection with, for

example, 99% efficiency is taken as the value to measure the performance.

3.12.2 Performance Evaluation for Regression

To evaluate the solution to a regression problem, different loss functions can be defined
which sum up the differences between target value yi and actual output out(~xi) for all
examples in the test set.

The most commonly used one is the squared error loss function which can sum up
absolute or relative errors:

E2
abs =

1

N

N
∑

i=1

(out(~xi) − yi)
2 E2

rel =
1

N

N
∑

i=1

(

out(~xi) − yi

yi

)2

(3.2)

If the weights are not all equal the squared errors should be weighted by the weight of the
event and a normalisation factor 1/

∑

wi may be needed.
To visualise the performance, a correlation plot between target y and output out(~x)

is helpful (figure 3.16 left) as well as a plot of the absolute or relative error distributions

(out(~x)−y or out(~x)−y

y
) in different bins of the target value y (figure 3.16 right). To obtain a

total error per bin from these distributions one has to add up the squared mean (offset/bias)
and the variance5 (〈X〉 denotes the mean value of X):

E2
abs = 〈out(~x) − y〉2 + Var (out(~x) − y)

= 〈out(~x) − y〉2 + 〈(out(~x) − y)2〉 − 〈out(~x) − y〉2
= 〈(out(~x) − y)2〉

=
1

N

N
∑

i=1

(out(~xi) − yi)
2 (3.3)

which matches the first error definition. Often these total errors per bin in the target value
y are used as a measure of the performance of the statistical learning method.

3.13 Calculation of Uncertainties for Statistical Learn-

ing Methods

How to calculate uncertainties for statistical learning methods is a very important subject
for physics analysis. Therefore this question is very frequently posed by physicists who
would like to apply this kind of methods but are unsure whether uncertainties can be
obtained in a physically correct and uncomplicated way. Unfortunately a broad confusion

5The term Var is used here for the biased estimate of the variance. For N ¿ 1000 the unbiased estimate
Var(X) = 1

N−1

∑

N

i=1
(Xi − 〈X〉)2 should be used.
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Figure 3.16: For 20 bins of the target y ∈ [0, 1]: Left the correlation between output and
target is shown while right the crosses show the mean and variance of the error out(~x)− y.
The bold line shows the total error (squared mean and variance added).

about this subject has led to a general fear that with the application of such methods
uncertainties are no more under control.

It is important to note that there are very clear straightforward methods to calculate
both statistical and systematic uncertainties for any statistical learning method.

3.13.1 Statistical Uncertainties

In this section different methods to calculate the statistical uncertainty of an efficiency (and
in the same way of a rejection) will be reviewed and compared. For a small number of events
in the test set as well as for very high or very low efficiencies the different methods might
give different results while they should agree for large statistics and medium efficiency.

A very rough guess for the statistical uncertainty of the efficiency could be derived from
the counting error of the total number of events. The absolute uncertainty of the number
of selected events would then be

√
N where N is the number of signal events for efficiency

and the number of background events for rejection. This formula is very conservative
and naturally shows a problematic behaviour for high or low efficiencies since then the 1σ
interval may include efficiencies below 0% or above 100%.

1. A typical basis to calculate the uncertainty of the efficiency is to study the propaga-
tion of the counting errors for the numbers of events which pass or do not pass the
selection. This propagation is described by

σ2
ε =

∑

(

∂ε

∂xi

)2

σ2
xi

(3.4)

where the efficiency ε depends on quantities xi which have to be independent. Since
the efficiency is the percentage of selected events

ε =
Nsel

Nsel +Ncut

(3.5)
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its uncertainty can be calculated by plugging in the counting uncertainties of the
independent numbers of cut and selected (passed) events

σ2
ε =

(

∂ε

∂Nsel

)2

σ2
Nsel

+

(

∂ε

∂Ncut

)2

σ2
Ncut

=

(

Ncut

(Nsel +Ncut)2

)2

Nsel +

(

−Nsel

(Nsel +Ncut)2

)2

Ncut

=
NselNcut

(Nsel +Ncut)3
. (3.6)

A formula for the same problem taking into account weighted events can be found,
for example, in [41].

2. The efficiency and its uncertainty can also be derived from its probability density
given the number of selected and total events. The binomial distribution describes
the probability that a certain number Nsel of totally Ntot events are selected, given a
fixed efficiency (for each event):

P (Nsel|Ntot, ε) =

(

Ntot

Nsel

)

εNsel(1 − ε)Ncut . (3.7)

The probability for the number of selected events given the efficiency P (Nsel|Ntot, ε) is
thus known. But we ask for the probability of a certain efficiency given the number
of selected events P (ε|Nsel, Ntot). Bayes theorem transforms the first probability
distribution into the second if we know the prior probability for the efficiencies. Due
to ignorance we choose a flat distribution:

f(ε)dε = dε. (3.8)

Bayes theorem then gives

f(ε|Nsel, Ntot)dε =
P (Nsel|Ntot, ε)f(ε)dε

∫ 1
0 P (Nsel|Ntot, ε′)f(ε′)dε′

=
εNsel(1 − ε)Ncut

∫ 1
0 ε

′Nsel(1 − ε′)Ncutdε′
dε. (3.9)

The integral in the denominator can be calculated by successive partial integra-
tions [42]. We obtain

f(ε|Nsel, Ntot)dε =
(Ntot + 1)!

Nsel!Ncut!
εNsel(1 − ε)Ncut . (3.10)

The expectation value of this probability density is an estimation of the true efficiency,
its variance is an estimation of the variance of the efficiency:

εest =
Nsel + 1

Ntot + 2
(3.11)

σ2
est = εest

(

Nsel + 2

Ntot + 3
− εest

)

. (3.12)

This estimate of the efficiency is biased towards medium efficiencies due to the prior
assumption (flat prior probability for the efficiencies). For large Ntot and Nsel the bias
vanishes and also the variance becomes identical to the result of the first method.
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3. A third method to estimate the uncertainty of the efficiency is to use statistical tests
to derive a 68% confidence interval. Such tests are based on the binomial distribution.
To determine the lower bound of the confidence interval we look for an ε0 which is
just too low to generate Nsel from Ntot. We therefore have to decide for a given ε0
between two hypotheses H0 and H1:

H0 : ε ≥ ε0 vs. H1 : ε < ε0. (3.13)

H0 has to be rejected if the probability for a lower number of selected events (than
actually found) is too high:

Nsel−1
∑

k=0

B(k,Ntot, ε0) =
Nsel−1
∑

k=0

(

Ntot

k

)

εk0(1 − ε0)
Ntot−k > 16%. (3.14)

For the upper bound of the confidence interval H0 reads ε ≤ ε0 and has to be rejected
if the integral of the binomial distribution from Nsel + 1 upwards given ε0 is greater
than 16%. The 16% confidence levels are the remaining integrals left and right of
the 68% (1σ) confidence interval. A binary search in ε0 determines the values for the
lower and upper boundary of the confidence interval at which the acceptance of H0

changes into its rejection. This is the only method allowing to calculate asymmetric
uncertainties.

Figure 3.17 gives an impression of how the three different methods to estimate the
statistical uncertainty of the efficiency behave. For the third method the mean value of σup

and σdown is plotted. The unification of the three methods for high Ntot is clearly visible,
the third method tends to give lower uncertainties for low statistics, the first two methods
behave very similar, they even change their places between 70% and 90% efficiency. We
will use the first method for all evaluations done in chapter 7.
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Figure 3.17: Comparison of the three estimates for the statistical uncertainty, shown are the
absolute uncertainties of the efficiency (in %) for different numbers of events and different
efficiencies.

For a regression problem it was shown in section 3.12.2 that the squared error loss
function can be decomposed into offset and variance of which the uncertainties can be
estimated. Defining the error per event X = out(~x) − y we get an estimate of the mean
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µ = 〈X〉 and an estimate of the variance S2 = 1
n−1

∑N
i=1 (Xi − µ)2. The uncertainties of

mean and variance are given by their variances

Var(µ) =
S2

N
(3.15)

Var
(

S2
)

=
1

N

(

µ4 −
N − 3

N − 1
S4
)

(3.16)

where µ4 is the fourth moment

µ4 = 〈(X − µ)4〉 = 〈X4〉 − 4µ〈X3〉 + 6µ2〈X2〉 − 3µ4. (3.17)

The uncertainty of the squared error loss function is then calculated by summing up the
uncertainties of mean and variance:

Var(E2
abs) = Var

(

µ2
)

+ Var
(

S2
)

(3.18)

≈ 4µ2Var (µ) + 2Var2 (µ) + Var
(

S2
)

. (3.19)

The last approximation was derived with simulations. It transforms the variance of the
squared mean into the variance of the mean which is known.

Example: Statistical Uncertainties
Assuming we determine efficiency and rejection of a trained classifier with a test set

of (only) 300 examples – 100 signal and 200 background events. If 80 of the 100

signal events pass the cut and 180 of the 200 background events are rejected by the

cut then the efficiency is (80±4.0)% and the rejection is (90±2.1)% (first method

used).

3.13.2 Systematic Uncertainties

Unfortunately the opinion that statistical learning methods have an uncertainty in them-
selves which needs to be added somehow to the total uncertainty is met quite frequently.
There exist ideas like varying the behaviour of a classifier by small amounts and observing
the variation of the outputs (e.g. by varying the weights of a neural network). But what
will that tell us? This only tells us that indeed the output of a classifier depends on the
values which represent the learned hypothesis.

An simple way to derive the true systematic uncertainties is to think of a trained
classifier which solves a classification problem by applying a cut in its output distribution.
That is all it is. Like any well known one-dimensional cut this multidimensional cut does
nothing else but propagate the systematic uncertainties of its inputs to the output. There
is no uncertainty from the classifier itself (a cut has no uncertainty). There is also no
uncertainty from the learning procedure since we want to evaluate only the classifier we
obtained. The question whether a training with different parameters would have resulted
in a different classifier has nothing to do with the systematic uncertainties of the classifier
we obtained. Again: We have a fixed classifier with a fixed cut in the output distribution
and all we have to calculate is the propagation of the systematic uncertainties of the inputs.

For one-dimensional cuts this propagation is often simulated by a variation of the cut.
This is a legal procedure but only in exactly this one-dimensional case. Let us assume that
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a quantity z has an uncertainty δz and a cut z < c is applied. Varying the cut by δz is
legal because this variation is identical to the variation of all events according to δz.

For statistical learning methods we cut in the output distribution which depends on
all inputs simultaneously. We have no information about any uncertainty there but what
we do know are the uncertainties of the inputs. To calculate the propagation of these
uncertainties several modified test sets have to be created for which the input quantities
are varied according to their own uncertainty. These modified test sets are passed through
the statistical learning method without any changes in the method itself, also the cut stays
the same. The resulting output distributions changed according to the uncertainties of the
inputs. The same cut as before will result in new efficiencies and rejections. Calculating
the variation over the modified test sets finally results in an estimate of the systematic
uncertainty which corresponds to the propagated uncertainties of the inputs.

The systematic uncertainties of the inputs can for example be due to an energy calibra-
tion which is varying over time, a varying noise contribution, a detector efficiency which is
degrading over time or a movement of parts of the detector. Systematic uncertainties are
generally found as any variation which may appear after the training set has been fixed
and which affects the performance on future events by changing the inputs (or underlying
quantities from which the inputs are derived) systematically in one direction (which may
vary over time).

The following procedure assumes that the inputs are independent so that the variations
can be added up in quadrature. One could also imagine that two or more of the inputs
are correlated because they depend on a set of underlying quantities. Then the correct
procedure would be to vary these underlying quantities according to their uncertainties
and using their propagation over the actual inputs finally to the output of the statistical
learning method.

Example: Systematic Uncertainties
Figure 3.18 shows how an original test set showing an efficiency of 80% and a rejection
of 90% is modified six times, with a variation upwards and downwards for each of the
three inputs. The known systematic uncertainties may, for example, be the following:
x1 has a Gaussian error distribution with an absolute sigma of σ1 = 0.1, x2 and x3

have relative errors of σ2

x2
= 5% and σ3

x3
= 10%.

The usual way to create the modified test sets is that exactly two sets are created
per input (for every 1σ variation, up and down). In our example we would have
six modified test sets: Starting with a set in which in every event x1 is replaced by
x1 + 0.1 and ending with a set in which in every event x3 is replaced by 0.9 · x3. The
individual inputs are here assumed to be independent, the six differences in efficiency
and rejection (modified vs. original) can thus be added in quadrature. This is done
by adding up the squared differences in positive direction on the one hand and all
squared differences in negative direction on the other hand. This procedure covers
the case that sometimes both modification directions for the same input lead to a
change (of efficiency or rejection) into the same direction6.

As can be seen in figure 3.18 the same classifier and the same cut as for the original

test set are used for all the modified sets. The variation of the efficiency is shown as

6One can understand this effect if one thinks of a Gaussian input distribution for signal events from
which the centre part, say [µ− σ, µ + σ], is selected by the learning method. Any shift in this distribution
will result in a loss of efficiency.
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80+5
−6% and the rejection varied like 90+2

−2%. These are the systematic uncertainties

of efficiency and rejection which were propagated from the input quantities through

the statistical learning method.

Figure 3.18: An example how to calcu-
late the systematic uncertainties of effi-
ciency and rejection by processing test
sets which have been modified accord-
ing to the systematic uncertainties of
the inputs.

For regression the principle is exactly the same. There the variation of the test set
according to the input uncertainties results in different values, for example, for the squared
error function. The visualisation would be identical to the classification case shown in
figure 3.18 with the exception of the error measure. Here the squared error as defined
above is calculated for the original and for the modified test sets. The variations up and
down are added up and lead to the final systematic uncertainty of the squared error.

3.14 Data Mining

Often the solution to the classification or regression problem itself is not the only goal. But
physicists typically want to learn more about their datasets. Mining in a dataset means
finding out more about the properties of its multidimensional distribution. Of course
designated algorithms exist for this purpose [43, 44, 45] but already training statistical
learning methods as discussed so far can reveal insights into the structure of the data.

Statistical learning methods can, for example, be used to derive the relevance of each
input that is used for the classification or regression. A standard definition of the relevance
of input xr is

R(xr)
2 =

1

N

N
∑

i=1

(

out(. . . , xr−1, xr, xr+1, . . .) − out(. . . , xr−1, xr, xr+1, . . .)
)2

(3.20)

where xr = 1
N

∑N
i=1 xr is the mean value of xr for the whole test set. This relevance is no

absolute number but can be compared among all inputs giving the highest values for those
inputs on whose variation the output depends most.

Example: Relevance in a Toy Dataset
Figure 3.19 shows a toy dataset for which a classifier is trained. The calculated

relevances R(x1) = 0.41 and R(x2) = 0.14 reflect the fact that a cut in x1 could

obviously separate the two Gaussian distributions much better than a cut in x2.

For classification problems with more than two classes statistical learning methods can
also give hints about the multi-class-proximities which are involved. A simple procedure to
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Figure 3.19: A toy dataset where both
signal and background follow a simple
two-dimensional Gaussian distribution.

measure the multi-class-proximities could train a statistical learning method for all pairs
of classes and take the percentage of misclassifications as a measure for the proximity of
each pair of classes.

Example: Proximity in a Toy Dataset
A simple two-dimensional dataset with three classes is shown in figure 3.20. The

three combinations of “one vs. one” are used to train three classifiers. The minimum

number of misclassifications are: • vs. ◦ 28%, ◦ vs. × 44%, • vs. × 10%. They are

well in agreement with the intuitive guess from figure 3.20.
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Figure 3.20: A toy dataset with three classes.

Outliers can also be detected easily with statistical learning methods that are imple-
mented as local density estimators which will be discussed in section 5.3. Outliers are
characterised by a far-beyond-average distance to the next few neighbours. As the name
says, local density estimators know about the density of training examples in the vicinity
of any position and can easily warn about outliers that do not resemble any training point.

Example: Outliers Identified by 2-Nearest-Neighbour-Search
The two outliers (•) in figure 3.21 have much larger distances to their two nearest

examples from the training set (◦) – around 5 units whereas a typical neighbourhood

is around 2 units apart – and are thus easily identified during the classification or

regression process.
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Figure 3.21: The two outliers (•) are
easily identified by their large distance
to the nearest training points (◦) in this
simple two-dimensional example.

3.15 Comparison of Statistical Learning Methods

The multitude of statistical learning methods motivates a competition among the differ-
ent methods and, of course, between statistical learning methods and those algorithms
which try to solve a given problem by using prior knowledge (compare the discussion in
section 3.9).

There exist, however, several hurdles on the way to a valid and meaningful comparison:

• First one has to face the theorem [46] that all learning methods are equal in the
sense that – given no prior information about the multidimensional probability dis-
tributions involved in the problem – any method is as good as random guessing on
average if the error is measured for all possible events which are not in the training
set. This means that averaging uniformly over all possible probability distributions
(and really all since no prior information was given) makes any bias (the preference
for a certain distribution) useless.

This theorem appears as part of the “no free lunch” theorems in the literature and
will be further discussed in section 4.5. From these theorems the claim to omit useless
comparisons of statistical learning methods was derived. For our situation a simple
argument banishes these theoretical constructs: We know that there is a very special
prior which restricts the probability distributions we may face. This results from
the fact that our datasets come from physics experiments (and not from random
distributions).

The interesting question which is perfectly valid to pose is which bias and there-
fore which learning method is the best one for these datasets coming from physics
experiments.

• Once several classifiers (or regression methods) have been trained and their perfor-
mances on the test set have been measured, it is not enough to simply state which
one performs best. If one wants to claim that a certain method is better than all
others, a decent statistical test must be applied.

• The alpha error of such a statistical test limits the probability that the claim of a
discovery of a better performing method is wrong. Typically 95% confidence intervals
are constructed which means that the alpha error is restricted to 5%. The problem
in this context is that usually many different methods have to be compared which
results in the most general case in n(n−1)

2
tests for n methods. Then the comparison-

wise alpha error may be restricted to 5%, but the experiment-wise alpha error may



68 3. Statistical Learning for Physics Experiments

be much larger due to the many comparisons. If, for example, one test with a
95% confidence interval is replaced by two independent tests with 95% confidence
intervals each, then the total alpha error for the two tests is no longer 5% but 9.75%
since 0.95 · 0.95 = 0.9025 (probabilities can be multiplied under the assumption of
independent tests).

In the next sections the statistical test for comparing hypotheses will be introduced
and will then be generalised to allow the comparison of learning methods.

3.15.1 Comparing Hypotheses

The first step towards a comparison of learning methods is the comparison of hypotheses.
We assume that two or more hypotheses are given (usually as the results of different
learning methods) in the form of a list of output values for all events of the test set. The
test set is partitioned into k disjoint sets each of which has at least around 30 events7.

Feelders [47] suggests to construct 95% confidence intervals for the difference of the
mean performances ∆µ. If the confidence interval does not contain zero we have found a
significant difference between two hypotheses. The statistical test on which the calculation
of the confidence interval is based is the t-test [48]. By comparing the errors of two
hypotheses for each of the k parts of the test set we collect statistics (usually the differences
in the number of misclassifications for classification, and the differences of errors (out1(~x)−
y)2 − (out2(~x) − y)2 for regression) and the t-test decides whether to reject H0 : ∆µ = 0
on the basis of the mean difference ∆µ and its standard deviation σ∆µ

8.
To limit the experiment-wise alpha error Dunn [49] suggests to reduce the comparison-

wise alpha error which makes the tests less powerful but the experiment-wise alpha error
is then kept to, for example, 5% in total. Table 3.1 shows a list of z-values which construct
a 95% confidence interval [∆µ− zσ∆µ,∆µ+ zσ∆µ] for a given number of means that have
to be compared (number of learning methods). The values in the table are based on the

conservative assumption that really all n(n−1)
2

tests are done.

n 3 4 5 6 7 8 9 10 11 12 13 14 15
z 2.39 2.64 2.81 2.94 3.04 3.14 3.20 3.26 3.32 3.37 3.41 3.45 3.49

Table 3.1: For a given number n of means (methods) which have to be compared, the
shown z-value constructs 95% confidence intervals [∆µ− zσ∆µ,∆µ+ zσ∆µ].

Example: Comparing Three Hypotheses on a Toy Example
Let us assume that all three hypotheses A, B and C are combined with an appropriate

cut so that they all give the same efficiency of 90%. Now we compare the performance

on the ten background examples of the test set which is shown in table 3.2. Because of

the low number of events this toy example violates the rule that each part of the test

7This is the typical number of events given in statistics books, which is sufficient to replace the binomial
distribution by the approximated gaussian distribution.

8The variance obtained from the distribution accounts for statistical uncertainties. Systematic uncer-
tainties may be added in quadrature. However, this only makes sense if the performance of the different
hypotheses should be compared among different systematic settings (it just makes the test less powerful).
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set should contain at least 30 events – here we divide the test set into ten parts, one

event per part. A plus sign means that the classification as background is correct. For

the comparison one obtains −1 if hypothesis one was wrong and hypothesis two not, 0

if both came to the same result, +1 if hypothesis one was correct and hypothesis two

not. The confidence intervals show clearly that A is statistically significantly superior

to B and C (intervals above 0). Though B is a bit better than C this difference is

not significant (interval contains 0).

i A B C A vs. B B vs. C A vs. C
1 + + - 0 +1 +1
2 + - - +1 0 +1
3 + + - 0 +1 +1
4 + - + +1 -1 0
5 + - - +1 0 +1
6 + + - 0 +1 +1
7 + - - +1 0 +1
8 + - + +1 -1 0
9 + - + +1 -1 0

10 + + - 0 +1 +1
∆µ +0.60 +0.10 +0.70
σ∆µ 0.15 0.26 0.14

95% CI [+0.24,+0.96] [-0.52,+0.72] [+0.37,+1.03]

Table 3.2: Example for the comparison of three hypotheses.

3.15.2 Comparing Learning Methods

After clarifying the procedure of the comparison of several hypotheses, it is important to
note that the comparison of learning methods goes one step further. Here we must take
into account that the construction of a hypothesis depends on the training examples. These
examples are randomly sampled from some underlying probability distribution. Therefore
the same strategy as above is applied but now the t-test is applied to mean and variance
which result from different training sets.

In section 3.12 we already discussed k-fold cross-validation. We apply k-fold cross-
validation to each of the learning methods which should be compared. For each learning
method we thus create k different training sets and measure the errors of the resulting k
hypotheses on their k test sets. These k values are used to calculate the mean performance
and the variance for each learning method. The differences of the means of the different
learning methods are then compared just like above.
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Chapter 4

Statistical Learning Theory

In this chapter an overview of the theory of statistical learning is given. We will review the
basics of three frameworks in which probability theory is used to derive theorems about the
performance of specific classes of learning algorithms. In section 4.6 the possible application
of these theorems to the learning methods discussed in chapter 5 will be analysed. Although
some parts of this chapter may fit to the problem of regression, classification with two
classes is the basis of the whole chapter. Overviews of statistical learning theory covering
at least parts of the frameworks presented here can be found, for example, in [31, 38, 46,
50, 51, 52].

The key question in the following discussion will be in which way a small training error
can guarantee a small true error if certain conditions apply to the learning method. Recall
the problem of overtraining (section 3.11) and consider the two following scenarios: On the
one hand, the learning method may have a very large hypotheses space from which it can
choose a hypothesis that fits the training data very well. On the other hand, the learning
method may have a small hypotheses space from which it can choose only a hypothesis
that fits the training data fairly well. The basic assumption is now that in the latter
case the true error is more likely to be as low as the training error (see section 4.5 for a
criticism of this assumption). The frameworks presented in this chapter try to quantify
this relationship between training error and true error without using an estimate from a
test set.

The first section 4.1 will start with some basic comments about how the error of a
learning method is usually measured within theoretically oriented frameworks. Section 4.2
will give a short introduction to the Bayesian framework, section 4.3 continues with the
PAC framework and section 4.4 concludes with the VC-framework. A general criticism
of the concepts behind these frameworks will be discussed in section 4.5. Afterwards
the possible applications of theoretical results to learning methods will be investigated in
section 4.6.

4.1 Error Measurement

As discussed in chapter 3, the difference between the performance (often the terms error
or risk are used) on the training and on the test set is very important. The test error was
important in chapter 3 as an estimation of the true error. In this chapter, however, we
want to derive bounds for the true error directly from the training error and the properties
of the learning algorithm. Therefore the test error will not be used here.
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We will call the training set T (|T | = n). All elements x ∈ T are drawn independently
identically distributed (IID), which describes the normal sampling from one underlying
probability distribution Px in some vector space X.

We define the training error as

ET (h) =
1

n

∑

x∈T

L
(

h(x), y(x)
)

(4.1)

where the general loss-function L measures the difference between hypothesis h (output of
the learning method) and target function y. Different loss functions are discussed below.

For the true error we need to sum (or even integrate1) over all x that could be drawn
(IID) according to the probability distribution Px:

EP (h) =
∑

x∈X

L
(

h(x), y(x)
)

Px(x). (4.2)

The index P reminds us that the true error is measured according to the probability
distribution of x.

Different loss functions lead of course to different performance measurements. But the
choice of the loss function is also essential for the theoretical framework. A very common
loss function that was already used in section 3.12 is the quadratic difference. Also the
absolute error is a typical choice:

L(h, y) =

{

(h− y)2

|h− y| . (4.3)

A nice property of the squared error loss function is the possibility to decompose it into
two components: bias and variance2. Assuming that the target function y results from a
noisy readout of a function f : y(x) = f(x) + ε, where the noise ε has expectation E[ε] = 0,
we can write for any position x0 (with h = h(x0), f = f(x0) and y = y(x0)):

E
[(

h− y
)2]

= E
[(

h− f + ε
)2]

= E
[

h2 + f 2 + ε2 − 2hf
]

= E
[

h2
]

+ E
[

f 2
]

− 2E
[

hf
]

+ E
[

ε2
]

= E
[

h
]2

+ f 2 − 2E
[

hf
]

+ E
[

h2
]

− E
[

h
]2

+ Var(ε)

=
(

E
[

h
]

− f
)2

+ E
[(

h− E[h]
)2]

+ Var(ε). (4.4)

The first term is the square of the bias. The bias measures the distance of the average
hypothesis (averaged over all possible samplings from Px, i.e. over all training sets) to
the true function. The second term is the variance of the hypotheses around their mean.
The third term is the variance that results from the noise that is inherent to y – and thus
irreducible.

1Since no input quantity is really continuous but is probably digitised with a fixed precision one can
argue that the input space X is countable and even finite.

2A similar decomposition was shown in section 3.12.2 by using a squared error function to evaluate the
performance of a regression model.
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The problem of overtraining and regularisation can be interpreted directly in terms
of bias and variance: Low bias and high variance mean usually a very complex hypothe-
ses space and potentially overtraining while high bias and low variance signify a small
hypotheses space with low possibility of overtraining.

The loss function which will be (implicitly) used in the next three sections – the theo-
retical frameworks depend on it – is the 0-1 loss

L(h, y) = I(h 6= y) = 1 − δ(h− y) (4.5)

which is designed for classification with two classes: It equals 0 if h and y agree, 1 if not.

4.2 Bayesian Learning

As an introduction towards hypotheses spaces and probabilities we have a look at Bayesian
learning [53, 54, 55]. Bayesian learning is founded on the conditional probabilities linking
evidence (data) and hypotheses. Given a finite hypotheses space H = {h1, h2, . . . , hn}
Bayesian learning selects an optimal combination of these hypotheses by applying Bayes
theorem:

P (hi|T ) =
P (T |hi)P (hi)

P (T )
. (4.6)

The probability of hypothesis hi given the training data T will then be used in the con-
struction of the optimal hypothesis. This probability consists of

• the likelihood P (T |hi) which can be measured,

• the hypotheses prior P (hi) which reflects the assumed probability of each hypothesis
without taking into account any measurement,

• the inaccessible probability P (T ) with which the training data was sampled from
the underlying distribution (but this factor is the same for each hi and can thus be
neglected).

The training events are believed to be independently identically distributed. The prob-
ability of the whole training set given a specific hypothesis can then be decomposed into a
product over all training events x ∈ T :

P (T |hi) =
∏

j

P (xj|hi) (4.7)

Bayesian learning selects a combination of all hypotheses taking into account their
probabilities given the observed data. Bayesian learning selects therefore

h = {x 7→ arg miny

∑

i

L(hi(x), y)P (hi|T )} (4.8)

as the optimal hypothesis which means that for any x a value of y should be chosen which
minimises the average loss, where the average is over all hi according to their posterior
probabilities P (hi|T ). It is important to note that the prior P (hi) is needed here, some
kind of assumption must be made.
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One simplification is very common: MAP (maximum a posteriori) learning means that
not a combination of hypotheses is chosen but the one hypothesis that fits the training
data (a posteriori) best (maximum) is selected:

hMAP = arg maxhi
P (hi|T ) = arg maxhi

∏

j

P (xj|hi)P (hi) (4.9)

4.3 PAC Learning (Probably Approximately Correct)

For PAC Learning [56, 57, 58, 59] we now assume a finite hypotheses space H of boolean
functions (like classification) which includes the target function y. The input space X is
at most countable. The true error of a hypothesis in a classification problem is the sum
over the probabilities of all misclassified events (0-1 loss):

EP (h) =
∑

x∈X

I(h 6= y)Px(x) =
∑

x∈X:h(x)6=y(x)

Px(x). (4.10)

Definition
We say that h is approximately (except for ε) correct if EP (h) < ε, where ε is
the accuracy parameter.

Depending on the training set T which is randomly sampled according to Px, the output of
a learning method may sometimes be approximately correct (given some ε) and sometimes
not.

Definition
We say that the output of a learning method h is probably (except for δ) approx-
imately (except for ε) correct, if it is approximately correct with a probability
greater than 1 − δ, where δ is the confidence parameter.

The goal is now to assure that under certain conditions the output of a learning method
is probably approximately correct which means that we need to connect the error on the
training set (whether h and y match on these points) with the true error (whether h and
y match on points drawn according to Px).

We start by regarding the errors per event δ(h(x)−y(x)) ∈ {0, 1} for x ∈ T as Bernoulli
random variables Xi which have the same expectation p = EP . The following theorem
limits the tail of the binomial distribution that results from the n Bernoulli experiments:

Theorem (Chernoff/Hoeffding) [60]
Let {Xi} be independent Bernoulli random variables each with expectation
p ∈ [0, 1]. Then ∀n

P

(∣

∣

∣

∣

∣

1

n

n
∑

i=1

Xi − p

∣

∣

∣

∣

∣

> ε

)

< 2 exp(−2nε2). (4.11)

This translates for our purpose directly into

P (|ET (h) − EP (h)| > ε) < 2 exp(−2nε2), (4.12)
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and it can also be shown [60] that

P (EP (h) − ET (h) > ε) < exp(−2nε2). (4.13)

Since we want a statement uniformly over h ∈ H we sum up the probabilities that some
h ∈ H has EP (h) − ET (h) > ε:

∑

h∈H

P (EP (h) − ET (h) > ε) ≤ |H| exp(−2nε2). (4.14)

Setting this probability to be at most δ results directly in the following theorem:

Theorem
Let H be any finite set of hypotheses, T be a set of n training examples drawn
independently according to some distribution Px, y be any target function in
H, and ε > 0, δ > 0. Given n ≥ (1/2ε2) (ln |H| + ln(1/δ)) the probability that
EP (h) − ET (h) > ε is at most δ ∀h ∈ H.

This result means that the true error of the hypothesis is probably (except for δ) bounded
by ET + ε if n is sufficiently large (scaled by ε, δ and |H|). If one wants to estimate the
true error from the error on the training set one has to look for the following quantities:
Naturally a large number of training events is desired but most important the hypotheses
space must not be too large.

The hypotheses spaces of the learning methods presented in chapter 5 are not finite
a priori because continuous parameters are used both to steer the training and in the
representation of the classifier. Nevertheless one can argue that the zero-one loss function
and the finite input space imply finite hypotheses spaces independent of the formulation
of the algorithm.

It can already be seen that a not too large hypotheses space points directly to regu-
larisation as discussed in section 3.11: The softer a decision boundary and the coarser the
granularity of a decision region, the closer a learning method comes to the condition of a
small |H|. Again the contradictory demands of precision on the training set (small error
required) and generalisation (no learning by heart) show up.

Theorems going beyond the above one replace, for example, the size of the hypotheses
space |H| by a description length 2|L(h)|. There |L(h)| is the length of the binary string
L(h) describing h in the shortest possible way. This links to the Bayesian formalism
discussed above: Any assumed prior P (hi) induces a certain description language L.

Example: Linearly Separable Functions in a Boolean Vector-
space
The number of linearly separable functions in the vector space X = {0, 1}k is |H| ≤
2k2

, thus n ≥ (1/2ε2)(k2 ln 2+ ln(1/δ)). For dim(X) = k = 50, ε = 0.01 and δ = 0.01

we obtain n ≥ 8.7 · 106 which ensures the PAC learnability.

4.4 The VC-Framework (Vapnik-Chervonenkis)

The starting point of the VC-Framework [61, 62] is the attempt to find a measure for
the complexity of a space of hypotheses even if it is not finite. Also the input space X
may now be continuous. If H is very large (in some still to be defined way) probably any
distribution of n events could be classified in all 2n ways (assigning labels 0 or 1 to each of
the n events).
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Definition
We say that H shatters a given set of n events if functions from H can di-
chotomise the n events in all 2n ways. The VC-Dimension of a hypotheses
space VCdim(H) is defined as the largest number of events n (in arbitrarily
easy configuration) which are shattered by H.

The two important points about the VC-Dimension are that the events may be placed in
arbitrarily easy (for the separation of the two classes) configuration, called general config-
uration. But then there must exist members in H which classify these events according to
any labelling with 0 and 1, which means that H must contain at least these 2n different
hypotheses.

Example: VC Dimensions
The VC-Dimension of separating hyperplanes (a linear decision surface) is VCdim(linear) =
dim(X) + 1. Figure 4.1 shows as an example the case dim(X) = 2 where 3 but not
4 points are shattered by separating lines.

Simple cuts were presented in section 3.7. We now take the more general case of
axis-parallel hyper-rectangles meaning two cuts per input which exclude some outer
region. For this setup one can calculate dim(X) ≤ VCdim(cuts) ≤ 2dim(X).

A classical example that the VC-dimension is not necessarily related to the number

of free parameters is the function sin(αx). Here the input space is one-dimensional

and sin(αx) > 0 predicts class 1 and sin(αx) < 0 predicts class 0. Although this

function has only one free parameter, values for α can be found to dichotomise any

number of points on the real axis.

Figure 4.1: The VC-Dimension of a linear decision in two dimensions is at least 3 because all

23 = 8 dichotomies shown on the left (small boxes) are linearly separable. It is exactly 3 because

no linear decision surface is found for the example with four points on the right where the points

are already in a general position. This example of the inability of linear decision boundaries to

solve simple problems like this XOR-configuration became famous as the Minsky-Papert criticism

on the perceptron (see section 5.4.2).

The following theorem looks much like the result for PAC learning because it has the
same basis. The only difference is now that H is allowed to be infinite, but needs to have
a finite VC-Dimension. The measure of complexity has therefore changed.

Theorem
Let H ⊆ 2X have a finite VC-Dimension d, T be a set of n training examples
drawn independently according to some distribution Px and ε > 0, δ > 0. Given
n ≥ (c/ε) (d+ ln(1/δ)) the probability that |EP (h) − ET (h)| > ε is at most δ
∀h ∈ H where c is a constant.
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Extensions of the VC-framework make use of this result by developing tight bounds
for the VC-Dimensions of certain learning algorithms. A tight upper bound for the VC-
Dimension can be calculated by using the margin of any hypothesis that is put out by
the learning algorithm. The margin is the least distance of training events to the decision
boundary in the separable case (compare the discussion of the support vector algorithm in
section 5.4.3).

4.5 Criticism: No-Free-Lunch Theorems

Wolpert [46] uses an error quantity that is different from the IID true error EP as defined
above. He wants to emphasise the importance of the generalisation property of learning
algorithms and thus restricts the true error to all points of the input space X which are
not in the training set. The off-training-set error is therefore

EO(h) =
∑

x∈X,x 6∈T

L
(

h(x), y(x)
)

Px(x). (4.15)

This definition makes again clear that the theoretical framework is commonly based on a
finite or at least countable input space X, compare the footnote on page 72.

Since the PAC and VC frameworks provide results about the relation between training
error ET and IID true error EP the question arises whether also for off-training-set error
one could provide similar bounds.

No-Free-Lunch Theorem (NFL)
For any two learning algorithms A and B the mean off-training-set errors av-
eraged over all target functions y are exactly the same for any training set T :
EO(hA) = EO(hB).

It is important that the off-training-set errors are averaged over all target functions y.
Since one usually has no a priori information about the target function it seems reasonable
to average over all of them. Intuitively this theorem tells us that the target function may
– theoretically – have any value for all the points which have not been in the training set.
This means further that any guess for these values is as good as random guessing if the
resulting errors are averaged over all target functions. An extreme example is shown in
figure 4.2.

Concerning strategies like “low training error and low VC-dimension gives high prob-
ability for low true error” or even concerning the simple strategies presented in sec-
tion 3.12 like Cross-Validation or Bootstrapping, the No-Free-Lunch theorem states that
these strategies work in as many cases as they fail. The No-Free-Lunch theorem makes
every attempt to have low true error seem useless. To clarify the apparent contradiction
of this theorem and the frameworks presented above we will discuss one particular aspect
for each framework:

• The Bayesian formalism makes use of prior probabilities. The optimality of the
Bayesian approach seems to be questioned by the NFL theorem because its algorithm
to select the optimal hypothesis seems to be just a learning method to which the NFL
theorem applies. But the NFL theorem does not apply because no averaging over
target functions would make sense since the Bayesian formalism makes an assumption
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Figure 4.2: The No-Free-Lunch theorem makes local density estimation seem useless: In this

example the point marked by a cross could be an open or a filled circle with equal probability.

Despite the fact that this position is surrounded by filled circles so that it seems obvious that

the cross is also a filled circle, both possible target functions have to be taken into account with

equal probability since no prior information is given. Such a prior for local density estimators

would favour locally constant target functions.

about the prior probabilities of the target functions as the first step. This makes
clear that any assumption about the prior probabilities of the target function forbids
the application of the NFL theorem. Such kind of priors in the form of favour for
“simple” functions as discussed below in section 4.6.1 are criticised by Wolpert to be
not justified from the probabilistic point of view.

• PAC-Learning (and also the VC-framework) uses IID error and not off-training-
set error. The results that connect the training error with the true error in the
PAC framework rely on the IID definition of the true error. In contrast, for the off-
training-set definition of the true error the NFL theorems apply which means that
the value of the training error and the size of the hypotheses space H cannot give
any hint about the off-training-set error. Again it is important to note that the PAC
framework works with a countable input space which ensures that the rising number
of training events n makes the input space more and more known in terms of covered
probability density Px. Therefore the bound on IID error is naturally connected to
the number of training events. For off-training-set error of course there is no such
connection.

• Understanding the conditional probabilities in the VC framework is important.
This understanding is not directly related to the NFL theorem. Nevertheless it be-
longs to the general criticism of the VC-Framework as it questions the most common
interpretation of the resulting theorem. This interpretation assumes a high proba-
bility guaranteed that, given a certain value for the training error, the true (IID)
error is not too far away. However, Wolpert emphasises that the correct conditional
probabilities imply the following statement (and only this one): Given a fixed value
of the true (IID) error there is a high probability that the training error is not too
far away. This situation does not reflect the application in real life where a training
error is measured and the true error should be estimated. For a conversion of the
conditioned probability P (ET |EP ) into the needed P (EP |ET ) one would use Bayes
theorem. But then the unknown probabilities P (EP ) (which in fact matter) would
be needed (compare the discussion in section 3.13.1).



4.6 Regularisation Schemes 79

4.6 Regularisation Schemes

The Bayesian Framework would result directly in a learning algorithm if prior assumptions
about the target function could be justified. However, this is almost never the case. Both
PAC-Learning and the VC-Framework give bounds for the true error depending on certain
properties of the learning algorithm – either depending on the size of its finite hypotheses
space or on the VC-Dimension of its possibly infinite hypotheses space. We now want
to study different attempts to incorporate these theorems into practice-oriented learning
algorithms.

4.6.1 Occam’s Razor

William of Occam (1285-1349) stated “Pluralitas non est ponenda sine necessitate” (plu-
rality should not be stated without necessity) as a basic principle of logic reasoning. This
principle became a core part of the scientific method but its application has also been
criticised [63].

For our context of statistical learning this principle coincides well with the results from
PAC-Learning and the VC-Framework. While it might be difficult to clarify what on the
one hand complexity (plurality) – or on the other hand simplicity – exactly means, the
theorems discussed above speak more precisely about the size of the hypotheses space or
the VC-dimension.

Still the application to existing learning algorithms is quite difficult. In chapter 5 we
will see that each statistical learning method has some kind of parameter steering the
hypotheses space from which the best hypothesis is learned. In most cases neither the size
(mostly infinite) nor the VC-Dimension of these spaces are controlled directly but merely
some kind of complexity that intuitively agrees well with the reasoning behind Occam’s
razor.

As mentioned in section 3.11, these regularisation parameters are tuned to provide
the optimal balance between accuracy (minimising the training error) and generalisation
(minimising the difference between training and true error): A hypotheses space is needed
that is as complex as needed and as simple as possible.

4.6.2 MDL Principle (Minimum Description Length)

One step further to a specific measure of complexity in existing learning algorithms we
find the attempt to assign a specific description language to its hypotheses space. The de-
scription length was discussed as an extension to PAC-Learning which gives the theoretical
foundation.

A simple derivation of the basic idea of the MDL principle [64] is possible by applying
information theory to Bayes theorem in the form

P (h|T ) =
P (h)P (T |h)

P (T )
. (4.16)

Maximising P (h|T ) (finding the best hypothesis) means therefore maximising P (h)P (T |h)
or log(P (h)) + log(P (T |h)). Information theory assigns as information of an event the
negative logarithm of the probability: I(X) ∝ − log(P (X)). Thus maximising P (h|T )
also means minimising I(h) + I(T |h). This is known as the minimum description length
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principle: The optimal hypothesis is given by the shortest total description length including
both the description of the training data using the hypothesis and the description of the
hypothesis itself. For some learning algorithms certain description languages have been
developed allowing this principle to be used directly in the regularisation process [65].

4.6.3 Structural Risk Minimisation

Structural Risk Minimisation [61] finally is the best example for a direct link between a
theoretical result and its application to a learning algorithm. In fact the respective learning
algorithm was not existing but has been developed on the basis of the VC-Framework: The
support vector machine, discussed in more detail in section 5.4.3.

As mentioned above, extensions of the VC-theorem prove low bounds for the true error
based on large margins. Therefore the support vector machine tries to find the decision
boundary with the maximum margin. Of course this is only well-defined for a separable
problem and, as discussed in section 5.4.3, a parameter has to be introduced for the non-
separable case which steers the balance between maximising the margin and minimising
misclassifications.

Structural Risk Minimisation creates a nested sequence of hypotheses spacesH1 ⊂ H2 ⊂
H3 ⊂ . . . with rising VC-Dimension VCdim(H1) < VCdim(H2) < VCdim(H3) < . . .. The
hypothesis with the lowest true error is found by searching through the hypotheses spaces
in the given order and stopping when the bound for the true error is minimal (Theorem
from page 76):

EP < ET + c

√

d+ ln 1
δ

n
. (4.17)

The true error is bounded by the sum of training error and an additional term called here
“generalisation error” which depends on the VC-dimension. Searching for the lowest true
error thus means that the sum of training error and the additional “generalisation error”
(depending on the VC-Dimension – thus depending on the margin) has to be minimised
(see figure 4.3).

Figure 4.3: Structural Risk Minimisation: The nested sequence of hypotheses spaces allows
searching for the best hypothesis which minimises the sum of training and “generalisation”
error.



Chapter 5

Statistical Learning Methods

Statistical learning methods try to model a functional dependence only by looking at some
examples. This requires some basic assumptions about how this function could look like,
called the bias of the learning method. Each learning method implements its own bias,
the preference for a specific kind of target function, by its internal representation of the
learned hypothesis.

In fact there are two kinds of bias in each learning method: The absolute bias restricts
the hypotheses space to those functions that can be represented by the learning method
and the preference bias represents the wish to find the best hypothesis in a specific part of
the hypotheses space because of regularisation.

The most widely used statistical learning methods can be grouped into three categories
depending on the underlying idea of classification (regression is always done by generalising
classification). The three categories of methods come from different basic classification
concepts:

• Decision trees: Consecutive cuts in different inputs result in an input space which
is divided into small hypercubes reflecting the class distributions. Classification is
done by majority voting inside each hypercube.

• Local density estimators: A small environment around a new event is set and
classification is done by majority voting inside this small environment.

• Methods based on linear separation: A hyperplane is used to divide the input
space into two regions. A new event is classified according to the half space it falls
into.

Based on these simple ideas many different strategies and variants evolved for each
concept and each of these variants itself has different algorithmic implementations. In this
chapter we will discuss the most popular methods in the three categories and restrict to
as few algorithmic details as possible. Some will be given in appendix B.3.

Overviews of frequently used statistical learning methods and their basic concepts can
be found, for example, in [31, 38, 50, 51, 52].

The notations which have been introduced in chapter 3 will be used here: The training
examples consist of input vectors ~xi complemented by the corresponding target value yi.
The output of a learning method for a specific input ~x will be written as out(~x).
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5.1 Model-Based vs. Instance-Based Methods

Statistical Learning Methods can also be distinguished by their model-making behaviour.
Some methods extract information from the training data, build a model and classify a
new event only on the basis of that model without looking at the training data any more.
Others do not build any model but classify a new event by comparing it to all or at least
to a random subset of the training data.

These two different kinds of behaviour directly results in different time and memory
consumptions for training and evaluation.

Model-based methods will usually spend much time on finding the correct model that
fits, but does not over-fit, the training data. The number of parameters in the model is
usually small compared to the amount of training data. Classifying a new event according
to this model is usually fast. All decision trees and methods based on linear separation
work like this.

Instance-based methods have no training time. They need the full training set for each
evaluation of a new event and loop at least over a significant portion of it. Therefore each
evaluation takes long. Most local density estimators work like this.

5.2 Decision Trees

Decision trees and rule-based expert systems are closely related. Both try to apply a
number of queries and finally arrive at a unique solution. Non-continuous attributes (even
not ordinal) play an important role in these systems. But in our context only the decision
rule xi ≤ t vs. xi > t will be used. The binary tree built up by consecutive tests like this
is called a decision tree and the leaves of this tree carry the information about the final
classification that should be made. Figure 5.1 shows an example.

The various decision tree implementations [66, 67, 68] differ mainly in the way how the
tree is built, i.e. how the pair of input xi and cut value t is selected for each node of the
tree. One typical approach [67] is, for example, to define the information of a dataset D
with two classes 0/1 as

Info(D) = −p0(D) · log2

(

p0(D)
)

− p1(D) · log2

(

p1(D)
)

(5.1)

and to compare this with the information after the cut (expectation over the two branches).
Here p0(D) is the fraction of events from class 0 in the set D, while p1(D) is the fraction
of events from class 1. The cut with the largest information gain (difference between
expectation over the two resulting branches and previous information) is selected.

Another approach defines the Gini index [66] as:

Gini(D) = 1 − (p0(D)2 + p1(D)2) (5.2)

where the probabilities are like above approximated by the sampled events which are used
in the training procedure. The Gini Index has its minimum 0 for a pure set of only one
class (best case) and its maximum 0.5 for equal contributions from both classes (worst
case). The cut with the smallest sum of resulting Gini indices is selected.

The basic structure of these algorithms is recursive: The rule which constructs the query
by searching exhaustively through all possible pairs (xi, t) is applied to each terminal node
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Figure 5.1: An example of a decision tree – in two dimensions the hypercubes which result
from the axis-parallel cuts are rectangles. A decision for the event at (9,4) is derived
by following the branches until a leaf is reached. We start at the root node and find
9 = x1 > 3. We follow the branches over 4 = x2 < 7 to 9 = x1 > 8 and end up in a leaf
with the classification as ◦.

(beginning with the root node) until only nodes are left which give a final classification
result and need no further branching1. Whether a node needs further branching may for
example be defined by the purity of the remaining event sample or by the number of
remaining events.

The output for a new event is found by descending in the tree structure until a leaf is
reached. The leaves of the tree contain the final output associated with the corresponding
slice of input space (see figure 5.1).

Regression

The generalisation from classification to regression is done by replacing the binary infor-
mation in the leaves by an appropriate value (e.g. the mean target value of the remaining
events) and by defining a new rule how to select the pair of input and cut for each node,
for example by minimising the sum of the two variances after the cut.

Parameters and Regularisation

Parameters for decision trees usually control the stopping behaviour of the splitting al-
gorithm. As mentioned above a minimum number of events sets a stopping condition
(in addition to the obvious conditions of a pure sample or only identical inputs). Other
parameters may control the details of how the best split is searched for.

In a last step, the obtained tree is pruned which means that some leaves are merged to
make the tree simpler (regularisation). A confidence level steers which branches should be
pruned and which not.

1Some of the older tree building algorithms constructed it bottom-up by a stepwise simplification of
complex rules instead of top-down like shown here.
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Execution Times and Variants

Decision trees are usually grown very fast and also the pruning step does not take long.
For evaluation one needs to go once from the root node to the leaves which is also done
quickly.

Variants of decision tree algorithms are related to the different splitting algorithms [66,
67, 68] as discussed above. Also the pruning step has different implementations (see ref-
erences above). Recent developments for decision trees [69] do not take place in the al-
gorithms themselves but in meta learning strategies which create and act upon several
decision trees. These strategies will be discussed in section 5.5.

5.3 Local Density Estimators

This class of statistical learning methods is named after their strategy to look into the
vicinity of the given event in input space. For classification the events of both classes are
counted in this region and their numbers are compared. The class with the majority of
events is the best guess for the class of the new event. For regression usually a (weighted)
mean of the target values is calculated. Local density estimators differ in the way they
decide whether a training event resembles the new one.

5.3.1 k-Nearest-Neighbours

This algorithm searches for the k training points with smallest distance to the new event.
The size of the spherical region surrounding the new event is therefore (theoretically)
adapted such that exactly k training points are taken into account (see figure 5.2). For
classification the events in this region are counted for both classes, resulting in Ngood
(target y = 1) and Nbad (target y = 0) of the k events and the output is

out =
Ngood
k

. (5.3)

1

1

1

1 1

1

0

0
0

Figure 5.2: An example for a 5-nearest-
neighbours evaluation with result 3

5
.

Regression

For regression the (weighted) mean target value of the k events is calculated:

out =
1

k

k
∑

i=1

wiyi (
∑

wi = k). (5.4)
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Parameters and Regularisation

A free parameter of the k-nearest-neighbours search is k which determines the overtraining
behaviour. A very local, fine granularity decision is generated by a small k while a large k
means a very soft decision insensitive to very local properties.

Another important parameter is the metric with which the distances are calculated.
One can, for example, insert scaling factors along each axis into a standard Euclidean
metric so that

‖~x‖ =

√

∑

γix2
i . (5.5)

Execution Times and Variants

As k-nearest-neighbours determines its output directly from the input data without build-
ing a model no training time is required. For the evaluation of a new event the distances to
all training points need to be checked and the smallest k distances need to be found. This
makes evaluation times very long. Many strategies have been invented to deal with this
problem, ranging from smart indexing schemes to algorithms creating a condensed version
of the training set with less events but trying to keep all information [70].

Variants also emerge from the distance calculation. As mentioned above, the metric
can be varied and the next section introduces the idea to use the general concept of kernels
instead of a specific metric.

5.3.2 Kernel Methods

As a generalisation of the free choice of the metric in the k-nearest-neighbours search the
concept of kernels is now introduced. A simple local density estimator is, for example,
Parzen’s window [71]:

local density(~x) =
1

n

1

V

n
∑

i=1

φ

(

‖~x− ~xi‖
λ

)

φ(u) =

{

1 if |uj| ≤ 1
2
∀j

0 else
(5.6)

where the summation over φ simply counts the events within a region of volume V scaled
by λ. Since ‖~z‖2 = ~z ·~z, any distance measure can be modified by exchanging the definition
of the dot product. A very general density estimation is therefore given by

local density(~x) =
1

n

n
∑

i=1

K(~x, ~xi) (5.7)

where the kernel K represents any strategy for distance measurement (and thus weighting)
among all events. For example the Gaussian kernel

K(~x, ~xi) =
1

(√
2πλ

)p exp



−1

2

∑

j

(

xj − xji

λ

)2


 (5.8)

could have been used instead of Parzen’s window above. Like for Parzen’s window, λ scales
the size of the window (with soft borders in the kernel) around the point for which the
density should be estimated.
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Regression

If each label shows a real value instead of 0 and 1 for the two classes one does not compare
the two local densities anymore but one weights the target value yi with the distance
measurement resulting from the kernel:

out =
1

n

n
∑

i=1

K(~x, ~xi)yi. (5.9)

Parameters and Regularisation

Any chosen kernel has its own parameters, some of which may need to be set manually for
each dataset. Parameters like λ above should always be available because they control the
overtraining behaviour: A small λ makes the window very narrow resulting in a classifier
sensitive to very local density differences. A large λ will create a very smooth classifier
which is only sensitive to more global density differences.

Execution Times and Variants

The same problem as for k-nearest-neighbours search applies here: In principle all train-
ing events have to be processed. In the same way the different workarounds can be used.
Variants clearly come from using different kernels, some more will be mentioned in sec-
tion 5.4.3.

5.3.3 Range Search

To deal with the problem of high computing costs for large datasets (for each evaluation
all training points need to be taken into account) range-searching [72] inserts all training
points into a binary tree structure and needs to traverse this tree only partially for one
evaluation. For this a box is placed around the position which should be evaluated and
data points outside are ignored, see figure 5.3 for an illustration.

The output of the range search method for a given evaluation position is the fraction
of the “good” training events lying inside the box:

out =
Ngood

Ngood +Nbad
. (5.10)

Regression

Like for the methods discussed so far in the case of regression the output is the (weighted)
mean value

out =
1

N

N
∑

i=1

wiyi (
∑

wi = N). (5.11)

Parameters and Regularisation

The crucial parameter in the range search method is the size of the surrounding region
which should be looked at. If it is too small the statistics is bad and overtraining will be
seen, if it is too large the performance will drop. To find the right size – in the most general
case two (asymmetric) values for each input – is an involved task (compare section 7.2.7).
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Figure 5.3: (a) The binary tree structure is built up by changing the coordinate which is used

for ordering in every level. The events are filled into the tree as they are read in. Event 1 is read

in first. The binary split on the first level is determined by the x1 coordinate, thus the events 2

and 3 are filled into the two branches of event 1 because 2 is found left of 1 and 3 right. Event 4

is left of 1 and is thus filled somewhere in the branch of event 2. The binary split on the second

level is determined by x2 and event 4 is found to be below event 2. Event 5 is found right of event

1 and below event 3 while event 6 is right of event 1 and above event 3. (b) The search for the

points inside the box can exclude whole branches of the tree by comparing the coordinates with

the bounds of the box. The shown box is completely right of event 1 and can therefore exclude

event 2 and the whole branch below it. Events 3 and 5 are found inside the box, event 6 has to

be checked since the box is not completely below event 3.

Exection Times and Variants

Like k-nearest-neighbours search, range search is not either a model-based algorithm: The
decision is directly derived from the training set. Therefore no training times exist. But
evaluation can take quite long because the tree needs to be partially traversed for each
evaluation position.

A modification of the basic algorithm may improve the performance: A slower but
more effective way of setting a box size could be to use an adaptive box size. This means
that the hyper-box surrounding any evaluation position is scaled to fit the local density of
data points so that the number of training points in the box is of the same order for any
evaluation position.

5.3.4 Naive Bayes

The naive Bayes classifier (also called maximum likelihood) [73] derives its decision – like
Bayesian learning discussed in section 4.2 – from Bayes theorem

P (C|~x) =
P (~x|C)P (C)

P (~x)
(5.12)

which calculates the conditional probability P (C|~x) for class C (0 or 1) given the input
vector ~x. Maximising P (C|~x) (finding the correct class) means maximising P (~x|C)P (C).
The naive Bayes assumption is P (~x|C) =

∏

i P (xi|C) (independentness) and thus P (C|~x) ∝
P (C)

∏

i P (xi|C). The probabilities P (xi|C) are estimated from histograms as described
below. The prior class probability P (C) may also be estimated from the data. In the
following however, they are assumed to be equal for both classes.

Two histograms per input are needed to estimate P (xi|0) and P (xi|1). These his-
tograms are projections onto the axes xi (assumption of independentness) of the two
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multidimensional sampling distributions given by the training data. By the projection
process, however, the correlation between the input variables gets completely lost. This
uncorrelated approach is frequently used, while the large amounts of data required for the
correlated, not projected version commonly forbid its usage in practice2. The projection
can be regarded as a good work-around as long as correlations between input variables are
negligible. Unfortunately this is almost never the case in real data (figure 3.6 showed a
problematic example).

As shown in figure 5.4, naive Bayes builds 2 · dim(input) histograms (distributions for
“good” and “bad” in each input dimension). The histograms are filled with the training
data and normalised to present a probability density with integral one. A decision for any
evaluation position is made by calculating the product of the single probabilities for the
“good” histograms on the one side and for the “bad” histograms on the other side. A
continuous output in the range [0, 1] is then given by

out =

∏

pgood,i
∏

pbad,i
+
∏

pgood,i

. (5.13)

In the case where no information is available (
∏

pbad,i
+
∏

pgood,i
= 0) out = 0.5 is taken.
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Figure 5.4: An example where the position (x1, x2) should be evaluated as “bad” because
pgood,1

· pgood,2
< pbad,1

· pbad,2
.

Regression

The generalisation of this method to regression is problematic but possible. Instead of
a pair of histograms for each input which represent the two classes we then need a large
number of histograms for each input covering the range of the target value with a sufficiently
fine granularity. If the range of the target value is binned into k intervals, the output is,
for example, calculated as the target value in the bin with the maximum likelihood:

out = y[bin = arg maxk

∏

i

pki]. (5.14)

The granularity of the binning of the target value can be a serious problem as it demands
a very high number of training examples if k grows large.

2Four input variables with 20 bins each build a multidimensional histogram of 204 = 160000 bins each
of which should be filled with a meaningful amount of data, say at least 10 in average. This requires 1.6
million training points at least.
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Parameters and Regularisation

The binning properties are the only free parameters of this method. The size of the bins
is directly related to the statistics (number of events per bin) and thus to the overtraining
behaviour.

Execution Times and Variants

Naive Bayes is very fast: During training only histograms have to be filled and for any
evaluation some probabilities have to be multiplied. For the case that no information is
available (

∏

pbad,i
+
∏

pgood,i
= 0) one could extend the algorithm to dynamically increase

the number of bins taken into account to always arrive at a non-zero sum of probabilities.

5.4 Methods Based on Linear Separation

Another very intuitive way to classify data points is to try to separate the two classes
in the mathematically simplest way: by a hyperplane. In a one-dimensional input space
this is nothing else than a one-dimensional cut. In a two-dimensional input space we have
a separating line, for three dimensions a plane, and so on. Instead of a series of one-
dimensional cuts, one multidimensional cut has the advantage of taking into account the
correlations between the inputs. A typical example was shown in figure 3.6.

The following methods make use of one or more separating hyperplanes of the form

~w · ~x+ b = 0 (5.15)

where ~w is the normal vector of the separating hyperplane and b/||~w|| is the signed distance
from the origin. The formula above can also be interpreted as a regression formula with
coefficients wi and b.

5.4.1 Linear Discriminant Analysis

Linear Discriminant Analysis [74] calculates one separating hyperplane in the input space,
for example, by performing a multidimensional linear regression. The regression is done
by assigning t = 0 to one class and t = 1 to the other and calculating the coefficients b and
wi in

yk = b+ w0xk,0 + . . .+ wlxk,l +
√
vξk (5.16)

by minimising
∑

ξ2
k. (5.17)

In the linear model the error terms
√
vξk are assumed to have a Gaussian distribution with

mean 0 and standard deviation
√
v. The coefficients b and wi can be calculated by the

matrix operations (see, for example, [48] for details):

A =









1 x10 · · · x1l

...
...

. . .
...

1 xn0 · · · xnl









(5.18)
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. (5.19)

Notice the two-fold interpretation: b and wi are the coefficients of a linear function
(regression) but can also be seen as distance and normal vector of the separating hyperplane
(classification).

Parameters and Regularisation

Since only one separating hyperplane is used, overtraining is nearly impossible. In this
basic algorithm there are no free parameters to be tuned.

Execution Times and Variants

Linear discriminant analysis is a very fast method: the matrix inversion scales with the
number of inputs, not with the number of training points. A variant of this method
is Logistic Discriminant Analysis [75] where the separating hyperplane is not calculated
by optimising a quadratic cost function but by maximising a conditional likelihood. An
extension to linear discriminant analysis is Quadratic Discriminant Analysis [76] where the
separating surface is then allowed to be quadratic.

5.4.2 Neural Networks

Neural networks [77, 78] have become a standard tool in many fields of application. Based
on the idea to model a machine learning algorithm similar to the human brain, neural
networks are now used as a precise classifier (and regression method) in many commercial
and scientific applications. We will focus here on the so-called multilayer perceptron or
feed forward network3.

The elementary unit of a neural network is called neuron (figure 5.5 (a)). It computes
the function

out = σ(
∑

j

xjwj − b) where σ(a) =
1

1 + e−a
. (5.20)

The sigmoidal transfer function σ is plotted in figure 5.5 (b).
The argument to the sigmoid function is called activation. Geometrically, the interpre-

tation of the functionality of such a neuron is straightforward as soon as the activation is
recognised as a distance measure for a separating hyperplane in the input space defined by
the normal vector ~w and the threshold b. Applying σ to the sum results in a small value
(near 0) for the one side of the hyperplane and a large value (near 1) for the other with a
soft transition region in between. The length of the weight vector ~w scales the steepness of
the threshold function and thereby the size of the transition region as shown in figure 5.6.

Historically the first kind of feed forward neural network consisted of only one neuron
and was called perceptron [79]. A simple training rule was developed to apply this single
neuron to real-life problems. The criticism of Minsky and Papert [80] eliminated most
of the enthusiasm which came along with this first attempt to create an artificial neural

3Radial basis function neural networks have been discussed in section 3.3.
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Figure 5.5: A neuron sums up weighted inputs, subtracts the threshold (a) and passes the
sum through the soft threshold function (b).
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Figure 5.6: The length of the weight
vector scales the width of the transi-
tion region in input space. The sepa-
rating hyperplane is a line in this two-
dimensional example. On the line the
activation is 0 and the output thus
0.5. The longer the weight vector, the
smaller is the width of the band from,
for example, out = 0.1 to out = 0.9.

network that performs similarly to the human brain. Minsky and Papert remarked that this
linear classifier is not able to solve some very simple problems like the XOR configuration
shown in figure 4.1.

It took several years to find a training rule for the multi-layer network structure shown
in figure 5.7 which offers the possibility to model much more complex functions than just a
linear separation. This is achieved with the help of a sufficiently large number of neurons
in the so-called hidden4 layers. Throughout this thesis only one hidden layer will be used
since a general theorem [81] guarantees that any continuous function can be expressed
already by only one hidden layer with a sufficiently large number of neurons.

The output of a network with one hidden layer and a single output is calculated by

out = σ





∑

i

σ
(

∑

j

xjwij − bi
)

· w̃i − b̃



 (5.21)

where ~x is the input, wij are the weights connecting neuron i in the hidden layer with
the jth input and w̃i are the weights connecting the output neuron with the ith neuron
in the hidden layer. bi are the thresholds of the hidden neurons and b̃ is the threshold of

4Often the input-layer is counted as the first layer despite the fact that no neuron is calculated there.
Figure 5.7 would then be a three-layer network.
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Figure 5.7: Architecture of a feed forward neural network with one hidden layer.

the output neuron. From the classification point of view a combination of the separations
done with the hidden neurons is calculated in the output neuron.

Regression

From the regression point of view any arbitrarily complex function can be formed by
overlaying the sigmoid functions from a sufficiently large number of hidden neurons. The
soft threshold function of the output neuron is often omitted for regression but can still be
used if the range of the target is within the interval [0, 1].

Parameters and Regularisation

Both weights and biases are optimised to fit the given classification task during the training
phase. In principle any optimisation technique can be used to find the best weights.
Historically the “back-propagation” algorithm [82, 83] was used in the first applications
and is still used frequently. It will be used here as an example to discuss controlling
parameters and mechanisms for regularisation.

Given the cost function per event

Cost =
1

2
(out(~x) − y)2 (5.22)

a gradient descent approach

∆w ∝ ∂Cost

∂w
with w ∈ {w̃i, b̃, wij, bi} (5.23)

leads to the update rule

∆w(k) = −η∂Cost

∂w
+ µ∆w(k − 1) with w ∈ {w̃i, b̃, wij, bi}. (5.24)

The partial derivatives can be calculated directly for w̃i and b̃ and via the chain-rule (back-
propagation) also for wij and bi. In the update rule 5.24 different parameters can be used
to steer the step width of the gradient descent (η) and the scaling of a momentum term (µ)
both of which control mainly how fast the algorithm converges (trying to not get stuck in
secondary minima). These parameters can be set in various ways and can even be varied
during the training (compare the details given in appendix B.3).

Regularisation is done with the number of hidden neurons – the more separating hyper-
planes are used the more complex the decision boundary can be. But also the lengths of the
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weight vectors have influence on the overtraining behaviour. The shorter the weight vectors
are, the softer the threshold function is (small a in equation 5.20, compare figure 5.6). Soft
threshold functions are combined to soft decision boundaries, while long weight vectors
induce sharp thresholds and sharp decision boundaries. A weight decay term added in the
update rule of the back-propagation algorithm can be used to penalise large weights and
by this control overtraining (compare the details given in appendix B.3). A weight decay
for the output neuron can also be interpreted as maximisation of the margin (compare the
support vector algorithm in section 5.4.3).

The gradient descent is a local optimisation process and depends on the starting point
given by a random initialisation of the weights and biases. Usually multiple networks with
different initialisations are trained to avoid local minima.

Execution Times and Variants

The training times depend on the chosen strategy but are usually minutes to hours. Once a
network is trained the evaluation for any given input is done very fast. Hardware implemen-
tations making use of the inherent parallelism of neural networks have been constructed.
In recent implementations the calculation of a large digital neural network may take only
400ns [84]. Hardware implementations of neural networks will be discussed in appendix A.

Variants of the presented method of a feed forward neural network with one hidden layer
naturally extend the architecture to more hidden layers (despite the theorem discussed
above) and specific interconnections of these layers (also recurrent). Frequently more than
one output neuron is used. As mentioned above, there are many different possibilities
to train the network besides back-propagation, ranging from conjugate gradient [85] to
genetic algorithms [86]. Extensions to the basic training procedure implement dynamic
construction (adding) and dynamic pruning (removing) of neurons [87].

5.4.3 Support Vector Machines

Support vector machines [88, 89] are an application resulting from modern statistical learn-
ing theory (see chapter 4). Many learning tasks where, for example, neural networks were
used are now in the process of being reconsidered with the help of support vector machines.

When talking about support vector machines it is convention to give the two classes
which should be separated the target values y = ±1 instead of 0 and 1. The basic concept
of the support vector machine is to find the optimal separating hyperplane

~w~x+ b = 0 (5.25)

with the maximum margin (distance to the nearest data points, see figure 5.8).

Figure 5.8: The maximum margin clas-
sifier is defined by the maximised dis-
tance to the nearest data points (here
0.51).
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To find this maximum margin hyperplane we choose a minimum distance of 1/||~w|| and
search the appropriate ~w and b by setting the conditions

~w~xi + b ≥ +1 if yi = +1 and ~w~xi + b ≤ −1 if yi = −1 (5.26)

or simply

yi(~w~xi + b) ≥ +1 (5.27)

and minimising ||~w||. In other words, the correct classification is ensured by equation 5.27.
From the remaining subset of (~w, b) (constrained by 5.27) we choose the solution where
||~w|| is minimal (structural risk minimisation, see section 4.6.3) so that indeed ~w~xk + b =
±1 for certain k’s which are then the nearest points to the separating hyperplane. The
minimisation leads to the Lagrangian

L =
1

2
||~w||2 −

∑

αi(yi(~w~xi + b) − 1). (5.28)

The solution of this optimisation problem is – in contrast to the gradient descent for
neural networks – unique. The Karush-Kuhn-Tucker theorem [90] states that only for
those vectors ~xk fulfilling condition 5.27 with equality (thus have minimal distance to the
separating hyperplane) the respective αk will be non-zero: these are the support vectors.

By substituting ~w =
∑

αiyi~xi (which is a necessary condition for an optimal L) into the
hyperplane ~w~x + b we can determine the output for a new event using the soft threshold
function from section 5.4.2 modified appropriately to return the range [−1,+1]:

out = −1 + 2σ(
∑

αiyi~xi~x+ b). (5.29)

As for neural networks in the case of regression the threshold function is usually omitted
for the output.

Note that the sum needs to run over support vectors only, and only their dot products
with the new vector are calculated. As we can substitute ~w =

∑

αiyi~xi in equation 5.28 like
above, the optimisation process can also be done by evaluating only dot products between
training events.

This offers the possibility to generalise the so far only linear discrimination to arbitrary
decision boundaries induced by a certain kernel: The normal dot products are replaced
by dot products in some feature space F . The mapping Φ : RN → F is not explicitly
calculated but hidden in the kernel:

K(~x, ~y) = Φ(~x)Φ(~y). (5.30)

Typical kernels contain some free parameters which need to be set appropriately, like the
polynomial kernelK(~x, ~y) = (γ~x~y+n)d and the Gaussian kernel5 K(~x, ~y) = exp (−γ(~x− ~y)2).

The interpretation of the support vector classification is straightforward in feature
space: Only one hyperplane is calculated there and, as described above, the support vectors
are those points that are closest to the border of the two classes. Projecting back the
hyperplane into input space reveals the non-linear decision boundary, as shown in figure 5.9.

5The factor γ could also be a vector giving a different scale to each input.
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(a) (b) (c) (d)

RN RNFF

Figure 5.9: Support vector classification: Separating circles from boxes (a) is easier in
feature space (b). The separating hyperplane and the support vectors with their minimal
distance (c) are projected back into input space (d).

Parameters and Regularisation

If equation 5.27 cannot be fulfilled by all events the problem is not separable. In this
case slack variables ξi have to be introduced which describe the violation of the optimality
contraints:

yi(~w~xi + b) ≥ +1 − ξi with ξi ≥ 0. (5.31)

The Lagrangian then becomes

L =
1

2
||~w||2 −

∑

αi(yi(~w~xi + b) − 1) + C
∑

ξi −
∑

µiξi (5.32)

where the factor C determines the balance between generalisation (minimisation of ‖~w‖)
and precision (minimisation of the slack variables) and therefore controls the overtraining
behaviour. The last sum with the Lagrange multipliers µi only enforces positivity of the
ξi.

Additional parameters are part of the used kernel and may also have influence on the
overtraining behaviour like the scaling factor γ in the Gaussian kernel.

Execution Times and Variants

The training times are comparable to neural networks but evaluation can take longer for
support vector machines. Despite their similar structure the number of support vectors is
usually much higher than the number of hidden neurons in a corresponding network.

Looking back to section 5.3.2 we see that kernelisation can be done with many different
types of learning methods. Wherever the training examples appear only in the form of dot
products a great variety of kernels can be plugged in and tried out.

Implementations of support vector machines mostly differ in the way the optimisation
of equation 5.28 is done. Many improvements to the basic quadratic optimisation algorithm
have been invented to make the procedure fast enough, even for very large datasets [91, 92].

5.5 Meta Learning Strategies

To improve the performance of any kind of statistical learning method different strategies
were invented to combine several differently trained methods. Depending on the strategy
the different classifiers acting together may have been trained by the same learning method
or may have even been trained by different learning methods. The aim is to create one well
performing classifier from several less well performing. We will speak in the following only
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about classifiers. All meta learning strategies can, however, be applied also to regression
problems.

5.5.1 Stacking

Stacking [93] means that one classifier acts on top of several different classifiers. The
different classifiers forming the basis result from different learning methods and differ
naturally in some way in their decision making. Or they are all of the same type and
some kind of modification leads to different kinds of behaviours.

To combine these classifiers their differing outputs are taken as inputs to another learn-
ing method. Like a director who acts depending on the different votes of his advisors the
last combining learning method is trained to judge and weight correctly the outputs from
the different first level methods (see figure 5.10).

Figure 5.10: The stacking scheme for a
classification problem.

5.5.2 Bagging

Bootstrap aggregating or bagging [69] modifies the training set several times by randomly
drawing events from the original set with replacement (compare the bootstrapping strategy
discussed in section 3.12). With this procedure new training sets of the same size are
formed. With these sets several classifiers are trained in parallel (see figure 5.11).

The differences in the training sets guarantee that there will be some disagreements in
the outputs. The final output is calculated, for example, by averaging over the individ-
ual outputs. The aim is to create one well-performing method by averaging over many
approximately correct but independent outputs.

Figure 5.11: The bagging scheme for a
classification problem.
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Example: Random Forest

A favourite learning method based on the bagging principle is the random forest
method [94]. The basic method is a decision tree algorithm called CART [66] with
slight modifications introducing random behaviour in the splitting algorithm. On
top of this basic method bagging is used to create several decision trees resulting in
a random forest.

Although decision trees were always regarded as learning methods returning very

meaningful information about the data (“structural relationship”), for example as

a list of rules, bagging generally, and in particular the random forest method, do

not allow any more this kind of interpretability. The performance gain from one

CART tree to a random forest is however quite remarkable (compare the study in

section 7.2.5 where the performance difference between the decision tree C4.5 and

random forest is visualised). The remarkable gain in performance from one CART

tree to a random forest has also been documented in the literature [94].

5.5.3 Random Subspace Method

The random subspace method [95] works very much like bagging: several modified training
sets are created and the outputs of all the trained classifiers are averaged. The only
difference is in the way in which the modified training sets are created. While for bagging
the inputs were always the same and only the events were changed, it is the other way round
for the random subspace method. As the name indicates, a subspace of the whole input
space is chosen randomly by ignoring all but the selected inputs. By this procedure new
training sets are formed with the same events but different sets of inputs (see figure 5.12).

Figure 5.12: The random subspace me-
thod for a classification problem, here
three inputs are selected for each clas-
sifier.

5.5.4 Boosting

In contrast to the other meta learning methods, boosting [96] trains serially and changes
the weights of the training events according to the accuracy of the classifier trained before.
We define the performance:

β =
1 − E

E
where E =

1
∑

wi

∑

wi|out(~xi) − yi|. (5.33)
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The adaptation of the weights from one step to the next is done by

wi 7→ wi × βEi where Ei = wi|out(~xi) − yi|. (5.34)

Boosting tries to “boost” the performance of the underlying method by giving higher
weights to those examples that were misclassified. The final output is not that of the last
iteration but again a weighted average of all trained methods. The weight for each classifier
is given by its performance β (see figure 5.13).

Figure 5.13: The boosting scheme for a
classification problem.

5.6 Typical Properties of Different Classification Me-

thods

To get an intuitive feeling of how the presented learning methods behave, three artificial
two-dimensional datasets will be used. All three problems are classification problems since
regression would be more difficult to visualise.

In the three examples the datasets will be presented and the two-dimensional output
distribution will be shown for each method which has been discussed in this chapter. We
will present additional plots regarding the internal structure of the algorithms whenever
meaningful.

5.6.1 Toy Example ’Hole’

This dataset describes a square with a square hole in it. Without overlap of the two classes
and with a structure induced by the coordinate axes it is an artificial and rather simple
classification problem. The test-part of the dataset is plotted in figure 5.14. Here and
in the following examples 10000 datapoints have been generated which are divided into
training, selection and test set with the fractions 50%:25%:25% (compare the discussion in
section 3.11).

The cut-based approach (see section 3.7) cannot handle well the correlation in this
problem. As shown in figure 5.15 left, only the outer parts can be cut out. But the whole
convex square remains as signal region6. The decision tree C4.5 had no problems detecting

6The output value is defined here and in the following results for simple cuts as 2−c where c is the
number of cuts an event does not fulfil.
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Figure 5.14: The test set of the toy ex-
ample ’Hole’.

the rectangular decision boundaries as can be seen in figure 5.15 second from left. The
k-nearest-neighbours-search returned the least error on the selection set for k = 1. The
resulting output distribution is as spiky as one would expect, shown in figure 5.15 third
from left. The range search method returned the least error on the selection set for a box
size of 0.05 for x and 0.1 for y. Since the problem is symmetric this is clearly a statistical
effect. The output distribution in figure 5.15 right shows the resulting smoothing-effects in
the regions of the decision boundary. It also shows the beginning of the data-free regions
on the borders of the plot where an output value of 0.5 shows that without training data
in this region no decision is possible.
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Figure 5.15: ’Hole’: Output distributions for simple cuts, C4.5 tree, 1-nearest-neighbours
search and range search.

For the naive Bayes method this toy problem is ideal. The histograms showing the
normalised distributions of both classes along the x-axis are plotted in figure 5.16. Twenty
bins are sufficient to get the bin borders matched to the borders of the square and its hole.
Therefore the output distribution in the same figure shows a perfect selection of the signal
region with a cut at about 0.7.

Neural networks with 8 to 12 hidden neurons were trained and the least error on the se-
lection set was found for a network with 10 hidden neurons whose graphical representations
as separating hyperplanes (lines7 in this two-dimensional case) are shown in figure 5.17.
Eight of the hidden neurons form the boundaries of the inner and outer part of the signal

7The thickness of the line is proportional to the weight of the hidden neuron to the output neuron.
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Figure 5.16: ’Hole’: Naive Bayes training result – the one-dimensional histograms show the
normalised distributions of both classes along the x-axis (y-axis identical due to symmetry)
– the output distribution is on the right.

region as expected while one non-aligned line with a small output-weight is visible, the
other one lies beyond the boundaries of the plot.

The combination of the “hidden decisions” in the output neuron results in the presented
output distribution which shows the signal region with some artefacts in the inner and outer
corners. These artefacts are due to the finite length of the weight vectors (normal vectors)
of the separating lines. As discussed in section 5.4.2 this corresponds to the broadness of
the sigmoid transfer function – infinite long weight vectors would result in a theta-function
(and would remove the artefacts here). In real-life examples, however, almost always a
weight decay term is useful in the training procedure which translates into the preference
of short weight vectors and thus rounded transition regions.
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Figure 5.17: ’Hole’: Neural network training result – the separating lines as expressed by
the weight-vectors of the hidden neurons (left) and the final output distribution (right).

Also the support vector machine prefers a rounded solution8. The chosen 350 support
vectors and the resulting output distribution are plotted in figure 5.18. The few outer
support vectors were chosen despite the fact that they are not near to any decision boundary
(though in feature space they probably are). They are producing the symmetric artefacts
extending from the corners of the square.

The random forest method uses 10 trees and profits like the decision tree algorithm
C4.5 of the rectangular structure. The output distributions of two of the ten trees are

8This is directly related to the Gaussian kernel K(~x, ~y) = exp(−γ(~x − ~y)2) which was used.
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Figure 5.18: ’Hole’: Support vector machine training result – the chosen support vectors
and the final output distribution.

shown in figure 5.19 and the average over all 10 trees forms the final output distribution
which is also shown there. The principle of creating many, by purpose noisy, classifiers
which then form a smooth and well behaving classifier in average is clearly visible.
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Figure 5.19: ’Hole’: Random forest training result – two of ten trees (left and middle)
building up the final output distribution (right) by averaging.

5.6.2 Toy Example ’Rings’

This dataset describes two rings with the same centre and radius but different Gaussian
widths. For one ring the radius has a Gaussian distribution around µ = 1 with σ = 0.05
while the other has µ = 1 and σ = 0.2. This dataset seems quite constructed and difficult
to solve because of the large overlap of the two classes. Nevertheless it has two important
properties: On the one hand the optimal solution given infinite statistics is perfectly known
(two circles with varying radii enclose the smaller distribution). On the other hand it is
obvious that this problem cannot be solved by one separating hyperplane nor by two or
three. It thus can be regarded as a rigorous test for the capabilities of the various statistical
learning methods and in particular of neural networks. The test set is plotted in figure 5.20
and the numbers are the same as for the ’Hole’ dataset.

Like for the ’Hole’ example the cut method cannot do more than cutting away the outer
part. This leaves a square as signal region as shown in figure 5.21 left which is worse for
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Figure 5.20: The test set of the toy ex-
ample ’Rings’.

this circular shape than it was for the square ’Hole’ example. The circular structure is also
much more difficult for the decision tree C4.5 which tries to approximate it by rectangles
(figure 5.21 second from left). Unfortunately the granularity chosen by the algorithm is
too coarse and the output range between 0.1 and 0.9 is hardly used9. For the k-nearest-
neighbours decision a value of k = 25 showed the least error on the selection set. As
expected the decision boundaries in figure 5.21 third from left are smoothed out but still
noisy. We see a similar, less noisy output distribution for the range search method. Even
more obvious than for the ’Hole’ example we see the regions without training data where
no decision can be made (figure 5.21 right).
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Figure 5.21: ’Rings’: Output distributions for simple cuts, C4.5 tree, 25-nearest-neighbours
search and range search.

The assumption of independentness which is inherent to the naive Bayes method trans-
forms the circular structure into a rectangular one. This behaviour generates artificial
corners as seen in figure 5.22 where the misclassification rate is very high.

Neural networks need to approximate the circular structure with many separating lines.
Although still linear decision boundaries are visible in the output distribution in figure 5.23
right – especially if one compares to the alignment of the separating lines (left) – the circular
shape is nevertheless well approximated by 13 of the totally 16 hidden neurons (the other
three neurons have a very small weight towards the output neuron and do not contribute
much to the final decision). The circular shape is approximated well because any corner

9This makes it also difficult to choose in other examples the efficiency and rejection which are needed.
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Figure 5.22: ’Rings’: Naive Bayes training result – the one-dimensional histograms show
the normalised distributions of both classes along the x-axis (y-axis identical due to sym-
metry) and the output distribution on the right.
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Figure 5.23: ’Rings’: Neural network training result – the separating lines as expressed by
the weight-vectors of the hidden neurons and the final output distribution.

where two separating lines meet can be rounded nicely by their short weight vectors which
lead to a very soft threshold function.

With 1311 support vectors the support vector machine produces almost perfect circles as
decision boundaries which can be seen in figure 5.24. The preference for circular structures
due to the chosen Gaussian kernel was already visible in the ’Hole’ example. Hence support
vector machines with a Gaussian kernel perform better on circular than on linear structures
in contrast to most of the other methods. However, any real dataset will have neither only
a circular nor only a linear structure.

More obvious than in the ’Hole’ example the single trees in the random forest method
are very noisy (figure 5.25). Still much of this noise is visible in the final output distribution
which is the average over 200 such trees.

5.6.3 Toy Example ’Gaussians’

The third toy example is a dataset with two classes each of which consists of two Gaussian
distributions. The signal class dominates in the left and upper region of the unit square
while the background covers the lower right area. The two classes have also a large overlap
as shown in figure 5.26. This toy example is the most realistic of the three examples as
it consists of multiple Gaussian distributions which have a large overlap but also regions
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Figure 5.24: ’Rings’: Support vector machine training result – the chosen support vectors
and the final output distribution.
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Figure 5.25: ’Rings’: Random forest training result – two trees (left and middle) of 200
trees building up the final output distribution (right) by averaging.

which are easy to classify. Furthermore the density of events differs significantly within
the unit square.

Figure 5.27 shows the output distributions of four different methods. The first output
belongs to the cut method. Simple cuts try to select the left and upper region but they
cannot model a good decision boundary because no correlated cut is done.

The decision tree C4.5 has the same problem here as with the ’Rings’ example: The
approximation of the linear and curved decision boundaries with rectangles is too coarse
and the output range between 0.1 and 0.9 is hardly used (figure 5.27 second from left).
Nevertheless it is interesting to see that the decision tree shows exactly the same behaviour
as the simple cut method in the lowest and rightmost part of the unit square.

Although the k-nearest-neighbours search averages over k = 50 neighbours, the decision
boundary still looks very noisy. The extension of the signal region to the right side in the
lowest part of the plot (figure 5.27 third from left) is common among the local density
estimators – they have difficulties with the low density of events in this region.

These low density regions are even more problematic for the range search method. It
shows strange behaviour not only in the lowest part of the plot but also in two places in the
left part (figure 5.27 right). In addition we see again the large regions where the decision
should be clear but cannot be determined by the range search method because statistics
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Figure 5.26: The test set of the toy ex-
ample ’Gaussians’.
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Figure 5.27: ’Gaussians’: Output distributions for simple cuts, C4.5 tree, 50-nearest-
neighbours search and range search.

was too small there. Nevertheless, the main decision boundary is modelled well.

For the naive Bayes method the smallest misclassification rate on the selection set was
found for a coarse binning in x (10 bins) and a fine binning in y (80 bins). Figure 5.28
shows the probability histograms in x-direction (upper row) and y-direction (lower row).
Using these probability estimates the naive Bayes method runs into problems with the
strong correlation in the left part of the unit square, similar to the simple cuts, as shown
in the output distribution (right plot).

This problem is an easy one for neural networks because the mathematically optimal
decision boundary between two Gaussian distributions is a separating hyperplane. As both
classes consist of two overlapping Gaussian distributions two or three combined decision
lines should do the job. Indeed the neural network uses three of four given hidden neurons
to perform the separation as shown in figure 5.29. The output distribution shows a very
nice and smooth decision boundary.

As discussed above, support vector machines with a Gaussian kernel prefer rounded de-
cision boundaries over linear ones. In this toy example this leads to a nicely curved decision
boundary. An artificial background region in the upper part of the output distribution in
figure 5.30 is however generated by the desire to curve the two signal regions – which were
correctly recognised as the two Gaussians contributions. This artifical background region
is not motivated by the training data, it is only induced by the chosen kernel (compare
the chosen support vectors in figure 5.30 with the test events in figure 5.26). Changing the
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Figure 5.28: ’Gaussians’: Naive Bayes training result – the one-dimensional histograms
show the normalised distributions of both classes along the x-axis and y-axis, the output
distribution on the right.
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Figure 5.29: ’Gaussians’: Neural network training result – the separating lines as expressed
by the weight-vectors of the hidden neurons and the final output distribution.

kernel would help here for sure, but this means additional human intervention.
The random forest method is also one of the methods showing a behaviour on this

dataset similar as for the ’Rings’ example. This is because both require rounded or at least
not axis-parallel decision boundaries. As seen in figure 5.31 the single trees are very noisy
which is intended by the algorithm. But we also see that in the average among 200 trees
there is still very much noise and the decision boundaries are by far not as smooth as they
should be.

5.6.4 Summary of Typical Properties of Different Classification
Methods

Taking into account the results from the three toy examples we want to summarise shortly
some characteristic properties of the discussed learning methods:

• The simple cut method was not suited for the first two toy examples since each of
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Figure 5.30: ’Gaussians’: Support vector machine training result – the chosen support
vectors and the final output distribution.
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Figure 5.31: ’Gaussians’: Random forest training result – two trees (left and middle) of
200 trees building up the final output distribution (right) by averaging.

them had some kind of enclosed region which could not be described with simple
cuts. On the last example the simple cuts performed fairly well but the axis-parallel
cuts have great difficulties with any kind of correlation.

• Naive Bayes, C4.5 and random forest often have the same problem as the simple
cuts: They are based on axis-parallel cuts. If a structure with decision boundaries
parallel to the axes is given (like the ’Hole’ example), they perform well. Any kind of
correlation or rounded decision boundaries are problematic for these three methods.
The random forest can cope with these problems best due to its averaging strategy.

• k-nearest-neighbours and range search show the typical properties of local density
estimators: They describe the decision boundary quite well, independent of its struc-
ture. They have no problems with correlations or rounded regions. However, the
derived decision boundaries are always much noisier than they should be. Range
search shows in addition the problem of the regions where no decision can be made
due to missing training events, even if the classification would be simple.

• Neural networks have no problems with correlations and are especially well suited
for piecewise linear decision boundaries. However, the approximation of rounded
decision boundaries with several hidden neurons is not perfect.
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• Support vector machines with a Gaussian kernel show a behaviour complementary
to neural networks. The description of rounded decision boundaries works excellent
with support vector machines. In contrast, linear decision boundaries are less well
described and often lead to artefacts and thus to misclassifications.

We see that each of the learning methods prefers a specific kind of problem for which
it then gives very good results. This closes the circle and brings us back to the discussion
at the beginning of this chapter about the different kinds of biases which are implemented
inside each learning method. As mentioned in section 3.15, the remaining question is which
kind of bias is suited best for the datasets which will be faced in physics analysis. Chapter 7
will try to answer this question by comparing different learning methods on many different
dataset from high energy and astrophysics experiments.



Chapter 6

Software Development

In this chapter the software framework will be described which was developed to allow the
application and evaluation of many different statistical learning methods to all kinds of
datasets from physics experiments. Also the toy problems discussed in the last chapter have
been processed within this framework. On the one hand a large fraction of the software
development depends on the data sources and therefore on the specific experiment. It is
important to realise that the access to and the management of data coming from a large
experiment is always a demanding and time consuming task. On the other hand there is
also a large fraction of the software development which is independent of the specific data
source.

Generally all implemented learning methods and their automation as well as the prior
analysis and the posterior evaluation work independently of the underlying experimental
situation. There is, however, again a part of the evaluation which does depend on the
application since the quantity which should be optimised may be defined depending on the
application.

The programs described in this chapter are mainly implemented in C++ using its type-
safe object oriented style and its fast executables. These programs make use of the ROOT
library [97] mainly for the graphics tools and basic mathematical operations. Several scripts
which operate on top of the basic programs are programmed in perl since this language
provides an excellent interface to the shell and very comfortable text processing.

The framework of learning methods and the programs for the evaluation of learning
methods contain about 15.000 lines of code. In contrast, the experiment dependent pro-
grams like data access and special performance evaluation contain about 55.000 lines. This
discrepancy confirms the comments above that large parts of the work and thus also large
parts of the programs have to be dedicated to the interaction with the specific experiment.

6.1 Data Access and Preprocessing

The first step towards the application of statistical learning methods to a new problem
from physics analysis depends much on the hardware and software which is used in this
experiment. Usually some kind of analysis chain already exists and has to be used to
obtain the training data for a statistical learning method. Tools implementing an interface
between the experiment dependent software and the framework of learning methods (which
will be described below) have been created for each of the experiments described in this
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thesis. They range from simply reading in text tables or binary data files to the usage of
very complex software frameworks.

Example: Data Access in the Large Software Frameworks of H1
and MAGIC
The training data for the level 2 neural network trigger consists of the level 1 trigger
quantities which are sent to the level 2 system for each event (see section 2.1.4). This
data stream is stored on mass storage in a special “bank”, unfortunately only for
every second event due to a limitation in the readout system. Libraries in fortran

and since recently also in C++ allow the access to the H1 data files and in particular
to the neural network data. Several hundreds of megabytes have to be processed to
extract the neural network inputs for some hundred events.

A large software framework called MARS copes with the data analysis for the MAGIC

telescope. This C++ framework has to be used to be able to extract detector data from

the MAGIC data files. Depending on the abstraction level of the data (information

from all pixels vs. Hillas parameters, compare section 3.9), typical file sizes are tens

of megabytes to several gigabytes.

The preprocessing step also depends strongly on the experiment from which the data
is taken. Some datasets may suggest only one specific input vector which is obtained in a
trivial way from the available data stream. Much more often, however, the given detector
data can be preprocessed in different ways including not only standards like normalisation
but specific operations based on knowledge about the detector.

Example: Preprocessing for the MAGIC telescope and the XEUS
pixel-detector
Substantial preprocessing was, for example, done for the MAGIC datasets since dif-
ferent sets of inputs were formed which depend on completely different levels of
abstraction. The basic analysis presented in section 7.6 works on the level of the
Hillas parameters. First steps towards an analysis based on pixel information have
been presented in section 7.6.3.

For the XEUS datasets the preprocessing step is essential since it can already filter

out background. A framework which transforms uncalibrated data files into various

analysis formats has been developed and will be presented in appendix B.1.

Additional tools have been developed which make typical data manipulation tasks
easier. Among them one tool “squares” the input dimension (adding xixj ∀i, j to the
inputs x1 . . . xn). Another one selects or removes specific inputs from a datafile, others
help managing weights and IDs which are used to distinguish between training, selection
and test sets.

6.2 Data Visualisation

Plots of the output distributions in two dimensions were already helpful in section 5.6 to
understand the typical behaviour of different learning methods. It is also important to
plot one- and two-dimensional distributions of the possible inputs of statistical learning
methods for signal and background events to get a feeling which combination of inputs
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will be suited best for the classification (like for example in section 7.2.3). Therefore tools
to plot the input distributions in one and more dimensions and also in combination with
already applied cuts have been developed.

6.3 Statistical Learning Methods and their Automa-

tion

Several of the statistical learning methods presented in chapter 5 were newly implemented
while others have been incorporated into the framework by writing wrappers for existing
implementations. The framework of learning methods used for this thesis consists of the
following programs which have been developed “from scratch”:

• The simple cuts procedure discussed in section 3.7 was easily incorporated into the
framework.

• The k-nearest-neighbours search has been implemented according to its descrip-
tion in section 5.3.1, including the option of scaling factors in the Euclidian metric.

• The range search method has been implemented as described in section 5.3.3, in-
cluding the possibility to weight events according to their distance from the evaluation
position, and the possibility to use an adaptive box size.

• The naive Bayes method has been implemented as presented in section 5.3.4, but
only for classification. The regression version was not implemented due to its inherent
problems discussed in section 5.3.4. A specialised version was programmed for the
neutron detector application (as described in section 2.3).

• Linear discriminant analysis has been implemented using the matrix inversion
described in section 5.4.1.

• The feed forward neural network was programmed as described in section 5.4.2
using the classical back-propagation algorithm with some extensions regarding the
automatic variation of the learning parameters. The back-propagation algorithm is
described, for example, in [82, 83], the extensions implemented in this thesis are
described in appendix B.3.

• The random forest method was implemented in three parts: The bagging procedure
was programmed as described in section 5.11 and the splitting rule for classification is
a C++ copy of the original fortran code available on the Internet [98]. A splitting rule
for regression was newly developed, it uses the variances as described in section 5.2.

• The meta learning strategies bagging, random subspace and boosting (sec-
tions 5.5.2, 5.5.3 and 5.5.4) have been programmed and can be applied to any of
the basic learning methods.

The following learning methods have been incorporated into the framework using existing
implementations which were freely available on the Internet:

• The decision tree C4.5 can be downloaded from the Internet [99]. The source code
fitted quite easily into the existing framework.
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• For the support vector machine the library libsvm was used which can be down-
loaded from the Internet [100]. This source code was also easily combined with the
existing framework. The only drawback with this implementation is the lack of sup-
port for weighted events. The existing Gaussian kernel was extended to support
scaling factors per input instead of one global scaling factor. The Gaussian kernel
was generally used since it performed well, the polynomial kernel was sometimes used
as a cross check.

Two learning algorithms were downloaded and tried out since they have been praised to
perform well: DIPOL, a hybrid of clustering and neural networks, and CAL5, a decision
tree algorithm, both available on the Internet [101]. Unfortunately the source code of both
methods was in such a bad condition that the incorporation into the existing framework was
quite difficult. In addition, some basic studies showed quickly that they did not perform at
all as well as it was advertised. They will therefore not be used in the comparative studies
in the analysis chapter.

As described in section 3.11, the selection set is used to find the optimal balance be-
tween performance on the training set and generalisation among trainings with different
parameter settings (different regularisations). Each of the learning methods mentioned
above has some kind of free parameters which can be varied to control overtraining. These
parameters have been discussed for each method in chapter 5. To arrive at a well perform-
ing learning method without too much human intervention it is important to automate the
training and evaluation of different parameter settings.

In the implemented framework the variation of the training parameters has been au-
tomised for each learning method. The trainings with different parameter sets can au-
tomatically be done and evaluated in parallel which makes computing times less serious.
Appendix B.3 gives an overview of the parameters which were varied for neural networks,
support vector machines and random forests.

6.4 Performance Evaluation and Control

To be able to compare the different learning methods, common evaluation routines have to
be used. For classification this amounts to calculating pairs of efficiency and rejection with
the respective cut values (see section 3.12.1). For regression we calculate bias, variance
and the total error in bins of the target value (as mentioned in section 3.12). All results
are visualised and can also be overlaid for different methods to allow direct comparison.
The statistical analysis necessary to compare the performance of learning methods and the
assessment of the inputs which were used in the training are done in additional routines.

For applications which demand a performance measurement which is more involved
than just calculating efficiencies and rejection rates typically some kind of significance is
calculated with a program which depends on the specific experiment.

Example: Performance Evaluation for the γ-hadron Separation
(MAGIC) and for the Higgs Boson Parity Measurement
After the γ-hadron separation the significance of the photon-excess is determined
with the help of the α-plot as described in section 2.4. All events passing the γ-
hadron separation are filled into the α-histogram and the significance is derived in
quite a complicated formula from the relation between γ-excess for small α and the
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background in this region. This formula takes into account the signal over background
ratio as well as the relative counting errors for both numbers which get large for a
very high background suppression.

The significance of the Higgs boson parity is derived from a large number of pseudo-

experiments in each of which a small number of events is simulated as if the ex-

periment was really performed. The mean significance together with its RMS can

then be used to make a probability statement about the performance for the true

measurement which will be possible when the linear collider will have been built.

Special programs which check the behaviour of statistical learning methods provide the
control which is needed to make sure that the obtained results are trustworthy. Among
them are the handling of the division into training, selection and test set, tools to calculate
statistical and systematic uncertainties and programs which analyse efficiencies for example
in dependence of an important observable.
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Chapter 7

Analysis and Results

7.1 Overview

Chapter 3 showed that there are many specific topics concerning the application of statis-
tical learning methods which are worth to be discussed in detailed examples. Furthermore,
chapter 5 introduced a long list of learning methods which could in principle be applied to
and compared on any problem.

Since not all presented methods can be compared on every physics dataset there will
be local focuses for each analysis subject. The applied learning methods are motivated
either by the problem itself, by the experimental situation, by the history of the analysis
or simply by the preference of the analysers.

We will focus on the neural network learning method as this is one of the most heavily
used methods in today’s physics analysis and has become a standard. It is important to
clarify whether this method deserves this special rank.

The discussion of problems which typically arise with the application of statistical
learning methods will be distributed among the different applications. Different aspects
from chapter 3 will be discussed for different physics cases in addition to the main physics
results.

The following sections will present the analysis performed experiment by experiment.
In chapter 8 a discussion will follow summarising the results presented here under different
aspects which are important for the application of statistical learning in physics analysis.

The next section 7.2 will start with the neural network trigger of the H1 experiment.
Many practical aspects like the determination of efficiencies, the choice of inputs, statistical
and systematic uncertainties, the comparison of learning methods and many more will be
discussed with the different datasets resulting from different types of ep-interactions to
be triggered. Within this thesis, several new networks have been developed. Their good
performance will be shown here as well as astonishing signs of artificial intelligence in the
behaviour of neural networks. Most important, these neural networks have been deployed
in the H1 experiment. They are active in the trigger system and help collecting physics
events.

Section 7.3 continues with an offline analysis performed within the H1 experiment.
In contrast to the event information provided by the trigger system, the events are fully
reconstructed here so that high-level kinematical quantities can be chosen as inputs. The
target of the analysis is to enrich certain classes of events in the experimental data – a
typical pattern recognition task for statistical learning methods: standard perturbative
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QCD events have to be distinguished from the instanton-like events. A comparison with
the predicted number of events from a perturbative QCD simulation may then give a hint
whether instanton-induced events indeed exist in the data.

In section 7.4 the possibility to determine the Higgs boson parity at a future linear
collider will be analysed. Whereas the standard model Higgs boson has positive parity
minimal super-symmetric theories predict also a Higgs boson with negative parity. In
addition to the classical approach which fits a special angular distribution to determine
the parity, a completely new and very successful method based on the direct discrimination
of both parity states will be presented.

The reconstruction of the neutron incident position in the scintillation detector will
be analysed in section 7.5. This task is an example for the typical problem of missing
training data. How statistical learning methods can nevertheless successfully be used in
the reconstruction process will be presented in this part of the analysis.

In section 7.6 two applications of statistical learning methods to MAGIC telescope
data will be analysed. For the γ-hadron separation as well as for the energy estimation
the results will clearly show that statistical learning methods perform better than the
respective classical methods which are based on simple parameterisations.

Finally, section 7.7 will present the results for the second astrophysical analysis, for
the XEUS satellite. Again a significantly better performance of statistical learning me-
thods compared to the classical method results from the pileup rejection analysis. The
reconstruction of the incident position of the X-ray photon can be used to study detector
effects.



7.2 Applications for H1: The Level 2 Neural Network Trigger 117

7.2 Applications for H1: The Level 2 Neural Network

Trigger

Two classification problems will be discussed for the H1 experiment: The neural network
trigger as one of the few existing online applications of statistical learning methods, and
the search for instanton-induced events which will be discussed in the next section as an
example for the need to purify an event sample as much as possible in the search for an
especially rare event type.

The neural network trigger was described in section 2.1.4 and its hardware is discussed
shortly in appendix A. In the following, recently developed networks for specific physics
channels will be presented. The main target of these developments is to implement new
level 2 triggers in the form of neural networks which reduce the rate of the level 1 trigger
to an acceptable amount. As discussed in chapter 2, the maximum input rate to the fourth
trigger level is the bottleneck of the trigger system since this rate is limited to totally (over
all physics channels) 40-50 Hz because a full readout of the detector is needed for the level 4
trigger decision and this readout bandwidth is limited by the hardware. On the way to this
implementation many of the issues common to all statistical learning methods as discussed
in chapter 3 are faced. The network development thus offers the possibility to learn about
subjects like generating training data, input selection, avoiding overtraining, controlling
the learning method, measurement of the performance, calculating uncertainties and so on.
Finally, studies on the comparison of alternatives to neural networks will be presented: Is
there a classical algorithm or another statistical learning method which performs at least as
good as neural networks and would it be possible to implement this algorithm in hardware
to match the tight time constraints?

After two general comments about the generation of training data (section 7.2.1) and
performance checks (section 7.2.2), the recent neural network trigger development will be
presented for different physics channels in the following sections: DVCS in section 7.2.3,
charged current in section 7.2.4, J/ψ → e+e− in section 7.2.5, J/ψ → µ+µ− in section 7.2.6
and D∗’s and dijets in section 7.2.7. In the end a summary of the newly developed neural
network triggers will be given.

7.2.1 Training Data

The training data is generated in a generic way for all physics channels which will be
discussed in the following sections. The physics (“good”) events are selected for a specific
physics channel (i.e. for a specific kind of ep-interaction) by a member of the corresponding
physics working group. He or she knows all the details how such an event is characterised
and thus how such a kind of event should be selected in an offline analysis. Very high-level
algorithms are available for the analysis of the fully reconstructed events. It can thus be
made sure that the training set will consist of a very clean sample of the desired kind of
ep-interaction.

To characterise the background (“bad”) events we have to remember that each level
2 trigger validates a specific level 1 trigger. Thus anything which is triggered by the
selected level 1 trigger, but is not physics (compared to the selection of the good events), is
labelled as background. Practically all events coming from the selected level 1 trigger can
be regarded as background because the rate of real physics events is still extremely low.
Because of this low rate of real physics the selection of good events covers usually a period
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of several months of data taking while one “transparent run” (i.e. all events triggered by
any level 1 trigger are logged ignoring the other trigger levels) of half an hour is enough to
provide the background events.

7.2.2 Performance Check

Controlling the behaviour of a trigger, in particular the neural network trigger, is an
indispensable task for deriving correct cross section measurements. Most importantly, the
trigger efficiency must be measured precisely as the cross section σ is calculated by

σ =
N

ε · L (7.1)

where N is the number of remaining events after all cuts, L is the luminosity and ε is the
total efficiency of all applied cuts, including all trigger efficiencies.

The usual way of monitoring trigger behaviour is implemented in the H1 trigger system
(see figure 2.4) by logging a small fraction of events which the trigger would otherwise reject
(“by-pass”). Unfortunately even a quite large fraction of by-pass events would usually
contain much too few signal events to tell anything about the true efficiency (remember
that the signal/physics events are typically hundreds to thousands in several months of
detector operation while the trigger rate is about 100 Hz).

One strategy to evaluate the trigger efficiency uses so-called orthogonal triggers. This
strategy requires that the same physics class is triggered by different triggers which should
be as independent as possible. Suppose we have a level 1 trigger A for our physics class
whose decision is verified by a neural network NN on level 2 and that we also have an
independent level 1 trigger B for the same physics class. The efficiency of the neural
network which acts on level 1 trigger A is then calculated as the fraction of selected
physics events which were triggered by both A and B and have a positive decision from
the neural network. Figure 7.1 illustrates this strategy: The basic assumption is that B is
independent of A and that therefore the efficiency under the B-condition A&B&NN

A&B
(which

is measured), equals the true efficiency A&NN
A

.

Figure 7.1: Efficiency studies with or-
thogonal triggers: If A and B are inde-
pendent, then the efficiency of NN un-
der condition A equals the efficiency of
NN under condition A & B.

A very different approach to measure the trigger efficiency is to use a Monte Carlo
simulation. Simulated events are usually numerous enough to obtain a precise measurement
of the efficiency with a low statistical uncertainty. However, the drawback with simulated
events is always the same: One has to understand the detector behaviour very precisely.
Otherwise the efficiency obtained with the simulation may be strongly biased.

The key to the correct determination of the neural network trigger efficiency is the
correct description of the level 2 inputs (coming from the level 1 trigger-systems). Usually
much effort is needed to obtain distributions of the level 2 input quantities in the sim-
ulation which match those measured in real data. [102] presents an analysis where this
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was successfully done. Once the one-dimensional distribution of each input is correctly
described by the simulation, also the correlations between the inputs can be assumed to
match. This assumption is based on the fact that the correlations, for example between
tracks and energy deposits in the calorimeter, are determined by the underlying physics,
i.e. by the particles which create the tracks and energy depositions.

The calculation of the neural network itself is no problem. It is “simulated” just by
calculating the network output (compare section 5.4.2). Care must be taken only for the
integerisation of the calculation performed in the hardware.

For the background rejection rate the monitoring is quite easy because in a good ap-
proximation all events coming into the neural network can be regarded as background as
discussed above. This allows to calculate the background rejection simply by counting the
number of events from the corresponding level 1 sub-trigger which pass the neural network,
and the total number of events coming from the mentioned level 1 trigger.

In summary, the rate reduction and thus the background rejection is well controlled
while the efficiency is problematic to handle. The efficiency calculated with the test set
can be taken as a good estimation if the true efficiency does change with time. To check
the trigger efficiency independently, the method of orthogonal triggers can be applied if
such a trigger with a sufficiently large overlap exists. Finally a simulation can be taken to
calculate the efficiency but the simulation of the level 2 trigger quantities is difficult.

7.2.3 Deeply Virtual Compton Scattering

Trigger Development

The first studies on the recognition of deeply virtual Compton scattering (“DVCS”, see
section 2.1.5) with the level 2 neural network trigger started beginning of 2003. As a first
approach a selection of J/ψ events from 1997 were used as pseudo-DVCS events to train a
neural network. The selected type of J/ψ events show an electron-positron pair from the
decay of the J/ψ in Track-Cluster configuration where one of them is found in the SpaCal
(cluster) and the other in the LAr calorimeter (with a track in the central tracking system).
This configuration looks pretty much like DVCS where the photon also deposits its energy
in the electromagnetic part of the LAr calorimeter and the beam electron/positron goes to
the SpaCal. Figure 7.2 shows a DVCS event on the top and a J/ψ event on the bottom,
their similarity concerning the energy deposits in the calorimeters is convincing.

However, the background which was used in this first study was the background of
the J/ψ events (taken from a transparent run in 1997). Since the level 1 sub-trigger for
J/ψ’s does not only require the energy in the SpaCal but also at least one fired mask in
the tracking system (which cannot be generated by the photon in DVCS), the background
is different. Nevertheless the achieved pair of 93% signal efficiency and 90% background
rejection for a test training of neural networks with this data was already a hint that the
task is manageable.

The next steps in triggering DVCS have been taken with “real” DVCS events, first
with a selection from the year 2000 and finally in May 2004 with a DVCS selection from
2004. The event selection is done by requiring an electromagnetic cluster in SpaCal above
15 GeV and one in the electromagnetic part of the LAr calorimeter above 1 GeV. No other
energy deposition above the noise level (0.5 GeV) in the LAr and less than 2 tracks per
event are allowed.
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Figure 7.2: Deeply virtual Compton scattering (top) compared to a J/ψ decaying into two
electrons in Track-Cluster configuration (bottom).

For the final network which was developed in May 2004 the inputs consist of the twelve
LAr quadrant energies eifq0-3, efbq0-3, ecbq0-3, the four SpaCal quadrant energies
espq0-3 and the z-vertex quantities cpvsum,cpvmax and cpvpos (compare table 2.1). It
was verified that the track quantities trlopos,trloneg,trhipos,trhineg as additional
inputs do not improve the classifier. Figures 7.3, 7.4 and 7.5 show the distributions of the
chosen inputs for the DVCS selection (black) and the competing background from level 1
sub-trigger 41 (grey). The following observations connect the observed distributions with
the underlying physics:

• As expected, the four quadrants of each region of the LAr calorimeter and of the
SpaCal show very similar behaviour due to the rotational symmetry of the events.

• The inner forward region of the LAr calorimeter (figure 7.3 a-d) gives a clear indica-
tion of background formed by upstream beam-gas interactions. All particles produced
by the collision of a beam proton with a gas nucleus are seen in the inner forward
region of the LAr calorimeter. For DVCS events this region is almost always empty.

• The photon is emitted mostly to the central region of the LAr calorimeter, sometimes
to the forward region. Accordingly similar energies for signal and background are
seen in the forward region but the signal is dominant in the central region (figure 7.3
e-h and figure 7.4 a-d).

• The integral and the maximum of the z-vertex histogram scale with the number of
track candidates which are usually less for DVCS events than for the background
(figure 7.5).
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Figure 7.3: Distributions of trigger quantities for DVCS events (black,thin) vs. background
(grey,bold): energy deposits in the eight quadrants from the inner forward (if, a-d) and
forward region (fb,e-h) of the LAr calorimeter. 10 ADC counts correspond to 10GeV .
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Figure 7.4: Distributions of trigger quantities for DVCS events (black,thin) vs. background
(grey,bold): energy deposits in the four quadrants from the central region (cb, a-d) of the
LAr calorimeter and in the four quadrants of the SpaCal (sp,e-h). In the SpaCal 100 ADC
counts correspond to 18GeV .
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Figure 7.5: Distributions of trigger quantities for DVCS events (black,thin) vs. background
(grey,bold): z-vertex quantities which give the sum of entries in the z-vertex histogram
(cpvsum), the maximum of the z-vertex histogram (cpvmax) and the position of the maxi-
mum (cpvpos).

input ρ(input, target)
eifq0 -0.4132

eifq1 -0.3962

eifq2 -0.4116

eifq3 -0.4100

efbq0 +0.1653

efbq1 +0.1215

efbq2 +0.1552

efbq3 +0.1463

ecbq0 +0.0439

ecbq1 +0.0501

ecbq2 +0.0835

ecbq3 +0.0456

espq0 +0.0324

espq1 +0.0057

espq2 +0.0145

espq3 +0.0157

cpvsum -0.2638

cpvmax -0.2651

cpvpos -0.2093

Table 7.1: Correlation coefficients
ρ(input, target) for all inputs of the
DVCS dataset.
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The observed relationships between signal and background for each input are confirmed
by the correlation coefficients for the correlation between each input and the target value
(equation 3.1 on page 43) shown in table 7.1. A negative value means that a high value
is likely for background, a positive correlation means that the signal has usually higher
values and a correlation around zero means that from this input alone no clear dependence
can be derived. But still inputs with a correlation around zero may contribute much to
the final multidimensional classification since here only projections of the multidimensional
distribution are used (compare the discussion in section 3.7).

The division of the available data into training, selection and test set was done with
the ratio 50% : 25% : 25% as proposed in section 3.11. Table 7.2 shows how many events
went into which group. With 7000 DVCS events and 5000 background events this dataset
has large statistics compared to other physics channels. This allows on the one hand to
loosen the regularisation constraints because overtraining is not too likely to happen. On
the other hand the statistical error for the designed efficiency and rejection will be small.

background DVCS sum
train 2570 3494 6064
select 1292 1745 3037
test 1315 1737 3052
sum 5177 6976 12153

Table 7.2: The DVCS-dataset: DVCS-
selection from 2004 and transparent
run (background) from February 2004.

The rate of the level 1 sub-trigger 41 for DVCS was between 8 and 9 Hz, too high for
an allowed rate budget of about 2 Hz for trigger level 4. A background rejection on level 2
should therefore reduce the rate by a factor of 5, i.e. with a rejection rate of 80%. Multiple
neural networks were trained as described in appendix B.3.1 and the best efficiency for a
rejection of 80.0% was found to be 96.0% on the selection set for a network with 20 hidden
neurons. The performance on the training and test set is shown as histograms of the output
and efficiency vs. rejection graphs in figure 7.6. The target rate reduction of 80% leads to
a designed efficiency of 97.0% (now measured on the test set) at the “working point” with
a cut at 0.23. Since beginning of June 2004 this network is operating successfully.

As mentioned in the introduction of this analysis section, the performance check for
the neural network trigger is easy for the background rejection: The monitoring system of
the neural network trigger allows to count the fraction of rejected events and this fraction
is a good estimate of the background rejection as discussed above. Figure 7.7 shows
the obtained background rejection for real data coming from the detector. The designed
rejection rate of 80% is confirmed.

The signal efficiency is more complicated than the background rejection. To verify the
designed DVCS efficiency of 97% the level 1 sub-trigger 17 is used. This trigger is on level
1 identical to sub-trigger 41 but has a different verification on level 2: For sub-trigger
17 a “topological” trigger based on the LAr energies is used. DVCS events have been
selected for the period where the neural network was active and rejecting background.
85% of all DVCS events found were triggered by both level 1 sub-triggers 17 and 41. For
99.6% of these events the neural network operating on sub-trigger 41 kept the event, only
for 0.4% the event would have been rejected if it would not have been triggered also by
sub-trigger 17. Under the assumption of an “orthogonal sub-trigger” 17 (compare the
discussion above) this result confirms the designed efficiency (it is even slightly higher
than estimated). Figure 7.8 shows the efficiency dependence on energy and angle of the
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Figure 7.6: Output distributions and efficiency vs. rejection graph for the DVCS network:
The light grey histograms show the output on the training set (top left) and result in
the light grey curve in the efficiency vs. rejection plot. The dark grey curve shows a
slightly worse performance as it comes from the output distributions on the test set (top
right). The term signal means here the DVCS selection, the background comes from level
1 sub-trigger 41. The cut at 0.23 is shown in the output histograms of the test set.
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Figure 7.7: Online monitoring of the
DVCS-network: The background rejec-
tion (dark grey) is around 80% as cal-
culated from the reduction of the level
2 input rate (light grey, dotted) to the
level 2 output rate (light grey, solid).
In the display of 24 hours 3 data tak-
ing periods are visible (there have been
no beams from 4 to 10 and from 12 to
19).

photon in the LAr calorimeter and of the electron in the SpaCal. All four plots show a flat
efficiency, taking into account the statistical errors. This means that no bias is introduced
by the neural network which could make an analysis of the triggered DVCS events difficult.

In summary the DVCS network with its rate reduction by a factor 5 and almost no loss
in efficiency is a big success in comparison to the alternative pre-scaling. This would mean
that the efficiency is only 20% for a factor 5 rate reduction.

Two targets for an analysis which goes beyond the development of the neural network
trigger will be discussed in the next two sections. First the statistical and systematic uncer-
tainties of the efficiency of the implemented neural network will be analysed and secondly
a search will be performed for any method which performs similar to the implemented
neural network and which can cope with the tight time constraints.

Statistical and Systematic Uncertainties

The way how the systematic uncertainty of the signal efficiency can be calculated in prin-
ciple was introduced in section 3.13. It was emphasised that the correct calculation of
the uncertainties is an important step for the application of statistical learning methods
in physics analysis. The DVCS dataset will act as an example of how this calculation is
practically done.

The principle to calculate the systematic uncertainty of the output is to propagate the
systematic uncertainties of the inputs through the network. The first step is therefore
to determine the systematic uncertainties of the inputs. For the calorimeter energies we
adopt the known uncertainties of the calibration: A relative uncertainty of 4% for the LAr
energies and 1% for the SpaCal energies. All inputs from the same calorimeter (12 from
LAr and 4 from SpaCal) depend on the calibration in the same way and are thus correlated.
The correct systematics is therefore derived from a common variation of all input energies
for each calorimeter up and down by 1σ.

The three z-vertex quantities are derived from the z-vertex histogram which itself is
filled by the projections of all hit combinations from the outer and inner z-chambers. The
two systematic effects affecting this histogram are a variation in the efficiency and in the
position along the z-direction. They lead to a change in each bin content (up/down) and
to a shift of the entries (left/right), respectively. The uncertainty in the bin heights is
estimated as 4% (from the efficiency of 96% which is typically assumed). The systematic
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Figure 7.8: Efficiency check for the DVCS-network: Dependence of the efficiency on the
energy- and angular distributions in the LAr calorimeter (photon) and SpaCal (electron).
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uncertainty in the bin shift is estimated as a quarter of a bin (1.4cm).

To study the propagation of the input uncertainties to the output uncertainty the above
estimates will be taken as a basic medium version of uncertainties. In addition a “low”
and “high” version of uncertainties will be studied where all mentioned values are halved
or doubled, respectively, as shown in summary in table 7.3. This will allow to estimate the
general degree of influence of systematic uncertainties on the network behaviour.

Variable uncertainty level
low medium high

LAr calibration 2% 4% 8%
SpaCal calibration 0.5% 1% 2%

z-vtx hist. shift [bins] 0.125 0.25 0.5
z-vtx efficiency 2% 4% 8%

Table 7.3: Sources for systematic
uncertainties for the DVCS dataset.
Three scenarios are displayed (low,
medium, high), the medium scenario
uses the standard uncertainties deter-
mined by the H1 experiment.

The test set used to derive the systematic uncertainties is different from the original
test set since the data had to be reprocessed in between1. Efficiency and rejection are
almost the same as for the original test set but the number of available events is lower:
1182 background and 881 signal events (compare to table 7.2). The statistical uncertainty
of the efficiency presented below is therefore about 40% larger.

The systematic uncertainties of the inputs propagate to efficiency and rejection as shown
in table 7.4. The three tables contain the effects on efficiency and rejection in terms of the
strength of the variation from “low” to “high”. Inside each table variations upwards and
downwards are performed for the four sources of systematic uncertainties.

It is interesting to see that there is almost no degradation in the efficiency. If at all,
a negative effect can be seen in a lower rejection. All variations seen in efficiency and
rejection, even for the doubled uncertainties (“high”), are still smaller than the statistical
uncertainties induced by the low number of test events. Table 7.5 summarises the total
uncertainties for efficiency and rejection for the DVCS neural network. The systematic
uncertainties even in the very conservative case are still below the statistical uncertainties.
The “fault tolerance” of neural networks leads here to the effect that uncertainties of a few
percent for the input quantities are transformed into uncertainties less than one percent
for the efficiency. In summary, the neural network behaves very stable and reliable as the
statistical and systematic uncertainties are well under control.

Comparison of Hypotheses

In order to take a first step towards the question which statistical learning method is op-
timally suited for application in physics analysis we will start here with a comparison of
those methods that can cope with the tight time constraints given by the level 2 trigger
system. For a few methods it is obvious that they are fast enough to be calculated in
hardware within the H1 requirement of 10 µs. Among these are the naive Bayes method,
linear discriminant analysis (LDA) and, of course, simple cuts. Neural networks and sup-
port vector machines also have a low time consumption due to their parallel architecture
(as long as the hidden units are few enough to be calculated in parallel). Hardware imple-

1The z-vertex histogram quantities have not been available in the original dataset and are now needed
here to get the uncertainties of the three derived quantities.
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“low”
variation eff. [%] rej. [%]
without 97.6 79.4
LAr + 97.6 79.4
LAr − 97.6 79.4

SpaCal + 97.7 79.3
SpaCal − 97.7 79.4

z-vtx shift right 97.6 79.2
z-vtx shift left 97.7 79.2

z-vtx efficiency + 97.6 79.3
z-vtx efficiency − 97.6 79.3

“medium”
variation eff. [%] rej. [%]
without 97.6 79.4
LAr + 97.6 79.3
LAr − 97.8 79.2

SpaCal + 97.7 79.0
SpaCal − 97.7 79.5

z-vtx shift right 97.6 79.3
z-vtx shift left 97.7 79.1

z-vtx efficiency + 97.6 79.0
z-vtx efficiency − 97.6 79.3

“high”
variation eff. [%] rej. [%]
without 97.6 79.4
LAr + 97.4 79.6
LAr − 98.0 78.5

SpaCal + 97.7 78.7
SpaCal − 97.7 79.8

z-vtx shift right 97.7 79.3
z-vtx shift left 97.6 79.2

z-vtx efficiency + 97.6 79.2
z-vtx efficiency − 97.6 79.4

Table 7.4: Evaluation of systematic un-
certainties for the three different levels
of underlying systematic uncertainties
for the DVCS network. The medium
level corresponds to the standard un-
certainties determined by the H1 ex-
periment. The efficiencies and rejec-
tions are calculated with the same neu-
ral network and the same cut as for
the original test set. For each uncer-
tainty level a variation upwards and
downwards for all four sources of sys-
tematic uncertainties are taken into ac-
count. These sources are assumed to
be independent so that the differences
in efficiency or rejection can be added
up in quadrature.

− 0.00 + 0.20 (syst.,low)
Efficiency [%] 97.62 ±0.51 (stat.) − 0.00 + 0.30 (syst.,medium)

− 0.23 + 0.39 (syst.,high)
− 0.28 + 0.08 (syst.,low)

Rejection [%] 79.36 ±1.18 (stat.) − 0.59 + 0.17 (syst.,medium)
− 1.11 + 0.49 (syst.,high)

Table 7.5: Total uncertainties for the three different levels of underlying systematic uncer-
tainties for the DVCS network.
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mentations will be discussed in appendix A and for now these five methods are assumed
to be fast enough.

For the very basic LDA method which has very few parameters, a larger input space
can be allowed. The input space is “squared” by adding xixj ∀i, j to the inputs x1 . . . xn.
This generates in total 209 inputs which are then used for the linear discriminant analysis.
For the other four methods the original 19 inputs are kept.

Figure 7.9 shows a comparison of the five fast classification methods. The methods were
trained with different parameter sets (except LDA) and the best efficiency for a rejection
rate of 80% was selected with the selection set. The efficiency vs. rejection graphs shown
in the figure present the performance on the test set. Linear discriminant analysis clearly
profits from the additional inputs. With only the usual 19 inputs its performance would
be worse than for naive Bayes but still better than for simple cuts.
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Figure 7.9: Comparison of fast classification methods, neural network (NN), support vector
machine (SVM), linear discriminant analysis (LDA), naive Bayes (NB) and simple cuts
(CUTS). The selection criterion was the best efficiency at a rejection of 80%.

The statistical analysis needed to compare different hypotheses as described in sec-
tion 3.15 is performed here with the five chosen methods. 95% confidence intervals are
constructed for each difference in the performance-ordered list. The result is shown in ta-
ble 7.6. Exclamation marks signify a significant performance difference (95% CL) between
two methods in the list which is sorted by efficiency for a required rejection of 80%.

Table 7.6 reveals four groups of significantly different performance. The neural network
and the support vector machine perform best, then follow linear discriminant analysis and
naive Bayes, and the simple cuts perform worst. As discussed in section 3.15 this is not a
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Neural Network 96.5%
∆ = 0.7% ± 0.9%

Support Vector Machine 95.7%
∆ = 3.3% ± 1.5% (!)

Linear Discriminant Analysis 92.5%
∆ = 2.2% ± 2.1% (!)

Naive Bayes 90.5%
∆ = 6.8% ± 2.5% (!)

Cuts 83.6%

Table 7.6: Statistical analysis of the ef-
ficiencies at 80% rejection for different
methods on the DVCS dataset, statisti-
cally significant differences are marked
by an exclamation mark (95% CL).

full comparison of learning methods, but only of these specific five hypotheses. Nonetheless
it is encouraging that the neural network hypothesis – which was really implemented in
the hardware and has been used to select events – is one of the best classifiers available for
this problem. From the worst to the best classifier, from simple cuts to the neural network,
the percentage of lost events (inefficiency) is reduced by a factor 4.7, which underlines the
necessity to study and choose among different classification methods.

7.2.4 Charged Current Interactions

Trigger Development

In the following the rate reduction of the level 1 trigger rate for charged current (“CC”)
reactions (see section 2.1.5) is studied. The chosen level 1 sub-trigger 77 sets a medium
threshold for the missing transverse energy in the LAr calorimeter and showed a trigger
rate low enough to be passed on to the fourth trigger level without pre-scaling (at most 1
Hz) before the HERA 2 upgrade. The higher trigger rates after the upgrade may make it
necessary to reduce the level 4 input rate, rates of up to 2 Hz have already been reached.

There is a particular problem with charged current events which may also be faced in
many other applications for statistical learning methods: The number of training events is
very small. For an integrated luminosity in 2004 of 21pb−1 and 25pb−1 for negatively and
positively polarised positrons2, respectively, and a cross section of roughly 14pb and 36pb,
respectively, one can expect around 1000 events per year.

Like for the first try for the DVCS problem also in this case some kind of pseudo signal
events could help. As discussed in section 2.1.5, charged current interactions are closely
related to neutral current interactions. The main difference from the detector point of
view is the electron in the final state which creates a track and an energy deposition in the
calorimeter for neutral current interactions. For charged current interactions the incoming
electron/positron is converted into an (anti) neutrino which leaves the detector unobserved.
The hadronic final state is expected to be identical in neutral current and charged current
reactions. This means that a neutral current event where the electron is masked out, can
be used as a “pseudo charged current” event. Neutral current events are fortunately very
numerous (compare the discussion in section 2.1.5).

The conversion of neutral current events into charged currents by removing the electron
information from the detector is done by a program which even converts the level 1 trigger
quantities. This is important to be able to determine the efficiencies on L1 for charged

2The polarisations were about -40% (“left handed”) and +34% (“right handed”).
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current events. Unfortunately the masking of the electron is not yet working for the
quantities used on the second trigger level.

As an alterative we make a selection of inputs which hides the differences between
neutral and charged current. This means that the FB and CB region of the LAr calorimeter
cannot be used as inputs because there the electron energy is usually seen. At this point
it was unclear whether the track of the electron has a significant influence on the trigger
quantities. All track quantities were used as they are. It turned out, however, that the
number of tracks in the backward region (nbigbwd) differs between pseudo and real charged
current. Figure 7.10 shows that for charged current the probability for no track in the
backward region is around 50%. In contrast, for neutral current this probability is only
12% due to the electron in the final state. Nevertheless, the following analysis shows that
this difference is not essential for the network behaviour: a sign of the “fault tolerance” of
the neural network.
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Figure 7.10: Track candidates in the backward region for neutral current (left) and charged
current (right). The probability of no track candidate (first bin) is 4 times higher for
charged current due to the missing electron in the final state.

The choice of inputs contains therefore any available quantity which is related to charged
current interactions (excluding the SpaCal and the muon quantities) and which is not di-
rectly related to the electron (which excludes the two regions of the LAr calorimeter).
This leaves four LAr quadrants in the inner forward region eifq0-3, four drift cham-
ber track quantities trlopos,trloneg,trhipos,trhineg, four multi wire proportional
chamber track quantities nbigfwd,nbigfce,nbigbce,nbigbwd and the z-vertex quanti-
ties cpvsum,max,pos as inputs (figures 7.11 and 7.12).

Table 7.7 summarises the data sets which are available to train and test a neural
network trigger for charged current interactions. The training, selection and estimation of
performance is done with the large sets of pseudo charged current events and background.
The estimated efficiency and rejection can then be cross-checked with real charged current
events (and the background test set). The division into training, selection and test set was
done 60% : 12.5% : 27.5% to have more events for training and testing.

The optimal relation between efficiency and rejection (“working point”) for charged cur-
rent is different from the previously discussed DVCS dataset. Here, a very high efficiency,
as close to 100% as possible, is the primary objective and the corresponding rejection rate
is secondary since a high rejection is not required. About a factor 2 rate reduction, i.e.
around 50% rejection, is desired.

The trainings were done using different parameter settings. A quick overview showed
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Figure 7.11: Distributions of trigger quantities for pseudo-CC events (black,thin) vs. back-
ground (grey,bold): energy deposits in the four quadrants from the inner forward region
of the LAr calorimeter and track candidates from the drift chamber.
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Figure 7.12: Distributions of trigger quantities for pseudo-CC events (black,thin) vs.
background (grey,bold): tracks from the z-vertex trigger in four regions (nbigfwd to
nbigbwd) and the z-vertex quantities which give the sum of entries in the z-vertex his-
togram (cpvsum), the maximum of the z-vertex histogram (cpvmax) and the position of
the maximum (cpvpos).
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back- pseudo- sum real
ground CC CC

train 1985 2258 4243
select 415 425 840
test 909 1063 1972 391
sum 3309 3746 7055 391

Table 7.7: The CC-datasets: Neutral
current selection from 2004 used as
pseudo charged current vs. transparent
runs from April 2004 and real charged
current events used for testing only.

that efficiencies above 99% can be obtained with a rejection rate above 50%. The highest
efficiency was thus searched on the selection set for a fixed rejection of 50%. The best
efficiency found for the selection set was 100% (no signal event lost) for a network with
12 hidden neurons. On the test set, the corresponding network shows the performance
presented in figure 7.13. An efficiency for pseudo charged current interactions of 99.9% (1
of 1063 pseudo-CC events gets lost) is achieved with a background reduction of 58%.

This neural network was integrated into the trigger hardware to check the rejection
rate online on new events. Figure 7.14 shows the graphs for input rate, output rate and
their quotient, the background rejection, coming from the monitoring system of the level
2 neural network trigger. The background rejection of about 50% is slightly below the
designed 58%, but still in good agreement since exact equality cannot be expected due to
changing running conditions.

To verify the designed efficiency the 391 events from the charged current selection were
used. These events have not been included in the training and can thus serve as a test set.
Figure 7.15 proves the success of the pseudo charged current replacement. The classifier
looses only one out of the 391 real charged current events. Why and what is special about
this event will be discussed after the determination of the uncertainties of the network.

Statistical and Systematic Uncertainties

The determination of the statistical and systematic uncertainties proceeds according to the
scheme introduced for the DVCS network in section 7.2.3. Two groups of input quantities
are used in the charged current network which have not been used in the DVCS network.
Both groups describe the numbers of track candidates, one with information from the z-
vertex trigger (nbig* quantities) and one with information from the DCrφ-trigger (tr*
quantities).

The uncertainty for the “big-ray”-quantities is coupled to the z-vtx histogram height
since both depend on the track efficiency of the z-vertex trigger (CIP and COP). The
systematic variation of this track efficiency therefore affects the z-vertex histogram as well
as the number of tracks (nbig* quantities).

The uncertainty for the DCrφ track efficiency is estimated to be similar to the track
efficiency of the z-vertex trigger. The same medium level of uncertainty of 4% is therefore
assumed. Table 7.8 summarises the sources of systematic uncertainties which are taken
into account.

The statistical errors are based on the whole real charged current test set and a part of
the background set which again had to be reprocessed to include the z-vertex histogram
quantities. A total of 391 real charged current events and 944 background events are used
to study the systematic uncertainties. Table 7.9 summarises the variations in efficiency
and rejection resulting from the systematic uncertainties of the inputs.

If the “high” systematic uncertainties are assumed, one additional event gets lost (0.26%
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Figure 7.13: Output distributions and efficiency vs. rejection graph for the pseudo-CC
network: The light grey histograms show the output on the training set (top left) and
result in the light grey curve in the efficiency vs. rejection plot. The dark grey curve shows
a slightly worse performance as it comes from the output distributions on the test set (top
right). The term signal means here the pseudo-CC selection, the background comes from
level 1 sub-trigger 77. The signal efficiency of 99.9% means that only one of the 1063
pseudo-CC events is rejected with the cut at 0.01 which is shown in the output histograms
of the test set.
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Figure 7.14: Online monitoring of the
CC network: The background rejection
(dark grey) is around 50% as calcu-
lated from the reduction of the L2 in-
put rate (light grey, dotted) to the L2
output rate (light grey, solid). Like in
figure 7.7 two periods without beams
can be seen.
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Figure 7.15: Efficiency check for real
charged current events, one event is
lost, all other outputs are above the cut
at 0.01.

Variable uncertainty level
low medium high

LAr calibration 2% 4% 8%
z-vtx efficiency 2% 4% 8%

z-vtx hist. shift [bins] 0.125 0.25 0.5
DCrφ track efficiency 2% 4% 8%

Table 7.8: Sources for systematic un-
certainties for the CC dataset.

− 0.00 + 0.00 (syst.,low)
Efficiency [%] 99.74 ±0.26 (stat.) − 0.00 + 0.00 (syst.,medium)

− 0.26 + 0.00 (syst.,high)
− 0.90 + 0.39 (syst.,low)

Rejection [%] 60.88 ±1.60 (stat.) − 1.74 + 0.71 (syst.,medium)
− 4.78 + 1.35 (syst.,high)

Table 7.9: Total uncertainties for the three different levels of underlying systematic uncer-
tainties calculated for the real charged current selection.
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corresponds to 1 of 391). This event will be shown and discussed in the next section as well
as the one which anyway would not have passed the trigger. With only a slight variation
in the efficiency for high uncertainties the neural network behaves very stable over longer
running periods. Even large systematical uncertainties of the inputs lead to only small
systematical uncertainties of the output, again a sign of the “fault tolerance” of neural
networks. Although the uncertainty in the rejection rate is higher than for the DVCS
network even the variations for a high-level of underlying uncertainties are still acceptable.

Artificial Intelligence

The event which was part of the charged current selection but would have not passed the
trigger is shown in figure 7.16. The energy depositions in the LAr calorimeter in both views
suggest that they have not been generated by particles coming from the interaction region
but by a high energy cosmic ray passing the detector from top to bottom (high energy
cosmic rays, i.e. muons, can initiate electromagnetic showers in the steel plates of the
hadronic LAr calorimeter if their energy exceeds the “critical” energy of about 300GeV ).
The remaining parts of the event structure then show some kind of ep-interaction but not
a charged current event since this presumption was based on the unbalanced LAr energy.
Thus this event should not have been part of the charged current selection.
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Y

Figure 7.16: Event from the charged current selection which would have been rejected by
the neural network. It turned out to be most probably an overlay event with a high energy
cosmic muon passing through the detector.

The other interesting event of the charged current selection is the one which is rejected
in addition if a large variation downwards in the DCrφ track efficiency is assumed. This
event originally had an output of 0.25 and falls slightly below the cut at 0.01 if the DCrφ
track efficiency is lowered by 8%. The reason can be deduced directly from the modified
inputs of this event: A statistical process simulates the conversion of floating point numbers
(which result from the change in efficiency) into integers. This event had the bad luck that
the input trhineg (number of high energy negative tracks) turned from 2 to 1 and trloneg

(low energy negative tracks) from 1 to 0. All other inputs of this event were zero and of
course stayed so. This drastic change in the number of tracks leads to the drop in the
output.

Figure 7.17 shows this special event with apparently two opposite charged particles com-
ing from the vertex. One of them points to the energy deposition in the LAr calorimeter.
A closer look, however, reveals that both particles have the same momentum. Therefore
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Figure 7.17: One event from the charged current selection which might be rejected due
to high systematic variations. It turned out to show a cosmic muon which generated the
energy deposit in the LAr calorimeter and then passed through the interaction region.

the two tracks describe most likely one particle coming from the outside and not from the
interaction region. Since the track is linked to the energy deposition in the LAr calorimeter
it describes most likely the cosmic muon which has generated the energy in the calorime-
ter. Also, the energy deposition in the calorimeter is certainly due to a cosmic muon which
means that again this event should not have been part of the charged current selection.

In summary, we have optimised a new neural network for the triggering of charged
current events in the HERA II period. This network has proven to be very efficient: no
single event has been rejected which showed undoubtfully a charged current interaction.
In addition, the rejection of over 50% is sufficient for the needs of the trigger system. A
detailed analysis of the network behaviour revealed two events which should not have been
part of the charged current selection. This means that the neural network was able to
detect a weak point of a physics selection by intelligent pattern recognition even based on
only the coarse information delivered to the second trigger level.

7.2.5 Exclusive J/ψ Photoproduction – J/ψ → e+e−

Trigger Development

Level 1 sub-trigger 33 is dedicated to heavy vector mesons (J/ψ’s and Υ’s) (see sec-
tion 2.1.5), decaying into electrons for high γp-centre-of-mass energies. In this case the
decay electrons are boosted into the backward region, thus one is found in the SpaCal
and the other in the liquid argon calorimeter. Neural networks for the rate reduction of
this trigger have been used since long time reducing the rate from about 10 Hz to less
than 1 Hz. An update of the existing network was necessary in 2004 because some input
quantities changed (spcent1, compare section 2.1.4). Training data was available from two
independent J/ψ selections from the year 2000 (A) and 2004 (B). The background was
taken from a transparent run in May 2004. The inputs used in the final training are the
four SpaCal quadrant energies, the four DCrφ track quantities, three of the four z-vertex
track quantities (without nbigfwd) and the three z-vertex histogram quantities, totally 14
inputs.

The training of the neural networks was done using the selection B from 2004 and
cross-checking the efficiency on selection A from 2000. Several networks were trained
with different parameter settings (compare appendix B.3.1), the best performance on the
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selection set was found for a network with 20 hidden neurons. Interestingly, the trained
network with a background rejection of 94% showed an efficiency of 95% on selection B
but over 99% on selection A. Comparing the output distributions of the two selections
(figure 7.18) reveals that there might be a special class of events in selection B which look
very much like background (output close to 0). This class is not present in selection A.
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Figure 7.18: Output distribution for the two J/ψ → e+e− selections: (a) selection A (2000)
and (b) selection B (2004). A special event class in selection B with outputs around 0 was
identified as background by the neural network.

Indeed, simply by scanning through the selected events from 2004 which get a very low
output a weak point of the event selection was revealed: One of the selection cuts was
chosen very soft by purpose but turned out to be much too loose since a lot of background
events were kept then. Exactly these background events were recognised and rejected by
the neural network – a very nice demonstration of the pattern recognition capabilities of
neural networks and statistical learning methods in general.

Influence of the Training Set Size

The number of available events for training and testing is one of the crucial factors for
successful statistical learning. A small number of training events may lead to overtraining
or, if overtraining is reduced by regularisation, the regularisation will allow only a very
small function space, leading probably to a trained method not performing too well. A
small number of test events will result in a very rough guess of the performance because
the statistical uncertainties will be large.

The J/ψ → e+e− dataset will be used in this section to study the dependence of the
classifier performance on the training set size for different learning methods. Table 7.10
shows the different sizes for training, selection and test set which are studied. It is impor-
tant to decrease the size of the selection set in the same way as the training set because
a significant bias can be created if the best classifier is chosen among different parameter
sets on the basis of a large selection set. The remaining test set is used to measure the
true performance of the selected classifier, its size influences the statistical uncertainty of
the performance measurement.

Figure 7.19 shows the performance on the test set for four selected statistical learning
methods (neural network, support vector machine, random forest and decision tree C4.5).
The markers show the minimum percentage of misclassifications M which is calculated as
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Training [%] 1 2 4 8 10 15 20 25 30 35 40
Selection [%] 1 2 4 7 9 13 16 25 28 33 30
Test [%] 98 96 92 85 81 72 64 50 42 32 30

Table 7.10: Different sizes of training, selection and test sets: The percentages are applied
independently to 6892 background and 906 J/ψ → e+e− events.

M = (1 − ε) + (1 − r) where ε is the efficiency and r is the rejection. Sometimes simply
the number of misclassified events divided by the total number of events is calculated. But
this definition neglects the possibility of very different set sizes for signal and background.
The uncertainty shown is the combined uncertainty of efficiency and rejection added in
quadrature (see section 3.13).
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Figure 7.19: Dependence of the misclassification rate on the training set size for four
different learning methods, measured with the J/ψ → e+e− dataset.

For each learning method and for each size of the training set several classifiers have
been trained with different parameter settings. This is very important in this context since
it allows to choose optimal regularisation parameters. A good regularisation is especially
needed for the small training sets. Details about which parameters are varied for which
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learning method can be found in appendix B.3 for the learning methods neural network,
support vector machine and random forest. The selection set is used to choose the best
classifier among the different trainings for each training set size and for each learning
method. The data points shown in figure 7.19 have been measured with the best classifier
of each group.

As expected, the misclassification rate is higher for the very small training sets. It
seems, however, that the performance does not increase much if the training set becomes
larger than 10% of the total data. Neural networks (figure 7.19 a) show a smooth be-
haviour for the misclassification rate as a function of the training set size. As expected the
misclassification rate rises strongly towards very small training set sizes and reaches a flat
minimum towards large sizes. The performance of the support vector machines (figure 7.19
b) is quite unstable, the random forest method (figure 7.19 c) shows a nice stable behaviour
even for very small training set sizes and the decision tree C4.5 (figure 7.19 d) is again a
little unstable with a generally higher misclassification rate.

This study confirms the necessity to have as many training events available as possi-
ble. However, even more importantly, one observes unstable behaviour for the support
vector machines and the decision tree C4.5. In prospect to the analysis of the parameter
optimisation process, which will be demonstrated using the dijets dataset (section 7.2.7),
we see a clear indication here that other effects besides the size of training set scale the
achieved performance. This makes it necessary to train several times in different ways and
then choose the most successful training by selecting the optimal performance with the
selection set.

7.2.6 Inelastic J/ψ Photoproduction – J/ψ → µ+µ−

Trigger Development

The training data used here consist of a signal selection of J/ψ’s decaying to µ+µ− (see
section 2.1.5) and background from a transparent run, both from 2004. Since a medium rate
reduction of 30% was considered sufficient for the level 1 sub-trigger 15 (with rates around 6
Hz) a high efficiency can be obtained and the neural network was selected accordingly. The
inputs used for this network consist of the LAr energies (if region in four quadrants, fb
and cb regions summed), the three z-vertex histogram quantities and the muon quantities
ironfe, ironfb, ironcb and ironbb (compare section 2.1.4), totally 13 inputs. The
neural network selected among the different parameter settings has 30 hidden neurons.
The trained neural network shows an efficiency of 96% at a rejection of 30% on the test
set. These designed values have been verified online: The rejection rate measured with the
monitoring system was 30% and the efficiency check with orthogonal triggers resulted in
56 kept of 56 total events in good agreement with the designed value of 96% within the
statistical uncertainty.

Level 1 sub-trigger 15 will be taken exemplary to demonstrate that of course the de-
velopment of neural network triggers has a direct impact on the physics analysis and its
results. Figure 7.20 presents a preliminary result of the selection of J/ψ events [103] which
have been triggered after the neural network trigger had been activated. The mass peak at
3.1GeV is clearly visible and even the ψ(2S) at 3.7GeV can be recognised. This selection
of J/ψ → µ+µ− events covers all level 1 sub-triggers. An easy calculation shows that the
neural network increases the J/ψ’s triggered by sub-trigger 15 by 37% with respect to the
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alternative pre-scaling. This number is derived from the comparison of the efficiency of
the neural network (96%) to the efficiency of pre-scaling (70%) at the same rate reduction
(30%).
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Figure 7.20: A preliminary J/ψ mass
peak [103] as seen after selection for the
events which have been triggered after
the neural network trigger had been ac-
tivated.

Input Selection

The selection of appropriate inputs is a central task for statistical learning methods. Quite
frequently the original structure of the available data is very high-dimensional (in the order
of several hundred input quantities) and is thus unsuitable to be used directly. Section 3.6
discussed some ways of preprocessing such datasets. Here we will show how a subset
of inputs can be selected from an initially large number of available inputs so that the
performance of the learning method is optimised. As mentioned in section 3.2, presenting
all available inputs to the learning method is mostly not optimal because some inputs tend
to confuse more than help – or if this statement seems inappropriate in the context of
statistical learning: the more unnecessary inputs are used the more likely overtraining will
happen and the more regularisation must be done which finally decreases the performance.

We start with a training with all inputs which potentially can be used to distinguish
between a J/ψ decaying to µ+µ− and its competing background from level 1 sub-trigger
15. Table 7.11 includes all detector components delivering signals to the neural network
trigger. In principle all available inputs are listed, only a few restrictions have been made
a priori: the energies in the forward and central region of the LAr calorimeter for example
are not presented in four quadrants but only as a sum due to the low energy values there.

Table 7.11 presents the correlation values ρ (equation 3.1 on page 43) for all inputs and
the mean absolute correlation ρ̄ per detector component. These values can be obtained
without any training whereas the relevance R (equation 3.20 on page 65) is calculated after
a learning method has been trained with all available inputs (the random forest method is
used here and in the following as an example). Finally, the table shows the performance
results for the specific sub-detectors: The misclassifications M are calculated for trainings
in which only inputs from the specified detector component are used.

All the presented values give a hint about the importance of each input quantity and
the respective detector component. At a first glance the correlation coefficients ρ, the
relevances R and the misclassifications M agree that the SpaCal quantities and the muon
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quantities are probably candidates which could be removed. The assessment of the other
inputs is more difficult, at least the drift chamber quantities and the z-vertex-histogram
quantities look promising. It could also be discussed whether the sum of relevances or
correlations is a better measure of the importance of a whole group of inputs than the
mean value.

Group Liquid Argon Energies ρ̄ = 0.10 R̄ = 4.9 M = 60.3%
Inputs eifq0 eifq1 eifq2 eifq3 larfbe larcbe

Correlations ρ 0.05 0.02 0.04 0.07 0.22 0.18
Relevances R 8.6 4.5 5.1 5.5 2.8 2.9

Group SpaCal Energies ρ̄ = 0.03 R̄ = 0.9 M = 83.4%
Inputs espq0 espq1 espq2 espq3

Correlations ρ 0.02 0.00 0.05 0.04
Relevances R 1.2 0.8 0.8 0.7

Group Drift Chamber Tracks ρ̄ = 0.26 R̄ = 5.2 M = 57.0%
Inputs trhineg trhipos trlopos trloneg

Correlations ρ 0.37 0.24 0.15 0.28
Relevances R 8.9 4.6 2.5 4.8

Group Muon Candidates ρ̄ = 0.07 R̄ = 2.1 M = 82.6%
Inputs ironbe ironfe ironfb ironbb

Correlations ρ 0.05 0.06 -0.13 -0.03
Relevances R 2.0 1.6 2.0 2.7

Group z-vtx Tracks ρ̄ = 0.21 R̄ = 4.9 M = 71.6%
Inputs nbigfwd nbigfce nbigbce nbigbwd

Correlations ρ -0.05 0.22 0.27 0.30
Relevances R 0.5 6.7 6.5 6.0

Group z-vtx Histogram ρ̄ = 0.21 R̄ = 6.1 M = 60.7%
Inputs cpvsum cpvmax cpvpos

Correlations ρ 0.26 0.24 0.14
Relevances R 5.0 3.6 9.7

Table 7.11: Assessment of single inputs and detector components for the J/ψ → µ+µ−

dataset: The correlations with the target value and the relevances in a training which
includes all inputs are given for all available inputs. These values are also summarised for
each detector component in a mean value of the absolute correlations and a mean relevance.
In addition the percentage of misclassifications M for a training with the respective detector
component is given.

The search for the subset which performs best is done here by successively dropping the
input quantity with the least relevance. This strategy hopes to improve the performance
step by step by removing unnecessary inputs until the performance decreases again when
inputs get removed which contained useful information. Table 7.12 shows which input
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got removed in which step and what its relevance was in the last training. The resulting
misclassifications show indeed the predicted behaviour: The minimum percentage of mis-
classifications is reached after removing 5 inputs (the number of tracks in forward direction
and all SpaCal quantities).

Input removed none nbigfwd espq1 espq3 espq2 espq0 ironfe

Relevance R – 0.5 0.7 0.8 0.8 1.2 1.4
Misclassifications M 43.9% 43.7% 42.6% 42.0% 42.5% 41.7% 45.1%

ironbe ironfb trlopos ironbb larcbe

1.1 1.9 2.4 2.5 2.9
44.1% 42.1% 44.8% 46.5% 45.5%

Table 7.12: Successive removal of inputs for the J/ψ → µ+µ− dataset: For each step the
removed input, its relevance in the last training and the percentage of misclassifications
after removing it are given. The minimum is reached after removing five inputs (the number
of tracks in forward direction and all SpaCal quantities).

7.2.7 D∗ and Dijet production

Rate Reduction for a trigger with two different physics classes

The two physics channels, D∗ and dijet production (see section 2.1.5), are discussed to-
gether since they are both triggered by the same level 1 sub-trigger 83. This sub-trigger
needs a rate reduction of about a factor 2 (the rate was around 4 Hz). At the same time,
the trigger should have a sufficiently high efficiency for both physics channels. This is en-
sured by training two neural networks, one for each physics channel. The trigger decision is
then the logical OR of both networks, leading to a total background rejection which might
be lower than the two single rejection rates. Accordingly, the two total efficiencies might
by higher than the designed single efficiencies. To control and estimate these “crosstalk”
effects is an important part of the trigger design.

The chosen inputs are the same for both networks. They consist of the four LAr inner
forward quadrant energies and the energy sums for the forward and central barrel. Further
inputs are the four DCrφ track numbers, the three quantities describing the z-vertex
histogram and finally three of the four z-vertex track quantities (without nbigfwd), totally
16 inputs. Like in the previous sections multiple trainings have been done with different
parameter settings (compare appendix B.3.1). The networks with the best performances
on the selection sets have 8 hidden neurons for both datasets. Table 7.13 summarises the
performance values measured for the two networks independently and measured for the
logical OR of the two networks.

D∗ efficiency Dijet efficiency background rejection
D∗ network 95% 43%
Dijet network 95% 50%
Combined (OR) 96% 97% 37%

Table 7.13: Efficiencies and rejections for D∗ and dijet production and the combination of
both classifiers.
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The first two lines are determined by using the test set of each training independently
in the usual way. The last line is derived from the combination of both networks:

• The test part of the D∗ signal is passed through the dijet network. Any event which
is kept there but not in the D∗ network has to be added to the D∗ efficiency.

• Analogously any dijet event kept by the D∗ network has to be added to the dijet
efficiency.

• The total rejection is given by those events of the test part of the background which
pass neither the D∗ nor the dijet network.

Comparison of Learning Methods

The D∗ dataset is used here to perform a comparison of the four learning methods k-
nearest-neighbours, naive Bayes, neural network and random forest. This comparison is
done as described in section 3.15.2. A first step towards the comparison of learning methods
was done in section 7.2.3 where specific hypotheses have been compared. The next step is
to include the study of a varying training set which leads to the cross-validation structure
(see section 3.12). We choose five-fold cross-validation dividing the 3500 D∗ and 1500
background events into five equal sets which are used to train five classifiers. These five
classifiers are then evaluated to derive the performance variations for each learning method
as described in section 3.15.2.

The learning methods were chosen to have at least one algorithm from each of the three
basic groups of classifying techniques (see chapter 5): The random forest method is based
on a decision tree algorithm3, k-nearest-neighbours and naive Bayes are both local density
estimators and the neural network is based on linear separation.

Figure 7.14 shows the result of the comparison of the four selected methods. A rejection
of 60% was fixed for each method and for each of the five cross-validation sets. The varia-
tions in the efficiency were used to derive a 95% confidence interval for each performance
difference as described in section 3.15.2. The mean efficiencies for the rejection of 60%
are shown in the table sorted from best to worst If two neighbouring methods perform
significantly different (95% CL) an exclamation mark signifies the gap in performance.

Random Forest 88.8%
∆ = 0.7% ± 1.8%

Neural Network 88.1%
∆ = 1.8% ± 1.6% (!)

Naive Bayes 86.2%
∆ = 7.9% ± 2.4% (!)

k-Nearest-Neighbours 78.3%

Table 7.14: Comparison of the effi-
ciencies of different learning methods
for 60% rejection on the D∗ dataset,
statistically significant differences are
marked by an exclamation mark (95%
CL).

We see that the random forest method and the neural network perform best and almost
equally well. The naive Bayes method is significantly worse and the k-nearest-neighbours
search again performs significantly worse. However, we have to note that this comparison
and the resulting sequence of performance cannot be generalised but applies only for this

3As mentioned in section 5.5.2 the good performance of the random forest method is not due to the
underlying decision tree but due to the bagging structure.
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specific D∗ dataset. Datasets from different applications may lead to different conclusions.
A summary for the experiments used in this thesis will be given in section 8.5.

Parameter Optimisation

The selection of dijet events will be used to study the parameter optimisation for eight
different learning methods: Neural network, support vector machine, random forest, de-
cision tree C4.5, k-nearest-neighbours, naive Bayes, simple cuts and range search. It was
emphasised in section 3.11 that different parameter sets should be tried out to regularise
the training, i.e. to find an optimal balance between performance on the training set and
generalisation which is measured (estimated!) with the test set. Trying out different pa-
rameter sets also helps to find a well performing classifier for an unstable learning method
(compare the observations from section 7.2.5). The selection set is used to choose the best
training from the various parameter settings while the test set is preserved to measure the
true performance without any bias.

An especially difficult aspect of the parameter optimisation process comes with learning
methods which need some kind of scaling factor per input. The k-nearest-neighbours
search, for example, can use a metric with different scaling factors for each input quantity,
the range search method as a second example needs to know the extensions of the hyper-
box in which the events should be counted. To optimise these parameters for each input
means generally to try out all combinations, i.e. already 34 = 81 trials for 3 possible
values for 4 inputs. For a large number of inputs this strategy can of course not be
used. In this example we restrict the dijets dataset to its four most promising inputs
(larfbe,trhineg,trhipos and nbigbwd) and allow thereby the extensive search for the
best combination of parameters.

To be able to compare the parameter optimisation processes for different learning me-
thods, between 50 and 100 different sets should be tried out for each method. This number
includes pre-studies in which a rough guess for good parameters is obtained, for the support
vector machine, for example, an acceptable value for the factor γ in the Gaussian kernel
may vary over several orders of magnitude. Appendix B.3 describes the parameter vari-
ations in more details for neural networks, support vector machines and random forests.
The free parameters and their variation for the other methods have been shortly described
in the respective sections of chapter 5.

Figure 7.21 gives an overview of the effects of the 50 and 100 parameter variations for
the different learning methods. For each method the distributions of training and test error
(misclassifications) are plotted for the different parameter settings. The thin black line in
the test error distribution marks the true performance estimate which is obtained for the
classifier which was chosen by selecting the best performance on the selection set.

We see that overtraining is a very natural effect common to all learning methods, even
the combinatorial search for optimal simple (i.e. one-dimensional) cuts shows overtraining
(marker A in figure 7.21). The larger the distance between the mean training error and the
mean test error the more the learning method tends to overtrain its classifier. This may
be a natural and unproblematic behaviour like for the random forest method where some
parameter settings show strong overtraining and some less4, yet they result all in more or

4The important parameter for this behaviour is the number of events below which a branch of a tree
is no more split. If this number is set equal to 1, the performance on the training set is naturally near
“optimal”.
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Figure 7.21: Evaluation of the parameter optimisation process with the dijets dataset: The
error distributions for the training and test errors are plotted and a thin black line marks
the test error which is obtained with the classifier which has the least error on the selection
set. The blue letters mark special properties and are referred to in the text.
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less the same performance on the test set (marker B in figure 7.21). Strong overtraining is
seen for the support vector machines (marker C in figure 7.21).

A second important aspect is the width of the test error distribution. The rule proposed
here is to choose the best parameter set with the selection set and not with the test set.
Neglecting this rule would result in a significant bias for those methods which show a large
variance for the test error. The thin black line shows which true performance (estimated
with the test set) can be expected when the best parameter set is chosen with the selection
set. A significant bias would have resulted, for example, for random forests (marker D) and
range search (marker E). A few percent bias due to the incorrect handling of this problem
(i.e. using the test set to choose the best classifier) may produce significant problems in
the subsequent analysis.

Finally it has to be emphasised that the goal of studying different parameter sets is
to find an optimal set which performs significantly better than the others. For support
vector machines (marker F) and the k-nearest-neighbours search (marker G) it is obvious
that this parameter optimisation is needed and successful (large spreads of the test errors).
For other methods like random forests, combinatorial cuts search, and range search this
effect is still visible in the plots and probably significant. For the other methods this whole
procedure might seem useless. However, we used here only one dataset as an example,
for other datasets (different number of training events, more or less inputs and, of course,
different physics) the situation will change definitely (e.g. the support vector machine
performs significantly better in other datasets like for DVCS in section 7.2.3).

7.2.8 Summary of Newly Developed Neural Networks

The following table summarises the neural network triggers which have been discussed
in the last sections. The first column mentions the underlying physics and the second
column gives the level 1 sub-trigger which triggers this physics (mostly one among others).
The rate of this sub-trigger will be reduced by the verification with the neural network.
Efficiency and rejection of the neural network trigger are stated as the designed values but
have been confirmed as discussed in the previous sections.

physics L1 ST eff. rej. signal selection comment
DVCS 41 97% 80% L.Favart [104] used since 06.2004

CC 77 100% 57% R.Placakyte [105] test trigger
J/ψ → e+e− 33 95% 94% R.Lopez (04) [106] test trigger

L.Janauschek (00) [102]
J/ψ → µ+µ− 15 96% 30% H.Lüders [107] used since 06.2004

D∗ 83 95% 43% M.Göttlich [108] OR dijets: 96% / 37%
used since 07.2004

Dijets 83 95% 50% S.Schätzel [109] OR D∗: 97% / 37%
used since 07.2004
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7.3 Applications for H1: Instanton Purification

The search for instanton-induced events has been introduced in section 2.1.6. If a signifi-
cant excess of instanton-like events in the H1 data compared to the predictions from the
perturbative simulations could be detected, then the instanton hypothesis would be con-
firmed. The main goal of the analysis presented in the following sections is to enrich the
number of instanton-like events in the data as much as possible and to perform then the
comparison to the perturbative predictions taking into account statistical and systematic
uncertainties.

7.3.1 Datasets

The datasets used in this analysis are provided by an earlier analysis [8]. In the following
we will refer to this analysis and its results as “analysis I”. The provided datasets consist
of Monte-Carlo simulations for instanton-induced events “QCDINS”, and two different
simulations for perturbative QCD events “MEPS” and “CDM” (compare section 2.1.6).
The datasets include also H1 experimental data. All datasets went through a preselection
step described in [8] resulting in the numbers shown in table 7.15.

Source # Events Mean Weight
DATA 354600 1.056
QCDINS 165301 0.797
MEPS 301722 5.816
CDM 163930 5.029

Table 7.15: Datasets for the instanton analysis, all simulations (QCDINS, MEPS, CDM)
are specific to the years 1996 and 1997 from which the experimental data, covering 21.1
pb−1, were taken.

In addition to these basic datasets there exist also datasets for the two perturbative
QCD simulations which were modified according to the systematic uncertainties of the
underlying observables. This means that the inputs sphB, nB, Q′

rec
2, ET,Jet and ET,B

(compare section 2.1.6) have been modified according to the systematic uncertainties which
are caused by model uncertainties in the simulations, resolution effects in the detector and
limitations in the knowledge of the detector calibration. The eleven sources for systematic
uncertainties taken into account are listed in table 7.16.

The uncertainties shown in this table are taken from analysis I and unfortunately do not
agree totally with the data files actually provided by the author of analysis I [8]. Compared
to the analysis I, the data files used here contain a more conservative version of systematics
in the sense that larger uncertainties are assumed for the SpaCal electron energy scale, the
electron scattering angle and the track efficiency. In analysis I these uncertainties were
regarded as too large and have been decreased in a newer version which is unfortunately
no longer available.

To obtain systematic uncertainties which can be compared to the results of analysis I we
will therefore apply correction factors to the propagated systematic uncertainties obtained
for the three quantities mentioned above. These correction factors decrease the obtained
conservative uncertainties by up to one order of magnitude to obtain values compatible to
analysis I. How these correction factors are derived will be discussed in section 7.3.4.
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Liquid argon hadronic energy scale ±4%
SpaCal electron energy scale ±2%
Electron scattering angle ±2mrad
Track momentum scale (FSCOMB) ±3%
SpaCal hadronic energy scale ±7%
Track momentum scale ±3%
Track azimuth angle ±2mrad
Track polar angle ±2mrad
Track efficiency 95/98%
Luminosity uncertainty 1.5%
F2 uncertainty 3.0%

Table 7.16: Sources for systematic uncertainties for the instanton analysis. These values
describe the uncertainties used in analysis I [8]. Here, however, slightly different uncer-
tainties are used (see text).

Figures 7.22 and 7.23 show the kinematic quantities used in the discussed datasets.
The plots always show the distributions of the MEPS simulation vs. QCDINS simulation.
The one-dimensional plots present all five quantities which are available to distinguish
instantons from perturbative QCD background, the two-dimensional plots show any com-
bination of two of the three first-choice inputs sphB, nB and Q′

rec
2 (compare the discussion

in section 2.1.6). In the two-dimensional projections of the input distribution clear rounded
decision boundaries between the light (background) and dark (signal) regions are visible.
These slightly rounded decision boundaries encourage to try out neural networks on this
problem. There are also regions in which no events were found resulting in an undefined
decision state (0.5). Yet it is mostly obvious that they can only belong to the signal region
(dark). These undefined regions are dangerous for local density estimators like the range
search method but they can be handled well by linear separators, for example by neural
networks.

7.3.2 Evaluation Strategy

A high separation power is essential in this analysis, since a small signal is searched in an
overwhelming background. The definition of the separation power is

SP =
ε

1 − r
(7.2)

where ε is the QCDINS efficiency and r is the MEPS/CDM rejection. This shows that
arbitrarily high separation powers can be reached towards stronger and stronger cuts with
the price of a very low efficiency.

For the evaluation of the developed classifiers we follow the convention of analysis
I. There the separation power at an efficiency of 10% is measured to compare the per-
formances. Furthermore the uncertainties (statistical and systematic) in the number of
selected events from the perturbative simulations have to be taken into account. A high
separation power and thus a potentially large fraction of instanton-induced events in the
measured data may be compensated by large uncertainties in the number of selected back-
ground events.
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Figure 7.22: Input distributions of the instanton dataset in one-dimensional projections,
the signal (QCDINS) in thin black and the background (MEPS) in thick grey.
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Figure 7.23: Input distributions of the instanton dataset in two-dimensional projections:
Plotted is the ratio of QCDINS events vs. all events (QCDINS plus MEPS events) in each
bin which can be interpreted directly as the optimal output of a learning method. Signal
and background have been normalised to the same number of events. Regions in which no
event is found take the value 0.5 (undecided).
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The agreement between measured data and simulation in combination with the uncer-
tainty of the simulation will be taken to derive a significance of the instanton hypothesis
with the following equation:

s =
NData − (NPert +NIns)

σNPert

. (7.3)

The difference between selected events in the measured data NData on the one hand and
selected events from the background simulation (MEPS or CDM) NPert and from the signal
simulation (QCDINS) NIns on the other hand is divided by the total uncertainty of the
background simulation σNPert

. The result is a significance s whose absolute value is the
larger the lower the probability of the instanton hypothesis is. The sign of the significance
tells whether too many (+) or too few events (−) have been found in the measured data
compared to the simulated prediction. To be precise, a very large significance means that
there are many more events in the data compared to the simulated prediction, which only
means that the absolute scaling of the prediction for the number of instanton-induced
events may be wrong, still there is “room” for them.

The evaluation is done two times for any classifier: Once with the MEPS simulation and
once with the CDM simulation to estimate the fraction of the perturbative QCD events in
the experimental data. As we will see, the result of the whole analysis depends strongly
on which simulation is chosen.

7.3.3 Training and Search Strategy

There exist many ways to generate a classifier which can be evaluated as described above.
The simulated instanton-induced events are, of course, always used as the signal. But the
background can be formed by different datasets. Both background simulations MEPS and
CDM can be used as well as the experimental data (since the possible contamination with
instanton-induced events is most likely negligible).

As mentioned above, a high separation power may mean that a classifier also has
large uncertainties which makes the analysis less significant in total. We are interested in
both aspects, in the ability to enrich the instanton signal as much as possible and in the
significance resulting from the uncertainties.

As discussed in section 3.11, the parameters of the different learning methods have
to be varied, resulting in many different classifiers with different overtraining behaviours.
We will then choose the classifiers with an optimal separation power at 10% efficiency
and evaluate the significances of the instanton hypothesis. For details of the parameter
optimisation process, see appendix B.3.1.

7.3.4 Verification of Previous Results

We start our analysis with a verification of the results presented in analysis I [8]. Two dif-
ferent methods were used there: A standard cut-based approach (compare section 3.7) and
the range search method (see section 5.3.3). The optimisation of the cuts and the training
of the range search method were both done with the MEPS simulation as background and
the QCDINS simulation as signal.

As shown in table 7.17 the number of selected events for the cuts developed in analysis I
(95GeV 2 < Q′

rec
2 < 200GeV 2, nB > 11 and sphB > 0.4) can be confirmed. However, there
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Analysis I This Analysis corr.
CDM MEPS CDM MEPS fac.

No Variation 443 304 443 304

LAr had. E up −1.22% +0.23% −1.22% +0.23%
down +2.55% +2.81% +2.55% +2.82%

SpaCal el. E up +0.07% +1.38% +0.43% +0.53% 0.10
down −0.33% −0.35% −0.31% −0.32% 0.07

Elec. scatt. up −1.32% −1.27% +1.12% +2.02% 0.90
down +2.64% +2.13% −1.28% −1.31% 0.43

Track (FSCOMB) up +0.93% −0.56% +0.92% −0.56%
down −0.75% +3.02% −0.75% +3.03%

SpaCal had. E up +0.00% −0.39% +0.00% −0.37%
down +0.00% +0.00% −0.01% −0.01%

Track mom. up +0.19% +0.22% +0.19% +0.22%
down −3.14% −3.74% −3.14% −3.74%

Track azimuth up −0.21% −0.03% −0.21% −0.03%
down +0.37% +0.18% +0.37% +0.18%

Track polar up +0.84% +0.94% +0.84% +0.94%
down −1.06% −1.65% −1.06% −1.65%

Track eff. −3.62% −4.28% −2.62% −4.15% 1.00

Lumi uncert. ±1.5%
F2 uncert. ±3.0%

Analysis I
CDM MEPS

Syst. Stat. Total (1σ) Syst. Stat. Total (1σ)

−27.6 +19.5 ±21.5 −35 +29 −21.4 +16.5 ±13.0 −25 +21

This Analysis
CDM MEPS

Syst. Stat. Total (1σ) Syst. Stat. Total (1σ)

−26.7 +21.1 ±21.5 −34 +30 −21.7 +18.5 ±13.0 −25 +23

Analysis I This Analysis
selected Sep.Pow. significance selected Sep.Pow. significance

Data 484 484
QCDINS 81 82

CDM 443 +29
−35 86 −1.1 444 +30

−34 86 −1.2

MEPS 304 +21
−25 125 +4.7 304 +23

−25 125 +4.3

Table 7.17: Verification of the cut-based approach in 3 dimensions (optimised for
MEPS): The first table shows the relative change in the number of selected events ac-
cording to the different systematic uncertainties (±1σ). The second table summarises
these relative changes to total changes in the absolute number of events. The third table
compares the number of selected events for data vs. simulations and derives the significance
s for the instanton hypothesis (equation 7.3).
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are obvious differences in the uncertainties, as expected from the discussion above. For
those uncertainties that need a correction factor to make the results compatible (compare
the discussion in section 7.3.1), the shown propagated uncertainties for this analysis have
already been corrected by the shown factor. The correction factors have been calculated to
transform the mean (MEPS and CDM) propagated uncertainty obtained in this analysis
into the mean propagated uncertainty from analysis I. The correction factors chosen are
not able to reproduce the previous systematics exactly, but the total uncertainties agree
well.

For the electron scattering angle there is, in addition, a sign problem. If the up/down
variation is switched the numbers agree fairly well. The systematic uncertainties are com-
bined with the statistical uncertainties in the second table and the total uncertainties are
used in the third table to derive the significance s for the instanton hypothesis (equa-
tion 7.3).

As discussed above a large absolute significance means that the predicted and observed
numbers of events disagree. In particular, the significances from the cut-based approach
show that there are too few events in the data in comparison with the CDM simulation
(significance −1.1 / −1.2) and much too many in comparison with the MEPS simulation
(significance +4.7 / +4.3). In terms of selected events, without taking into account the
predicted number of instanton-induced events, this means that both simulations predict less
events than found in the data which can be interpreted as an evidence for instanton-induced
events. The excess in the data, however, differs significantly for the two simulations:
Whereas the excess is smaller than predicted by QCDINS for the CDM simulation, it is
much larger for the MEPS simulation. Still, there seems to be “room” for instanton-induced
events in both simulations.

Table 7.18 shows the results for the range search method5. The same parameters for
the range search algorithm were used in analysis I and in this analysis: The box size is
fixed symmetrically with a length of 65 GeV 2 in Q′

rec
2, 0.0875 in sphB and asymmetrically

1 downwards and 5 upwards in nB. Although the range search algorithm implemented in
this thesis is based on the same concept as in analysis I, there are obviously some details in
each implementation which generate differences6. In table 7.18 many examples are found
where the variations up and down of one quantity both lead to a change in the number of
selected events in the same direction, compare the footnote on page 64.

The differences in the number of selected events and in the uncertainties make a direct
comparison of the two calculations useless. They lead to slightly different conclusions:
While both significances in the old analysis (−1.0 for CDM and +1.2 for MEPS) are com-
patible with the instanton hypothesis the significances in this analysis (−0.4 for CDM and
+2.1 for MEPS) show an even better match for the CDM simulation but the disagreement
for the MEPS dataset is larger.

5The fact that in analysis I the propagated uncertainties for the electron scattering angle are exactly
the same as for the cut-based method makes these numbers questionable.

6The implementation of the range search method in [8] uses for example the rule that an event should
be classified as background if there are less events in the range search box than a given threshold. This
rule can only worsen the classification and is an example for the fear to lose control over “statistical
uncertainties”.
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Analysis I This Analysis corr.
CDM MEPS CDM MEPS fac.

No Variation 354 299 429 348

LAr had. E up +2.73% +3.80% −3.60% +3.65%
down +4.60% −1.42% −0.46% +1.28%

SpaCal el. E up +4.98% −6.29% +0.87% +0.15% 0.10
down +4.70% −1.07% −0.36% −0.18% 0.07

Elec. scatt. up −1.32% −1.27% +0.54% −1.27% 0.90
down +2.64% +2.13% −1.76% −0.60% 0.43

Track (FSCOMB) up +2.78% −0.55% +0.07% +3.89%
down +2.00% +1.13% −2.91% +0.19%

SpaCal had. E up +0.09% +0.00% +0.00% −0.01%
down +0.09% +0.00% +0.01% −0.02%

Track mom. up +0.09% +0.20% +0.00% −0.34%
down −3.04% −5.88% −2.57% −4.94%

Track azimuth up −0.32% −0.22% −0.75% −0.12%
down +0.08% +0.20% +0.12% +0.36%

Track polar up +0.80% +0.61% +0.51% +0.64%
down −0.61% −2.99% −1.50% −3.22%

Track eff. −3.53% −4.05% −2.80% −2.97% 1.00

Lumi uncert. ±1.5%
F2 uncert. ±3.0%

Analysis I
CDM MEPS

Syst. Stat. Total (1σ) Syst. Stat. Total (1σ)

−18.4 +35.6 ±17.9 −26 +40 −31.5 +15.7 ±18.9 −37 +25

This Analysis
CDM MEPS

Syst. Stat. Total (1σ) Syst. Stat. Total (1σ)

−33.0 +18.9 ±19.2 −38 +27 −26.5 +22.6 ±21.4 −34 +31

Analysis I This Analysis
selected Sep.Pow. significance selected Sep.Pow. significance

Data 410 496
QCDINS 81 83

CDM 354 +40
−26 106 −1.0 429 +27

−38 89 −0.4

MEPS 299 +25
−37 126 +1.2 348 +31

−34 110 +2.1

Table 7.18: Verification of the range search approach in 3 dimensions (trained on
MEPS): The first table shows the relative change in the number of selected events according
to the different systematic uncertainties (±1σ). The second table summarises these relative
changes to total changes in the absolute number of events. The third table compares the
number of selected events for data vs. simulations and derives the significance s for the
instanton hypothesis (equation 7.3).
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7.3.5 New Results

The focus of investigation for a potential improvement of the previous analysis will be
placed on the combinatorial cut search, the range search method and neural networks.
While the first two methods have been chosen in the previous analysis, neural networks
have been regarded as too time consuming and not worth considering regarding possible
improvements in performance. This assessment will be challenged here. In addition the
previous analysis fixed the background set to the MEPS simulation while here all the
different training strategies which have been discussed in section 7.3.3 will be tried out.

We first address the question why the search for instanton-induced events was restricted
to three inputs in the previous analysis. One part of the answer is that the differences
between simulation and data in the two additional quantities ET,Jet and ET,B are larger
than the differences in the other three quantities sphB, nB and Q′

rec
2. Closely related but

more important, however, is the observation that the simple cut-based approach in five
dimensions leads to too many selected events in the CDM simulation compared to the
data. Whereas a lower number of perturbative events would be expected in a scenario
where instanton-induced events are produced, more perturbative events in the prediction
than in the data clearly points to a problem in the simulation.

Analysis I has not been able to realise that this problem is not specific to the five input
quantities. The effect can also be observed with the three first-choice inputs, however, only
when larger efficiencies are required. Since the study in analysis I was restricted to the
10% efficiency the effect plotted in figure 7.24 could not be observed.
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Figure 7.24: Significances in depen-
dence of the instanton efficiency: This
curve has been measured with the
range search method with three in-
puts, shown in table 7.18 (trained with
MEPS as background). The dotted line
marks the special case of 10% efficiency
for instanton-induced events.

When the required instanton efficiency is increased by loosening the cut in the output,
the separation power decreases and also the differences between simulations and data
are expected to disappear: They are explicitly normalised to return the same number
of selected events if no cut is done7. Since statistical and systematic uncertainties become
large compared to the number of selected instanton-induced events, the significance for
high efficiencies can be directly taken as a measure for the disagreement between data
and simulation. In other words, for high efficiencies it is not important whether the few
hundred instanton-induced events are taken into account, the only significant differences
there are due to disagreements between experimental data and simulation.

7This implicitly assumes that the fraction of possible instanton-induced events is small.
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Figure 7.24 demonstrates that the evaluation of the significances at the efficiency of 10%
is a very special case. In contrast to intuition, the significances do not decrease but increase
with higher efficiencies. This means that much stronger results regarding the disagreement
of the two simulations could have been obtained already in analysis I by evaluating higher
efficiencies. In particular, it can be seen for high efficiencies that the CDM simulation
predicts much more events than seen in the data. This effect will play an important role
in the following.

Table 7.19 summarises all the different results from different training strategies. The
first column describes which method was used: neural network (NN) or combinatorial cut
search (CUTS). It also identifies the training set used: either the three standard inputs
(sphB, nB and Q′

rec
2) were used (“3”) or all five inputs (ET,Jet and ET,B in addition) were

used (“5”). The background was formed either by the MEPS simulation (“M”), by the
CDM simulation (“C”), or by the experimental dataset (“D”). The second column (“DATA
Sel.”) shows the number of selected events in the experimental dataset. The following two
blocks show the same information for the two simulations CDM and MEPS: The separation
power (“SP”), the number of selected events (“Sel.”) and its total (statistical plus system-
atic) uncertainty and the significance (equation 7.3). If the instanton hypothesis holds then
the number of selected events in the experimental dataset (“DATA Sel.”) should be the
sum of the selected instanton-induced events (“INS Sel.”) plus the standard perturbative
events (“CDM Sel.” or “MEPS Sel.”).

The following cuts have been selected by the combinatorial cut search with five inputs
since they gave the best separation power:

• For training with background from MEPS: 80GeV 2 < Q′
rec

2 < 200GeV 2, nB > 10,
sphB > 0.38, ET,Jet > 1.5GeV and ET,B > 12GeV .

• For training with background from CDM: 80GeV 2 < Q′
rec

2 < 180GeV 2, nB > 9,
sphB > 0.40, ET,Jet > 1.0GeV and ET,B > 11.4GeV .

Training DATA INS CDM MEPS
Sel. Sel. SP Sel. Uncert. Sign. SP Sel. Uncert. Sign.

1 NN-3-D 388 81 109 345 +25
−34 −1.1 141 267 +17

−23 +2.3

2 NN-3-C 424 82 99 380 +32
−34 −1.1 135 280 +17

−25 +3.6

3 NN-3-M 387 81 104 363 +26
−34 −1.7 142 265 +22

−28 +1.9

4 NN-5-D 261 83 101 377 +69
−49 −4.1 160 237 +37

−41 −1.4

5 NN-5-C 347 83 112 343 +46
−27 −2.9 127 300 +18

−38 −1.0

6 NN-5-M 260 82 110 346 +43
−43 −3.9 215 177 +26

−20 +0.1

7 CUTS-5-M 288 82 97 387 +36
−36 −5.0 193 196 +23

−20 +0.5

8 CUTS-5-C 286 82 103 372 +48
−35 −4.8 190 199 +15

−25 +0.3

Table 7.19: Summary of new results for the instanton search – the columns are described
in the text.
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Two technical observations have been made during the training and evaluation of the
different classifiers:

• The extensive studies summarised in table 7.19 and in figure 7.25 allow rigorous
consistency checks. They have only been possible by the consequent automation
of the training and evaluation procedures (compare section 6.3). The calculation
of systematic uncertainties plays a very important role in the evaluation process.
For each significance 17 test sets have to be evaluated (see table 7.18). Whereas
the training times for neural networks and the range search method are similar, the
evaluation times are about two orders of magnitude smaller for neural networks. The
fast evaluation of the modified test sets with neural networks allows thus to perform
the extensive studies shown in table 7.19 and in figure 7.25.

• The comparison of the separation powers from table 7.19 with the range search result
in table 7.18 shows that the highest separation powers are achieved with neural
networks (142 in line 3 of table 7.19 vs. 126 in table 7.18). The highest separation
power is equivalent to the best possible enrichment of instanton-induced events in the
data. Whatever the conclusion about the obtained numbers will be, higher separation
powers will inevitably lead to more meaningful results.

What is immediately evident from a scan through table 7.19 is that no clear conclusion
about the instanton hypothesis can be drawn. Like in the previous analysis [8] the numbers
of selected events in simulations and data are sometimes consistent with the instanton
hypothesis, sometimes they show deviations. These deviations have unfortunately two
different directions for the two simulations CDM and MEPS: The CDM simulation shows
almost as many selected events or even more than found in the data leaving little or
no room for the predicted number of instanton-induced events. In contrast, the MEPS
simulation shows mostly much less selected events than found in the data which leaves
room for instanton-induced events. But these would have to be much more than predicted
by the simulation, leading to interesting physical implications [7].

A closer look into table 7.19, however, reveals some important details about the mis-
match of the two simulations. It was not possible to obtain these details in analysis I
because only one specific training was done there (the range search training with three
inputs and MEPS as background shown in table 7.18).

The first observation is that the separation powers (“SP”) for the CDM simulation are
generally much lower than those for the MEPS simulation. This means that it is more
difficult to distinguish between CDM events and instanton-induced events (QCDINS) than
to distinguish between MEPS events and instanton-induced events.

A second important observation is that the numbers of selected events in the data agree
well for the trainings performed with data and MEPS as backgrounds (“DATA Sel.” in
lines 1 and 3 and in lines 4 and 6). In contrast, the number of selected events in the data is
always much higher if the CDM simulation was used as background in the training (“DATA
Sel.” in lines 2 and 5). This suggests that the phase space regions selected by the training
with data and MEPS are similar while the training with the CDM simulation selects a
different phase space region. This difference is confirmed, in particular, by the training of
the neural network with five inputs: Trainings with data or MEPS as background result in
much too many events predicted by CDM (“CDM Sel.” compared to “DATA Sel.” in lines
4 and 6 vs. line 5). In contrast, training with CDM as background results in a prediction
of CDM which matches the seen data.
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Figure 7.25 finally shows again that the possible validation of the instanton hypothesis
with the MEPS simulation depends strongly on the background which is used in the training
as well as on the efficiency for instanton-induced events which is chosen. The regions in
phase space selected in the training with the CDM simulation are different from those
selected in the training with the MEPS simulation. Above, this was observed with the
number of selected events in the CDM simulation. Here, this can be observed by the
behaviour of the significance for the MEPS simulation. Whereas the significance decreases
towards lower efficiencies for the training with MEPS it stays constantly very high for the
training with CDM.
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Figure 7.25: Significances in dependence of the instanton efficiency: All curves have been
measured with the neural network trainings with three inputs shown in table 7.19.

In summary, the contradictory results of the simulations make a conclusion about the
instanton hypothesis difficult. If one believes that the MEPS simulation describes the
perturbative QCD event classes correctly, then the instanton hypothesis is confirmed. In
particular, the difference between simulated and observed events is significantly larger than
the number of predicted instanton-induced events in the three-dimensional study, while
the predicted number of instanton-induced events matches well in the five-dimensional
case. If one believes that the CDM simulation describes the perturbative QCD event
classes correctly, then the instanton hypothesis cannot be confirmed as the results in five
dimensions leave no room. Even more important, the CDM simulation predicts more
events than found in the data which points to a problem in the simulation. Finally,
we have two simulations claiming to describe the perturbative QCD event classes whose
predictions differ significantly in the selected region of phase space. Improvements in the
understanding of these differences are clearly needed, some aspects which could help have
been discussed here.
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7.4 Higgs Boson Parity Measurement at a Future Lin-

ear Collider

While the next generation of hadron colliders aims, among other “new physics” topics
like super-symmetry and large extra dimensions, at the detection of the Higgs Boson, the
determination of its properties, in particular of its parity, is a task for a future linear col-
lider. Whereas the standard model Higgs boson must have positive parity (scalar particle),
super-symmetric models predict in addition a Higgs boson with negative parity (pseudo-
scalar particle). It will be very important to be able to distinguish between these two cases.
Section 2.2 already introduced the basic ideas how such a measurement could be done.

7.4.1 Data Source and Preprocessing

The simulated Higgs production events which are used in this analysis are generated by a
simulation package already used in many previous studies (see [13] and references therein).
Because a simulation is used to generate both the training and the test set arbitrarily many
events can be generated for both purposes. For the training of statistical learning methods
around 20.000 events will be used (10k from a scalar and 10k from a pseudo-scalar Higgs
boson) and the test set consists of 320.000 events (160k for each parity). This large set
is used to derive mean significances for the Higgs parity measurement over many pseudo
experiments (see below).

The inputs which are available to distinguish scalar-like from pseudo-scalar-like events
are calculated within the simulation considering the decay H → τ+τ− → ρ+ν̄τρ

−ντ →
π+π0ν̄τπ

−π0ντ . Among them are the acoplanarity ϕ∗ and the quotients y1 and y2 describing
the energy distribution among the pions (see section 2.2). The same quotients can also be
derived with an alternative reconstruction method which uses the τ± impact parameters
(they are then called yi

1 and yi
2). This method is described in [13] and returns in addition

the IDs id1 and id2 describing the geometrical configuration of the τ momenta and pion
directions. Furthermore the ρ± energies can be used as inputs as well as the measured
four vectors of all pions. Different choices of input combinations have been tried out and
the one that performed best in the tests will be used throughout the following analysis. It
consists of the nine inputs ϕ∗, y1, y

i
1, y2, y

i
2, id1, id2, Eρ+ and Eρ− .

7.4.2 Training and Evaluation Strategy

Two different analysis strategies will be presented in the next two sections. The first one
has been used in the previous studies [13] and underwent many refinement steps [110]. It
is based on the acoplanarity (ϕ∗) distribution which matches a cosine whose phase-shift
is determined by the Higgs boson parity. The second strategy is independent of such
theoretical prerequisites as it measures directly the difference in the physical observables
of both parity states.

Analysis based on a Cosine fitted to the Acoplanarity

It was shown in section 2.2 that the distribution of events in the acoplanarity angle follows
a cosine function with some vertical offset if events are selected according to y1y2 > 0 or
y1y2 < 0, the phase is shifted by 180 degrees for the second case. The main target of the
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analysis methods presented here is to generate the clearest possible cosine signal in the
acoplanarity distribution. Two components have to be taken into account: On the one
hand the amplitude of the cosine should be maximised (by rejecting events which only
contribute to a flat background). On the other hand as many events as possible should
be used to fit the cosine function because the uncertainty of the amplitude is high with
too low statistics. A fitting procedure determines the significance of the cosine signal for
a given event set by taking both factors into account: The significance is defined as

s =
A

σA

, (7.4)

the amplitude of the fitted cosine function divided by its uncertainty which is derived from
the fit (compare figure 7.28). For the fit the vertical offset of the cosine function is fixed to
the mean value (mean number of events per bin) and no phase shift of the cosine function
is allowed. A shift would correspond to a mixing of states but this is a different analysis
and will not be discussed here [111].

Different training targets and preprocessing cuts will be compared in the next section.
The starting point of the analysis is the acoplanarity histogram with “scalar events” for
which y1y2 > 0 or equivalently with “pseudo-scalar events” for which y1y2 < 0. The
remaining half of the events can be used in the same way, but the acoplanarity is shifted
by 180 degrees (compare the discussion in section 2.2). Using the τ± impact parameters
in the reconstruction process means replacing y1 and y2 by yi

1 and yi
2, respectively, and

improves the significance slightly [13].

Different preselections will be used in different combinations to improve the significance
which is obtained from the histogram described above:

(a) A significant improvement can be achieved by selecting events according to y1y
i
1 > 0

and y2y
i
2 > 0. This means that those events generate a very clear cosine signal for

which both reconstruction methods return the same sign.

(b) The significance can be improved further if the pion energies from ρ± are compared
in a second way. y1y2 > 0 meant that for both ρ’s the major energy part (relative to
their energy sum) should be either in the charged or in the neutral pion. We define

z1 = Eπ+ − Eπ0 z2 = Eπ− − Eπ0 (7.5)

where the π0’s are from the respective ρ± decays. A selection sign(z1z2) = sign(y1y2)
improves the significance by demanding the same relation between the pion energies
not relatively but in terms of absolute energies as measured in the laboratory frame.

According to the basic selection with sign(y1y2) (or sign(yi
1y

i
2)) the training targets for

statistical learning methods are chosen. The source for the target values is the simulation
which knows about the generated energies and momenta, in contrast to the experimen-
tal situation where only reconstructed quantities are available. The values x1 and x2 are
derived from generated values and correspond to y1 and y2, respectively. A near optimal
significance should therefore be obtained by selecting according to sign(x1x2). The sta-
tistical learning methods will thus use sign(x1x2) as the basis for a training target. The
different strategies in detail are:
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(A) Preselect according to selection (a) above, then use the selection according to sign(yi
1y

i
2)

if this selection is validated (output > cut) by the statistical learning method (else
discard the event). The training target is therefore sign(yi

1y
i
2) = sign(x1x2) (defined

as 0 if false and 1 if true).

(B) Preselect according to selection (b) above and then select according to (output >
cut) or (output < 1−cut) since the training target is then (x1x2 > 0).

(C) No preselection, select directly according to (output > cut) or (output < 1−cut), the
training target is again (x1x2 > 0).

The output distributions are usually symmetric so that indeed (output > cut) performs
like yi

1y
i
2 > 0 and (output < 1−cut) like yi

1y
i
2 < 0 in (B) and (C). To control this behaviour

all event types of the test set are used. This means that we use scalar and pseudo-scalar
events to test the classification. To clarify the event selection according to sign(yi

1y
i
2) (or

the respective cut in the output) we write down case by case which events are entered into
the histogram to calculate the significance:

• scalar events with yi
1y

i
2 > 0 (or the respective cut in the output),

• scalar events with yi
1y

i
2 < 0 (or the respective cut in the output) with a phase shift

in acoplanarity of 180 degrees,

• pseudo-scalar events with yi
1y

i
2 < 0 (or the respective cut in the output),

• pseudo-scalar events with yi
1y

i
2 > 0 (or the respective cut in the output) with a phase

shift in acoplanarity of 180 degrees.

Effectively a phase-shift needs to be applied for each event depending on its simulated
parity and depending on sign(yi

1y
i
2) or the output of the statistical learning method. Using

all these event types assures that any detection method is sensitive to both parity types.

Analysis based on a direct Discrimination of Parity States

In contrast to the analysis strategy described above, the training target can be directly
defined by the parity: 0 for scalar events and 1 for pseudo-scalar events. The inputs used
for the training are the same as mentioned above. The resulting output distributions like
the one in figure 7.26 show an accumulation around the mean value 0.5 with different tails
to the left and right side. By construction the left tail is higher for scalar events because
they were trained to 0 and the right tail is higher for pseudo-scalar events because they
were trained to 1.

The significance of a small (N events) event set is

s =
∆µ

σ∆µ

=
µN − µtot

σµN

=
µN − µtot

σµ
0/1√
N

. (7.6)

Here the difference ∆µ of observed mean µN to the overall mean µtot (from both classes,
close to 0.5) is divided by its uncertainty σ∆µ which is calculated by transforming the
standard deviation of each class σµ0/1

to the lower statistics N . The values µtot and σµ0/1

are measured with large statistics while µN is measured for the small event set.
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Figure 7.26: Direct discrimination of scalar and pseudo-scalar events: Example of output
distributions after training (high statistics).

Technically, the overall mean value µtot and the variances of the output distributions for
scalar and pseudo-scalar events σµ0/1

are calculated by using the whole test set consisting
of 160.000 events of each type. As described below several pseudo experiments are done
with small parts of the test set. These have their own mean value µN and determine thus
the difference to the overall mean ∆µ and its uncertainty σ∆µ given by the number of
events N .

Compared to the analysis based on the acoplanarity angle this direct discrimination has
the advantage that much less theoretical input is necessary. In addition, no fit is necessary,
only means and variances have to be calculated.

Significance obtained from the Pseudo Experiments

The significances are obtained by performing a number of pseudo experiments (300 with
scalar and 300 with pseudo-scalar events in the results presented below): A total number
of observed events is simulated which has a Gaussian distribution around its mean given
by the luminosity, cross section and detection efficiency assumptions (this mean will be
500 events in the results presented below). The events of each of these pseudo experiments
are passed through the selection cuts and a significance for the Higgs parity (equation 7.6)
is calculated. The events for the pseudo experiments are taken from the large test set
which has not been used in the training. Performing many pseudo experiments does not
only result in a mean significance but also in a standard deviation of the distribution of
significances (compare figure 7.27). With this information a confidence interval can be
constructed for the significance to be determined in a future linear collider experiment.

7.4.3 Results

In the next two sections the results for the described training and evaluation methods
will be presented. The first section presents significances obtained with the cosine fit
in acoplanarity. This method was used in all previous analyses (see [13] and references
therein), and is thus important to have a comparison but also as a base line, from which
improvements by statistical learning methods can be judged. The second section presents
results for the direct discrimination of parity states which shows in all its simplicity an



166 7. Analysis and Results

even greater potential than the “analytical” method.
The choice of different strategies is dominated by the different preselection techniques.

They will be combined with two statistical learning methods: neural networks and random
forests which have both proven their high potential in the previous analysis sections. All
mean significances and standard deviations (RMS) shown below are calculated from 600
pseudo experiments with 500 events each on average, as discussed above. Figure 7.27 shows
an example how 600 pseudo experiments result in a distribution of significances of which
the mean and RMS can be determined.
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Figure 7.27: Example for a distribu-
tion of significances derived from 600
pseudo experiments.

Results based on a Cosine fitted to the Acoplanarity

Figure 7.28 shows an example how the significance of the cosine signal is determined from
the histogram. There a χ2-fit is used on a coarsely binned histogram. In practice – but
less suitable to be shown – the fit is performed with a maximum likelihood technique on a
histogram with fine binning.
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Figure 7.28: Example for an acopla-
narity (ϕ∗) histogram with fitted co-
sine for one pseudo experiment. The
397 events in the histogram (of totally
500 events) are those that survived the
preselection cuts. The amplitude and
its uncertainty are derived from the fit,
the significance is the quotient.

Table 7.20 summarises the significances and their RMS which can be obtained by using
the classical selection with the preselections (a) and (b) discussed above. The first two lines
show theoretical limits as they use the generated values x1 and x2. The other significances
yield the basic performance which should be outbid by the statistical learning methods.

The neural networks and random forests which are used were selected from multiple
trainings with different parameter sets by selecting the least number of misclassifications on
the selection set. Details about the parameter optimisation can be found in appendix B.3.
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Preselection Phase-shift significance RMS
based on

– sign(x1x2) 7.38 1.18
sign(z1z2) = sign(yi

1y
i
2) sign(x1x2) 6.67 1.27

– sign(yi
1y

i
2) 3.64 1.03

y1y
i
1 > 0 & y2y

i
2 > 0 sign(yi

1y
i
2) 4.89 1.12

y1y
i
1 > 0 & y2y

i
2 > 0 & sign(z1z2) = sign(yi

1y
i
2) sign(yi

1y
i
2) 5.09 1.14

Table 7.20: Classical results for the significance of the parity determination: The first two
lines show theoretical results based on the generator level values x1 and x2. They represent
the maximum possible significances which could be obtained by any of the strategies.

Table 7.21 presents the significances and their RMS which can be obtained by using
a neural network trained according to the strategies (A)-(C) (see above). The optimal
significances are about 9% better than the best classical strategy (5.56 for preselection (b)
and training strategy (A) compared to 5.09 for preselection (b) and “classical” selection
according to sign(yi

1y
i
2)). It is obvious that the neural network profits from the preselection

in the same way as the classical strategies do.

Preselection Training significance RMS
Strategy

y1y
i
1 > 0 & y2y

i
2 > 0 A 5.37 1.26

y1y
i
1 > 0 & y2y

i
2 > 0 & sign(z1z2) = sign(yi

1y
i
2) A 5.56 1.33

y1y
i
1 > 0 & y2y

i
2 > 0 B 5.40 1.33

y1y
i
1 > 0 & y2y

i
2 > 0 & sign(z1z2) = sign(yi

1y
i
2) B 5.51 1.38

y1y
i
1 > 0 & y2y

i
2 > 0 C 4.87 1.19

y1y
i
1 > 0 & y2y

i
2 > 0 & sign(z1z2) = sign(yi

1y
i
2) C 5.53 1.35

Table 7.21: Neural network results for the significance of the parity determination – based
on a fit in the acoplanarity ϕ∗.

Table 7.22 presents the significances and their RMS which can be obtained by using a
random forest trained according to the strategies (A)-(C). Only one preselection is used
here as this one showed the best performances for the classical strategy and for the neural
networks. The increase in significance is almost identical to the neural network results.

Preselection Training significance RMS
Strategy

y1y
i
1 > 0 & y2y

i
2 > 0 & sign(z1z2) = sign(yi

1y
i
2) A 5.52 1.38

y1y
i
1 > 0 & y2y

i
2 > 0 & sign(z1z2) = sign(yi

1y
i
2) B 5.54 1.39

y1y
i
1 > 0 & y2y

i
2 > 0 & sign(z1z2) = sign(yi

1y
i
2) C 5.56 1.32

Table 7.22: Random forest results for the significance of the parity determination – based
on a fit in the acoplanarity ϕ∗.
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Results based on a direct Discrimination of Parity States

The neural networks and random forests which are used in the tables below were selected
from multiple trainings with different parameter sets by selecting the least squared error
on the selection set. The inputs are still the same, as mentioned in section 7.4.1. Details
about the parameter optimisation process can again be found in appendix B.3. Table 7.23
shows the neural network results for the different preselections. The increase of 23% in
significance compared to the best classical strategy is a real success.

Preselection significance RMS

– 4.28 1.03
y1y

i
1 > 0 & y2y

i
2 > 0 6.15 1.26

sign(z1z2) = sign(yi
1y

i
2) 5.65 1.14

y1y
i
1 > 0 & y2y

i
2 > 0 & sign(z1z2) = sign(yi

1y
i
2) 6.26 1.27

Table 7.23: Neural network results for the significance of the parity determination – based
on direct discrimination.

The results for the random forest method shown in table 7.24 are very similar to the
significances obtained with the fitting method and do not show the significant increase like
for the neural networks. However these numbers confirm again the relative magnitude of
the significances for the different preselection techniques.

Preselection significance RMS

– 3.67 1.01
y1y

i
1 > 0 & y2y

i
2 > 0 5.34 1.20

sign(z1z2) = sign(yi
1y

i
2) 5.12 1.17

y1y
i
1 > 0 & y2y

i
2 > 0 & sign(z1z2) = sign(yi

1y
i
2) 5.57 1.33

Table 7.24: Random forest results for the significance of the parity determination – based
on direct discrimination.

Summary of Results

If one wants to derive statements with as much predictive contents as possible it makes sense
to calculate a confidence boundary for the significance based on the standard deviations
(RMS). This means that the significance which will actually be found in the experimental
data will most probably be larger than a certain level of significance. A 90% one-sided
confidence interval for a Gaussian probability distribution is bounded by µ − 1.3σ. We
can therefore derive from the numbers above that one can expect (90% confidence) from
the classical methods a significance larger than 3.61. For a neural network trained on the
direct discrimination of parity states one can expect (90% confidence) a significance larger
than 4.61 which is an increase of 28% and comes very close to the “magic barrier” of 5σ
which is often taken as the minimum significance needed to claim the detection of a signal.
The assumptions regarding the accumulated luminosity have been discussed in section 2.2.
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7.4.4 Future Research

Now that the discrimination of the scalar and pseudo-scalar Higgs bosons with statistical
learning methods was that successful, the analysis can be extended. A very interesting
subject for future research on this topic is the question for a mixing angle of scalar and
pseudo-scalar Higgs bosons. The impact of a mixing angle on the measured quantities
is easily seen in the acoplanarity distribution: There the mixing angle is identical to a
shift of the cosine function (as we have seen in section 2.2 that the distributions of scalar
and pseudo-scalar events have a shift of 180 degrees). The first method to determine the
parity type which performs a fit of the acoplanarity distribution could take a variable shift
into account. Of course, a direct discrimination of mixing angles, either based on several
classifications or based on a regression, has to be studied as well since this strategy was
shown to lead to the significant improvements.
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7.5 Position Measurement for a Small-Angle Neutron

Scattering Detector

The neutron scintillation detector presented in section 2.3 has to cope with a high event
rate. Therefore it is not possible to log the full detector information for each event. Instead
the incident position of the neutron is reconstructed online and stored in a histogram. This
offers the possibility for the application of fast statistical learning methods.

7.5.1 Data Sources

The desire to test the capabilities of statistical learning methods for the reconstruction
of the incident position of the neutron faces one main problem: It is very difficult to
generate training data for this application. Of course, there exists a simulation describing
the generation of scintillation light and the electronics up to the final ADC count value.
However, there might be details in the experimental data which are not included to a
sufficient level in the simulation so that a statistical learning method for the position
reconstruction may be misled.

To modify the experiment to generate training data directly is a very difficult and time
consuming task: A mask with only a few holes could be placed in front of the detector
(compare the mesh experiment in section B.2). But it then needs to be moved into many
different positions and data has to be collected for each of them. Up to now the desire to
do analysis with the detector has left no time window to perform such a measurement.

In section 2.3 the current standard reconstruction method was introduced. In principle
this reconstruction method can be used to create a training set for statistical learning
methods. The problem is that the statistical learning method is not likely to perform any
better than the standard reconstruction. Independent of the performance one target of this
analysis was to study the possibility whether the standard reconstruction method could be
replaced by a fast statistical learning method implemented in hardware. For this target,
the standard reconstruction method can be used as a teacher and neural networks are a
perfect candidate to cope with this task.
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Figure 7.29: Dataset of simulated neutron events with a flat illumination.
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Figure 7.30: Standard reconstruction of the calibration dataset (flat illumination). The
observed blind regions are due to the detector structure (the beam stop in the centre and
the small gaps between the scintillation plates).

Figure 7.29 shows a simulated dataset with a homogenous illumination of the detector
by neutrons. The structure of 8 times 8 squares show the approximate positions of the
photomultiplier tubes (compare figure 2.20). Figure 7.30 also shows a homogenous illumi-
nation of the detector but here for experimental data for which the positions have been
reconstructed using the standard reconstruction. This plot shows some detector effects, for
example the blind regions between the 4 times 4 scintillator plates (compare figure 2.20).
This homogenous illumination can be used as a calibration dataset by checking the flatness
of the reconstructed event distribution.

7.5.2 Preprocessing

Two statistical learning methods will be in the focus of this analysis: The naive Bayes
method (“maximum likelihood”) was already discussed for this special application in sec-
tion 2.3. The neural network method will be studied as mentioned above in particular
because of the possible online application. Both methods localise the reconstruction by
taking into account only 3 times 3 photomultiplier values with the maximum value cen-
tred. This means that the maximum likelihood method builds only a product over these
at most 9 photomultipliers and the neural network uses only these at most 9 inputs. This
helps significantly to reduce the noise coming mainly from the photomultipliers which did
not collect scintillation light. Figure 7.31 illustrates this problem with one event from the
calibration dataset and one simulated event (compare figure 2.20).

7.5.3 Results

The first attempt to create a position reconstruction with statistical learning methods is
based on the hope that the simulated data can be used without bias. Figure 7.32 shows
the reconstructions of the simulated dataset with the neural network and the maximum
likelihood method. Both plots show that the homogenous illumination can be reconstructed
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Figure 7.31: Event structure in the neutron detector: Left one event from the calibration
dataset, right a simulated event.

very well. The average reconstruction error (RMS) for the neural network is 0.53 channels
(2.8cm) and 0.69 channels (3.6cm) for the maximum likelihood method.

The application of the trained reconstruction methods to the experimental data, how-
ever, reveals that some detector effects are not included in the simulation (figure 7.33).
Artefacts in the form of “too dark” or “too bright” regions appear in the reconstruction
of the experimental data which should show a homogenous illumination. The maximum
likelihood method shows in addition a very noisy behaviour which makes it inacceptable
for the reconstruction. The neural network reconstruction would be an interesting alter-
native to the standard reconstruction if the problematic areas could be corrected by small
corrections to the simulation.

As an alternative to the training with the simulation, the standard reconstruction can
be used as the training information. By this the statistical learning methods can be trained
with experimental data, problems due to an incomplete simulation are then no problem.
As said above, however, one cannot expect superior performance compared to the target
“standard reconstruction”. Figure 7.34 shows the reconstructions of the experimental
data with the neural network and the maximum likelihood method. Both plots show
reconstructions without obvious differences to the standard reconstruction except a few
“ghost signals” in the central blind area generated by the maximum likelihood method.
The flat distributions demonstrate the capability of the two statistical learning methods to
reproduce the standard reconstruction. The average reconstruction error (RMS) measured
with respect to the standard reconstruction is 0.29 channels (1.5cm) for the neural network
and 1.59 channels (8.3cm)for the maximum likelihood method.

A direct comparison of the reconstruction of the calibration dataset with neural net-
works trained with the simulation and with the standard reconstruction is shown in fig-
ure 7.35 in the form of two projections onto the y-axis. The blind regions of the detector
have been cut away for this projection so that the mean value and its variance are measured
per y-channel only for the pixels which should be uniformly illuminated.

One can see that the simulation-trained reconstruction shows for example two rows
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Figure 7.32: Reconstruction of the simulated dataset with statistical learning methods.
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Figure 7.33: Reconstruction of the calibration dataset with statistical learning methods
which were trained with the simulation.
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Figure 7.34: Reconstruction of the calibration dataset with statistical learning methods.
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Figure 7.35: Mean and variance in the projections onto the y-axis of the illuminated pixels
for neural networks which were trained with the simulation (left) or with the standard
reconstruction (right).
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with too few events (marker A in figure 7.35) and a too high peak in between (marker
B). But it shows a nicer behaviour towards the outer borders where it is flatter than the
standard-trained reconstruction (markers C). This means that the simulation is in principle
perfectly suited to act as teacher for this reconstruction if only the problematic areas could
be fixed.
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7.6 Applications for the MAGIC Telescope

The data analysis for the MAGIC telescope offers many possibilities for the application
of statistical learning methods. The trigger system, for example, could make use of very
fast classification techniques implemented in hardware to yield a sufficiently low rate but
still with very high efficiency for specific classes of events. In particular, this would allow
observations towards a very low energy threshold where unfiltered trigger rates dramatically
increase. The image cleaning as a second example could also make use of statistical learning
methods: The number and arrival time of Cherenkov photons in a pixel as well as the
same quantities from the neighbouring pixels could be used to distinguish between noise
and signal.

The two applications which are currently the most important issues in the MAGIC data
analysis have been introduced in section 2.4 and will be discussed in the following: The
suppression of the hadronic background, which has a several orders of magnitude higher
rate, is essential to see a clear photon signal. Secondly, the estimation of the energy of
photon signals is important to derive any spectral information.

The focus in this section will lie on the comparison of standard methods used in
MAGIC [112] and the statistical learning methods random forest and neural network.
This focus reflects the current software situation in the MAGIC analysis framework: Stan-
dard methods like those which were already used in the predecessor experiment CT1 are
of course implemented, the random forest algorithm was also implemented quite early and
led to nice improvements compared to the standard methods. Neural networks finally have
always been discussed as an alternative but they have not found their way into the software
framework so that no comparisons were available.

7.6.1 Gamma-Hadron Separation

The standard method for the separation of events which originated from either photons
or hadrons is called “supercuts”. This is a parameterised model based on the Hillas para-
meters (see section 2.4). The parameters are optimised for a given pair of ON and OFF
datasets by maximising the significance of the γ-excess obtained from the α-plot after
applying the supercuts.

Two different approaches towards γ-hadron separation will be discussed and results for
each of them will be presented. The first approach originates from the idea to train a
statistical learning method without having to use a Monte Carlo simulation since the data
has not been described well by the simulations in the starting phase of the experiment
(see also the discussion in the previous section on the neutron detector). The classical
approach to train photons from a simulation against hadrons from OFF data is presented
as the second approach.

Training without Simulation

The Monte Carlo simulation of very high energy photon events in the MAGIC telescope
is difficult and showed some inconsistencies in the starting phase of the experiment. To
perform the γ-hadron separation with statistical learning methods examples of photon
induced events must be available. This section presents results from an approach which
circumvents the simulation by taking an ON dataset enriched with γ-showers, to represent
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the photon-induced events. Since the whole ON dataset would have too many hadrons
(order of 104 more than photons), we take a subset of the data on which the supercuts
method was already applied. In the α-plot a photon signal is then seen somewhere below
15 degrees. The photon sample for the training is extracted after application of supercuts
and the condition α < 15◦ (see figure 7.36). The background is formed by hadron-induced
events from an OFF dataset which also survived the supercuts. The hope is that the
characteristics of the photons can be found by the statistical learning methods even if
there is still background in the “signal” selection. Thus for both training and evaluation
the supercuts method is always applied first, before applying a statistical learning method
in addition. This leads to a higher background suppression and – with a sufficient photon
efficiency of the learning method – to a gain in significance.

With this method the number of excess events can only be reduced, as the excess
after applying the supercuts is an estimate for the true number of selected photons. Any
additional cut can only cut away more photons. Any increase in the number of excess
events has to be an artefact. Nevertheless a higher significance with a similar number of
excess events is a valuable target.
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Figure 7.36: Supercuts and α-cut prin-
ciple: The photon signal for the train-
ing is taken from the shown region af-
ter application of the supercuts. There
is still significant hadronic background
but the photons are hopefully recog-
nised by the learning method.

The inputs for the statistical learning methods consist of several parameters from the
Hillas analysis (see section 2.4.2) and some extensions: length, width, dist and size

are known, furthermore newdist is used, a variation of dist, calculated in a different
way [112], furthermore asym which describes the asymmetry of the ellipse with respect to
the pointing direction, conc describes the concentration of the Cherenkov light among the
illuminated pixels and leakage tells about the estimated amount of Cherenkov light which
missed the detector.

The observational data which is used here to demonstrate the power of the statistical
learning approach was obtained on 15th February 2004 during the commissioning phase
of the telescope. The observation target was Markarian 421 for which 105 min ON data
and 50 min OFF data were taken in a zenith angle range of 9◦ to 28◦. Both datasets were
divided into a training and test set to be able to detect overtraining effects – which is also
important for the supercuts method. The datasets and the status of the telescope during
this period are described in the analysis [24] on which the following results are based.

For the training of the random forest method and the neural network the sample repre-
senting the photons was defined by the ON training set after application of the supercuts
and for α < 15◦ as described above. Accordingly the sample representing the background
was taken from the OFF training set after application of the supercuts (for all values of
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α)8. Trainings with different parameter settings were done (compare appendix B.3) and a
neural network with 10 hidden neurons and a random forest with 20 trees were selected
by checking the significance using the training data (compare the discussion at the end of
the section about the γ-hadron separation).

Figure 7.37 shows the dependence of significance [25] and number of excess events
depending on the cut in the output of the statistical learning method on top of the back-
ground suppression given by the supercuts method. Only the test set is used here. As
discussed in section 2.4, the significance derived from the α-plot takes into account the
relative excess of the ON data to the OFF data (measured here below 6◦) as well as the
statistical uncertainties which are relatively larger the more the background is suppressed.
The number of excess events is

Nex = NON −NOFF (7.7)

where NON is the number of selected ON events and NOFF is the number of selected OFF
events (both here below 6◦). Nex gives an estimate for the true number of selected photons.
The combination of a high significance and a high number of excess events is important
for the derivation of an energy spectrum as both influence directly the uncertainty of the
measured photon flux.
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Figure 7.37: Significance and number of excess events for Markarian 421, depending on
the cut in the output for the random forest method and for the neural network.

It is clearly visible that both methods start with the supercuts result for a cut at 0
(no additional background suppression). With a larger cut the significance rises due to the
better background suppression while the number of excess events falls (with a small rising
artefact for the neural network).

8It was also tried out to restrict the background to α < 15◦ but then the background in the region
α > 15◦ was not rejected well.
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Figure 7.38 shows the α-plots for the test set for the selected cuts (shown by the lines in
figure 7.37, corresponding to the highest significance9). The stated significance is measured
for α < 6◦ like in the previous analysis [24].
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Figure 7.38: Different significances in the alpha plot (Markarian 421, 15.02.2004) for su-
percuts, random forest and neural network. Shown is the background (OFF data) in light
grey and the ON data as crosses with a fitted polynomial plus Gaussian excess.

Supercuts are always applied and lead to a significance of 20.5 by themselves. Applying
the random forest method in addition improves the significance by 24%, applying instead
the neural network afterwards leads to a remarkable improvement of 30%. The loss in
the number of excess events is 13% for the random forest and 15% for the neural network.
Although the gain in significance may be worth the additional background suppression, the
loss in the number of excess events is motivation enough to train with simulated photons
as soon as the Monte Carlo simulation fairly matches the experimental conditions.

Training with Simulation

Two observations from September and October 2004 will be used in this section. The
observation times are for the Crab Nebula ON data 140 min, for the 1ES1959 ON data
almost 7 hours. The OFF data which is shared for both analysis was taken for the Crab
Nebula and has almost 3 hours observation time. All datasets share the same zenith angle
range of 35◦ to 47◦.

The γ-hadron separation for the two observation targets will be performed with statis-
tical learning methods which have been trained with simulated photons as signal and part
of the 1ES1959 ON data as background. As mentioned, the ON dataset consists to a good
approximation only of background. Discarding the Crab OFF data for the training has
the advantage that no overtraining effects can appear so that always the whole ON and
OFF datasets can be used as a test set in the analysis10. The supercuts method has been
optimised with simulated photons and Crab OFF data and thus may show some overtrain-
ing11. All numbers derived from α-plots in the following are based on a preselection which

9For the neural network the optimum significance at the cut 0.63 was ignored because of the noisy
behaviour of the significance in this region and because of the much lower number of excess events.

10In addition only less than 1% of the events from the 1ES1959 ON dataset have been taken for training
so that overtraining effects are very unlikely.

11Normally the supercuts are directly optimised with the ON and OFF dataset. For 1ES1959, however,
the photon excess is very small so that a different technique was chosen. The optimisation of the parametric
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includes some technical cuts to create a clean event sample, most important size>2000
photons.

The inputs used for the statistical learning methods are the Hillas parameters or quan-
tities directly derived from them: Like above, length, width, size and conc are used,
as well as the two combinations log(size)/log(length) and log(size)/log(width). In ad-
dition, M3long is used which describes the third moment of the Cherenkov ellipse. The
random forest results shown in this section are based on a classifier which has been trained
with the random forest implementation of the MAGIC analysis software [113].

Figure 7.39 starts with the results for the Crab Nebula by showing the important
relationship between significance and the number of excess events. As mentioned above,
the combination of a high significance and a high number of excess events is important
for the derivation of an energy spectrum as both influence directly the uncertainty of the
measured photon flux.
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Figure 7.39: Significance and excess events vs. cut in output for Crab Nebula: The cut 0
would mean no background suppression, the solid line marks the cut for optimal significance
and the dotted line marks the cut for the background suppression which matches the
supercuts result (98.5%).

The behaviour of significance and number of excess events in figure 7.39 depending on
the cut in the output of the statistical learning method is typical: A cut at 0 would mean
that we take all events without any γ-hadron separation. The resulting significance would
be below 5 (not shown here). With an increasing cut the background suppression becomes
stronger and the significance rises while the number of excess events naturally falls because
the true number of selected photons (for which the number of excess events is an estimate)
can only decrease with a stronger cut. For very strong cuts finally, the significance starts
to fall again since then the loss in statistics outweighs the better background suppression.

models inside the supercuts method is done by generating an artificial ON dataset mixing simulated photons
into an OFF observation. The supercuts are then optimised to give the largest significance of this artificial
ON dataset.
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The cuts in the output which are marked by a solid line are used for figure 7.40 to show
the resulting α-plots. In addition to the random forest and the neural network results
the supercuts result is shown. The supercuts method was optimised to give the largest
significance, the cuts for statistical learning methods have also been chosen to give the best
significance.
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Figure 7.40: Crab results with cuts which are optimised for significance: Both statistical
learning methods lead to a higher significance and more excess events than the supercuts
method.

Both statistical learning methods show a similar optimal significance (random forest
slightly better than neural network) which is improved by 28% with respect to the supercuts
result. In addition, the number of excess events is higher if the γ-hadron separation is done
with statistical learning methods. The number of excess events is increased by 18% with
the neural network.

The dotted lines in figure 7.39 mark the cuts which are used to produce the α-plots
shown in figure 7.41. In the latter, the background suppressions of random forest and
neural network were set to match the background suppression of the supercuts which is
about 98.5%.
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Figure 7.41: Crab results for identical background suppressions: Both statistical learning
methods lead to a higher significance and more excess events than the supercuts method.

Again both statistical learning methods show a similar significance (neural network
slightly better than random forest) which is now improved by 23% with respect to the
supercuts result. The slightly smaller improvement in the significance is compensated by
a gain in excess events which is about 25% for both methods.
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The tradeoff of significance vs. number of excess events shown in figure 7.39 as well
as both cut-selections in figure 7.40 and 7.41 show clearly that the statistical learning
methods not only allow to choose which relation between significance and photon excess is
appropriate12. They also result in a combination of a higher significance and an increase in
the number of excess events which makes the statistical learning methods clearly superior
to the classical supercuts method.

In contrast to the Crab Nebula, 1ES1959 is a very weak source. Despite the long obser-
vation time the significance of the photon excess is hardly above the “detection threshold”
5σ. Figure 7.42 shows like for the Crab Nebula the dependence of significance and number
of excess events on the cut in the output for the two statistical learning methods. These
curves are much noisier than for the Crab Nebula, especially for the random forest, because
of the weakness of the signal.
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Figure 7.42: Significance and excess events vs. cut in output for 1ES1959: The cut 0 would
mean no background suppression, the solid line marks the cut for optimal significance and
the dotted line marks the cut for the background suppression which matches the supercuts
result (98.5%).

The chosen cuts for the optimal significance are again marked by a solid line and the
corresponding α-plots are shown in figure 7.43, together with the supercuts result.

Like for the respective Crab result, the statistical learning methods show a better
background suppression combined with a higher photon efficiency which leads to a higher
significance and more excess events. The random forest method improves the supercuts
significance by 44%, the neural network by 67%. This sign for a performance difference
between random forest and neural network is confirmed by the different number of excess
events: While the random forest shows an increase of 17% with respect to the supercuts
result, the neural network has 43% more excess events.

Like for the Crab dataset also here the dotted lines in figure 7.42 mark the cuts for
which the background suppression of all three methods is equal to 98.5% (fixed by the

12This tradeoff between significance and excess events is not possible with the supercuts method.
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Figure 7.43: 1ES1959 results with cuts which are optimised for significance: Both statistical
learning methods lead to a higher significance and more excess events than the supercuts
method. The neural network performs better than the random forest method.
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Figure 7.44: 1ES1959 results for identical background suppressions: Both statistical learn-
ing methods lead to a higher significance and more excess events than the supercuts me-
thod. The neural network performs better than the random forest method.

supercuts optimisation). Figure 7.44 shows the corresponding α-plots.

The same observation as for the Crab dataset can be made here: We still see major
improvements in significance and in the number of excess events but now the increase in
significance is slightly smaller (30% for random forest and 53% for neural network) and
the increase in the number of excess events greater (35% for random forest and 70% for
neural network).

In summary, the weak source 1ES1959 shows very clearly – more dramatically than
the strong Crab Nebula – that statistical learning methods have to be considered as a
very remunerating alternative to the classical supercuts method. The improvements in
significance and number of excess event – which are the most important quantities to
determine the photon flux of a source with small uncertainty – are significant.

The analysis of source 1ES1959 is a good opportunity to present a new physics result
which has been obtained with statistical learning methods: Figure 7.45 presents the photon
flux of 1ES1959 which has been measured by the MAGIC telescope in the above mentioned
periods. The difference between the two plots is the method for the γ-hadron separation.
The two statistical learning methods neural network and random forest are used. The



7.6 Applications for the MAGIC Telescope 185

supercuts method would result in much larger uncertainties since its γ-hadron separation
performs so badly (compare figure 7.43).

E [GeV]
10

3

E [GeV]
10

3

]
-2

 c
m

-1
 s

-1
F

lu
x 

[T
eV

10
-12

10
-11

10
-10

10
-9

-hadron sep. by NN)γFlux 1ES1959 (

22*10
E [GeV]

10
3

E [GeV]
10

3

]
-2

 c
m

-1
 s

-1
F

lu
x 

[T
eV

10
-12

10
-11

10
-10

10
-9

-hadron sep. by RF)γFlux 1ES1959 (

22*10

Figure 7.45: Flux measurement for 1ES1959: Left a neural network is used for the γ-hadron
separation, right a random forest is used.

This analysis is very preliminary. The differences between the two flux spectra obtained
will thus not be discussed. To have a first estimate of the flux spectrum for this weak source
is already a real success. These spectra give first hints towards the conjecture that the
spectrum of the AGN 1ES1959 is steeper than that of the Crab Nebula in the same energy
range.

Concluding the study of the γ-hadron separation, we want to compare the neural net-
works with the random forests in a special way which also allows insights into the relation
between Monte Carlo simulation and real data: Figure 7.46 shows the relation between
the efficiency for simulated photons and the achieved significance on real data. For each
classifier (neural network or random forest) the efficiency for simulated photons is mea-
sured (with the test set) for a fixed background rejection of 98%. The significance is the
maximum significance which can be obtained for each classifier by varying the cut like
in figure 7.40. The significances cannot be compared directly to the analysis above since
the dataset used here had a different preprocessing (size>800 photons instead of 2000
above). The different classifiers have been obtained by training the two methods with
several different parameter settings like in the study of the parameter optimisation pro-
cess in section 7.2.7. Details about the variation of training parameters can be found in
appendix B.3.

The two most important observations from figure 7.46 are

• that the performance spread (for both axes) is much larger for differently trained
neural networks than for differently trained random forests and

• that the correlation between the performance on simulated photons (x-axis) and
performance on real data (y-axis) shows a behaviour opposite to what is desired.
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Figure 7.46: Monte Carlo efficiency vs. significance on real data for neural networks and
random forests which have been trained with different parameter settings.

The explanation of the observed effects is, however, quite simple: There are some differ-
ences between the simulated and the real photons. These differences are small but can
still be detected by the statistical learning methods. The random forest method always
(nearly independent of changes in the training parameters) tends to adapt itself very well
to the training dataset, i.e. to the simulated photons. Its performance on the real data
is therefore always similar and always significantly below the optimum. The neural net-
works, in contrast, show a wide spectrum of performances on the simulated photons and
thus on the real data. The important correlation is, as mentioned, that a better adaption
to the simulated photons leads to a worse performance on real data. This is some kind of
overtraining effect since the higher generalisation (observed with the significance on real
data) has to be achieved by a lower performance on the training set (observed with the
efficiency for simulated photons).

The conclusion regarding the comparison of neural networks and random forests is that
as long as differences between simulation and real data exists (probably they will never
disappear), neural networks clearly provide the better means to train classifiers which
generalise better. Generalisation is meant here as “from the simulation to the real data”.
This generalisation can be achieved for neural networks by strong regularisation of the
training process (compare appendix B.3), for random forests such an effect could not be
stimulated.

Looking back to the descriptions of neural networks (section 5.4.2) and random forests
(section 5.5.2) and to their typical behaviour on the toy examples in section 5.6 gives
an intuitive explanation for the observation made here: The decision tree structure (even
if averaged by bagging) creates a partitioning of the input space into potentially very
small hypercubes, creating thus very local decisions which can follow any target function
defined by the simulated photons. Neural networks, in contrast, are “more physical” in
the sense that they create more globally oriented decision boundaries built up by joined
hyperplanes. They will automatically ignore all small fluctuations of the target function
which are artificially induced by the simulation.
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7.6.2 Energy Estimation

The only possibility to train a method for energy estimation of very high energy photons
observed in the MAGIC telescope – this also applies to the standard method which opti-
mises parameters in a simple linear model – is to use events from a Monte Carlo simulation.
Only there we have access to the information about the true energy of the photon. As men-
tioned in section 2.4, the estimation of the energy of the primary γ-ray photon is much more
complicated than just a direct relation to the number of detected Cherenkov photons. The
variables for the parametrisation as well as the inputs for the learning methods are: size,
conc, length, width, dist, width/length, size/(width*length) and leakage (com-
pare the definitions in section 2.4 and the descriptions in the last section). This choice is
based on first studies of energy estimation performed in the MAGIC collaboration. The
parametrisation is then a simple linear model [114]:

Eest = a+ b · size + c · conc + d · length + e · width
+f · dist + g · width

length
+ h · size

width·length + i · leakage (7.8)

where the parameters a to i are determined by minimising the relative errors

(

Eest − Etrue

Etrue

)2

. (7.9)

It is expected that the quality of the energy estimation in dependence of the true energy
will depend strongly on the energy spectrum which is used in the fitting or training step.
For a very low analysis threshold, i.e. many photons with very low energy (< 100GeV )
will be in the training sample, the energy resolution will be better for these events and
worse for the higher energies. The opposite will be true for a spectrum which results from
a high analysis threshold with less low energy photons. This difference is relevant not only
for statistical learning methods but also for the simple parametrisation as illustrated in
figure 7.47: Together with the original energy spectrum the reconstruction quality is shown
there. The crosses show bias and variance of the energy estimation per bin in true energy,
the additional histogram presents the total resolution which is obtained by summing up
bias and variance in quadrature (compare section 3.12.2).

It can be seen that the energy resolution for the threshold size>2000 is much worse
in the low energy region (100GeV < Etrue < 200GeV ) but slightly better for high energies
(> 500GeV ). This effect is mainly due to a simple shift of the global bias towards higher
energies. We also see that the bias always plays an important role as low energies are
systematically over-estimated and high energies are systematically under-estimated. This
effect can be seen directly in the energy spectra reconstructed by the parametrisation,
as shown in figure 7.48: Low and high energies are suppressed and medium energies are
enhanced.

An alternative to the resolution plots shown in figure 7.47 is to change the true energy on
the x-axis into the estimated energy. The two possibilities to present the energy resolution
are shown in figure 7.49 next to each other (for the size>1000 spectrum). The left plot (in
bins of the true energy) has the advantage that the behaviour of the reconstruction method
is monitored in dependence of an objective value. The right plot (in bins of the estimated
energy) is important from the calculational point of view, since an energy resolution has
to be given for observed γ-ray photons for which then only the estimated energy is known.
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Figure 7.47: Differences in the behaviour of the energy estimation induced by different
cuts in size: upper row size>1000, lower row size>2000, left the original spectra and
right the behaviour of the parametrisation with bias, variance and total resolution in bins
of the true energy.
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Figure 7.48: Original (shaded) and reconstructed (thick line) energy spectra for different
size cuts, the method used to estimate the energies is the parametrisation.
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Figure 7.49: Binning in true energy vs. binning in estimated energy: Two different aspects
of the energy resolution. The energy estimation is done by the parametrisation. The
spectrum with size>1000 was used for the optimisation of the parametrisation and in the
resolution plots. The left plot is identical to figure 7.47 top-right.

To keep this analysis tight, the parametrisation will only be compared to the random
forest method (it has been verified that the neural network performs very similar to the
random forest). Instead of a comparison of learning methods, a comparison of training
targets will be performed in the following. The standard target for the energy estimation
would of course be simply the energy itself. The training process of e.g. neural networks
or random forests13 implicitly optimises

∑

i(Eest − Etrue)
2 where i runs over all training

events14. Since we want to optimise relative errors instead of absolute errors we choose
log(E) as the training target for the regression.

A very different approach has emerged from the software development for the MAGIC
telescope [112]: Instead of a normal regression a classification scheme was implemented
there, called bin-wise classification or binning-method in the following. The energy esti-
mation is done there by training different classifiers for several energy bins (with a log-
arithmic binning). Each classifier is constructed by training the contents of one energy
bin against all others. Therefore each classifier should recognise a specific energy region.
The evaluation is done by weighting the output of each classifier by the respective energy
(centre of the bin):

Eest =

∑

Ei · out(i)
∑

out(i)
. (7.10)

The resolutions obtained by the two different training targets are shown in figure 7.50.
Like above for the parametrisation, also here bias and variance are summed to get the total
resolution.

Comparing the results from the two different training procedures we see that the res-
olution for the true regression is better for energies with a low true energy (the energy
bin below 100GeV has too little statistics to allow any reasonable statement), for higher
true energies the resolution of both methods is slightly above 20%. In dependence of the
estimated energy we see a more stable behaviour for the logarithmic regression with res-

13The regression version of decision trees was discussed in section 5.2.
14This statement applies to the implementations discussed in chapter 5. Of course, different optimisation

rules could be implemented.
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Figure 7.50: Resolutions obtained with the random forest method: The upper row shows
the results for the bin-wise classification and the lower row for the logarithmic regression.
Left the resolution is plotted in bins of the true energy and right in bins of the estimated
energy. The spectrum with size>1000 was used in the training of the random forest and
in the resolution plots.
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olutions mostly around 30% while the classification technique shows resolutions varying
between 30% and 50%. These results suggest that a true regression is preferable over the
bin-wise classification.

A second sign for a problematic behaviour of the classification technique is found by
comparing the spectra reconstructed by the respective methods. Figure 7.51 shows the
original spectrum as well as the reconstructed spectra of the binning method (bin-wise
classification), the logarithmic regression with training target log(Etrue) and the linear
regression with training target Etrue.
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Figure 7.51: Reconstructed spectra obtained with different training methods, the shaded
original spectrum is always plotted to allow the comparison. Shown are the spectrum
reconstructed by the parametrisation top-left, the spectrum reconstructed by the bin-wise
classification top-right and in the lower row the two regression methods, with a logarithmic
target left and with a linear target right.

We see that the true energy spectrum reaches down to below 50GeV . Both regres-
sion techniques reconstruct energies down to about 100GeV but the bin-wise classification
reaches only 150GeV . This points to an upward bias for very low energy events which is
stronger for the bin-wise classification than for the regression techniques (as already seen in
the resolution plots in figure 7.50). This bias is most probably introduced by the weighting
procedure shown in equation 7.10. Regarding the goal of the MAGIC analysis, i.e. to reach
down to 50 or even 30 GeV , the bias in the reconstructed energy plays a very important
role.

The energy resolution plots shown so far are complemented by the correlation plots
shown in figure 7.52. Each Etrue bin (i.e. each column) has been normalised to 1 there
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so that the spectrum appears to be flat in Etrue. This makes it easier to evaluate the
high energy part of the spectrum where events become rare. These plots complement the
ones shown in figure 7.51 because here the absolute reconstruction errors are visualised in
contrast to the relative errors in the plots before. One can see that the parametrisation
(a) performs badly for higher energies since it is optimised for the lower energies where the
majority of the events is found. The problems of the bin-wise classification for very low
energies can be seen in plot (b) while the logarithmic regression (c) performs better in this
energy region.
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Figure 7.52: Correlation between true and estimated energy for the size>1000 spectrum.
Each Etrue bin (i.e. each column) has been normalised to 1 so that the spectrum appears
flat in Etrue. In (a) the parametrisation is used for the energy estimation, in (b) the
binning-method (bin-wise classification) with random forests and in (c) the logarithmic
regression with a random forest are used.

Finally, the resolutions of the random forest method (using the logarithmic target) and
the parametrisation have to be compared. Regarding the reconstructed energy spectra it
has to be noted that the parametrisation reconstructs energies down to almost 50GeV while
the random forest reaches only 100GeV (figure 7.51). The resolution in dependence of the
estimated energy looks very stable for the parametrisation as it stays about 40% for the
whole energy spectrum (figure 7.49). The random forest method (logarithmic regression)
shows a slightly noisier behaviour with resolutions around 30% (figure 7.50). In dependence
of the true energy, however, the parametrisation shows resolutions between 30% and 45%
(even rising towards higher energies due to the significant bias) while the random forest
shows an almost constant resolution of 20% to 25%.

In summary, the energy estimation with statistical learning methods (shown here with
the random forest method) gives better results than the classical parametrisation with
resolutions improved by about 10% to 15% (absolutely). The comparison of the bin-wise
classification and the logarithmic regression, both with random forests, has shown that the
“true” regression is preferable due to the better behaviour in the very low energy region
and also due to the improved resolutions.
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7.6.3 Future Research

It was mentioned already in section 2.4 that for very low energy γ’s the reconstructed Hillas
ellipse may not be suited to describe the event since the number of collected Cherenkov
photons is low and only very few pixels are illuminated. The reconstruction of the Hillas
parameters, i.e. the geometry of the Cherenkov ellipse, is very inaccurate in this case. As
an alternative the direct use of each pixel value together with the timing information is
suggested.

The reconstruction of the shower image with the Hillas parameters is mandatory for
the standard approaches: supercuts for the γ-hadron separation and the parametrisation
for the energy estimation. The statistical learning methods could, however, also use inputs
like the number of Cherenkov photons and their arrival time for all pixels. It is not wise
to simply use all pixels as inputs for the learning method, a clever preprocessing is usually
more advantageous. One could, for example, extract a circular region of pixels around the
centre of gravity of the Cherenkov shower.

The following study shows that a change in the inputs from Hillas-based quantities
towards pixel-based quantities reveals problems in the Monte Carlo simulation of γ-events
which have to be studied and corrected before this new approach can lead to improvements.
We study the γ-hadron separation in the low energy region by applying a cut in size of 200
to 400 photoelectrons which corresponds to roughly 1000 to 2000 Cherenkov photons. The
γ-hadron separation for these events is then trained by using simulated photons as signal
and OFF-data as background. The Hillas-approach is compared to the pixel-approach by
using two different input sets: On the one hand a training is done like in section 7.6.1 with
the Hillas-quantities. On the other hand, a second training is done with the pixel signals
and timings which are extracted in a circular structure around the centre of gravity of the
shower as mentioned above.

The trained neural networks are compared in two ways (exactly like at the end of
section 7.6.1): The test set (consisting of simulated γ’s and OFF-data) can be used to get
the estimated efficiency for simulated γ’s for a reasonable background suppression (99%
taken in the following). The networks can also be applied to the Crab Nebula ON and
OFF datasets and the α-plot for a reasonable background suppression (similar to the 99%
taken above) should lead to the well-known photon excess for low α’s.

The results obtained show a clear disagreement between the two evaluation methods:
Whereas the efficiency for simulated γ’s (for 99% rejection, measured with the test set) is
only 17% for the Hillas-approach, it is 38% for the pixel-approach. One expects a photon
excess twice as high in the α-plots for the latter approach. But as figure 7.53 shows,
only for the Hillas-approach a photon excess is visible, there is no signal at all for the
pixel-approach.

The lesson to learn is that the adaption of the Monte Carlo simulation to the data is
quite good with respect to the higher abstraction level: The Hillas quantities are described
well, with the exception mentioned at the end of section 7.6.1. But there remains a lot
of work to be done for the lower abstraction level concerning the individual pixel signals
and timings. With a better description of the data the pixel-approach is probably better
suited for a γ-hadron separation and for energy estimation in the low energy region than
the Hillas-approach.
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Figure 7.53: Two different input sets for the low size region: For size between 200 and 400
photoelectrons the Hillas-approach still shows a small signal while the pixel-approach shows
no signal. In contrast to these α-plots the γ-efficiency is much higher for the pixel-approach
when measured with the Monte Carlo simulation.
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7.7 Applications for the XEUS satellite

The next sections will present results for pileup rejection and sub-pixel resolution with
statistical learning methods (see section 2.5 for an introduction into the subject). The
main data-source for this analysis is a Monte Carlo simulation, for the sub-pixel resolution
also the mesh experiment was used to obtain experimental data for training and testing.

As already discussed in section 2.5 the preprocessing of the data coming from a pixel-
detector is a very important step. The newly implemented algorithm for the calibration
and signal extraction for the XEUS satellite will be presented in appendix B.1. A second
important algorithm needed for the analysis presented here is the determination of the
mesh parameters in the mesh experiment. The position and angle of the mesh relative
to the CCD lead to the position of each hole above the detector. The newly developed
algorithm will be presented in appendix B.2.

7.7.1 Pileup Rejection

The first application of statistical learning methods for the XEUS satellite is a classification
problem. As mentioned in section 2.5 high photon rates will lead to patterns which contain
two or more photons. The spectroscopic information gets lost completely in these pileup
events, therefore they should be filtered out. In addition pileup events become the dominant
event-type for very large photon fluxes, depending of course on the integration time of the
detector. A rejection of pileup events already done online aboard the satellite may be a
very important step to cope with the data rate which may be too large to be sent down to
earth for the observation of bright X-ray sources.

Figure 7.54 shows which charge distributions may occur if two photons form a pileup.
All patterns larger than 2 × 2 pixels (a,b) can be filtered out easily while complete charge
pileup in only one pixel (e) cannot be distinguished from one single photon. Pileups which
form case (c) or (d) or similar patterns could be distinguished from single photon events
by a sophisticated analysis.

A simple pattern oriented analysis [115] uses the four pattern types shown in figure 7.55.
Only the relative position of maximum and minimum charge are used in this method. This
pattern method is used, for example, for the analysis of the XMM data [115] and will be
used here as a basic classical algorithm to which any statistical learning method can be
compared.

Data Source and Preprocessing

This analysis is based on data generated by a Monte Carlo simulation developed at the
MPI semiconductor laboratory [116]. The basic detector parameters used in the simulation
are listed in table 7.25.

depth temperature noise voltage channel depth
300 µm 200 K 6 electrons 180 V 290 µm

Table 7.25: Basic detector parameters used in the simulation.

Since it is no problem to detect pileup in a scenario with only one energy line (pileups
then have double or triple energy) we choose a white spectrum from 200eV to 20keV . The
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Figure 7.54: Pileups from pure pattern
pileup (a) and (c) over mixed pattern
and charge pileup (b) and (d) to pure
charge pileup (e).

single double triple quadruple Figure 7.55: Allowed patterns for the
“XMM” algorithm: Shown are the il-
luminated pixels (above some thresh-
old). In the upper row the cross marks
the maximum charge and the circle the
minimum charge. The lower row shows
how the patterns can be generated by
a charge cloud.
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resulting reconstructed spectrum is shown in figure 7.56 where the energy is measured in
ADC counts. 20keV correspond to 5405 ADC counts, the conversion factor of 3.7eV is the
average energy needed to create an electron-hole pair in silicon. The use of a flat spectrum
reflects the natural necessity to detect pileups which are generated by any combination of
photon energies.
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Figure 7.56: The reconstructed white
spectrum used in the datasets, 20keV
correspond to 5405 ADC counts, the
conversion factor of 3.7eV is the av-
erage energy needed to create an
electron-hole pair in silicon.

The splitting behaviour strongly depends on the pixel size. We will therefore test simu-
lations with three pixel sizes of 50×50µm2, 75×75µm2 and 150×150µm2. While “singles”
dominate the events seen for the largest pixel size they form only a minor contribution for
the smallest pixel size.

The events (generated by one or more photons) formed by the clustering procedure of
the preprocessing are first filtered: Only events which fit into 2 × 2 pixels are written out,
others are identified as pileups (patterns (a) and (b) in figure 7.54). In addition, a cut at
40 ADC counts total energy should suppress all noise events. The remaining events are
divided to form the training and test events for the neural networks as well as for the XMM
pattern method.

There is no big choice which inputs should be used. For the XMM algorithm the pixels
above threshold are taken and compared to the patterns shown in figure 7.55. For the
neural network always four signal values are given as input even if only one to three pixels
are above threshold. This is done as shown in figure 7.57: The direct neighbours of the
maximum charge are checked for their signals and the 2 × 2 box which will be extracted
is determined by the larger signal in x-direction and in y-direction. Giving always these
four values as inputs, the neural network is able to determine by itself which charge value
is noise and which not.

Figure 7.57: Inputs for the neural net-
work: The 2 × 2 box which will be ex-
tracted is determined by the larger sig-
nal in x-direction and in y-direction.

The symmetry naturally given by the two coordinate axes is resolved by mirroring the
2 × 2 box until the maximum charge lies in a prefixed corner. In addition the second
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maximum is mirrored to a prefixed position so that in effect the four values get sorted.
Two normalisation schemes have been tested. The first (figure 7.58 a) applies the same
normalisation factor on each of the four pixel signals to bring them into the range (0, 1).
The second one (figure 7.58 b) normalises the three smaller pixel signals with the value
of the maximum charge and uses a fixed normalisation on the pixel with the maximum
charge. This second method performed better in the tests and will be used further on.

Figure 7.58: Normalisation (a) divides
all four values by the same factor
(5500), normalisation (b) divides the
maximum by 5500 and the remaining
three values by the maximum.

The XMM Algorithm

We will start this analysis by studying the typical behaviour of the standard pileup re-
jection, the “XMM” algorithm. The algorithm naturally has a very high efficiency (for
single photons) but may also have only a low background (pileup) rejection. Only one
parameter steers the behaviour of the XMM algorithm: the threshold which is used in the
preprocessing step affects the pattern type by defining the acceptance of small signals. The
lower the threshold the better small signal fractions are recognised but the more also noise
is mistaken as signal. Thus the threshold setting leads to a specific efficiency and rejection
of the XMM algorithm depending on the dataset. In the following the well-performing
standard of a 5σ threshold will be used.

Typical events which originate from single photons but which are nevertheless rejected
by the XMM algorithm are shown in figure 7.59. The usual problem is that a noise
contribution changes the pattern type: The quadruple type of figure 7.55 is transformed by
additional noise into a pattern where the minimum is no longer opposite to the maximum.
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Figure 7.59: Patterns from single photons which are not recognised by the XMM algorithm:
The quadruple (4-split) pattern type is modified by noise so that the minimum is no longer
opposite to the maximum, as required by the algorithm for genuine photons (figure 7.55).
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Concerning the rejection of pileups, the XMM algorithm is rather conservative. Fig-
ure 7.60 shows some examples of pileups which are not recognised by the XMM algorithm.
They can be identified as pileups if one takes into account that they cannot be generated
by the Gaussian charge cloud of one single photon with the given detector parameters.
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Figure 7.60: Patterns from pileups which are not recognised by the XMM algorithm: None
of these events can originate from a single photon in this specific dataset because in the
first event the minimum is too large compared to the other three charges, in the next three
events the minimum is always too small compared to the other charges.

Comparison of the XMM Algorithm to Neural Networks

In this section the efficiency for single photons and the rejection rate for pileups will be
analysed as function of the total energy of an event. The total energy should not have any
influence on the behaviour of the XMM algorithm since it uses only topological information,
but a neural network may show an energy dependence.

The two pileup rejection methods are compared by first determining the efficiency of
the XMM algorithm and then setting the cut for the neural network to obtain the same
efficiency. These efficiencies are 99.9% for 150 µm pixel size, 99.5% for 75 µm pixel size
and 98.9% for 50 µm pixel size. The efficiency of the XMM algorithm decreases towards
smaller pixel sizes because the fraction of quadruples increases. The quadruples may be
transformed by noise as in the examples in figure 7.59. The higher the fraction of quadruples
the higher thus the inefficiency.

Figure 7.61 summarises the spectral dependence of efficiency and rejection for the three
different pixel sizes. The identical mean efficiencies close to 100% are shown as well as the
rejection rates which differ most for small pixel sizes. For smaller pixel sizes the neural
network clearly performs better. As shown, it rejects more pileups at the same efficiency,
for example, all events shown in figure 7.60 are correctly recognised as pileups by the neural
network. For a different cut it shows a pileup rejection similar to the XMM algorithm but a
much higher efficiency with which, for example, all events shown in figure 7.59 are correctly
recognised as single photons.

A clear conclusion can be drawn from these plots: Whereas it does obviously not
matter which method is used to reject pileups for a pixel-detector with pixels as large as
150×150µm2 it does matter for small pixel sizes like 50×50µm2. A factor two larger pileup
rejection for 75 µm pixel size and a factor three larger pileup rejection for 50 µm pixel
size as visible in figure 7.61 is a significant improvement. Taking into account the trend
to smaller pixel sizes (giving better angular resolutions) one has to conclude that future
missions will profit from the advanced analysis with statistical learning methods. Seen
from a different viewpoint one has to keep in mind that the statistical learning method
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Figure 7.61: Pileup rejection of XMM algorithm and neural network: For three different
pixel sizes the efficiencies are designed to match. While no significant difference for the
rejection rate is visible for 150 µm pixel size, the neural network gives a factor 3 better
rejection at the same efficiency for 50 µm pixel size.
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of course allows to trade efficiency vs. rejection which means that one could also decide
to choose an efficiency higher than 98.9% for 50 µm pixel size and accepting some more
pileup in return. For example, an efficiency of 99.9% can be chosen (to have the same
photon efficiency as for the 150 µm pixel size), the pileup rejection is then about 20%: still
slightly higher than the XMM algorithm and the single photon loss is reduced from 1.1%
to 0.1%, by a factor 11.

Systematic Uncertainties

The pileup rejection task is a good candidate to study systematic effects which may in-
fluence the efficiency and rejection. Four different systematic effects will be studied as
examples:

• A filter is placed in front of the X-ray detecting device to filter out non X-ray light.
Starlight from the optical part of the spectrum which passes the filter may generate
a few electrons inside the pixel detector. With a sufficiently high flux, a significant
energy can be deposited in the detector. The amount depends on the observation tar-
get and on the filter type used. The systematic variation of the starlight background
can be simulated by a correlated additional local offset in the pixel-detector.

• The electronic noise might change over time since it depends on the operation mode,
temperature etc. Its variation can be simulated by random noise added to each pixel.

• Crosstalk between neighbouring pixels is an example for an effect generated in the
readout electronics. It may happen in the amplifier when the amplification of a pixel
depends on the previous state of the amplifier i.e. on the strength of the previous
signal. A large signal generates by this a small signal in the neighbouring (right)
pixel in the order of a percent of the original signal.

• A second systematic effect which may happen due to an unstable amplification of
the signals is a variation in the linearity: Higher order effects may lead to a smaller
amplification of large signals.

To study the stability of the efficiency and rejection of the two methods under varying
conditions, three different levels of uncertainty are created, called “low”, “medium” and
“high”. Starlight is simulated by a two-dimensional Gaussian distribution with a maximum
drawn from a flat distribution between 0 and 15, 30 or 45 eV respectively. Electronic noise
is drawn from a Gaussian distribution with a σ = 6, 12 or 18 eV , respectively. Crosstalk is
simulated by adding 1%, 2% or 3% of a pixel’s signal to its right neighbour and the non-
linear amplification is simulated by adding a quadratic term with a coefficient of −1 ·10−5,
−2 · 10−5 or −4 · 10−5 (for signals in ADC counts).

Table 7.26 summarises the influence of the systematic uncertainties on efficiency and
rejection for photons below 5000 ADC counts15 for the XMM algorithm for 50 µm pixel size.
For the neural network table 7.27 presents the detailed list of systematic variations and
their propagation to efficiency and rejection and table 7.28 summarises these uncertainties.

The significantly largest contribution to the total systematic uncertainty is always due
to the crosstalk effect as seen in table 7.27. This matches the intuition that the charge ratios

15As mentioned above this restriction is necessary to cut away the edge effect since single photons are
only simulated up to 20 keV , corresponding to roughly 5400 ADC counts.
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− 0.08 + 0.00 (syst.,low)
Efficiency 98.88 ±0.07 (stat.) − 0.20 + 0.01 (syst.,medium)

− 0.21 + 0.03 (syst.,high)
− 0.32 + 0.10 (syst.,low)

Rejection 15.64 ±0.35 (stat.) − 0.80 + 0.15 (syst.,medium)
− 1.11 + 0.32 (syst.,high)

Table 7.26: Total systematic uncertainties for the pileup rejection (XMM algorithm) for
50 µm pixel size.

“low”
variation eff. [%] rej. [%]
without 98.9 49.0
starlight 98.9 48.9

noise 98.9 48.7
crosstalk 98.9 48.5

amplification 98.9 49.1

“medium”
variation eff. [%] rej. [%]
without 98.9 49.0
starlight 98.8 48.7

noise 98.9 48.6
crosstalk 98.9 47.6

amplification 98.9 49.1

“high”
variation eff. [%] rej. [%]
without 98.9 49.0
starlight 98.8 48.6

noise 98.9 48.5
crosstalk 99.0 46.7

amplification 98.9 48.8

Table 7.27: Detailed systematic uncer-
tainties for the pileup rejection (neural
network, 50 µm pixel size).

− 0.01 + 0.06 (syst.,low)
Efficiency 98.88 ±0.07 (stat.) − 0.05 + 0.07 (syst.,medium)

− 0.12 + 0.13 (syst.,high)
− 0.55 + 0.11 (syst.,low)

Rejection 49.00 ±0.48 (stat.) − 1.47 + 0.08 (syst.,medium)
− 2.41 + 0.00 (syst.,high)

Table 7.28: Total systematic uncertainties for the pileup rejection (neural network) for 50
µm pixel size.
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of neighbouring pixels are very important for the discrimination process. Both methods
tend to loose a few percent of their background rejection (relatively, the XMM algorithm
loses more) while the efficiency stays in the order of 99%. Both methods therefore show a
rather stable behaviour which can cope with even very large systematic effects.

7.7.2 Sub-pixel Resolution

The second application of statistical learning methods for a pixel detector aims at improving
the positional resolution. A natural basis for this resolution is given by the pixel size of the
detector. Taking into account the charge splitting among neighbouring pixels can improve
the resolution significantly. Figure 7.62 shows how the relative incident position is defined
within one pixel.

Figure 7.62: Definition of the relative
incident position: The distances ∆x
and ∆y are measured from the centre
of the pixel with the maximum charge
to the centre of the charge cloud. The
maximum value for ∆x and ∆y is half
of the pixel size. The normalisation di-
vides by half of the pixel size and re-
turns thus distances between 0 and 1.

Data Source and Preprocessing

As for the pileup rejection, the Monte Carlo simulation developed at the MPI semicon-
ductor laboratory [116] is used to generate data for training and evaluation. Again three
different pixel sizes from 50 to 150 µm will be tested for their influence on the position
reconstruction.

To exclude noise and pileups from this analysis the events coming from the clustering
procedure are filtered by the standard XMM filter described above. A cut of 40 ADC
counts minimum total energy has been applied. As for the pileup rejection, the 2 × 2
box is extracted for each event and the maximum is mirrored into a fixed position. Care
must be taken that the x and y coordinates have to be adopted accordingly. The position
of the second maximum cannot be fixed here since this would lead to a measurement of
the resolution for the direction with the larger splitting. This would be a significant bias
compared to the true resolution in x- or y-direction.

For the following analysis, using simulated data, the detector is assumed to behave
identically in the x and y coordinates. Therefore the above preprocessing makes sense and
all results for the x direction will apply equally for the y direction.

The second data-source for the study of sub-pixel resolution is the mesh experiment
(see section 2.5.1). A measurement with a gold-mesh in front of a 75 µm pixel size detector
will be used as training data for a learning method which can then be optimised to the
experimental situation.
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Standard Reconstruction Methods

A straightforward method to obtain the centre of a distribution is the “centre of mass”
method (COM)16 which weights each pixel position with its charge:

xCOM =

∑

xici
∑

ci
. (7.11)

Since the charge cloud has a Gaussian shape this estimate does not perform very well
because it assumes a linear splitting of the charges. A correction table can help to map the
COM values to the correct position. This table needs training data in the sense that a mean
correction value for each COM value (in a fine binning) has to be determined by taking
into account all events from the training set. The position resulting from the combination
of COM value and the correction table will be called “corrected centre of mass” method
(CCOM). In summary, both COM and CCOM use the ratios

cright

ctotal
for x and cdown

ctotal
for y.

Figure 7.63 (a) shows the translation table from the charge ratio to the position derived
with the CCOM method.

Another reconstruction method with sub-pixel resolution is called “η-method” [117].
This method also uses the two charge ratios mentioned above and derives directly the
corresponding positions x and y by inverting the function

f(x) =
cright

ctotal

(7.12)

so that

f−1
(

cright

ctotal

)

= x (7.13)

can be calculated. The inversion is done numerically by sampling the charge ratios of
equally distributed values of x. A histogram (called η-function) for the charge ratios is
created and filled with events which have a flat distribution in x. The running integral of
this histogram returns the inverse function f−1 because

(f−1)′
(

cright

ctotal

)

=
1

f ′(x)

f−1
(

cright

ctotal

)

=
∫ dx

df
(7.14)

where the last term is the integral over the histogram. Figure 7.63 (b) shows the translation
table from the charge ratio to the position derived with the η-method. One can see that
the two methods behave very similarly.

The translation tables are built with all events from the mentioned white spectrum. To
give the methods the opportunity to adapt themselves to energy dependent effects six such
tables will be used in the analysis below for six energy regions up to 6000 ADC counts.
However, the differences in the tables turn out to be negligible.

16more appropriately called “centre of gravity”
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Figure 7.63: CCOM and η-method: Final functional dependence between charge ratio
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ctotal

and position as derived by the CCOM method (a) and the η-method (b).

Results

To make the following results more transparent we will start with some basic investigations
regarding the splitting behaviour as function of the photon energy. Figure 7.64 shows the
typical geometry of the conversion point and the following drift of the electron cloud for low
energy and high energy photons. Photons with a lower energy convert close to the backside,
have a long drift time and therefore create, by diffusion and electrostatic repulsion, a large
transverse extension of the charge cloud reaching the readout structure. For higher energies
the absorption length is larger and the conversion point moves towards the front side of
the semiconductor device which leaves less drift time and creates smaller extensions in the
transverse direction.

Figure 7.64: The photon energy deter-
mines the final charge cloud size: The
higher the energy the larger is the ab-
sorption length and the smaller is the
drift time from the conversion point to
the potential minimum. The drift time
finally determines the transverse exten-
sion of the charge cloud by diffusion
and repulsion.

This effect directly translates into the probability to create a split event. Figure 7.65
shows the probabilities for different splitting types depending on the energy of the photon
for 50 µm pixel size. We see the clear trend that the probability of the largest splitting
(quadruple – 4-split) decreases from medium to high energies while the probability for
smaller splittings – especially also for singles – rises due to the discussed absorption length
effect. The theoretical extrapolation of this behaviour is shown in dotted lines. Towards
lower energies, however, a different effect becomes relevant.

The decreasing probability for large splitting towards very low energy is only a re-
construction artefact since the number of illuminated pixels is determined by applying a
threshold to each pixel. Even in a very low noise scenario some threshold must be set to
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distinguish noise from real signal. Applying a threshold necessarily leads to the loss of
some signal fractions if, for example, the pixel with the smallest part of a quadruple just
falls below the threshold. This effect is seen in figure 7.65. It will become difficult for any
reconstruction method to recover small signals as we will see in the following.
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Figure 7.65: Probability for different splitting types depending on the photon energy. The
dotted lines visualise the trend towards lower energies which would be visible in a no-noise
scenario (see text).

The resolution – no matter with which method the reconstruction is done – confirms
the two effects discussed. For a very low noise situation, as shown in figure 7.66, a best
resolution (minimum reconstruction RMS) is found for low energies. For lowest energies
the noise – even if very small – affects the reconstruction. For higher energies the splitting
effect becomes smaller.

Finally, the results for a normal noise scenario are plotted in figure 7.67 for the three
different pixel sizes. Although the neural network always gives the best resolution the
differences of the three methods are negligible taking into account the statistical uncer-
tainties: Only for the 150 µm pixel size the η-method seems to perform significantly worse
than the CCOM method and the neural network. The improvement in resolution is much
greater than the refinement of the pixels: The factor 3 between 150 µm pixels and 50 µm
pixels has to be compared to the improvement in the optimal resolution at about 5.5 keV
(1500 ADC counts): From 12 µm (for 150 µm pixels) to 0.8 µm (for 50 µm pixels) the
improvement is roughly a factor 15.

The dependence of the resolution on the photon energy is, however, not the only in-
teresting conclusion which can be drawn. Plotting the resolution as function of the true
incident position clearly shows the different splitting types. Figure 7.68 shows how a neural
network reconstructs the incident position from the pixel centre (0) to the pixel border (1).
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Figure 7.66: Resolution depending on the photon energy in a low noise scenario.

There is obviously a region around the centre of the pixel for which no helpful informa-
tion is available. This region is directly related to the pixel size, it covers those incident
positions for which single events are generated17. The reaction of the neural network (and
of the CCOM method) is to assign the mean position to all these events which minimises
the quadratic distance. One can see, for example, for the 150 µm pixel size that the mean
value is around 0.35 = 26µm), the total region is about 0.70 = 52µm).

Figure 7.69 presents the effect just discussed, but this time with the reconstruction bias
and the reconstruction variance. Added up in quadrature, these two components result
in the total error giving the true resolution. It is clearly visible at least for the CCOM
method and the neural network that the resolution becomes very good at the border of
the pixel, as expected.

To conclude the analysis of the sub-pixel resolution, two-dimensional plots of the recon-
struction errors will be shown giving a clear view of the resolutions which can be obtained
for the experimental dataset. Fortunately, we can use the mesh hole positions to train the
reconstruction methods directly with the experimental data and to test their performance.

Figures 7.70 and 7.71 show that differences between the CCOM method and the neural
network can be seen primarily for singles and doubles where the neural network tries to get
additional information from the supposedly not illuminated neighbours in y-direction. The
smaller reconstruction errors of the neural network in y-direction for a part of the events are
compensated by larger reconstruction errors in y-direction for other events. The expected
behaviour is shown by the CCOM method which means that a flat error distribution is

17As discussed before, the splitting behaviour also depends on the conversion height and therefore on
the photon energy. Hence the mesh experiment enables us in principle to perform a three-dimensional
scan of the potential structure inside the semiconductor device.
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Figure 7.67: Resolution of the three reconstruction methods corrected centre of mass me-
thod (CCOM), η-method (ETA) and neural network (NN) in dependence of the photon
energy for three different pixel sizes.
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Figure 7.68: The correlation between true position (on the x-axis, 0 is the pixel centre
and 1 is the pixel border) and reconstructed position (on the y-axis) is plotted for three
different pixel sizes. The region in which no information is available (only singles) is clearly
visible for the larger pixel sizes and disappears almost for the smallest pixel size.

obtained for singles covering the whole area within one pixel for which singles are generated.
In comparison to the neural network result the width of the error distribution in y-direction
is smaller but also the peak with small errors is missing.

The error distributions for triples have widths of around 4.2 µm in x- and 2.9 µm in
y-direction (σ of a Gaussian fit). For quadruples the widths are around 3.0 µm in x- and
2.6 µm in y-direction. These widths apply to the neural network reconstruction and to the
CCOM reconstruction, their differences are marginal. The larger widths in x-direction are
due to the larger splitting effect in y-direction.

Systematic Uncertainties

As for the pileup rejection the systematic uncertainties will be applied to the detector
information and the propagated uncertainties in the resolution will be studied. The sys-
tematic uncertainties are the same as discussed before, they will again be applied in three
levels from “low” to “high”. Table 7.29 summarises the results for 50 µm pixels and the
three reconstruction methods.

method resolution [µm] stat. syst. (low-medium-high)
ETA 2.3 ±0.5 −0.2 +0.0 −0.2 +0.4 −0.1 +0.8
CCOM 2.0 ±0.4 −0.1 +0.1 −0.1 +0.4 −0.1 +0.8
NN 1.9 ±0.3 −0.1 +0.1 −0.1 +0.4 −0.1 +0.8

Table 7.29: Systematic uncertainties for the overall resolution in 50 µm pixels.

We see again that the differences in performance are negligible with respect to the
statistical and systematic uncertainties. The largest contribution to the systematic uncer-
tainties comes, as for the pileup rejection, from the crosstalk effect. This is evident since
all reconstruction methods are very sensitive to the charge splitting ratio

cright

ctotal
.
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Figure 7.69: Comparison of resolution for corrected centre of mass method (CCOM), η-
method (ETA) and neural network (NN) for 50µm pixels: (a) In bins of the true position
(0 is the pixel centre and 1 is the pixel border) bias and variance, (b) the total resolution.
The y axis is normalised like the x axis to 25 µm.
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Figure 7.70: Reconstruction error from the reconstruction of experimental data (CCOM
method) (75 µm pixel size).
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Figure 7.71: Reconstruction error from the reconstruction of experimental data (neural
network) (75 µm pixel size)

.



Chapter 8

Discussion

In this chapter a summary of the most important aspects from the various analyses in
the last chapter will be given. There, the results were grouped by experiment. Here,
the main aspects of the application of statistical learning methods to physics analysis are
summarised in an overview, taking into account the many results presented in the last
chapter.

The following section 8.1 will discuss which kind of physics results can profit from the
application of statistical learning methods. The question whether the performance of these
methods really motivates to replace a classical method by one of the statistical learning
methods will be addressed in section 8.2.

Another important question is whether statistical learning methods can be controlled
well enough to make them a reliable and trustworthy part of a physics analysis. The
frequently expressed fear of lacking control will be discussed in section 8.3. Continuing
with the practical point of view we will then summarise different aspects of the correct
handling of statistical learning methods in section 8.4.

Of course one wants to use the best learning method available. We will discuss in
section 8.5 which method may be called “the best one” and in which sense. Some pieces of
evidence will be summarised in section 8.6 which underline that statistical learning methods
are not only a useful tool. They sometimes also show surprising artificial intelligence which
turns out to be very helpful in physics analysis. Finally, the future of statistical learning
methods in physics analysis will be shortly discussed in section 8.7 from a personal point
of view.

8.1 Physics Results with Statistical Learning Methods

The applications presented in this thesis clearly show that statistical learning methods have
a very broad spectrum of possible applications in high energy and astrophysics. Along with
the variety of applications, the many different underlying physics subjects can be studied
directly or indirectly with statistical learning methods.

The first kind of physics results which are made possible by statistical learning methods
results indirectly from the improvement of the detector performance by these methods. The
last chapter showed a variety of applications of this type. Usually the detector optimisation
and the physics analysis are not connected very much so that the influence of an optimised
detector is often not directly visible in the final physics analysis.
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A first example for an impact of statistical learning on detector level on the subsequent
analysis has been shown in section 7.2 for the neural network trigger at the H1 experiment.
Previous analyses [102] already made use of the neural network trigger for level 1 sub-trigger
33 (J/ψ → e+e−). Here a J/ψ → µ+µ− analysis was shown for data which was obtained
while the neural network trigger was used to trigger these events. A significant increase in
the number of J/ψ events triggered by the respective sub-trigger 15 has been calculated
there. This increase in the number of events propagates directly to the J/ψ event yield
shown in section 7.2.6 and to the final analysis results, for example to the statistical and
systematic uncertainties of the measured cross section.

A second example of a detector which may be optimised with statistical learning me-
thods is the pixel-detector aboard the XEUS satellite (section 7.7.1). If very bright sources
are observed the photon fluxes may become far too high to send all observed pixel pat-
terns down to earth. Most of them will be pileups anyway which are not useful in the
analysis. The background suppression proposed in this thesis would be able to cope with a
three times higher background rate at the same photon efficiency compared to the classical
method. Again the impact on the physics analysis is indirectly visible in the higher X-
ray photon count rate which scales, for example, the statistical uncertainties in the X-ray
spectra.

The second kind of physics results which are made possible by statistical learning me-
thods results directly from the improvement of the analysis by statistical learning methods.
This analysis improvement is mostly related to an efficient background suppression. The
goal may either be to test a hypothesis or to decrease the statistical uncertainties.

The search for instanton-induced events at H1 (section 7.3) is an example where the
question given in the form of two different simulations turned out to be ill-posed if one
wants to take into account both simulations equally. The strongest results show no room for
instantons if the data is compared to the CDM simulation whereas the MEPS simulation
would confirm the instanton hypothesis, even in terms of the absolute number of events
predicted by the QCDINS simulation.

A second example for the test of hypotheses is given by the measurement of the Higgs
boson parity (section 7.4). It was shown that the significance of the parity measurement
is clearly larger if the discrimination is done with statistical learning methods compared
to the classical approach. This opens up the possibility for additional studies like the
determination of a mixing angle for two Higgs bosons, e.g. in a super-symmetric extension
of the standard model.

Finally the γ-hadron separation for the MAGIC telescope (section 7.6.1) is an example
in which a clever background suppression makes a flux measurement possible even for
very weak sources. The flux spectrum of the weak source 1ES1959 was presented as an
example of the new analysis possibilities opened up by the application of statistical learning
methods.

8.2 Performance of Statistical Learning Methods

The results from chapter 7 confirm the general statement from section 3.9: Statistical
learning methods are often the only possibility to perform a certain analysis because there
is no knowledge on which a classical algorithm could be built. However, even if classical
algorithms exist statistical learning methods have proven worth to be considered as an
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alternative to classical algorithms because of their performance.
That statistical learning methods show indeed significantly better performance than

their classical competitors has been proven by the results in the last chapter. A few
highlights from the whole set of analyses presented in this thesis are:

• The combination of simple one-dimensional cuts might be regarded as an alternative
to the neural network trigger at the H1 experiment at least for some special sub-
triggers. The sub-trigger for deeply virtual Compton scattering (section 7.2.3) is one
where this approach works surprisingly well. Yet, a comparison of the efficiencies at
a fixed rate reduction of 80% reveals that with the simple cuts only 83.6% efficiency
can be achieved while neural networks give 96.5%. This is a reduction of inefficiency
(lost signal events) by a factor 4.7.

• The research on the determination of the Higgs boson parity (section 7.4) at a future
linear collider was up to now focused on fitting a cosine function to a certain angular
distribution. The significance of this method was improved by applying different
preselections. Yet, another increase of the significance by 23% could be achieved by
changing the strategy from the theory-oriented cosine-fit to a simple discrimination
of both parity states by a neural network. The lowest significance which may be
obtained in the real experiment (with 90% confidence) has been increased by 28%
from 3.61σ to 4.61σ.

• The supercuts (“dynamical cuts”) method is like a historical standard for the γ-
hadron separation for the MAGIC telescope (section 7.6.1). In comparison to sta-
tistical learning methods the supercuts show a lower background suppression. The
strong effect on the significance of the photon signal is visible for the weak source
1ES1959. There the significance of the signal could be improved by 67% using a
neural network to perform the γ-hadron separation. The number of excess events
was increased simultaneously by 43%.

• The rejection of pileup events in the pixel-detector aboard the XEUS satellite (sec-
tion 7.7.1) may be an important subject for future X-ray missions even online, i.e.
aboard the satellite before transmission to earth. The classical algorithm used for
this purpose up to now shows a good efficiency but only a low rejection of pileups.
An increase of the rejection rate by a factor 3 at the same efficiency can be gained
by applying a neural network instead.

8.3 Control of Statistical Learning Methods

Because of the significant performance improvements obtained with statistical learning
methods, they are and will continue to be applied in many new problems in physics analysis.
However, some physicists hesitate to make use of statistical learning methods. They show
some kind of general fear that the application of these methods might disturb or even
destroy the whole analysis (“black box syndrome”).

Different aspects of this fear have been discussed in this thesis:

• It is often said that statistical learning methods are black boxes, that one cannot look
inside and cannot understand how they are working. Chapter 5 gave an introduction
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to all popular learning methods, showed the ideas on which they are founded and
how typical implementations of these methods work. The mathematical background
and the geometrical interpretation of each method has been presented. In addition
some basic aspects of statistical learning theory have been discussed in chapter 4.

• Even though the learning methods can really be understood and nicely interpreted,
nothing forbids their application as black boxes. The remaining fear is mostly based
on the question whether statistical learning methods can be controlled in the right
way. In the context of a physics analysis, statistical and systematic uncertainties
provide the most important means of controlling the results. Section 3.13 discussed
both statistical and systematic uncertainties in a detailed way and showed that there
is no uncertainty in the learning method itself. The systematic uncertainty of the
statistical learning method is obtained by a propagation of systematic uncertainties
of the inputs to the output. This propagation can be calculated for any statistical
learning method. Some examples from the last chapter are:

– Statistical and systematic uncertainties have been calculated for the neural net-
work trigger of H1 (section 7.2). The networks have shown a very stable be-
haviour. Even if very high systematic uncertainties for the inputs are assumed,
the propagated uncertainties of efficiency and rejection are well under control
(fault tolerance).

– Systematic uncertainties have been very important for the search for instantons,
as only they can give the probability of the instanton hypothesis (section 7.3).
However, the calculated uncertainties finally revealed that the two underlying
simulations of standard sources (QCD) are not compatible.

– For the pileup rejection aboard the XEUS satellite (section 7.7.1) the calculated
uncertainties showed that the very high efficiency for single photons is stable
and that the pileup rejection may decrease but only within a relative change of
5%.

• A second important step towards a trustworthy analysis with statistical learning
methods is the control of any statistical effect which may lead to a bias in the pre-
dictions. On the one hand the overtraining effect has to be controlled. The division
of the available examples into training, selection and test set to have an independent
estimation of the true performance was discussed in section 3.11. This technique has
been exercised in many examples in chapter 5 and in the analysis in chapter 7. On
the other hand the comparison of learning methods has to follow statistical rules.
Otherwise one might wrongly claim a significant performance difference. The statis-
tical techniques presented in section 3.15 have been used explicitly in the case of the
DVCS dataset in section 7.2.3 and for the D∗ dataset in section 7.2.7.

• The control which is needed in addition to the above topics covers exactly the same
questions which have to be thought about for any physics analysis like:

– Could the results be crosschecked with an alternative data selection? An exam-
ple was discussed in section 7.2.5 for the J/ψ → e+e− dataset. A too loose cut
in a recent selection was detected by a comparison to the output distribution of
an older selection.
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– Which events are rejected by a certain cut and how do they look like? For the
charged current selection in section 7.2.4 events which would have been rejected
by the neural network trigger have been scanned. Two events have been revealed
by this which should not have been part of the charged current selection.

– Is there an artificial bias of the efficiency of the selection cuts in dependence of a
certain observable? The efficiency of the neural network trigger for DVCS event
(section 7.2.3) has been evaluated as function of the angles and energies of the
photon/electron. All four histograms showed a nicely flat efficiency distribution.
As a second example the pileup rejection and the position reconstruction in the
pixel detector have been checked for their spectral dependence (sections 7.7.1
and 7.7.2). As expected both tasks show problems towards lowest energies due
to the noise. The worse performance of the position reconstruction for very high
energies has been explained by the energy dependence of the absorption length.

– How can one determine the efficiency of a trigger when it is already rejecting?
The principle of orthogonal triggers was used as an example for the DVCS and
the J/ψ → µ+µ− dataset in sections 7.2.3 and 7.2.6. In both cases the efficiency
determined with this method confirmed the estimation from the test set. As
mentioned in section 7.2.2, in some cases a Monte Carlo simulation needs to be
instrumented to determine the correct efficiency of the trigger.

8.4 Handling of Statistical Learning Methods

Even if a statistical learning method is well controlled there might still arise some problems
from the complex handling. There are several tasks which may make it difficult to obtain
a well-performing classifier or regression model: The data has to be preprocessed and/or
preselected in an optimal way, the best inputs have to be selected and the best training
target has to be defined. Finally, each learning method has its own parameters which have
to be varied in order to avoid overtraining and to find the optimal performance. All these
topics have been discussed in chapter 3 and have been illustrated by examples in the last
chapter.

The importance of a good preselection was discussed on the Higgs boson parity problem
(section 7.4) and a good preprocessing was needed for the position measurement for the
neutron detector (section 7.5), for the shower image in the MAGIC telescope (section 7.6)
and for the pixel cluster in the X-ray pixel-detector (section 7.7). The procedure of selecting
the optimal subset from a given set of inputs was demonstrated with the J/ψ → µ+µ−

dataset from the H1 trigger (section 7.2.6). The difficulty to choose also the right training
target was faced for the Higgs boson parity problem (section 7.4) and for the energy
estimation in the MAGIC telescope (section 7.6.2). The parameter optimisation problem
was discussed with the help of the dijets dataset from the H1 trigger (section 7.2.7).

Finally, many examples for tricky details have been presented like the multi-class prob-
lem for the H1 level 1 sub-trigger 83 where two different physics channels come from the
same sub-trigger and both need a high efficiency (section 7.2.7). Another typical problem
is that the training is done with a simulation but the test should of course be done with
real data. Examples for the problems arising from this combination have been discussed
for the search for instantons (section 7.3), for the position reconstruction in the neutron
detector (section 7.5) and for the shower image in the MAGIC telescope (section 7.6).
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8.5 The “Best Learning Method”

The summary of performance highlights in the second section of this chapter already made
clear that neural networks have indeed earned their status as the most often applied sta-
tistical learning method in physics analysis. Throughout the results presented in chapter 7
neural networks have been among the best performing learning methods. This can also
be seen in recent publications about applications of statistical learning methods in physics
analysis [118, 119]. However, one cannot state that generally the neural network is the best
learning method since datasets may exist where other learning methods are suited better.
A comparison of different methods should always be done where possible.

Section 3.15 made clear that the comparison of learning methods has to follow some
specific rules. The statistically correct comparison of some learning methods was performed
as an example on the D∗ dataset from the H1 experiment (section 7.2.7). There the random
forest method and neural networks performed best in comparison to naive Bayes and k-
nearest-neighbours. More hints concerning performance differences can be taken from the
comparison of fast classification techniques on the DVCS dataset (section 7.2.3) where the
neural network and the support vector machine performed best in comparison to linear
discriminant analysis, naive Bayes and combinatorial cuts. Further information can be
derived from the separation powers observed in the search for instantons (section 7.3) where
neural networks showed better results than the range search method or the combinatorial
cut search. Additional results come from the Higgs parity measurement (section 7.4)
where the random forest method performed similar but not as good as the neural network,
and from the γ-hadron separation for the MAGIC telescope (section 7.6.1) where neural
networks performed again slightly better than the random forest method.

In summary the three methods support vector machines, random forests and neural net-
works generally show the best results. There might be datasets where other methods per-
form better but usually the three mentioned methods perform particularly well in physics
analysis. A ranking among these three methods is difficult to obtain and certainly has
to take into account a very specific application. One of them will be better suited for a
specific application than the others although all three of them show generally good results
nearly independent of the dataset.

8.6 Artificial Intelligence in Statistical Learning Me-

thods

There have been some examples in the last chapter which lead back to the roots of statistical
learning methods in artificial intelligence. We have seen for example, that there is a specific
class of events in the selection of J/ψ events from the year 2004 which are classified as
background (section 7.2.5). Indeed, a scanning of these events revealed that one of the
selection cuts was too loose and let through a lot of background. Although these events
were used in the training procedure as “signal” they were clearly identified as background.

An even more important detection with neural networks was made in the selection of
charged current events (section 7.2.4). This selection contains only a few hundred events
for the whole year 2004 which makes a clean event sample even more important. All the
events used to check the neural network performance have been scanned by a physicist. One
event from the charged current selection would have been rejected by the neural network
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and this event turned out to be most probably an overlay event which should not have
been in the charged current selection. A second event would be rejected if large systematic
shifts are applied. This event turned out to be a cosmic event which also should not have
been part of the charged current selection.

In summary, statistical learning methods (here neural networks) showed an (un)expected
intelligent behaviour which revealed yet unknown details of certain physics selections. The
results from the statistical learning methods were surprising and led to insights on the
human side which lacked before. This is more artificial intelligence than the methods were
designed to show. The results are even more encouraging if one takes into account that
the physics selections are done on the analysis level, i.e. with fully reconstructed events.
The neural network, in contrast, made its surprisingly clever decision only based on the
coarse detector information which is available on the second trigger level.

8.7 The Future of Statistical Learning in Physics Ana-

lysis – A Personal View

The number of possibilities to apply statistical learning methods to problems in physics
analysis will clearly grow further. The rising complexity of each experiment, the completely
computerised analysis frameworks and the hunt for clever algorithms which can cope with
the enormous amounts of data clearly point towards new applications for statistical learning
methods. The key issue in future applications of statistical learning methods will be the
background suppression.

Neural networks have been some kind of the standard statistical learning method in
physics analysis for several years. Two important new methods have been developed during
the 1990s: The random forest method and the support vector machine. Both of them
have now to be taken into account as possible alternatives to neural networks as the
discussion about the best learning method above has shown. Whereas the possibility
exists that some new design leads to an even better kind of learning method the analysis
presented here has demonstrated that the performance differences among the best learning
methods are often negligible, in contrast to the differences to simple learning methods or to
classical algorithms. The feeling that one can almost always reach the theoretical optimum
performance with at least one of the methods presented in this thesis is not misleading.

But not only the performance is an important criterion for the future application of
statistical learning methods in physics analysis. Even more important is the existence of a
working implementation of the algorithm within the standard framework which is used for
a specific experiment. The optimum would be, of course, to have several different methods
implemented so that one can compare their performance on the different kinds of analyses.
This was attempted in this thesis.

Most important for the future application of statistical learning methods in physics
analysis is the knowledge and experience of those people who want to apply these methods
to a specific problem in their analyses. New generations of diploma and PhD students
will try out different types of learning methods on different problems. They are hopefully
equipped with basic knowledge about statistical learning methods and the typical problems
arising from the application in high energy and astrophysics like discussed in this thesis.
This will not only make the work easier but will also help to avoid common mistakes and
misconceptions.
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Chapter 9

Conclusion

The various analyses presented in this thesis cover typical applications of statistical learn-
ing methods in high energy and astrophysics experiments. They have shown that these
methods lead directly or indirectly to very interesting physics results. Different analy-
sis results have been discussed which could not have been obtained without the help of
statistical learning methods.

These intriguing results have been made possible by the convincing performance of
statistical learning methods. Numerous examples have been discussed in this thesis where
a statistical learning method significantly outperforms the competing classical algorithm.
In addition, statistical learning methods sometimes show more artificial intelligence than
expected as they lead to insights which have not been asked for. The comparative study
among different learning methods has shown that neural networks have earned their posi-
tion as a standard tool in physics analysis.

Despite the interesting new physics results and the remarkable increase in performance
obtainable with statistical learning methods, physicists often hesitate to make use of these
methods. A strong emphasis was therefore put onto the understanding and interpretation
of statistical learning methods. Furthermore clear guidelines for the correct application of
these methods have been given.

A special focus has been put on the controlling techniques important for physics ana-
lysis: Methods for the unbiased estimation of efficiencies have been presented and applied
to many examples. The correct calculation of statistical and systematic uncertainties has
also been exercised on different examples. It was thereby shown that statistical learning
methods can be well controlled.

Knowing how to control statistical learning methods in the physically correct way and
knowing how to apply them in the best possible way to a given analysis problem enables the
physicist to profit from their extraordinary performance and to obtain thus new, interesting
physics results.
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Appendix A

Statistical Learning Methods in
Hardware

Naturally some kind of hardware has to be used to calculate the output of statistical
learning methods. Programs running on standard PCs (like those mostly used in this
thesis) are considered as a “software” solution. They are only software in the sense that a
piece of hardware has a significant speed advantage if it is dedicated to the evaluation of
a specific kind of statistical learning method.

However, today’s processors also allow the fast calculation of the output of statistical
learning methods, even in parallel in a farm of processors. Execution times in the order
of a few microseconds can easily be reached, for example, for the calculation of a medium
sized neural network on a single processor. A bottleneck in the application of this solution
to a real online application may be the I/O speed of the PC.

Hardware which is dedicated to the calculation of a specific statistical learning method
can still be very flexible like, for example, a digital signal processor (DSP) or a field
programmable gate array (FPGA). The structure of the program which has to be loaded
to the hardware first fixes its behaviour. 16 parallel DSPs are, for example, used in the
neutron detector discussed in this thesis to perform the reconstruction of the neutron
incident position [20, 120]. The corresponding electronics for analog and digital processing
of the detector data is shown in figure A.1. A clever FPGA design for the fast execution of
large feed forward neural networks (400ns!) is presented in [84]. The CNAPS (Connected
Network of Adaptive processorS) VME cards [121] used in the level 2 neural network trigger
of the H1 experiment have been designed for the fast execution of parallel algorithms, e.g.
in feed forward neural networks. These chips have been commercially available but are no
longer. Figure A.2 shows a diagram of the hardware used in the level 2 neural network
trigger.

Figure A.1 and A.2 make clear that the implementation of the statistical learning
method in some piece of hardware is one of the minor steps towards a working online
system. The data processing which needs to be done to provide the desired inputs for the
statistical learning method is an important and costly step.

The main advantage of a dedicated piece of hardware in comparison to a classical CPU
is the parallel implementation of statistical learning methods. Thus some of the learning
methods discussed in chapter 5 are especially well suited to be used in an online application
where a short execution time is mandatory. The naive Bayes method, linear discriminant
analysis, and simple cuts can be implemented in parallel algorithms or may even be simple
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enough to be implemented serially. Feed-forward neural networks and support vector
machines are special candidates for the parallel architecture since the calculation of all
outputs in the hidden layer (for neural networks) and the comparison with all support
vectors (for the support vector machine) naturally parallelise. Typical numbers of parallel
units are 10 to 60 for neural networks and 100 to 1000 for support vector machines.

Other learning methods like local density estimators which compare a new event in some
way to all the training events are less suited for hardware implementation. They might
have an implementation which uses parallel algorithms up to some degree but generally
show a more serially oriented processing. This would lead to considerably long execution
times in an online application. For decision trees one has to proceed serially from the
first cut at the root of the tree up to the last decision in one of the branches. The time
consumption is difficult to be determined in advance since the number of cuts which will
have to be done is not known in advance.

Meta-learning strategies like bagging, boosting and the random subspace method do
parallelise but they multiply the needed parallel processors by the number of classifiers.
Bagging, for example, is typically applied with 100 trainings. This would mean that 100
classifiers have to be calculated in parallel.
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Appendix B

Implementation Details

B.1 Preprocessing for the Pixel-detector

In this section the preprocessing scheme will be presented which has been newly imple-
mented for the analysis of the X-ray pixel detector data in section 7.7. The preprocessing
of the detector data is a two step process: First known detector and readout effects have to
be corrected (“calibration”) and afterwards the signals need to be extracted. As discussed
in section 2.5 the charge cloud generated by one photon is usually distributed over up to
four pixels. Thus once the illuminated pixels have been identified, they have to be grouped
into clusters (“patterns”) and the total charge of each cluster has to be determined.

This whole preprocessing procedure is essential for any following analysis. Because such
an analysis did not exist in an object oriented programming language it was developed in
this thesis. This implementation will be described in the two following sections. Many new
possibilities compared to the existing implementations make it a powerful tool.

B.1.1 Correction of detector and readout effects

The correction of effects which modify the measured pixel signals is done in three steps:

1. First the common modes for all rows in all frames have to be determined. The
common mode is an offset which is shared by the pixels in one row and varies with
time. It is probably caused by a time dependent amplifying mechanism which acts
in parallel on all pixels of one row during the readout process. The common mode is
usually determined as the mean of all the pixels of one row. Care must be taken that
the line is “dark” which means that illuminated pixels (with charge, e.g. induced by
a photon) have to be omitted. Subtracting the calculated common mode leaves an
offset value which is independent for each pixel.

2. The offsets per pixel are calculated as the mean value over several frames. Again
care must be taken that no signal charge disturbs this calculation. The variation
around the offset value is used to derive a standard deviation. A pixel is considered
as illuminated if its value after subtraction of common mode and offset exceeds n
standard deviations where n is typically 4 or 5.

3. The first two calibration steps use dark frames in which no X-ray photon should
appear. These first two calibration steps are enough to recognise events. The last
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calibration step is done with X-ray photons of a specific energy to correct for two
detector effects which affect the readout of deposited charges: The gain correction
applies a factor to each column of the pixel matrix to compensate the slightly different
amplifications per channel. The charge transfer efficiency describes the loss of charge
in the transfer process and is thus a function of the row in which the charge was
deposited. The charge transfer efficiency is usually described as a linear function
either for all columns or column-wise.

To estimate the gain factors and the charge transfer efficiencies, events from a cal-
ibration source need to be extracted for this step as described in the next section.
Linear fits of the measured charges along each column are done and result in a slope
and an offset value per column. The offset values can be transformed into the gain
factors since they represent the charges measured without transfer losses. The slopes
of the fits describe to a first approximation the charge loss per row and thus the
charge transfer efficiency.

Different methods to derive common mode, offset and variance as well as gain and charge
transfer efficiency can be easily plugged into the calibration procedure. Additional detector
effects like hot and cold pixels are taken into account by masking them out and ignoring
events which would have illuminated this pixel.

B.1.2 Signal Extraction

The signal extraction is performed on the detector data which was calibrated according
to the above procedure. As mentioned above, pixels can be recognised as illuminated if
the deposited charge exceeds a 4σ or 5σ threshold. After a zero-suppression step these
pixels are clustered together. The clusters found form the events which are processed
further. Events generated by minimum ionising particles (MIP) can be filtered out due
to the very large energy deposition (above the “MIP-threshold”) and, in most cases, also
by their geometry (if the MIP passes the detector almost horizontally). Events generated
by one X-ray photon occupy at most 2 × 2 pixels for the detector types discussed in this
thesis. Thus larger patterns can be directly identified as background. Event-clusters which
remain after this background suppression form the input for any method determining the
final position and energy information per event.

Different event filters, depending on charge, geometry or both, can be chosen and
combined in the newly created preprocessing framework. New filters are easily added to
the framework. For example, the pileup-filters presented in section 7.7.1 can be used here.
Any method which calculates the final information about each event from the extracted
clusters can also be easily plugged into the framework. Usually a raw output is produced
consisting of a list of all pixels belonging to a cluster with their individual calibrated
charges. Instead a final charge and position information can be produced. The position
could be estimated with methods like those presented in section 7.7.2.

Figure B.1 shows the reconstructed energy spectrum of a test measurement, the tita-
nium K-α and β lines are visible. The energy spectrum obtained with the newly imple-
mented preprocessing scheme described here is compared to two spectra which have been
obtained with two preprocessors developed in the MPI semiconductor laboratory [116, 115].
The negligible differences in the energy spectra show that the newly implemented prepro-
cessor works fine.
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Figure B.1: Reconstructed spectra ob-
tained with the preprocessor described
here (blue) compared to two prepro-
cessors which have been developed in
the MPI semiconductor laboratory (red
and green).

B.2 Analysis of the Mesh Experiment

The principle of the mesh experiment was adopted from research done in Japan [122].
The importance of the mesh experiment for a better understanding of the detector was
already mentioned in section 2.5.1. Here we will focus on the first step of the analysis of
the mesh experiment: The determination of the mesh parameters, i.e., how the mesh is
aligned relative to the CCD pixel structure. Once the angle and the offsets are found, the
positions of all holes with respect to the CCD pixels are known. Any photon event can
then be identified with a specific hole position which determines its incident position.

To reconstruct the mesh parameters a new method has been invented, implemented and
checked on simulated and experimental data. The principle used for the reconstruction is
visualised in figure B.2: The moire pattern formed by single events can be used to calculate
the rotation angle and offsets in x- and y-direction.

The rotation angle is closely related to the angle formed by the grid of the moire cells
with respect to the CCD coordinate system. In the same way the offsets of the mesh are
related to the offsets of the grid of moire cells. The lines drawn into the moire pattern of
single events in figure B.2 on the right visualise the grid of moire cells which needs to be
determined. This is done by projecting the moire pattern row-wise or column-wise onto
the x- or y-axis, respectively, and fitting the periodic pattern. The periodicity and offset
of the periodic functions obtained for all rows and columns are then used to extract the
rotation angle and the offsets of the mesh.

The reconstruction method used in the Japanese experiment [122] tries to estimate
the mesh parameters by minimising a cost function. This cost function measures the
misplacement of the mesh with the currently assumed parameters. The misplacement is
determined with the help of the single events: The single events should appear (only) in
those pixels over which a mesh hole is placed centrally.

Compared to this minimisation of a cost function the fitting method developed here
does not depend on the uniformity of the single events and has no problems with secondary
minima. The precision of the reconstructed mesh parameters is as good as for the minimi-
sation procedure and the application is much easier since no secondary minima need to be
excluded.

A comparison of both reconstruction techniques in a simple simulation of a mesh with
150µm spacings over a CCD with 150µm pixels showed that the method described here
can reconstruct the rotation angle within 0.04mrad. The minimisation of the cost function
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Figure B.2: The mesh-experiment: Single events are likely to happen whenever the mesh
holes lie over the centre of the pixel. If the hole is close to a border the charge will split
among multiple pixels. The moire pattern of single events (right) is induced by the slight
rotation of the mesh relative to the CCD pixel structure. The lines which have been added
manually in the right plot visualise the grid structure of the moire cells.
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(with starting values from from the our method) could reconstruct the rotation angle only
within 0.11mrad. The offsets are better reconstructed with the minimisation technique
resulting in an average resolution of 1.6µm. The method described in this section resulted
in an average resolution of 2.3µm.

B.3 Automatic Parameter Optimisation

In the following three sections details about the programs will be presented which auto-
matically generate trainings for different parameter settings. This is done for the learning
methods neural network, support vector machine and random forest. These three methods
are discussed in more detail than the other methods presented in chapter 5 because they
have been found to be always among the best performing learning methods (compare the
discussion in section 8.5).

B.3.1 Parameters for Neural Networks

The training of feed forward neural networks is very often done with the back-propagation
algorithm. It is, for example, discussed in [82], [83] or [121]. Here the most important
parameters are summarised and the strategy for their setting is presented.

An adaptive algorithm has been developed for the steering of the parameters in the
back-propagation algorithm: The learning rate η and the momentum µ in the update rule

∆w(k) = −η∂Cost

∂w
+ µ∆w(k − 1) − ηδw(k) with w ∈ {w̃i, b̃, wij, bi} (B.1)

are both initialised to 0.8 and decreased down to 10−4 by multiplying with 0.5 after each
group of training epochs. One training epoch uses all training events once and one group of
training epochs ends if the cost measured on the training set either rises or has stabilised
after 50, 100, 150 or 200 training epochs. A new group starts anyway if 250 training
epochs have been reached. The training is stopped before η and µ have reached 10−4 if
overtraining has been detected (“early stopping”). This is done by keeping track of the
changes of the errors on the training set and on the selection set. The selection set is used
here to have an error measurement independent of the training set, the test set is not used
during the training to have the independent performance measurement. Early stopping
ensures that complex networks which would show clear overtraining if trained too long can
still show a very good generalisation. The described procedure shows a quicker and more
stable descent to the minimum cost compared to the standard of fixed learning parameters
and compared to a prefixed decrease of the learning parameters within a given number of
training epochs.

The parameter δ in the update rule above is called weight decay and results directly
from a penalisation of large weight vectors. As mentioned in section 5.4.2 this penalisation
is a common regularisation procedure. The other regularisation parameter is the number
of weights in the network. Although it is in principle possible to build complex networks
with many feed forward layers we use always only one hidden layer with a varying number
of neurons. It was proven theoretically [81] that one hidden layer with a sufficient number
of neurons is able to model any continuous output function.

The only free parameters which remain with the described procedure are the number
of hidden neurons, the seed for the random initialisation of the weights and the weight
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decay1. The training of multiple neural networks with different parameter settings is then
easily done by calling one program which performs the trainings for a given range of hidden
neurons, for a given number of different random initialisations and for a given set of weight
decay parameters (tried out in every combination).

Typical values are 4 to 12 hidden neurons for many inputs or few training events, 20
to 40 hidden neurons for few inputs and enough training events (order of a few thousand).
Typically two or three random initialisations are tried out and the weight decay parameter
is varied in powers of 10 from 10−10 to 10−5.

B.3.2 Parameters for Support Vector Machines

The Gaussian kernel for the support vector machine was introduced in section 5.4.3. It is
modified for the framework of this thesis to allow scaling factors for each input individually:

K(~x, ~y) = exp
(

−
∑

γi(xi − yi)
2
)

. (B.2)

A set of scaling factors is given to a program which then performs trainings in which
each factor is tried out for each input in every combination. This “grid” approach is only
suitable for sufficiently few inputs, since the number of combinations is kn where n is the
number of inputs and k is the number of factors which are tried out.

A second parameter which is varied by this program in a given region and with a given
step-size is ν. ν determines the fraction of events which are taken as support vectors and
is directly connected to the parameter C described in section 5.4.3. It can therefore be
used to adjust the overtraining behaviour.

In total, every ν is automatically tried out with every combination of scaling factors
for the inputs. Typical values are 5% to 30% for ν and scaling factors in different powers
of 10 between 10−2 to 102.

B.3.3 Parameters for Random Forests

As discussed in section 5.11, the random forest method applies the bagging strategy to a
slightly modified version of the CART decision tree algorithm. A very fundamental change
in the behaviour of the decision tree CART is given by the variation of its splitting rule.
Two different splitting rules have been implemented in the framework used in this thesis:
The standard based on the Gini index (compare section 5.2) and an alternative especially
for the regression case minimising the sum of the variances of the target values which
remain in the two branches after the cut.

The other parameters do not really steer algorithmic behaviour but change some num-
bers like for the learning methods discussed above. The first of them steers the randomness
of the splitting rule: In usual decision trees the search for the best pair of input and cut-
value is exhaustive but for the random forest only a certain number of inputs is searched for
a good split. The free parameter determines how many times an input is chosen randomly
to be searched for the best split. A second parameter steers the stopping behaviour: An
absolute number of events can be given below which a branch is not split any more. A
third parameter determines the number of trees which should be grown, i.e. the number of

1The values for start and end of the η and µ decrease as well as the number of epochs per group can
be changed but they are usually used with their default values.
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basic decision trees produced by the bagging strategy. Finally, a last parameter is simply
an initialisation for the random number generator.

All these parameters are varied within a given region and with a given step-size. Each
combination of the different parameter values is automatically tried out by the managing
program. Typical values for the number of inputs which are searched for the best split are
1 to the total number of inputs. The number of minimum events per leaf is typically 1 to a
few tens. The number of trees which should be grown is usually in the order of 50 to 100.
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[48] H.-O. Georgii. Stochastik: Einführung in die Wahrscheinlichkeitstheorie und Statis-
tik. de Gruyter, Berlin, 2002.

[49] O.J. Dunn. Multiple comparisons among means. Journal of the American Statistical
Association, 56(293):52–64, 1961.

[50] T. Hastie et al. The Elements of Statistical Learning. Springer, New York, 2001.

[51] T. Mitchell. Machine Learning. McGraw Hill, 1997.

[52] D. Michie et al. Machine Learning, Neural and Statistical Classification. Ellis Hor-
wood, 1994. The Statlog Project.



238 BIBLIOGRAPHY

[53] J. Berger. Statistical decision theory and Bayesian analysis. Springer Verlag, 1985.

[54] T. Loredo. From Laplace to supernova 1987a: Bayesian inference in astrophysics. In
P. Fougere, editor, Maximum Entropy and Bayesian Methods, pages 81–142.

[55] D. Haussler et al. Bounds on the sample complexity of Bayesian learning using
information theory and the VC dimension. Machine Learning, 14:83–113, 1994.

[56] L. Valiant. A theory of the learnable. Communications of the ACM, 27:1134–1142,
1984.

[57] D. Haussler. The probably approximately correct (PAC) and other learning models.
Kluwer, 1994.

[58] D. Haussler. Probably approximately correct learning. Proc. Eighth Nat. Conf. on
AI, pages 1101–1108, 1990.

[59] A. Blumer et al. Learnability and Vapnik-Chervonenkis dimensions. Journal of the
ACM, 36:929–965, 1989.

[60] W. Hoeffding. Probability inequalities for sums of bounded random variables. J.
Amer. Statist. Assoc., 58:13–30, 1963.

[61] V. Vapnik. The Nature of Statistical Learning Theory. Springer, New York, 1995.

[62] V. Vapnik and A. Chervonenkis. On the uniform convergence of relative frequencies.
Theory of Probability and its Applications, 16(2):264–280, 1971.

[63] P. Domingos. The Role of Occam’s Razor in Knowledge Discovery. Data Mining and
Knowledge Discovery, 3(4):409–425, 1999.
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This index is intended to provide a quick guide to explanations and examples of basic
concepts and notions of statistical learning methods and their application in high energy
and astrophysics. Links to definitions and basic explanations have normal style, links to
examples and applications are italic.
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Für das geduldige und sorgfältige Korrekturlesen des Entwurfs dieser Arbeit bedanke ich
mich bei Sonja Niedermaier ganz herzlich.

Schließlich danke ich meiner Frau Monika für ihre Geduld und beständige Unterstützung.
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