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Abstra
tIn this diploma thesis the development of a method to identify low energy ele
trons ispresented. The implemented ele
tron �nder uses information from the tra
king and the
alorimetry system of the H1 dete
tor. The estimators are 
ombined in a multivariateanalysis in order to train a single dis
riminating variable.The potential of the 
hosen estimating variables in separating signal from ba
kgroundis studied using data samples sele
ted from J/ψ (signal) and ρ (ba
kground) de
ays re-spe
tively. The des
ription of the estimators by Monte Carlo simulation is veri�ed.The good separation power of the estimators in 
onjun
tion with the usage of sophis-ti
ated multivariate 
lassi�ers leads to an improved identi�
ation method 
ompared toexisting ele
tron �nders. The presented ele
tron �nder allows to opperate in the energyregime of 1-3 GeV with an e�
ien
y and ba
kground reje
tion both above 90 %.
KurzfassungIn dieser Diplomarbeit wird die Entwi
klung einer Methode zur Identi�kation vonniederenergetis
hen Elektronen vorgestellt. Der implementierte Elektronen�nder benutztInformationen des Spurkammer- und des Kalorimetriesystems des H1 Detektors. DieEstimatoren werden in einer multivariaten Analyse kombiniert um eine einzelne Diskri-minierungsgrösse zu trainieren.Das Potential der gewählten Estimatoren zur Trennung von Signal und Hintergrund wirduntersu
ht unter der Verwendung von Datenproben selektiert in J/ψ (Signal) respektive

ρ (Hintergrund) Zerfällen. Die Bes
hreibung der Estimatoren dur
h Monte Carlo Simu-lationen wird überprüft.Die gute Trennwirkung der Estimatoren in Verbindung mit der Verwendung von ho
hen-twi
kelten multivariaten Sortieralgorithmen führt zu einer verbesserten Identi�kations-methode vergli
hen mit bestehenden Elektronen�ndern. Der dargelegte Elektronen�ndererlaubt es im Energieberei
h von 1-3 GeV bei einer E�zienz und einer Hintergrundun-terdrü
kung von jeweils über 90 % eingesetzt zu werden.



Die Physik ist für die Physiker eigentli
h viel zus
hwer.David Hilbert
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Chapter 1Introdu
tion I do not know what I may appear to the world,but to myself I seem to have been only like a boyplaying on the sea-shore, and diverting myself innow and then �nding a smoother pebble or a pret-tier shell than ordinary, whilst the great o
ean oftruth lay all undis
overed before me.Isaa
 Newton
The main purpose of this diploma thesis is to implement a method to identify low energyele
trons at the H1 experiment. The presented ele
tron �nder uses information from thetra
king and the 
alorimetry system of the H1 dete
tor.Low energy ele
trons (1-3 GeV) originate for instan
e from weak de
ays of heavy quarks(beauty- and 
harm-quarks at HERA). An identi�
ation method of ele
trons in this en-ergy regime 
an make an important 
ontribution to the understanding of heavy �avourphysi
s.Within this thesis a new ele
tron �nder is developed using large data samples 
on-sisting of de
ay ele
trons from elasti
 J/ψ for signal and pions of ρ ve
tor mesons forba
kground events. The data sele
tion is based on a new ele
tron trigger implementedfor the H1 experiment in 2006. Several estimators are de�ned based on 
alorimeter andtra
king information in order to distinguish between signal (ele
trons) and ba
kground(pions). The separation power of the spe
i�
 variables is determined by means of thedata samples and the des
ription of the estimators by Monte Carlo simulation is veri�ed.A dis
rimination quantity reverting to sophisti
ated 
lassi�er methods is derived by 
om-bining the estimators in a multivariate analysis. The dis
riminator is trained using thesele
ted data samples for signal and ba
kground. The presented ele
tron identi�
ationalgorithm is supposed to be applied in a di�
ult kinemati
 regime with large hadroni
ba
kground.The following list gives the outline of the thesis:
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Chapter 1. Introdu
tion
• The next 
hapter gives a summary of the motivation for this study.
• In 
hapter 3 the HERA 
ollider and the dete
tor of the H1 experiment are in-trodu
ed. The subsystems of the dete
tor delivering the information used for theele
tron identi�
ation are presented in more detail, namely the tra
king system andthe liquid argon 
alorimeter.
• The theory behind the identi�
ation of ele
trons is des
ribed in 
hapter 4 where therelevant pro
esses in the dete
tor for ele
trons and expe
ted ba
kground parti
lesare presented.
• Chapter 5 gives a short overview of the basi
 
omponents of the used Monte Carlosimulation.
• The 
hosen method and the employed quantities for the identi�
ation of ele
tronsare dis
ussed in 
hapter 6. The data sele
tion for the studies is followed by theresulting separation power of the estimators. The estimating variables are evalu-ated on data and Monte Carlo simulated events. The distributions of the spe
i�
estimators are separately 
ompared between data and Monte Carlo simulation forsignal and ba
kground, in order to verify the des
ription of the 
hosen variables bysimulation.
• Chapter 7 starts with a general introdu
tion to multivariate analysis. The used
lassi�er methods and the obtained results are dis
ussed.
• A �rst appli
ation of the developed �nder and the 
orresponding results are pre-sented in 
hapter 8. The implemented method to identify ele
trons is used to obtainan invariant mass distribution of the de
ay ele
trons of inelasti
 J/ψ ve
tor mesons.
• In the last 
hapter the 
on
lusions of this diploma thesis and a short outlook forfurther studies is given.
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Chapter 2Motivation Measure what is measurable, and make measur-able what is not so.Galileo Galilei
In the HERA 
ollider, lo
ated at DESY in Hamburg, high energeti
 ele
trons and protonsare brought to 
ollisions. The H1 experiment employs these ep-intera
tions to investigatefor instan
e the produ
tion of heavy 
harm- and beauty-quarks. Heavy �avour physi
s isone of the main fo
uses of the H1 experiment. The investigated events are divided intotwo kinemati
 regions using the virtuality Q2 des
ribing the square of the momentumtransfer from the ele
tron to the proton. Events with a virtuality Q2 > 1 GeV2 are
alled Deep Inelasti
 S
attering (DIS). The regime of Q2 < 1 GeV2 is referred to as thephotoprodu
tion regime. The rate of ep-events de
reases with an in
reasing virtualitysin
e the 
ross se
tion is proportional to 1/Q4. Therefore the DIS events happen lessfrequently as those in the photoprodu
tion regime.Heavy quarks, meaning b- and 
-quarks, de
ay via the weak intera
tion. About 10 % ofthe de
ays are semileptoni
, where the intermediate W±-boson produ
es a lepton and aneutrino. The 
harged leptons 
an be dete
ted, whereas the neutrinos are not tra
eablein the dete
tor. The aim of this diploma thesis is to develop an algorithm to identifyele
trons produ
ed in semileptoni
 de
ays of heavy quarks.The most important produ
tion pro
ess of heavy quarks at HERA is boson-gluon-fusion (BGF). This pro
ess is illustrated in leading order in �gure 2.1. A gluon originat-ing from the proton forms a quark-antiquark pair. The (anti-)quark absorbs a photon,emitted by the ele
tron, 
arrying the virtuality Q2. The beauty-quark produ
tion issuppressed 
ompared to the 
harm-quark produ
tion sin
e the 
ross se
tion of the BGFdepends on the mass and the 
harge of the produ
ed parti
les.The measurement of the heavy quark produ
tion is used to determine the gluon stru
-ture of the proton. The analysis of these events allows to test the predi
tions of thetheory of perturbative Quantum Chromodynami
s (pQCD). A perturbative approa
h is9



Chapter 2. Motivation

Figure 2.1: Leading order Feynman diagramm of a boson gluon fusion pro
ess.feasible for the regime of photoprodu
tion in parti
ular for b-quarks sin
e the large massde�nes a hard s
ale.Advantages of the semileptoni
 de
ay 
hannel of heavy quarks for the measurement of theprodu
tion 
ross se
tion are the large brun
hing ratio of about 10 % and the possibilityto trigger su
h events. The muoni
 de
ay 
hannel has already been studied in di�erentmeasurements sin
e the muons give a 
lear signal in the dete
tor. The information pro-vided by ele
tron and muon measurements is 
omplementary and therefore the studieson the ele
tron 
hannel should deliver further insights.Both experiments at HERA investigating ep-intera
tions (H1 and ZEUS) have per-formed analyses of the b-quark produ
tion using data from the HERA-I run period. Theresults for the b-quark 
ross se
tion in DIS and photoprodu
tion are shown in �gure 2.2.The measured b-quark 
ross se
tion is plotted versus the transversal momentum of theb-quark pt(b) relative to the predi
tions of pQCD. The measurements show a slightlyhigher 
ross se
tion than the theoreti
al predi
tion. Therefore there is a great interestin verifying these results involving more statisti
s and to perform measurements for evenlower momentum parti
les.In the 
ourse of the luminosity upgrade for the HERA-II running period an additionaltrigger system for the H1 dete
tor is installed. This Fast Tra
k Trigger (FTT) opensthe possibility to sele
t events more spe
i�
. The FTT re
onstru
ts tra
ks of 
hargedparti
les with an a

ura
y 
omparable to the o�ine re
onstru
tion and is able to identifysele
ted topologies and event kinemati
s. Based on the FTT a new trigger is implementedallowing a fast and a

urate identi�
ation of low momentum ele
tron events at triggerlevel [1℄.In the standard H1 event re
onstru
tion software, a software pa
kage is implementedto sear
h for ele
tron and muon signatures. This pa
kage is 
alled KALEP [2℄ and waswritten in 1994. It uses 
alorimeter and tra
k information to identify leptons. KALEP10



Figure 2.2: The 
ross se
tion of b-quark produ
tion measured by H1 and ZEUSrelative to the pQCD predi
tions as a fun
tion of the transversal momentum of theb-quark pt(b).has be
ome the standard tool to identify muons and ele
trons at low energy.The performan
e of the KALEP ele
tron identi�
ation is illustrated in �gure 2.3. Theoutput of the algorithm has a quality �ag, whi
h is denoted by the letter Q in the �gure.The ele
tron identi�
ation by KALEP uses four estimators, 
ompound of the tra
k mo-mentum, energy measurements in the ele
tromagneti
 and hadroni
 part of the liquidargon 
alorimeter and a quantity for the shower length (see se
tion 3.2 for the des
riptionof dete
tor 
omponents).No sharp 
uts on the used estimators are imposed but deviations from the de�ned limitsfor ea
h variable are summed up. The out
ome of this evaluation is divided into fourgroups. A higher ele
tron quality means a better ba
kground reje
tion but leads to aredu
ed e�
ien
y.The single data points for every quality step at the values e�
ien
y ǫ = 1 and reje
tion
π = 1 are under�ow (respe
tively over�ow) points whi
h are taken into a

ount for the
omputation.Although KALEP is the standard �nder, the algorithm is not appli
able for everyanalysis. One of its problems is that the ele
tron-misidenti�
ation probability is too highfor many appli
ations like the study of b→ eX de
ays.Sin
e the publi
ation of KALEP several analyses have been done, where an individuallepton �nder was developed. Unfortunately, none of these algorithms have been in
ludedin the H1 software environment and therefore the adaptions and the improvements arenot dire
tly available for new analyses. 11



Chapter 2. Motivation

Figure 2.3: Ba
kground reje
tion versus signal e�
ien
y for the ele
tron identi�
ationby KALEP. Data sele
tion: one KALEP-identi�ed ele
tron from J/ψ-
andidates. [3℄One of the improved ele
tron �nders is des
ribed in a study of 
harm and beautyprodu
tion at the H1 experiment using dilepton events [4℄. This identi�
ation algorithm
onsiders the di�erent shower shapes for ele
trons and hadrons (see 
hapter 4) in more de-tails. After some presele
tion 
uts the dis
rimination is performed using a linear method(Fisher Dis
riminant) to derive a single test statisti
 out of a set of four estimators. Theresulting performan
e for di�erent presele
tion 
uts on one of the used estimators (E/p)
an be seen in �gure 2.4.

Figure 2.4: Ba
kground reje
tion versus signal e�
ien
y for the ele
tron identi�
ationin the study of 
harm and beauty produ
tion at H1 using dilepton events [4℄. Datasele
tion: one KALEP-identi�ed ele
tron from J/ψ-
andidates. [3℄
12



Another method for the identi�
ation of ele
trons has been developed within a studyabout the measurement of the beauty 
ross se
tion using semileptoni
 de
ay into ele
-trons at HERA [5℄. This ele
tron �nder uses neural networks to 
ombine 
alorimetershower shape parameters with the spe
i�
 energy loss dE/dx.The �gures 
learly show, that for an ele
tron �nder further improvements are a
hiev-able. A new ele
tron �nder should be appli
able in di�erent environments, espe
iallyin the regime of lowest momenta (approximately 1 to 3 GeV). In this phase spa
e anappli
ation is for instan
e open heavy quark produ
tion.
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Chapter 3The H1 Dete
tor at HERAIt doesn't matter how beautiful your theory is, itdoesn't matter how smart you are. If it doesn'tagree with experiment, it's wrong.Ri
hard Feynman
This 
hapter is an introdu
tion to the H1 experiment at DESY (Deuts
hes ElektronenSyn
hrotron). Therefore a brief des
ription of the HERA storage ring is given and themain 
omponents of the H1 dete
tor are presented. A more detailed view of the 
alorime-try system and the tra
king system is given as it is the most important part of the dete
torfor this thesis.3.1 HERAThe HERA (Hadron-Elektron Ring Anlage) 
ollider is lo
ated at DESY in Hamburg(Germany) and 
onsists of two seperated rings for ele
trons (and positrons respe
tively)and for protons in a 
ommon tunnel. The storage ring has a length of 6336 m and iss
hemati
ally illustrated in �gure 3.1. One ring a

elerates protons to an energy of upto 920 GeV, whereas the other ring a

elerates ele
trons (or positrons) to an energy of
27.6 GeV. The ep-
ollisions yield a 
entre of mass energy √

s = 318 GeV. The protonsare a

elerated 
ounter
lo
kwise and 
ollide at two intera
tion points in the middle ofthe straight parts of the ring, where the experiments H1 and ZEUS are situated, withthe 
lo
kwise rotating ele
trons or positrons. The parti
les in HERA are a

elerated inbun
hes and a bun
h 
rossing takes pla
e every 96 ns. At the other two straight parts ofthe storage ring, two further experiments using only one of the beams are installed. TheHERMES-experiment uses the ele
tron/positron beam to perform 
ollision experimentson polarised gas targets. At the fourth intera
tion point the experiment HERA-B wasstudying nu
leon-proton intera
tions until 2001.
15



Chapter 3. The H1 Dete
tor at HERA

Figure 3.1: S
hemati
 illustration of the HERA 
ollider, the storage rings and itspre-a

elerators at DESY. The experimental halls are denoted by the 
orrespondingexperiments.The protons are a

elerated in three steps to 40 GeV before they are inje
ted fromthe smaller ring PETRA (Positron Elektron Tandem Ring Anlage) into HERA where the�nal a

eleration step takes pla
e. The ele
trons/positrons are inje
ted from PETRAinto HERA at an energy of 12 GeV after passing three pre-a

elerators.Two 
hara
teristi
 quantities of a high energy physi
s a

elerator are the 
entre of massenergy and the luminosity. Whereas the energy de�nes the a

essible phase spa
e andthe possible rea
tions, the luminosity L is related to the expe
ted rate of intera
tions(dNdt ) for a given 
ross se
tion σ.
L = fn

Nele
tronNproton
4πσxσy

=
1

σ

dNdt ,where f is the frequen
y of revolution for parti
les in the ring and n the number of
olliding bun
hes in ea
h beam. Nele
tron and Nproton are the number of parti
les in thebun
hes of the 
orresponding beams and σx and σy is the horizontal and verti
al beamspread respe
tively.The HERA storage ring 
omprehends up to 180 bun
hes for ea
h beam where every16



3.2. The H1 Dete
torbun
h 
onsists of the order of 1010 parti
les.The �rst running period of HERA (HERA-I) started in 1992 and ended in summer 2000.In the following shutdown period, lasting several months, an extensive upgrade was per-formed. Within the experiments H1 and ZEUS additional super
ondu
ting fo
ussingmagnets were installed, a
hieving a redu
tion in the beam size. Whereas the new bend-ing of the beam for
ed other dete
tor 
omponents to be adjusted, the luminosity seen bythe experiments has been in
reased.After this extended shutdown and upgrade period, HERA-II was operated until the endof june 2007.3.2 The H1 Dete
torThe H1 dete
tor is a general purpose dete
tor lo
ated in the north of the HERA ring. Itwas built and maintained by a 
ollaboration of physi
ists from many institutes lo
ated indi�erent 
ountries. The dete
tor is 
apable of identifying neutral and 
harged parti
lesoriginating from the ele
tron proton intera
tion.The protons pass the H1 dete
tor along the z-axis, ele
trons/positrons along the oppositedire
tion. The parti
les are brought to 
ollision at the nominal intera
tion point lo
atedin the middle of the dete
tor. The design of the dete
tor allows to 
over almost the
omplete solid angle of 4π around the intera
tion point. In order to respe
t the di�erentenergies of the 
olliding beams, the dete
tor is built asymmetri
ally.In �gure 3.2 a s
hemati
 sideview of the H1 dete
tor is shown.The 
oordinate system used by the H1 experiment is orientated su
h that the positive
z-axis points in dire
tion of the proton beam, 
alled the forward dire
tion. The xy-planeis perpendi
ular to this dire
tion where x points to the 
enter of the HERA ring and yupwards. The origin of the H1 
oordinate system is the nominal intera
tion point. Thepolar angle θ is de�ned as the angle between the traje
tory of the parti
le and the z-axis.The azimuthal angle φ is de�ned in the xy-plane where φ = 0 
orresponds to the positive
x-axis.The H1 experiment 
onsists of three main se
tions for di�erent dete
tion purposes.These se
tions are the tra
king 
hambers, the 
alorimeter and the muon system, whereevery se
tion is made up of several sub-dete
tors. The di�erent 
omponents are built
ylindri
al around the beam line. The tra
king dete
tors are lo
ated 
losest to the beamline and measure tra
ks of 
harged parti
les. They are surrounded by the 
alorimeterwhi
h measures parti
le energies. The outmost part is the muon system whi
h dete
tsmuons and high energy hadrons.A 
omprehensive des
ription of the H1 dete
tor 
an be found in [6℄.
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Chapter 3. The H1 Dete
tor at HERA

r

Figure 3.2: A longitudinal 
ut through the H1 dete
tor showing the main 
omponentsof the H1 dete
tor. The legend is shown in table 3.1 for the di�erent 
onstituents. The
oordinate system used in H1 is shown on the top right and its origin is lo
ated at theintera
tion point (WWP) denoted by (1).18



3.2. The H1 Dete
torDete
tor 
omponent Abbreviation1 Nominal intera
tion point IP (WWP)Tra
king dete
tors2 Central sili
on tra
ker CST3 Ba
kward sili
on tra
ker BST4 Forward sili
on tra
ker FST5 Central inner proportional 
hamber CIP6 Central outer z-
hamber COZ7 Inner 
entral jet 
hamber CJC18 Outer 
entral jet 
hamber CJC29 Forward tra
king dete
tors FTD10 Ba
kward proportional 
hamber BPCCalorimeters11 Liquid argon 
ryostat12 Liquid argon ele
tromagneti
 
alorimeter LAr ECAL13 Liquid argon hadroni
 
alorimeter LAr HCAL14 Liquid argon 
ryogeni
s system15 Ele
tromagneti
 spaghetti 
alorimeter SpaCal elm.16 Hadroni
 spaghetti 
alorimeter SpaCal hadr.17 Plug 
alorimeter Plug18 Super
ondu
ting solenoidMuon dete
tors19 Instumented iron (
entral muon / tail 
at
her) CMD/TC20 Forward muon dete
tor (in
l. toroid magnet) FMD21 New super
ondu
ting fo
using magnets GO/GG22 Con
rete shieldingTable 3.1: Legend to �gure 3.2: The main 
omponents of the H1 dete
tor.
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Chapter 3. The H1 Dete
tor at HERA3.2.1 Tra
king Dete
torsThe tra
king system of the H1 dete
tor 
onsists of pre
ision sili
on solid-state dete
tors,multiple wire proportional 
hambers and drift 
hambers (see �gure 3.3) and is dividedinto a Central and a Forward Tra
king Dete
tor (CTD and FTD). The sili
on dete
torsare used to identify de
ay verti
es from long lived parti
les, whereas the drift 
hambersare responsible for the re
onstru
tion of the tra
ks of the parti
les. The fast signals ofthe proportional 
hambers are mainly used for triggering purposes. The pre
ise positionmeasurements of the drift 
hambers allow to determine the momentum of 
harged par-ti
les, as their traje
tory is bent be
ause of the applied magneti
 �eld in the dete
tor.The super
ondu
ting solenoid lo
ated outside of the 
alorimeter produ
es this nearlyhomogeneous magneti
 �eld of 1.15 T.

Figure 3.3: Radial view of the 
entral tra
king system of the H1 experiment. Thefollowing 
omponents are shown in radial order starting from the beam pipe: (1) CentralSili
on Tra
ker CST, (2) Central Inner Proportional Chamber CIP, (3) Central JetChamber 1 CJC1, (4) Central Outer z-Chamber COZ, (5) Central Jet Chamber 2CJC2. The signal wires in CJC1 and CJC2 parallel to the beam line are illustrated bydots.The innermost tra
king dete
tors are the sili
on dete
tors where the Central Sili
onTra
ker (CST) 
onsists of two layers of double-sided sili
on dete
tors with an angular
overage of 30◦ < θ < 150◦. The two layers en
losing the beam pipe have radii between4 and 13 cm in an ellipti
al arrangement adapted from the beam pipe pro�le. In forwardand ba
kward dire
tion there are two more sili
on tra
king dete
tors installed (FST andBST respe
tively) to get a better 
overage for tra
king in the polar angle θ.Going from the beam pipe outward, the CST is followed by the Central Inner Propor-tional Chamber (CIP), whi
h is a multi-wire proportional 
hamber with a pad readout.The signal pads are installed perpendi
ular to the beam line and the CIP surrounds theCST 
ir
ularly to 
over a polar angle range of 11◦ < θ < 169◦. The fast tra
king in-formation delivered by this dete
tor allows to re
onstru
t the position of an intera
tion20



3.2. The H1 Dete
toralong the beam line and the high time resolution is used for triggering. Due to the fastsignal pro
essing the signal from the proportional 
hamber determines the time of theintera
tion.The inner tra
king devi
es are surrounded by the main 
omponent of the tra
king systemat H1 the Central Jet Chamber (CJC). This 
oaxial drift 
hamber is split into an innerring (CJC1) and an outer ring (CJC2). The drift 
hambers 
onsist of several layers ofsense wires lo
ated parallel to the beam line and form 30 azimuthal drift 
ells for CJC1and 60 
ells for CJC2 respe
tively. The exa
t position of the parti
le 
an be determinedby the known position of the wire, the drift time of the indu
ed 
harges to the signalwire and the drift velo
ity. The position along the wire is determined from the ratio ofthe 
harges read out from both wire ends. The pre
ise timing information determined bythe CJC helps in re
ognising events from 
osmi
 ray muons, where the signal from theupper segment of the tra
k is earlier registered than the lower one. A polar angle rangeof 20◦ < θ < 160◦ is 
overed and the information from the CJC is used by the Fast Tra
kTrigger (FTT) as input signals. The tra
ks dete
ted by the CJC have a high resolutionin rφ but a worse in z-dire
tion. Therefore the 
entral outer z-
hamber (COZ) is lo
atedbetween CJC1 and CJC2 to determine the exa
t z-position of the tra
ks in this dire
tionusing the drift time to the signal wires whi
h are oriented perpendi
ular to the z-axis.In the forward region the dete
tor is instrumented with three planar drift 
hamber mod-ules (FTD) measuring tra
ks in an a

eptan
e region of 7◦ < θ < 25◦ whereas in theba
kward region an additional proportional 
hamber (BPC) is mounted to measure theangle of the s
attered ele
tron from the ep-intera
tion.The measurement of the spe
i�
 energy loss of a parti
le in material dE/dx is per-formed using the information of the Central Jet Chamber. The measurement is obtainedby integration of the 
harges read out from the CJC wires. To get a useful result numer-ous 
orre
tions have to be applied, whi
h will not be dis
ussed in further details. Theparti
le mass dependen
e of dE/dx in the CJC allows to use this quantity in order toobtain a parti
le identi�
ation.3.2.2 CalorimetersThe energy of both 
harged and neutral parti
les 
an be measured with 
alorimeters.The a
tual amount of deposited energy in a 
alorimeter depends on the parti
le type, itsmomentum and the 
alorimeter 
on�guration. The 
alorimetry system of the H1 exper-iment 
onsists of two main 
alorimeters. The forward and 
entral region is 
overed by aLiquid Argon (LAr) Calorimeter (4◦ < θ < 153◦) whi
h surrounds the H1 tra
ker. TheSpaghetti Calorimeter (SpaCal) measures the energy of passing parti
les in the ba
kwardregion of the dete
tor.The SpaCal is a lead-s
intillating �bre 
alorimeter 
ompound of an ele
tromagneti
and a hadroni
 se
tion. The polar angle range 153◦ < θ < 173◦ is 
overed and dueto the �ne granularity the energy and the impa
t position of parti
les 
an be measured21



Chapter 3. The H1 Dete
tor at HERAwith high a

ura
y. The rea
hed energy resolution in the ele
tromagneti
 se
tion is
σ(E)/E ≃ 0.08/

√

E/GeV ⊕ 0.01 
ompared to σ(E)/E ≃ 0.30/
√

E/GeV ⊕ 0.07 in thehadroni
 part. Furthermore the SpaCal has an ex
ellent time resolution of about 1 ns.A

ording to its properties and the lo
ation in the dete
tor, the main task of the SpaCalis to performe a

urate measurements on the s
attered beam ele
tron.The liquid argon 
alorimeter is a non-
ompensating sampling 
alorimeter. It is dividedin an ele
tromagneti
 (ECAL) and a hadroni
 (HCAL) part. The ele
tromagneti
 partmeasures the energy of ele
trons and photons, whereas the energy of hadrons is measuredusing the ele
tromagneti
 and the hadroni
 part of the 
alorimeter. The energy of theseparti
les is measured in the LAr 
alorimeter by absorption while muons deposit only asmall amount of energy in both parts of the LAr 
alorimeter by ionisation. In 
ase of lowenergy pions it is possible that they get absorbed already in the ele
tromagneti
 part ofthe 
alorimeter without rea
hing the hadroni
 part. The 
alorimeter signal of this pions
ould be mistaken as those of ele
trons.The a
tive material of this 
alorimeter is liquid argon whi
h is 
ooled down to −183 ◦Cby a 
ryostati
 system around the 
alorimeter. The absorbing layers are made of lead inthe ele
tromagneti
 part whereas stainless steel is used in the hadroni
 part. The widthof the ele
tromagneti
 part 
orresponds to 20 - 30 radiation lengths, that of the hadroni
part 
orresponds to 4.7 - 7 intera
tion lengths. The amount of dead material betweenthe tra
king dete
tor and the 
alorimeter has been redu
ed to a minimum.The 
alorimeter is divided into eight wheels along the z-dire
tion. They are 
alled a
-
ording to their position in the 
alorimeter (see �gure 3.4). The wheels in the 
entralregion are the 
entral barrels denoted by CB1 - 3, those in the forward region are theforward barrels (FB1 - 2). The inner and outer forward (IF and OF) wheels are lo
atedat the end of the 
alorimeter in z-dire
tion, whereas the ba
kward barrel (BB) is lo
atedat the opposite end. Modules with a designation ending in 'E' form the ele
tromagneti
se
tion, whereas modules ending in 'H' belong to the hadroni
 se
tion. The smallestunit 
onsisting of absorber and a
tive material whi
h is read out is 
alled 
alorimeter
ell. The segmentation into 
ells and the orientation of the absorber plates is di�erentfor the spe
i�
 wheels a

ording to their position along the z-axis. The orientation ofthe absorber plates in the wheels is 
hoosen su
h that the parti
les originating from theintera
tion point always pass the plates with an angle bigger than 45◦. The segmentationof the liquid argon 
alorimeter into wheels, the orientation of the absorber plates andthe ele
tromagneti
 and hadroni
 se
tions of the 
alorimeter are illustrated in �gure 3.4.The spa
e between the wheels is not instrumented and is therefore dead material. Everywheel of the liquid argon 
alorimeter is divided into eight o
tants in the r-φ-plane. Thisis shown for the wheel CB2 in �gure 3.5. The spa
e between the o
tants is not instru-mented either.The LAr 
alorimeter is highly segmented in 
ells, whi
h 
olle
t the 
harges from the ion-isation pro
esses in the a
tive material indu
ed by the passing parti
les. The 
alorimeterre
onstru
tion program 
onverts the 
harges to energies in the 
alorimeter 
ells individ-22



3.2. The H1 Dete
tor

Figure 3.4: The upper half of the liquid argon 
alorimeter (r-z-view). The 
alorimeteris divided into 8 wheels. The 
entral barrels are denoted by CB 1 - 3 and the forwardbarrels by FB 1 - 2. The parts in the most forward region of the 
alorimeter are 
alledinner forward (IF) and outer forward (OF) that in the ba
kward region is 
alled ba
k-ward barrel (BB). Modules with a designation ending in 'E' form the ele
tromagneti
se
tion, whereas modules ending in 'H' belong to the hadroni
 se
tion. In every part ofthe 
alorimeter the orientation of the absorber plates is illustrated by lines.ually for the ele
tromagneti
 and the hadroni
 part of the 
alorimeter. The ele
tromag-neti
 se
tion 
onsists of about 31000 read out 
hannels leading to an energy resolution of
σ(E)/E ≃ 0.11/

√

E/GeV⊕0.01, whi
h has been determined in test beam measurements.In the hadroni
 part the granularity is mu
h 
oarser with a total number of about 13500readout 
hannels. An energy resolution of σ(E)/E ≃ 0.50/
√

E/GeV ⊕ 0.02 is a
hievedin this part of the 
alorimeter [7℄.The liquid argon 
alorimeter is equipped with a trigger system whi
h delivers a sig-nal for the �rst trigger level by summing the energy deposits in 
ertain regions of the
alorimeter. It is for instan
e possible to trigger on a high lo
al energy deposition or aspe
i�
 event 
on�guration in the 
alorimeter.3.2.3 Muon Dete
torsAs mentioned in the des
ription of the 
alorimeters muons mainly lose their energy inionisation pro
esses. This leads to a higher penetration depth 
ompared to ele
trons,photons and hadrons. Therefore the muon dete
tor is lo
ated outside of the 
alorimterysystem allowing the ele
trons, photons and hadrons to be absorbed before rea
hing themuon dete
tor. In the H1 dete
tor the massive magneti
 �eld returning iron yoke of thesolenoid is laminated and instrumented with limited streamer tubes to measure muontra
ks. This sensitive modules are installed between the plates of the iron yoke. Themuons need to have a minimum energy of 2 GeV in order to rea
h the muon dete
tor.23



Chapter 3. The H1 Dete
tor at HERA

Figure 3.5: The LAr wheel CB2 in a r-φ-view whi
h is 
omposed of an inner ele
tro-magneti
 se
tion, CB2E, and an outer hadroni
 se
tion, CB2H, of the 
alorimeter. Thespa
e between the o
tants of the 
alorimeter wheel is not instrumented.Some of the streamer 
hamber layers in the iron module (sin
e de
ember 2006 also theones in the forward region) are used by the instrumented iron muon trigger to sele
tmuon events.The Central Muon Dete
tor (CMD) 
onsisting of the ba
kward end
ap, the ba
kwardbarrel, the forward barrel and the forward end
ap has an angular a

eptan
e of 5◦ < θ <
175◦. The angular a

eptan
e of the Forward Muon Dete
tor (FMD) starts at θ = 3◦,rea
hes full azimuthal 
overage at θ = 5◦ and extends to θ = 17◦.
3.2.4 Luminosity MeasurementThe luminosity L delivered by HERA is determined by the measurement of the rate atwhi
h the Bethe-Heitler-pro
ess o

urs. The Bethe-Heitler-pro
ess ep→ epγ is very pre-
isely 
al
ulable in the theory of quantum ele
tro dynami
s. Beside that its 
ross se
tionis large and therefore this pro
ess is suitable to determine the luminosity of the 
ollider.The produ
ed photons are dete
ted in a photon dete
tor lo
ated at z = −103 m [8℄.
24



3.2. The H1 Dete
tor3.2.5 Trigger SystemThe frequen
y of the bun
h 
rossing at the HERA 
ollider is about 10.4 MHz and theexpe
ted rate of ele
tron-proton s
attering pro
esses is about 1 kHz. Signals in the H1dete
tor produ
ed by ba
kground pro
esses are up to 1000 times more frequently thanthe signals from interesting physi
al pro
esses. The dead-time of the H1 dete
tor duringthe readout of an event limits the readout rate of the dete
tor to 50 Hz. Therefore thetrigger system must be able to prevent the readout of ba
kground pro
esses in a reason-able manner as well as to sele
t only physi
al pro
esses whi
h are important for furtheranalyses.The trigger system at the H1 experiment a
ts as a four level �lter. Every step redu
esthe event rate gradually whi
h in
reases the available time for the analysis of the eventin the next level. In total the event rate is redu
ed to about 10 − 25 Hz, permitting tostore all the data permanently.On the �rst level (L1) the information delivered by the sub-dete
tors is used on a hard-ware level to generate trigger signals. In 
ase of a positive trigger de
ision (L1-keepsignal), the information available from L1 is 
ombined on the se
ond level (L2) in neuralnetworks or using topologi
al 
riteria. The third trigger level was implemented withinthe Fast Tra
k Trigger (FTT) proje
t for the HERA-II running period [9℄. The FTTitself works on the levels L1 to L3. The tra
ks of the FTT-L2 system and the data fromother trigger systems are used as input signals into L3. With this information a partialevent re
onstru
tion is performed on 
ommer
ial pro
essors. The fourth level �nally a
-
omplishes a full event re
onstru
tion, after the readout pro
ess is 
ompleted, running onstandard PCs. That is to say that the L4 level does not 
ontribute to the dead-time ofthe dete
tor. At the end the dete
tor information of the events passing all trigger levelsare permanently stored.
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Chapter 4Ele
tron Identi�
ationSin
e the mathemati
ians have invaded the the-ory of relativity, I do not understand it myselfanymore.Albert Einstein
This se
tion is about the theory behind the identi�
ation of ele
trons. In order to identifyparti
les intera
ting in dete
tors, one has to understand how di�erent parti
les a
t whenpassing the dete
tor.The main goal of this �nder is to distinguish between ele
trons (e±) and hadrons. Es-pe
ially ele
trons from pions, sin
e pions are the most important 
ontribution to theba
kground. Therefore the intera
tions of ele
trons and hadrons are dis
ussed.4.1 Ele
tromagneti
 ShowerA parti
le shower is a 
as
ade of se
ondary parti
les produ
ed when an in
oming high en-ergeti
 parti
le intera
ts with dense matter. In experiments this is normally the 
alorime-ter in the dete
tor. In this intera
tion new parti
les are produ
ed with less energy thanthe primary parti
le. Ea
h produ
ed parti
le has the ability to intera
t with matter torepeat the pro
ess. This 
ontinues until many low-energy parti
les are produ
ed whoseenergies are low enough to be absorbed in the dete
tor material. The 
hara
teristi
 shapeof this pro
edure leads to the 
on
ept "Shower ". A pi
ture of a measured ele
tromag-neti
 shower in the ICARUS liquid argon drift 
hamber is shown in �gure 4.1.

27



Chapter 4. Ele
tron Identifi
ation
Figure 4.1: Ele
tromagneti
 shower observed in the ICARUS LAr drift 
hamber dur-ing the te
hni
al run with 
osmi
 rays at Pavia, summer 2001 [10℄.In 
ase of ele
trons the intera
tion of the in
oming parti
le with the dense matter is
alled ele
tromagneti
. The most important ele
tromagneti
 pro
esses in the 
alorimeterare bremsstrahlung, where the ele
tron emits a photon (e → eγ), and pair produ
tion,where the photon 
onverts into an ele
tron-positron pair (γ → e+e−). The developmentof an ele
tromagneti
 shower is shown s
hemati
ally in �gure 4.2.Underneath a 
ertain 
riti
al energy, the ele
trons start to loose energy mainly throughionisation until they get absorbed by the dense matter.Sin
e ele
trons are light parti
les, they loose their energy in a smaller number of 
ol-lisions than heavy 
harged parti
les. In fa
t their mass is equivalent to the mass of theorbital ele
trons in the matter with whi
h they are intera
ting. This means that a largefra
tion of the energy of the in
oming ele
tron 
an be lost in a single intera
tion. If theele
tron intera
ts with a nu
leus it is even possible for the ele
tron to 
hange dire
tionof propagation or to get ba
ks
attered. This leads to large deviations from the in
omingdire
tion of the ele
tron. This also means, that the paths of monoenergeti
 ele
trons donot ne
essarily look similar.In order to identify a 
as
ade in the 
alorimeter as an ele
tromagneti
 shower, or morepre
isely as an ele
tron, the longitudinal and lateral distribution of the energy deposi-tions is important.The longitudinal development is 
ontrolled by the high-energy part of the shower. Thismeans that the length of the 
as
ade s
ales with the radiation length in the given mate-rial and logarithmi
 in the in
oming energy [11℄. The number of ele
trons in the showerdrops more qui
kly with the depth of penetration than the energy deposition. This isbe
ause of the in
reasing number of photons in the shower due to bremsstrahlung in theabsorber material.The maximum number of parti
les in the 
as
ade is rea
hed, when the average energyper parti
le drops below the material dependent 
riti
al energy. From this point no morenew parti
les are produ
ed and the shower de
ays slowly through ionisation losses forele
trons and by Compton s
attering and absorption for photons (see �gure 4.3).
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Figure 4.2: S
hemati
al illustration of an ele
tromagneti
 shower in the 
alorimeter.Shown are the pro
esses of bremsstrahlung (e→ eγ) and pair produ
tion (γ → e+e−).
The lateral shower distribution is well des
ribed by a heuristi
 
onstant, the "MoliereRadius". Typi
ally 95% of an ele
tromagneti
 shower is 
ontained in a 
ylinder withradius 2RMoliere. The Moliere Radius is de�ned by R = X0 · ES

Ecritical
, where the s
aleenergy is ES =

√

4π
α mec

2, X0 the radiation length and Ecritical the 
riti
al energy of themedium [11℄.Re
apitulatory one 
an say that showers of ele
trons are narrow and homogeneous.The sidewise enlargement is determined by the s
attering pro
esses of the ele
trons andpositrons in the beginning of the shower origin and by Compton s
attering after thephase of pair produ
tion.
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Figure 4.3: Fra
tional energy loss of ele
trons in lead as a fun
tion of ele
tron energy.The 
riti
al energy is de�ned as the point where the ionisation loss is equal to thebremsstrahlung loss [11℄.4.2 Hadroni
 ShowerAs hadrons 
onsist of quarks, the main intera
tion in dense matter is indu
ed by thestrong for
e, leading to a variety of possible pro
esses and a di�erent shower shape inthe dete
tor 
ompared to ele
trons. This is 
apitalised to distinguish hadrons from otherparti
les for the identi�
ation.In the dete
tor the in
oming hadron intera
ts with the nu
lei in the material and produ
esseveral lower-energy hadrons. At high energy, these intera
tions are mainly multiparti
leprodu
tion and parti
le emission originating from nu
lear de
ay of ex
ited nu
lei, usu-ally pions and nu
leons. These pro
esses 
ontinue, as in the ele
tromagneti
 
ase, untilall parti
les are stopped and absorbed in the material. Due to the 
hara
teristi
s of thestrong for
e this hadronisation of the in
oming quark builds up a 
one in the 
alorimeter.The binding energy, whi
h is needed for the release of nu
leons, is too small to bedete
ted by the H1 
alorimeter. Supplementary, energy may be hidden due to muons orneutrinos or by the delay until ex
ited nu
lei emit their absorbed energy. Hadrons 
analso intera
t via the ele
tromagneti
 intera
tion, therefore the shower 
an partially beele
tromagneti
. For example the de
ay of a neutral pion (π0 → γγ) indu
es an ele
tro-magneti
 
as
ade. The total energy fra
tion of the ele
tromagneti
 sub-shower may getbigger than the hadroni
 fra
tion in spe
ial pro
esses. All of this leads to worse energyresolution for the hadroni
 part of the 
alorimeter than for the ele
tromagneti
, sin
e thedete
table energy of an ele
tron shower is always larger than that of a hadroni
 shower.This property of the 
alorimeter is 
alled non-
ompensating.For high-energy hadrons the shower length depends logarithmi
ally on the energy ofthe in
oming parti
le and linearly on the intera
tion length λ in the 
orresponding mate-30



4.3. dE/dxrial. For the lateral distribution one �nds that 95% of the hadroni
 shower is 
ontainedin a 
ylinder with radius λ.Hadroni
 showers do not only o

ur in parti
le dete
tors but also in nature. In earth'satmosphere they origin from 
osmi
 rays, whi
h usually are hadrons. An illustration 
anbe seen in �gure 4.4.
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Figure 4.4: An illustration of a hadroni
 shower in the atmosphere. The in
ominghadron intera
ts via the strong for
e. The se
ondary parti
les 
an intera
t also viathe ele
tromagneti
 for
e (π0) leading to a hadroni
 and a ele
tromagneti
 part of theshower.To summarise again, the lateral distribution of hadroni
 showers is 
onsisting of a nar-row 
one, emanating from the ele
tromagneti
 sub-shower, and a radially surroundingirregular halo.4.3 dE/dxThe energy loss of a parti
le in matter is already used to measure the energy of an in
om-ing parti
le, but the spe
i�
 energy loss per path length dEdx is also very useful to identifyparti
les. For the energy measurement it is important to 
olle
t the whole energy of theparti
le in the 
alorimeter. To identify the parti
le in addition, it is interesting how theenergy is lost along the path through the dete
tor, in parti
ular whi
h pro
esses do o

ur.31



Chapter 4. Ele
tron Identifi
ationThe spe
i�
 energy loss per path length of a parti
le traversing matter is des
ribed bythe Bethe-Blo
h formula [11℄:
−dEdx = κz2Z

A

1

β2

(

1

2
ln2mec

2γ2β2Tmax
I2

− β2 − δ (βγ)

2

) ,where
• κ = 4πNAr

2
emec

2 with- NA: Avogadro's number 6.0221415 · 1023 mol−1,- re: Classi
al ele
tron radius e2

4πǫ0mec2
,- me: Ele
tron mass,- c: Speed of light,- e: Ele
tron 
harge,

• z: Charge of in
ident parti
le in units of e,
• Z: Atomi
 number of absorber,
• β = v

c : Speed of in
ident parti
le v in units of c,
• γ = 1√

1−β2
: Boost of in
ident parti
le,

• I: Mean ex
itation energy of ele
trons in the absorber,
• Tmax: Maximum kineti
 energy whi
h 
an be imparted to a free ele
tron in a single
ollision by an in
ident parti
le of mass M

Tmax =
2mec

2β2γ2

1 + 2γme/M + (me/M)2
,

• δ(βγ): Density e�e
t 
orre
tion to ionisation energy loss.
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4.3. dE/dxAt the H1 experiment the spe
i�
 energy loss is determined by means of the CJC. It ispossible to determine the mass of the passing parti
le from the measurement of dE/dxand of the momentum. Using a Likelihood-method one 
an then indi
ate a probabilityfor a parti
le identi�
ation. The numeri
 value of the spe
i�
 energy loss is proportionalto the 
harge that is deposited by the passing parti
le (ionisation of the mole
ules inthe gas 
hamber) and therefore proportional to the 
harge 
olle
ted by the wire in the
hamber.A 
omprehensive dis
ussion of dEdx measurement at H1 
an be found in [12℄.In �gure 4.5 one 
an see the spe
i�
 energy loss per unit length as a fun
tion of themomentum of di�erent types of parti
les, measured at the H1 experiment.

Figure 4.5: S
atterplot of the spe
i�
 energy loss versus the tra
k momentum [12℄.
33



Chapter 4. Ele
tron Identifi
ation

34



Chapter 5Monte Carlo ModellingA mathemati
al truth is neither simple nor 
om-pli
ated in itself, it is.Emile Lemoine
Various physi
al and mathemati
al systems, in parti
ular in high energy physi
s, 
an besimulated by the use of 
omputational algorithms. A widely used 
lass for this purposeare the Monte Carlo (MC) methods. One of their mannerisms is, that they are sto
has-ti
 and usually use pseudo random numbers in 
ontrast to other simulation methods.Be
ause of the repetition of algorithms and the large number of 
al
ulations involved,Monte Carlo is a method suited for numeri
al 
al
ulation using a 
omputer.Monte Carlo event generators are used in parti
le physi
s to model events as detailedas 
ould be observed by a perfe
t dete
tor. Three steps are performed in order to useMonte Carlo simulations for ele
tron-proton 
ollisions at the H1 experiment:

• Generator: Models and physi
s theories are 
onsidered and simulated by a ded-i
ated program for the generation of events. In this thesis the event generatorDiffVM is used to generate the four-ve
tors of the attending parti
les by ran-domly sampling the physi
al distributions and respe
ting the kinemati
 variables.The events studied in this thesis are the de
ays of the ve
tor mesons J/ψ → e+e−and ρ→ π+π−.
• Simulation: The behaviour of the passing parti
le and the dete
tor response issimulated for the sele
ted events by the use of a software des
ribing the dete
tor(H1Sim) whi
h relies on a program pa
kage des
ribing the di�erent intera
tionswith material (Geant) and the ele
troni
 readout.
• Re
onstru
tion: The simulated dete
tor output is delivered to a re
onstru
tion al-gorithm (H1Re
). This step should be ideally the same for Monte Carlo and35



Chapter 5. Monte Carlo Modellingdata events, having the same output format, whi
h then 
an dire
tly be used foran analysis.
5.1 The Di�VM GeneratorIn order to simulate the di�ra
tive produ
tion of ve
tor mesons at HERA, the Di�VMGenerator [13℄ was written. The Ve
tor Dominan
e Model and the Regge theory formthe 
ore of this generator in ele
tron-proton s
attering.First a virtual photon is generated (e → eγ) a

ording to the Weizsä
ker-Williamsapproximation [14℄, [15℄. The photon �u
tuates then into a virtual ve
tor meson priorto the di�ra
tive intera
tion, by pomeron ex
hange with the proton.The dependen
e of the γp 
ross se
tion for ve
tor meson produ
tion from the 
entre ofmass energy and the momentum transfer at the proton vertex is handled in the frame-work of Regge theory.The 
ross se
tion for elasti
 s
attering of a ve
tor meson and a proton 
an be written asdσdt =

dσdt ∣∣∣∣t=0,W=W0

· e−b|t| · (W
W0

)4ǫ , (5.1.1)where t is the momentum transfer, W the 
entre of masss energy of the γp system, b theslope parameter and ǫ a free parameter.The ve
tor meson and the proton might be inta
t after the intera
tion. In this spe
i�

ase, the ve
tor meson is produ
ed elasti
ally. In the framework of this thesis, only su
htype of events are studied.
5.2 Dete
tor SimulationThe parti
les and their four-ve
tors are the output of DiffVM. In order to make a mean-ingfull 
omparison between data and the simulated events, the out
ome of DiffVM isgiven to the H1sim program, whi
h makes the simulation of the H1 dete
tor response.This pa
kage relies on Geant 3 [16℄, used to simulate the dete
tor response and theele
troni
 readout. After this step, the digitised information is given as an input of theevent re
onstru
tion H1Re
. This program is run on both data and Monte Carlo, issuingthe same format for real and simulated events.
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5.3. The Single Parti
le Generator5.3 The Single Parti
le GeneratorThis generator allows to examine the dete
tor response for a spe
i�
 kind of parti
le, likeele
tron or pion, in a given phase spa
e. The momentum p, the polar angle θ and theazimuthal angle φ are uniformly distributed in a �xed interval and given as an input tothe full dete
tor simulation.A detailed dis
ussion of Monte Carlo modelling 
an be found for instan
e in [17℄and [18℄.
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Chapter 6Ele
tron Finder We have to remember that what we observe is notnature herself, but nature exposed to our methodof questioning.Werner Heisenberg
In 
hapter 2 a short overview of ele
tron �nders used or developed at the H1 experimentwas given. In this 
hapter the 
onstitutional 
on
ept and the method of the ele
tron�nder evolved in this thesis is followed by a des
ription of the used quantities. Moreoverthe sele
tion of the data used in this study is presented. At the end a 
omparison of theused quantities for signal and ba
kground as well as between data and simulation is given.6.1 MethodIn this se
tion the basi
 ideas of a general ele
tron �nder based on tra
k and 
alorimeterinformation are presented.As already mentioned in the motivation for this thesis (
hapter 2), the ideas behind ele
-tron identi�
ation are not new. In this work the ideas developed in two studies at H1([4℄ and [5℄) have been used as a starting point.The main 
ontribution to the ba
kground for an ele
tron identi�
ation at the H1 exper-iment is from pions. This means that one has to be able to distinguish between ele
tronsand pions. For this dis
rimination the 
hoi
e of parameters with good separation powerbetween ele
trons (signal) and pions (ba
kground) is required. This parameters are basedon di�eren
es in the way the parti
les deposit their energy in the 
alorimeter and passthrough the 
entral tra
ker (tra
king information).The pro
edure for implementing the ele
tron �nder is to 
hoose a set of estimators withadequate separation power a

ording to the expe
ted behaviour of ele
trons and pionsin the 
alorimeter. This estimators are then tested on ele
tron and pion data samples39



Chapter 6. Ele
tron Finder(des
ribed in se
tion 6.3) and �nally used as input variables to a multivariate analysis(see 
hapter 7) in order to get a dis
rimination between signal (ele
tron) and ba
kground(pion). In addition the des
ription of the used variables by Monte Carlo simulation isveri�ed (se
tion 6.4).EstimatorsAs dis
ussed in se
tion 4.2, hadrons only deposit a fra
tion of their energy in the ele
tro-magneti
 
alorimeter and in addition some energy deposition is lost to the 
alorimetry.Hen
e the measured energy in the ele
tromagneti
 part of the 
alorimeter is expe
tedto be smaller than the energy dedu
ed from the momentum assigned by the tra
king
hamber. For ele
trons in 
ontrast, the indu
ed ele
tromagneti
 shower is usually fully
ontained in the ele
tromagneti
 part of the liquid argon 
alorimeter and therefore thisenergy should be 
omparable to the measured momentum.The ratio of the energy deposited in the ele
tromagneti
 
alorimeter in a 
ylinder aroundthe elongated tra
k (radius R = 30 cm) and the momentum of the tra
k E
p leads to a�rst estimator to separate ele
trons from hadrons.The hadroni
 shower is supposed to have a wider lateral extension in the 
alorimeterthan the ele
tromagneti
 shower. This is the idea behind a further estimator. For everytra
k there are two 
ylinders de�ned around the 
ontinuation of the traje
tory in the
alorimeter with di�erent radii. The position and orientation of the 
ylinders is denotedin �gure 6.1. The used variable is then introdu
ed as the fra
tion of the energy in thesmaller (Ri = 15 cm) 
ylinder divided by the energy 
olle
ted in the wider (Ro = 30 cm)
ylinder I = Einner

Eouter . This estimator des
ribes the lateral fra
tion of the measured showerin the 
alorimeter. For ele
trons one expe
ts more or less all the energy deposition inthe smaller 
ylinder, leading to I ≈ 1.For the usage of this estimator in the 
ontext of ele
tron identi�
ation, this variableserves also as an isolation 
riterion against hadroni
 showers. The hadroni
 shower 
on-sisting of the ele
tromagneti
 subshower and the surrounding halo leads to a value forthe isolation 
riterion I ≤ 1, as the hadroni
 energy deposition is spread over a widerlateral region.
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6.1. Method

Figure 6.1: Illustration of the de�ned 
ylinder around the elongated tra
k in the
alorimeter. The dashed line represents the beam line, the solid line the tra
k of theprodu
ed parti
le. The indu
ed shower in the 
alorimeter is indi
ated in the small
ylinder.The dire
t lateral distribution of the shower is exploited for the estimator Srad, a mea-sure for the lateral shower distribution. For this a shower dire
tion, de�ned by the tra
kmomentum ve
tor at the impa
t point into the ele
tromagneti
 part of the 
alorimeter(~pat
alo), is introdu
ed. The perpendi
ular distan
e from this axis to a 
alorimeter 
ell(dist) is 
al
ulated (see �gure 6.2). The distan
e is then weighted by the squareroot ofthe deposited energy in the 
orresponding 
ell (√E
ell). The distan
es to all the 
ells ina 
ylinder of radius R = 30 cm around the traje
tory are summed up with the mentionedweights:
Srad =

∑
ells√E
ell · dist2
∑
ells√E
ell .The distan
e is de�ned by the following expression:
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tron Finder
dist =

|~r
ell × ~pat
alo|
|~pat
alo| .

Figure 6.2: Illustration of the used distan
e for the 
al
ulation of the estimator Srad.The perpendi
ular distan
e of the 
alorimeter 
ell to the momentum ve
tor of theparti
le at the beginning of the 
alorimeter is denoted by dist.The di�eren
es between ele
trons and hadrons in the longitudinal energy distribution inthe 
alorimeter are used for another estimator. Ele
trons deposit a large amount of theirenergy 
lose to the beginning of the 
alorimeter, as the bremsstrahlung starts immedi-ately after entering the 
alorimeter. On the other hand, hadrons deposit the energy overa longitudinally more extended region and the ele
tromagneti
 sub-shower starts deeperinside the 
alorimeter.Therefore the used measure for the shower length 
onsiders the position of the energydeposition along the path through the 
alorimeter and the amount of deposited energy.
Slen 
onsists of the sum over the 
alorimeter 
ells in a 
ylinder of radius R = 30 cmaround the traje
tory, where the layer number is summed up and weighted by the mea-sured energy of the 
ell. The layers and the partitioning of the 
alorimeter is illustratedin �gure 6.3.

Slen =
∑
ells Layer ·E
ell

∑
ellsE
ell .This quantity de�nes the longitudinal shower 
entre whi
h is also a measure for theshower length.The estimator whi
h uses the information from the Central Jet Chamber (CJC), de-s
ribes the spe
i�
 energy loss. The H1 software environment provides the Likelihood-value for the spe
i�
 energy loss of a parti
le in material dEdx , measured in the gas 
hamber(see se
tion 4.3). This Likelihood-value is derived by 
al
ulating the di�eren
e between42



6.1. Method

Figure 6.3: The layer and 
ell stru
ture of the liquid argon 
alorimeter (r-φ view ofthe CB2 wheel). The layers are divided into ele
tromagneti
 and hadroni
 layers andnumbered.the expe
tation value for a spe
i�
 parti
le and the a
tual measurement. This valuefollows a χ2-distribution [17℄. The parti
le probability Likelihood LdE/dxparti
le for ele
tronsand pions is used to de�ne the estimator. It is derived using the assumption that theparti
le is either an ele
tron or a pion. This gives another separation quantity. For thedis
rimination the normalised Likelihood is de�ned by:
LdE/dxnorm =

L
dE/dxele
tron

L
dE/dxele
tron + L

dE/dxpion .The last two estimators are the total measured energy in a 
ylinder around the tra
k ofradius R = 30 cm in the ele
tromagneti
 and hadroni
 part of the liquid argon 
alorime-ter, Eelmag respe
tively Ehad.In addition to the mentioned estimators, two more variables are given as input variablesto the training of the multivariate analysis. Namely the transverse momentum pT andthe polar angle θ. This happens in order to take into a

ount the energy dependen
es ofthe given estimators and to respe
t the di�eren
es of the 
alorimeter for di�erent θ (dif-ferent regions of the 
alorimeter, i.e. the barrels). This is further dis
ussed in se
tion 6.4for the simulation and 
hapter 7 for the training pro
ess of the multivariate analysis. 43



Chapter 6. Ele
tron FinderTo summarise, the presented ele
tron identi�
ation is based on the following quantities:
• Eelmag(
alo)

p(tra
k)

• Einner(
alo)
Eouter(
alo)

• Srad =
∑
ells √E
ell · dist2

P
ells √E
ell (
alo)
• Slen =

∑
ells Layer ·E
ell
P
ells E
ell (
alo)

• dEdx (tra
k)
• Eelmag (
alo)
• Ehad (
alo) .Where 
alo (tra
k) refers to a measurement of the quantity in the 
alorimeter (tra
ker).The separation power of these variables is then tested on ele
tron and pion data sam-ples. Moreover the estimators are 
ompared to Monte Carlo simulation and then usedas input variables for a multivariate analysis to determine a dis
riminator.6.2 Test SamplesIn this se
tion the data sele
tion used for testing the estimators and the training ofthe dis
riminator is presented. There are two possibilities to build test samples. Thefollowing paragraphs des
ribe the sele
tion of the measured data in order to get datasamples. The dis
ussion of the results a
hieved by these samples is presented in se
-tion 6.3. The se
ond possibility is to use Monte Carlo samples. This allows to studythe desired quantities in a simulated environment. These results are shown in se
tion 6.4.In order to qualify an estimator as a good separator, it has to be tested separately ona preferably 
lean sample for signal (ele
trons) and ba
kground (pions). These samples
an be used to train the dis
riminator on signal and ba
kground too.In the following two paragraphs the sele
tion 
riteria for signal and ba
kground data is44



6.2. Test Samplesdes
ribed. Two well understood de
ays are 
hosen to sele
t events 
ontaining ele
trons(J/ψ → e+e−) and pions (ρ→ π+π−) respe
tively.6.2.1 Ele
tron SampleAs a sour
e of isolated ele
trons the de
ay of elasti
 J/ψ is used (J/ψ → e+e−, bran
hingratio (5.94 ± 0.06) % [11℄).The data used for this sample were taken in the years 2006 and 2007, when protons withenergies of 920 GeV were brought to 
ollision with ele
trons or positrons of 27.6 GeV.Standard Sele
tionThe event sele
tion is done by requesting a di�ra
tive J/ψ-
andidate with two 
entraltra
ks only. All triggers were used.The ele
tron 
andidates from the J/ψ de
ay are sele
ted by the KALEP [2℄ �nder underthe restri
tion that the re
onstru
ted invariant mass of the J/ψ lies between 1.3 GeVand 3.5 GeV.This sele
tion leads to the invariant J/ψ-mass peak shown in �gure 6.4.

Figure 6.4: Distribution of the re
onstru
ted invariant mass mee of the de
ay J/ψ →
e+e− for the standard sele
tion.Sin
e not only the e�
ien
y of the KALEP ele
tron �nder is not so good but also itsba
kground reje
tion is always below 90 %, one expe
ts that there are still other parti
lesleft in the sample, espe
ially pions. For higher e�
ien
ies (lower KALEP-ele
tron qual-ity) the ba
kground reje
tion drops 
onsiderably (see �gure 2.3). Therefore the sample is45



Chapter 6. Ele
tron Finderanalysed with the help of dEdx to separate the ele
trons in the sample from other parti
les.The dEdx -distribution in �gure 6.5 shows the amount of pions in the sample. The fra
tionis about 23 %.

Figure 6.5: Output of the dEdx -analysis of the J/ψ ele
tron sample using the standardsele
tion. The dEdx distribution is given in Minimum Ionising Parti
le (MIP). The datapoints are �tted to two gaussian fun
tions for the ele
tron and the pion fra
tion. Thesolid line represents the sum of the fun
tions.Improved Sele
tionIn order to get an ele
tron enri
hed sample and to redu
e the bias introdu
ed by the useof the KALEP �nder, a new data sample is sele
ted. The following 
riteria are applied:
• Number of di�ra
tive J/ψ-
andidates > 0

• Two 
entral tra
ks
• Two tra
ks in total
• Re
onstru
ted invariant mass: 1.3 GeV < mee < 3.5 GeVThe lower boundary of the invariant mass is 
hosen su
h that the radiative tail (see�gure 6.4) towards lower energy is in
luded in the sele
tion.
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6.2. Test Samples
• One tra
k is identi�ed by KALEP as an ele
tron, the other is not probed by KALEPand to redu
e the bias used for the sample. The identi�ed tra
k is not sele
ted forthe sample.
• Likelihood-value of dEdx under an ele
tron assumption of both tra
ks is LdE/dxnorm ≥ 0.5.The 
ut on dEdx is useful to redu
e the amount of pions. This 
an be illustrated byexamining the e�e
t of the dEdx -
ut on a data sample without a dEdx -sele
tion. The datasele
tion applied is the same as spe
i�ed for the improved sele
tion ex
ept of the dEdx -
ut.In �gure 6.6 on the left side the normalised dEdx -ele
tron Likelihood distribution, LdE/dxnorm ,of tra
ks that are not probed with the KALEP �nder is shown, whereas the other tra
kis identi�ed by KALEP as an ele
tron. On the right hand side the same quantity isplotted but with the additional requirement that LdE/dxnorm of the KALEP-identi�ed tra
k,thus the other tra
k from the sele
ted event, lies above 0.5.

Figure 6.6: Normalised dEdx -ele
tron Likelihood distribution LdE/dxnorm of the not KALEP-probed tra
k without (left) and with (right) 
ut on L
dE/dxnorm of the KALEP-identi�edtra
k.Figure 6.6 (left plot) again shows the 
ontamination of the ele
tron sample. The 
uton the normalised dEdx -ele
tron Likelihood (LdE/dxnorm > 0.5) on the KALEP-identi�ed tra
k(right plot) redu
es the ba
kground approximately by a fa
tor of three, where everyevent with L

dE/dxnorm < 0.5 is de�ned as ba
kground. The redu
tion in the number ofba
kground-like events is 
learly visible and therefore shows the usefullness of this 
ut.Under the assumption that the ba
kground 
an be redu
ed by a fa
tor of three, the 
ut onboth sele
ted tra
ks leads to a remaining ba
kground in the ele
tron sample of about 5 %.This revised event sele
tion leads to a rather pure ele
tron sample, whi
h is used forfurther tests. The invariant mass peak for this sample is shown in �gure 6.7. 47
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Figure 6.7: Distribution of the re
onstru
ted invariant mass mee of the de
ay J/ψ →
e+e− for the improved sele
tion.6.2.2 Pion SampleA data sample of pions is used to represent the ba
kground in an event. It provides abasis to explore the separation power of the 
hosen estimators and it is needed for themultivariate analysis to train the dis
riminator.The sele
ted pro
ess for pion produ
tion is the de
ay of a ρ meson (ρ→ π+π−, bran
hingratio ∼ 100 % [11℄). The used data is from the same period as for the ele
tron sample,the years 2006 and 2007.The event sele
tion is done by requesting a di�ra
tive light ve
tormeson 
andidate,two 
entral tra
ks and no other tra
ks. The distan
e from the z-vertex position to thenominal intera
tion point has to be smaller than 25 cm. Both tra
ks have to 
ome fromthe primary vertex, the lower pt pion should have pt(tra
k) > 0.12 GeV and the higher

pt pion a transverse momentum larger than 0.7 GeV. In addition, two more 
uts areapplied, an angle restri
tion and a boundary for the mass. The polar angle should bein the interval 20◦ < θ < 160◦ whereas the re
onstru
ted invariant mass is limited by
0.6 GeV < mππ < 1.1 GeV.This sele
tion gives the invariant mass distribution depi
ted in �gure 6.8.After the promising out
ome of the investigation of the ele
tron sample with the helpof dE/dx, the des
ribed pion sample is also analysed. In �gure 6.9 the output of theanalysis is shown. The left side of the �gure shows the distribution for the presenteddata sele
tion, the right side after the optimisation with the help of dE/dx.48



6.2. Test Samples

Figure 6.8: Re
onstru
ted invariant mass peak, mππ, for the presented event sele
tion.

Figure 6.9: S
atter plot of the dE/dx distribution for the pion hypothesis versus thetra
k momentum. Left: presented event sele
tion, right: after the applied 
uts.The s
atter plot of dE/dx under the assumption of a pion versus the momentum ofthe tra
k, 
learly shows the 
ontamination of the sample, mainly by other hadrons.In order to enri
h the pion sample, three 
uts are applied simultaneously: on L
dE/dx
pion ,

L
dE/dx
norm with an ele
tron-pion assumption, as in the 
ase of the ele
tron sample, andon the timing information of the event from the CJC. The distribution of the dE/dx-Likelihood value of pions before and after the applied 
uts is shown in �gure 6.10. The
ut on this quantity is de�nded by LdE/dx

pion > 0.05. 49
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Figure 6.10: L
dE/dx
pion distribution of the pion sample. The shaded histogram showsthe distribution after all applied 
uts.Although this is a loose 
ut, it redu
es the 
ontamination 
onsiderably.The normalised dE/dx-Likelihood using the ele
tron and the pion hypothesis is usedto redu
e the amount of ele
trons in the pion sample. This quantity is de�ned in thesame way as for the ele
tron sample in se
tion 6.2.1. The distribution is presented in�gure 6.11.

Figure 6.11: L
dE/dx
norm distribution of the pion sample. The shaded histogram showsthe distribution after all applied 
uts.The distribution of the normalised Likelihood 
learly shows that the pion data sam-ple 
ontains a noti
eable amount of ele
trons. For the new data sele
tion a 
ut at

L
dE/dx
norm = 0.8 is applied to redu
e the fra
tion of the ele
trons.
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6.2. Test SamplesIn order to improve the ba
kground reje
tion the timing information of the gas 
ham-ber is used. The measured distribution and the applied 
uts are shown in �gure 6.12.

Figure 6.12: Timing information of the events used for the pion sample. The shadedhistogram shows the distribution after all applied 
uts.The timing information helps to sele
t the information whi
h a
tually belongs to theobserved event. The used 
ut on this quantity is de�ned by 405 · 0.2 ns < t < 505 · 0.2 ns,where the time zero point is not de�ned by the ep-intera
tion.For further tests this new event sele
tion is used as the ba
kground (pion) sample. Theinvariant mass peak for this sample is shown in �gure 6.13.

Figure 6.13: Re
onstru
ted invariant mass distribution, mππ, for the new event se-le
tion after the usage of the information of dE/dx.
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Chapter 6. Ele
tron FinderWith these two samples it is now possible to examine the separation power of the 
ho-sen estimators and further on to train the dis
riminator using a method of a multivariateanalysis.The signal sample 
onsists of the de
ay ele
trons of about 80'000 J/ψ ve
tor mesonswhereas the ba
kground sample 
ontains pions from approximately 1'100'000 ρ mesons.6.3 Comparison of Estimators for Signal and Ba
kgroundIn this se
tion a 
omparison of the estimators for the ele
tron and the pion sample ispresented. The estimators are analysed 
on
erning the separation power between thetwo samples. This results give a �rst indi
ation of the potential of the ele
tron �nderusing the quantities introdu
ed in se
tion 6.1.The tests of the estimators are divided into intervals regarding the momentum andthe polar angle of the tra
k. This allows to study the separation double di�erentiallyin the momentum and the polar angle. The polar angle θ is divided into three intervalsa

ording to the regions of the 
alorimeter: 
entral barrel (CB), forward barrel (FB) andinner forward (IF). This is done by identifying the wheel of the 
alorimeter 
ell whi
hmeasured an energy deposition. The segmentation of the liquid argon 
alorimeter intowheels is illustrated in �gure 3.4 in se
tion 3.2.2.As the ele
tron and the pion samples do not 
ontain the same number of events, everyhistogram is normalised to the number of ele
tron events in the 
orresponding interval.In order to study the separation power of the di�erent estimators in the observed dis-tributions for ele
trons and pions the polar angle θ and the transversal momentum pt arereweighted. This reweighting is ne
essary to ex
lude e�e
ts from di�erent distributionsin the kinemati
al variables.In �gures 6.14 and 6.15 the results of the reweighting for θ and pt are illustrated.
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kground

Figure 6.14: Distribution of the polar angle θ in the 
entral barrel, 1.5 GeV < p <
1.75 GeV. Left: generated, right: reweighted.

Figure 6.15: Distribution of the transversal momentum in the 
entral barrel,
1.5 GeV < p < 1.75 GeV. Left: generated, right: reweighted.
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Chapter 6. Ele
tron FinderIn the following the results for the �rst estimator, the ratio of energy to momentum,is presented.Ele
trons usually deposit all their energy in the ele
tromagneti
 
alorimeter leading toa value of Eelmag(
alo)
p(tra
k) ≈ 1. The value for pions is lower as they do not deposit all theenergy in the ele
tromagneti
 part of the 
alorimeter.Figure 6.16 shows the distribution of Eelmag

p for two di�erent radii. The result for theele
trons is shown, as in all the following �gures, in the shaded histogram. The left sideshows that the smaller 
ylinder (Ri = 15 cm) is too small to fully 
ontain the hadroni
shower in lateral dire
tion. In 
ase of the wider 
ylinder (Ro = 30 cm), a higher fra
-tion of the hadroni
 shower is 
ontained as the number of zero-entries is smaller. The
hosen momentum interval is de�ned by 1.5 GeV < p < 1.75 GeV and the region of the
alorimeter is the forward barrel.Figure 6.17 shows the same quantity for ele
trons and pions in a di�erent momentuminterval (3.25 GeV < p < 3.5 GeV) and another dete
tor region (
entral barrel). Thismomentum interval is the upper boundary of the examined momentum spe
trum in thisthesis, as the statisti
s of pions originating from ρ de
ays in higher momentum regimesis too low for a 
omparison.

Figure 6.16: E/p distribution of ele
trons and pions in the forward barrel for twodi�erent 
ylinder radii, left: Ri = 15 cm, right: Ro = 30 cm. Momentum interval:
1.5 GeV < p < 1.75 GeV.
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kground

Figure 6.17: E/p distribution of ele
trons and pions in the 
entral barrel for twodi�erent 
ylinder radii, left: Ri = 15 cm, right: Ro = 30 cm. Momentum interval:
3.25 GeV < p < 3.5 GeV.The �gures show the already mentioned behaviour of ele
trons, that they usually de-posit all their energy in the ele
tromagneti
 part of the liquid argon 
alorimeter. Thepeak around E/p ≈ 1 is 
learly visible. For higher momentum ele
trons, the fra
tion ofele
trons with a value of E/p obviously below 1, is even smaller. This 
ould be explainedby the smaller fra
tion of energy lost in dead material for higher energeti
 ele
trons.The fra
tion of the deposited energy is in 
ase of pions de�nitely smaller, as the examinedmomentum interval for pions and ele
trons is the same. The peak value of E/p is 
learlyshifted towards smaller values 
ompared to the ele
trons.Espe
ially for higher momenta (�gure 6.17) the overlap of the 
urves is not big. A dire
t
ut on this quantity allows a good separation between ele
trons and pions. It is possibleto reje
t a reasonable amount of pions while most ele
trons are kept. Therefore the sep-aration power of the estimator E/p is good.The isolation 
riterion I = Einner

Eouter is shown in �gure 6.18 for the 
entral barrel in themomentum interval 2.25 GeV < p < 2.5 GeV.Pions tend to have slightly lower values for I than ele
trons due to the wider lateraldistribution of the shower in the 
alorimeter. But both distributions 
learly peak at
I = 1. Compared to the result of E/p, the separation is not as pronoun
ed.In 
ase of Srad, the measure for the shower radius (see �gure 6.19), the separationpower depends on the energy of the parti
les. For energies of about 1 GeV Srad lookssimilar for ele
trons and pions. For higher energies, about 3 GeV, the measure for theshower radius of pions is shifted towards higher values. For ele
trons, the 
urve does not55
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Figure 6.18: I = Einner
Eouter for ele
trons and pions in the 
entral barrel, 2.25 GeV < p <

2.5 GeV.
hange signi�
antly. In this energy se
tor the separation is visible.The estimator des
ribing the longitudinal shower distribution shows a 
ompletely dif-ferent behaviour between ele
trons and pions. As pions usually deposit only a smallfra
tion of their energy in the ele
tromagneti
 part of the 
alorimeter, this depositionis often measured in a single layer. In 
ontrast to ele
trons, pions do not ne
essarilydeposit their energy at the beginning of the 
alorimeter. Therefore the signal 
an bemeasured on any layer. This behaviour leads, a

ording to the de�nition of the measurefor the shower length, to spikes in the distribution of Slen for pions as 
an be seen in�gure 6.20. The weighting of the layer by the energy is 
an
eled, whi
h gives an integernumber for Slen. Both depi
ted distributions are shown for the 
entral barrel but fordi�erent momentum intervals.
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kground

Figure 6.19: Srad for ele
trons and pions in the 
entral barrel, left: 1.0 GeV < p <
1.25 GeV, right: 3.0 GeV < p < 3.25 GeV.

Figure 6.20: Slen for ele
trons and pions in the 
entral barrel, left: 1.0 GeV < p <
1.25 GeV, right: 3.25 GeV < p < 3.5 GeV.
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tron FinderAs the energy of the pions in
reases, the trend to build spikes de
reases (right handside). For ele
trons in 
ontrast, the deposition starts usually on the �rst layer and ismainly 
ontained in the �rst two layers. This leads to a narrower peak for Slen of ele
-trons. In general the distribution gets wider for higher energeti
 ele
trons. The showndistributions do not 
ontain values above Slen = 3, as the ele
tromagneti
 part of theliquid argon 
alorimeter 
onsists of only three layers in the 
entral and forward barrel.For this estimator a 
lear separation between ele
trons and pions is visible towards highervalues of Slen, espe
ially for larger momenta.The last two used quantities are the measured energy in the ele
tromagneti
 and thehadroni
 part of the liquid argon 
alorimeter in a 
ylinder (Ro = 30 cm) around the se-le
ted tra
ks for ele
trons and pions. The energy-dependen
e of the separation is shownin �gure 6.21.In 
ase of the ele
tromagneti
 energy, the separation between ele
trons and pions dependson the examined energy interval. The separation gets 
learly better with in
reasing en-ergy. The distribution of the deposited energy for pions gets wider for higher energies.But the fra
tion of pions where more than 75 % (approximately rise of the peak for ele
-trons with p ≥ 2 GeV) of the energy of the tra
k is deposited in the ele
tromagneti
 partof the 
alorimeter, is very small.As the amount of deposited energy in 
ase of ele
trons is nearly 100 %, the peakvalueof the measured energy is dire
tly proportional to the tra
k momentum. This di�erentbehaviour of ele
trons and pions leads to the visible separation for higher momenta.
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kground

Figure 6.21: Measured ele
tromagneti
 energy of ele
trons and pions in a 
ylinderaround the tra
k in the 
entral barrel, top left: 1.0 GeV < p < 1.25 GeV, top right:
1.75 GeV < p < 2.0 GeV, lower left: 2.5 GeV < p < 2.75 GeV, lower right: 3.25 GeV <
p < 3.5 GeV.
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Chapter 6. Ele
tron FinderThe same behaviour 
an be observed in the forward barrel of the 
alorimeter and isdepi
ted in �gure 6.22. The separation is not as good as for the 
entral barrel, but stillvisible.

Figure 6.22: Measured ele
tromagneti
 energy of ele
trons and pions in a 
ylinderaround the tra
k in the forward barrel, top left: 1.0 GeV < p < 1.25 GeV, top right:
1.75 GeV < p < 2.0 GeV, lower left: 2.5 GeV < p < 2.75 GeV, lower right: 3.25 GeV <
p < 3.5 GeV.The measurement of the deposited energy in the hadroni
 part of the 
alorimetershows, that ele
trons very rarely rea
h the hadroni
 
alorimeter in the studied energyregime. Therefore no energy is measured in general.The pions do indeed rea
h this part of the dete
tor and deposit a measurable amount of60



6.3. Comparison of Estimators for Signal and Ba
kgroundenergy in the hadroni
 
ells. This leads to a 
lear di�eren
e in the distribution of themeasured energy and is depi
ted in �gures 6.23 and 6.24 for the 
entral and the forwardbarrel respe
tively. Two di�erent momentum intervals are shown in ea
h �gure.

Figure 6.23: Measured hadroni
 energy of ele
trons and pions in a 
ylinder aroundthe tra
k in the 
entral barrel, left: 1.0 GeV < p < 1.25 GeV, right: 3.25 GeV < p <
3.5 GeV.

Figure 6.24: Measured hadroni
 energy of ele
trons and pions in a 
ylinder aroundthe tra
k in the forward barrel, left: 1.0 GeV < p < 1.25 GeV, right: 3.25 GeV < p <
3.5 GeV.
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Chapter 6. Ele
tron Finder6.4 Comparison of Estimators in Data and Monte CarloSimulationIn this se
tion the des
ription of the estimators using simulated data is presented. Thesame quantities, dis
ussed in the previous se
tion 6.3, are studied for Monte Carlo sim-ulation and 
ompared to the data samples for ele
trons and pions. The data sele
tion
riteria des
ribed in se
tion 6.2 are also applied to the MC samples.For this work the most relevant part is the energy distribution of ele
tromagneti
 andhadroni
 
alorimeter showers, sin
e dE/dx is not 
alibrated for 2006/07 and thereforenot usable in Monte Carlo simulation.In order to 
ompare the resulting distributions for the estimators, a J/ψ Monte Carlosimulation is 
hosen for the generation of the Monte Carlo signal (ele
tron) sample. A
ρ Monte Carlo simulation is suitable for the ba
kground (pion) sample. The available ρMonte Carlo sample did not 
ontain enough high momentum pions to allow for a mean-ingful 
omparison to data. Consequently, a sample of inline generated single pions wassimulated. The momentum interval was adapted to in
lude enough high momentum pi-ons for a 
omparison.The generators of Monte Carlo simulation often produ
e distributions of the kinemati
variables whi
h di�er from the distributions observed in the data, espe
ially for singleparti
le Monte Carlo. To get the best a
hievable des
ription of the a
tually observeddistributions, the variables of the Monte Carlo events are reweighted to the data. In thisstudy the reweighting is done in the polar angle θ and the transversal momentum pt. Asdes
ribed in the previous se
tion 6.3 the distributions of θ and pt for the pion data sampleare reweighted to them of the ele
trons. The distributions of the kinemati
 quantities forthe Monte Carlo samples are as well adapted to those of the ele
trons in the data sample.This assures that all the samples have equal distributions of the kinemati
 quantities.In �gures 6.25 and 6.26 the result of the reweighting for θ and pt is illustrated. As anexample, the 
entral barrel and the momentum interval 1.5 GeV < p < 1.75 GeV are
hosen. The distribution is shown for pions (data and inline generated pions). Sin
e forele
trons the di�eren
e between data events and events simulated by DiffVM is notvery pronoun
ed, no reweighting is needed.
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Figure 6.25: Distribution of the polar angle θ in the 
entral barrel, 1.5 GeV < p <
1.75 GeV. Left: generated, right: reweighted.

Figure 6.26: Distribution of the transversal momentum in the 
entral barrel,
1.5 GeV < p < 1.75 GeV. Left: generated, right: reweighted.
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Chapter 6. Ele
tron FinderThe �gures of the 
omparison between data and Monte Carlo are presented and dis-
ussed in the following paragraphs.The des
ription by simulation of the �rst estimator, introdu
ed as the measured ele
-tromagneti
 energy divided by the tra
k momentum Eelmag
p , is shown in �gures 6.27and 6.28 for two di�erent momentum intervals in the 
entral barrel of the dete
tor. The�gure shows on the left hand side the result for ele
trons and on the right hand side thatfor pions. The 
hosen momentum intervals are de�ned by 1.5 GeV < p < 1.75 GeV and

2.5 GeV < p < 2.75 GeV respe
tively.The des
ription of signal and ba
kground is good, as the shapes of the 
urves are nearlyidenti
al.In the forward barrel the distribution of Eelmag
p is slightly di�erent for data and simu-lation, as 
an be seen in �gure 6.29 for 2.5 GeV < p < 2.75 GeV. The Monte Carlopredi
tion is, espe
ially in 
ase of ele
trons, shifted towards higher values of E/p. A pos-sible explanation for this 
ould be that in the forward barrel of the dete
tor, the amountof passed dead material is bigger than in the 
entral barrel. Probably the amount ofdead material in
luded in the simulation is too low. Therefore the re
onstru
tion pro-
ess allo
ates a higher energy to the simulated parti
les 
ompared to real parti
les. Thelength s
ale for the energy loss of ele
trons is the radiation length, whereas that of pi-ons is the intera
tion length. As the radiation length of ele
trons is mu
h smaller thanthe intera
tion length of pions, the e�e
t is more pronoun
ed for ele
trons than for pions.

Figure 6.27: Comparison of Eelmag
p in a 
ylinder around the tra
k with radius R =

30 cm in the 
entral barrel. The plot on the left side shows the distribution of ele
trons,that on the right side that of pions. The 
hosen momentum interval is 1.5 GeV < p <
1.75 GeV.
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6.4. Comparison of Estimators in Data and Monte Carlo Simulation

Figure 6.28: Comparison of Eelmag
p in a 
ylinder around the tra
k with radius R =

30 cm in the 
entral barrel. The plot on the left side shows the distribution of ele
trons,that on the right side that of pions. The 
hosen momentum interval is 2.5 GeV < p <
2.75 GeV.

Figure 6.29: Comparison of Eelmag
p between data and Monte Carlo in the forwardbarrel for ele
trons and pions, 2.5 GeV < p < 2.75 GeV.
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Chapter 6. Ele
tron FinderThe 
omparison between simulation and data for I = Einner
Eouter shows a good des
riptionas 
an be seen in �gures 6.30 and 6.31 for two di�erent momentum intervals. The showndete
tor region is the 
entral barrel. The predi
tion for the proportion of the energy inthe smaller 
ylinder to the energy in the wider 
ylinder for ele
trons and pions is good.The distributions of I = Einner

Eouter for ele
trons and pions in the forward barrel is presentedin �gure 6.32. The parti
les have a momentum of about p ≈ 2 GeV.

Figure 6.30: Data-MC 
omparison of I = Einner
Eouter in the 
entral barrel for ele
trons andpions, 1.0 GeV < p < 1.25 GeV.The peak at I = 1 in the data distribution appears also in the simulation and is pro-noun
ed similarly. The agreement below I = 1 is also very good.Therefore the des
ription of this estimator by simulation for the ele
tron and pion sam-ples is 
orre
t.
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Figure 6.31: Data-MC 
omparison of I = Einner
Eouter in the 
entral barrel for ele
trons andpions, 3.25 GeV < p < 3.5 GeV.

Figure 6.32: Data-MC 
omparison of I = Einner
Eouter in the forward barrel for ele
tronsand pions, 2.25 GeV < p < 2.5 GeV.
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Chapter 6. Ele
tron FinderThe 
omparison between data and simulation of the measure for the shower radius isshown in �gure 6.33 for lowest momenta (1.0 GeV < p < 1.25 GeV) ele
trons and pions.

Figure 6.33: Comparison of Srad between data and Monte Carlo in the 
entral barrelfor ele
trons and pions, 1.0 GeV < p < 1.25 GeV.The distribution for the ele
tron data sample is well des
ribed by the predi
tion of thesimulation. No di�eren
e in the 
urve shape is visible. In 
ase of pions, the agreement isslightly worse.Figure 6.34 shows the 
omparison between the data distribution and the simulation inthe forward barrel. The depi
ted momentum interval is 2.25 GeV < p < 2.5 GeV.In this region of the 
alorimeter, Srad is in good agreement with Monte Carlo expe
-tation. Therefore this estimator again is well des
ribed by Monte Carlo simulation.

68
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Figure 6.34: Comparison of Srad between data and Monte Carlo in the forward barrelfor ele
trons and pions, 2.25 GeV < p < 2.5 GeV.The measure for the shower length Slen is dis
ussed next. The 
omparison betweendata and simulation for ele
trons and pions is presented in �gure 6.35.The Monte Carlo predi
tion for ele
trons is again in good agreement with the data.The shape of the 
urves show no di�eren
e. The more 
omplex stru
ture of the Slen-distribution for pions is not properly des
ribed. The o

urren
e of spikes at integer valuesof the estimator, as des
ribed in se
tion 6.3, is predi
ted by the Monte Carlo simulation.The data distribution tends to have more entries for higher values of Slen than the sim-ulation. Although the agreement is not as good as for the already presented estimators,the shape of the distribution is similar.The same behaviour is observed in the forward barrel and in other momentum intervals.An example 
an be seen in �gure 6.36.
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tron Finder

Figure 6.35: Comparison of Slen between data and Monte Carlo in the 
entral barrelfor ele
trons and pions, 1.25 GeV < p < 1.5 GeV.

Figure 6.36: Comparison of Slen between data and Monte Carlo in the 
entral barrelfor ele
trons and pions, 2.25 GeV < p < 2.5 GeV.
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6.4. Comparison of Estimators in Data and Monte Carlo SimulationThe last two dis
ussed quantities are the measured energies in the ele
tromagneti
 andhadroni
 part of the liquid argon 
alorimeter. As des
ribed before, the deposited energyin a 
ylinder of radius R = 30 cm around the prolongation of the tra
k in the 
alorimeteris summed up and allo
ated to the ele
tromagneti
 or hadroni
 part of the 
alorimeter.The result of the 
omparison is shown in �gure 6.37.

Figure 6.37: Data-MC 
omparison of the ele
tromagneti
 energy in the 
entral barrelfor ele
trons and pions, 1.0 GeV < p < 1.25 GeV.The agreement between data and Monte Carlo is slightly better for the ele
tron sam-ple. But in both 
ases the shape of the histograms are similar and the agreement is goodin general.Figure 6.38 shows a shift between the distributions of data and simulation. This isprobably the same shifting-e�e
t in the forward barrel as mentioned for the �rst estima-tor Eelmag
p (see �gure 6.29).The data distribution is slightly shifted towards lower values of the estimator. Thereason 
ould be the worse 
orre
tion of dead material in the dete
tor by Monte Carlo
ompared to the data 
orre
tion. This leads to a predi
tion of higher energy values thanmeasured. As the shifting e�e
t o

urs for Eelmag

p and Eelmag, this explanation is plausible.Finally the out
ome of the 
omparison between data and Monte Carlo for the hadroni
energy is presented in �gure 6.39.The des
ription of the hadroni
 energy for pions is good in general. The shape of thedistribution is predi
ted very well by the simulation. 71
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Figure 6.38: Data-MC 
omparison of the ele
tromagneti
 energy in the forward barrelfor ele
trons and pions, 2.5 GeV < p < 2.75 GeV.The agreement between data and Monte Carlo for ele
trons is worse than for pions. Thevalues for the hadroni
 energy in 
ase of ele
trons is lower than for pions and the numberof events for this estimator is low. The energy deposition of ele
trons should be fully 
on-tained in the ele
tromagneti
 part of the 
alorimeter. The 
ra
ks between the wheels andthe φ-o
tants in the liquid argon 
alorimeter are not instrumented (see se
tion 3.2 for the

Figure 6.39: Data-MC 
omparison of the hadroni
 energy in the 
entral barrel forele
trons and pions, 1.25 GeV < p < 1.5 GeV.
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6.5. Summarylayout of the 
alorimeter). This allows the ele
trons to probably rea
h the hadroni
 re-gion of the 
alorimeter and therefore indu
e a weak signal whi
h is seen in this estimator.6.5 SummaryThe 
omparison between the ele
tron and pion data samples has shown that the 
ho-sen estimators exhibit a large separation power and are suitable to distinguish betweenele
trons and pions using 
alorimeter and tra
king information. In parti
ular the separa-tion power of the estimator des
ribing the ratio of energy to momentum Eelmag
p is evident.The agreement between Monte Carlo simulation and the data allows the use of all thepresented variables in the next 
hapter where the quality 
riteria in 
ontext of a multi-variate analysis will be dis
ussed (
hapter 7).
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Chapter 7Multivariate AnalysisThere are 1011 stars in the galaxy. That used tobe a huge number. But it's only a hundred billion.It's less than the national de�
it! We used to 
allthem astronomi
al numbers. Now we should 
allthem e
onomi
al numbers.Ri
hard Feynman
A multivariate analysis (MVA) is based on the statisti
al prin
iple of multivariate statis-ti
s, whi
h involves simultaneous observation and analysis of more than one statisti
alvariable. The 
oa
tion and the dependen
e stru
ture of the involved quantities are anal-ysed using spe
i�
 pro
edures. A multivariate analysis is suitable, as soon as a de
isionrespe
ting multiple possibly 
orrelated quantities has to be made. The aim of su
h ananalysis is to obtain a 
lear pi
ture of the system and to allow a reasonable de
ision,taking 
orrelations into a

ount.The 
on
rete use for multivariate analyses in high-energy physi
s is to extra
t the max-imum available information from the available data. This has be
ome more and moredemanding in order to sear
h for smaller signals in larger data samples. The 
omputingpower and its availableness have grown larger in re
ent years and therefore the de
isionguidan
e by multivariate methods based on ma
hine learning te
hniques has be
ome animportant 
onstituent of many studies in parti
le physi
s, like Higgs sear
hes at LEP [19℄or top mass measurement at the Tevatron [20℄.Due to this in
reased request the multivariate 
lassi�ers themselves have been signi�-
antly improved and new ways to tune and to 
ombine 
lassi�ers have been developed.7.1 Software Toolkit and MethodsThe software environment for the H1 experiment at DESY is based on the analysisframework ROOT [21℄. Sin
e ROOT version 5.11/06 a toolkit for multivariate analysis75



Chapter 7. Multivariate Analysisis in
luded. This framework is new and still in development. It holds a large variety ofmultivariate 
lassi�
ation algorithms and is 
alled Toolkit for Multivariate Data Analysiswith ROOT (TMVA) [22℄. TMVA is a 
olle
tion of di�erent models to build a dis
rim-inator based on the information of several input variables. The algorithms range fromwell known Likelihood estimators over linear dis
riminants to more re
ent 
lassi�ers.This software pa
kage 
overs all the needed steps for a 
omplete multivariate analysis.This fa
t and the possible embedding into the given software environment at H1 are thereasons why TMVA is 
hosen as the toolkit for the multivariate analysis in this thesis.The most important pro
esses for this work are the training of the 
hosen dis
riminator,the testing of dis
riminator and the evaluation of the pro
edure.The �rst step of the analysis, after having 
hosen a multivariate 
lassi�er (for instan
eneural networks or de
ision trees), is the training of the dis
riminator. Therefore thedis
ussed estimators in se
tions 6.1 and 6.3 are given to the software as input variables.A

ording to the algorithm of the 
lassi�er, the estimators are evaluated using a signaland a ba
kground sample. For this purpose the sele
ted data samples, dis
ussed in se
-tion 6.2, are used. The dis
riminator then is trained to distinguish between signal andba
kground, in this 
ase between ele
trons and pions, using the information given by theestimators.Conse
utively to this ma
hine learning te
hnique the dis
riminator is tested. This pro-
ess again needs pure samples for signal (ele
trons) and ba
kground (pions). Thereforethe used samples are divided into two parts by TMVA, already for the training pro
ess.In this work the partitioning of the events in the samples in training and testing hap-pens randomly. This phase assures the operativeness of the dis
riminator and allows todetermine its performan
e.In a last step the result of the trained and tested dis
riminator is evaluated.TMVA is spe
i�
ally designed to the needs of high-energy physi
s appli
ations andtherefore manages the simultaneous training, testing and performan
e evaluation of allthe in
luded 
lassi�ers with a user-friendly interfa
e. Moreover the results are visualisedand the toolkit provides an interfa
e for the appli
ation of the trained 
lassi�ers to data.This allows to use the dis
riminator, adjusted to a given problem, dire
tly on data sam-ples in the H1 software environment.During the study of the multivariate analysis for this thesis and the work with TMVA,it was possible to 
ontribute to the improvements of the TMVA toolkit. Beside under-standing better the used software and 
ontributing to the progress by reporting somebugs, the interesting 
onversations with the developers of the toolkit brought some moreinsights for this thesis in general.As already mentioned TMVA delivers a multitude of 
lassi�er methods. For this thesisonly two of them are studied in more details: Multilayer Per
eptron (MLP) and BoostedDe
ision Tree (BDT). These algorithms lead to the best dis
rimination (see se
tion 7.2)76



7.1. Software Toolkit and Methodsand their basi
 prin
iples are therefore presented in the following se
tions. For other
lassi�ers just the results are shown.7.1.1 Arti�
ial Neural NetworksAn arti�
ial neural network [23℄ is a mathemati
al model or 
omputational model whi
hinter
onne
ts arti�
ial neurons. The fundamental idea is based on biologi
al neural net-works. Ea
h neuron in the network produ
es a 
ertain response at a given set of inputsignals. This external signal applied to the input neurons, puts the network in a 
har-a
teristi
 state that 
an be measured from the response of the output neurons. Thenetwork stru
ture is build up be
ause the response of a spe
i�
 neuron depends on theoutput of other (
onne
ted) neurons. An arti�
ial neural network 
an be implemented asan adaptive system that 
hanges its stru
ture based on the pro
essed information duringthe learning phase. For the appli
ation of dis
rimination between signal and ba
kgroundone 
an see the arti�
ial neural network as a mapping of the input variables (estimators)to a single output neuron, the output variable of the network. The usage of an arti�
ialneural network is a non-linear statisti
al data modeling tool if at least one neuron has anon-linear response to the input signal.Although the spe
i�
 neurons are simple pro
essing elements, the network itself 
an showa 
omplex global behaviour determined by the 
onne
tions between the neurons. Duringthe learning pro
ess the strength (weights) of the 
onne
tions in the network are alteredto produ
e a signal �ow a

ording to the input of the network.In this work a spe
ial kind of arti�
ial neural network is used. The 
hara
teristi
 traitsof this networks are the organisation of the neurons in layers where only 
onne
tions fromone layer to the immediate next one is allowed. This kind of arti�
ial neural network is
alled multilayer per
eptron. This limitation redu
es the 
omplexitivity of the networkand �xes its stru
ture. The �rst layer is the input layer and the last one the output layer.All other layers are hidden layers. The alignment of a multilayer per
eptron is shownin �gure 7.1. Ea
h dire
tional 
onne
tion between the output of one neuron and theinput of another is given an individual weight. The input value of a neuron is 
al
ulatedby multiplying the weight of the 
onne
tion with the output value of the previous neuron.For the method of ele
tron identi�
ation using an MLP a single neuron in the outputlayer is required. This resulting value in the output neuron is normalised to a giveninterval, usually [0, 1]. A value of 0 represents a ba
kground like tra
k, whereas 1 meansa signal like tra
k. This 
ontinuous distribution of the 
lassi�er allows to 
ut on a spe
i�
value in order to a
hieve a desired identi�
ation e�
ien
y or ba
kground reje
tion.The weights for the input of the neurons are determined during the training phase ofthe multivariate analysis. The most 
ommon algorithm for adjusting the weights thatoptimise the 
lassi�
ation performan
e of a neural network is the so-
alled ba
k propaga-tion. The test statisti
s given at the output of a network with one hidden layer and with77



Chapter 7. Multivariate Analysis

Figure 7.1: Illustration of a multilayer per
eptron with one hidden layer and a singleoutput neuron [23℄. x1 - x4 are the input variables to the neurons yji , where j labels thelayer of the network stru
ture. The weights between the neurons are denoted by wjkl.a single output node is determined by
yANN = s2


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∑
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) .The input variables ~x = (x1, . . . , xnvar) are represented as a set of nodes, whi
h together
onstitute the input layer (y(1)
1 , . . . , y

(1)
nvar). The nodes in the hidden layer are denotedby y(2)

1 , . . . , y
(2)
nh . The fun
tions sk ( · ) are in general 
alled the a
tivation fun
tions ofa layer. The weight between input-layer neuron i and hidden-layer neuron j is denotedby w(1)

ij , whereas w(2)
j1 is the weight between the hidden-layer neuron j and the outputneuron. The o�set (or threshold) of the a
tivation fun
tions are denoted by a1 and a2.During the learning pro
ess the neural network output yANN is 
omputed for ea
htraining event and 
ompared to the desired output ŷ ∈ {0, 1} a

ording to the sample(ba
kground or signal) the event belongs to. An error fun
tion is de�ned whi
h measuresthe deviation of the network response yANN to the theoreti
al value ŷ = 1 for signal78



7.1. Software Toolkit and Methodsand ŷ = 0 for ba
kground events. The set of the �nally used weights is derived by min-imising the error fun
tion, using iterative methods starting from a random set of weights.7.1.2 Boosted De
ision TreesA de
ision tree is a spe
ial display format of a multitude of binary de
ision rules. Itillustrates su

essive hierar
hi
al de
isions on the input variables in a tree stru
ture. Anexample is shown in �gure 7.2. An input quantity is passed through the tree stru
turewhere at every bran
h a yes or no de
ision is performed. This left/right (yes/no) turno�sare repeated until some stop 
riterion is rea
hed. These �nal leaf nodes are 
lassi�edduring the training as signal (yBDT = 1) or ba
kground (yBDT = −1) depending on themajority of test events from the signal or ba
kground sample whi
h end up in this leaf.In the ideal 
ase this allows to separate the phase spa
e of the input variables into regionsof signal and ba
kground events. In 
ontrast to 
ut-based methods the de
ision tree isable to split the phase spa
e into a large number of hyper
ubes, ea
h of them is assignedto 
onsist of either signal or ba
kground events.The assignment of the estimating variables to the bran
hes is implemented in a mannersu
h that at a spe
i�
 node the estimator with the best separation power between signaland ba
kground at this point is inserted. This means that every splitting 
riterion isbased on a single variable. This assignment is done during the training starting with theroot node. Therefore the de
ision tree "grows" during the training phase.The last step is the pruning of the de
ision tree. The tree is 
ut ba
k from the bottomup after it has rea
hed its maximum size. In this pro
ess statisti
ally insigni�
ant partsof the tree are removed whi
h redu
es 
omputation time and the overtraining.In this thesis an extension to the presented de
ision tree is used: a Boosted De
isionTree [23℄. Several de
ision trees (a forest) are derived from the same sample. The same
lassi�er is trained several times using a su

essively reweighted training event sample.This trees then are 
ombined to form a single 
lassi�er, a boosted de
ision tree. The
lassi�er is given by a (weighted) majority vote of the individual de
ision trees. Boost-ing in
reases the statisti
al stability of the 
lassi�er with respe
t to �u
tuations in thetraining sample and typi
ally also improves the separation performan
e 
ompared to asingle de
ision tree.The boosting algorithm used for this analysis allo
ates every event that is mis
lassi�edduring the training a higher weight for the training of the following tree, starting withthe original event weights. This boost weight α is derived from the mis
lassi�
ation rate
err of the previous tree,

α =
1 − err

err
.The resulting event 
lassi�
ation for the boosted de
ision trees is given by 79
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Figure 7.2: S
hemati
 view of a de
ision tree. Starting from the root node, a sequen
eof binary splits using the dis
riminating variables xi, xj and xk is performed. Ea
hsplit uses the variable that at this node gives the best separation between signal andba
kground when being 
ut on. The same variable may thus be used at several nodes,while others might not be used at all. The leaf nodes at the bottom end of the treeare labeled "S" for signal and "B" for ba
kground depending on the majority of eventsthat end up in the respe
tive nodes. Adapted from [23℄.
yBDT(~x) =

∑

i∈forest ln (αi) ·hi (~x) ,where the sum is over all individual trees hi(~x) in the forest and ~x being the tuple ofinput variables. Small (large) values for yBDT indi
ate a ba
kground-like (signal-like)event, sin
e an individual tree is en
oded for signal and ba
kground as h(~x) = +1 and
−1 respe
tively.The output format of the analysis by TMVA allows to in
lude the trained dis
rimina-tor in the software environment H1OO of the H1 experiment. Due to the large trainingsamples the default 
on�guration for boosted de
ision trees produ
es too extensive 
odeto be dire
tly implemented into H1OO (about 7 MB of C 
ode). Therefore the trainingof the boosted de
ision tree has to be tuned. The dis
ussions with the developers ofTMVA pointed out the ne
essary options to be optimised. After 
omprehensive tests theoutput of the training is suitable to be in
luded in programs in the H1OO environment.A �rst appli
ation of this ele
tron �nder is presented in 
hapter 8.
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7.2. Results7.2 ResultsIn this se
tion the results of the multivariate analysis using the TMVA toolkit are pre-sented and dis
ussed. The input variables for the training of the 
lassi�ers are theestimators introdu
ed in se
tion 6.1 and 6.3. The training of the dis
riminators is donetwi
e: One training is done with the information of dE/dx and one without, as theinformation of dE/dx is not present in Monte Carlo simulations. At the end the resultsof the training using the Monte Carlo samples are shown.As mentioned in se
tion 6.3 and 6.4 for a proper 
omparison the kinemati
 variables ofthe signal and ba
kground samples have to be adapted. Therefore a reweighting of theestimators for ele
trons and pions in the polar angle θ and in the transversal momentum
pt is done. For the training of the dis
riminators the same samples are used as for theanalysis of the separation power of the di�erent estimators, dis
ussed in se
tion 6.3 (see�gures 6.14 and 6.15).The following list 
ontains all the variables that are given to the training of the dis-
riminators as input quantities:

• Eelmag(
alo)
p(tra
k) ; Ele
tromagneti
 LAr energy divided by the momentum of the tra
k

• Einner(
alo)
Eouter(
alo) ; Ratio of the ele
tromagneti
 LAr energy in a smaller 
ylinder and awider 
ylinder

• Srad =
∑
ells √E
ell · dist2

P
ells √E
ell (
alo); Measure for the lateral shower distribution
• Slen =

∑
ells Layer ·E
ell
P
ells E
ell (
alo); Measure for the shower length

• dEdx (tra
k) (only for the �rst training); Spe
i�
 energy loss in the tra
king 
hamber
• Eelmag (
alo); Ele
tromagneti
 energy measured in the LAr 
alorimeter
• Ehad (
alo); Hadroni
 energy measured in the LAr 
alorimeter
• θ (tra
k); Polar angle of the tra
k
• pt (tra
k); Transversal momentum of the tra
k.
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Chapter 7. Multivariate AnalysisThe distributions of the transversal momentum pt for ele
trons and pions allow toapply a presele
tion 
ut (pt > 0.5 GeV) sin
e there are no ele
trons in the sample withsu
h a low transversal momentum. This presele
tion 
ut is applied before the 
lassi�ersare trained.Correlations of the EstimatorsThe dis
rimination power between signal and ba
kground depends on the quality of theused input variables. The separation power of ea
h estimator is important but also the
orrelations between the spe
i�
 estimators have impa
t on the dis
rimination. If twoused variables are highly 
orrelated no additional information 
an be extra
ted. There-fore it is not expedient to use both variables. On the other hand if all the variables arenot 
orrelated to ea
h other, a simple 
ut based dis
rimination 
an be applied. Thesedependen
es 
an be visualised using the 
orrelation matrix of the input variables. Ahigh absolute value of a matrix entry means a strong 
orrelation between the two spe
i�
variables. The 
orrelation 
oe�
ients are given in per
ent. The 
orrelation matri
es forsignal (ele
tron) and ba
kground (pion) are shown in �gures 7.3 and 7.4.

Figure 7.3: Correlation matrix for the estimating variables of the signal (ele
tron)sample.
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7.2. Results

Figure 7.4: Correlation matrix for the estimating variables of the ba
kground (pion)sample.
A perfe
t 
orrelation matrix of estimators would be diagonal. This means that no vari-able depends on another and all the information given by the estimators 
an be used tofull 
apa
ity. A nearly ideal behaviour with respe
t to the other variables 
an be seen forthe spe
i�
 energy loss dE/dx. The 
orrelation 
oe�
ients for this estimator are alwayslow and therefore its information is 
omplementary to that of the other estimators.There are some o�diagonal elements with signi�
antly high 
orrelation values. It istherefore probable that not mu
h information would be lost with less variables. In thefollowing some 
orrelations between spe
i�
 variables are dis
ussed. The 
orrelation be-tween Srad and Slen is expe
ted as the length of a parti
le shower is always 
orrelated toits lateral distribution via the energy. The dependen
e between Eelmag and Eelmag

p followsdire
tly from the de�nition. The same applies for Eelmag and Einner
Eouter . The momentumof an ele
tron or a pion is always related to the energy of the parti
le, therefore the
orrelation 
oe�
ient for Eelmag and pt is not small.The di�eren
e between the 
orrelation matrix for signal and ba
kground is not big. Al-though one 
an see some di�eren
es. For instan
e the 
orrelation between Ehad (Eelmag)and pt is bigger (smaller) for the ba
kground sample. This is the expe
ted behaviourfor pions, as the momentum p is 
orrelated to the total energy (Ehad + Eelmag) and forele
trons Ehad ∼ 0.
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Chapter 7. Multivariate AnalysisTraining with dE/dxThe separation power of the 
ombined estimators 
an be rated a

ording to the trained
lassi�er. The resulting distributions of the dis
riminators MLP, BDT, Likelihood andRule�t are shown in �gures 7.5 and 7.6.

Figure 7.5: Distributions of the trained dis
riminators in
luding dE/dx in the set ofinput variables. Left: MLP, right: BDT.

Figure 7.6: Distributions of of the trained dis
riminators in
luding dE/dx in the setof input variables. Left: Likelihood, right: RuleFit.Both dis
riminators in �gure 7.5 give good results, meaning a 
lear separation betweenthe distribution for signal and ba
kground events. Noti
eable is the small overlap of thesignal and the ba
kground histograms in 
ase of the BDT and the nonexisting overlap in
ase of the MLP 
lassi�er already for rather small values of the dis
riminator.The dis
riminator trained by the Likelihood method shows a good separation. The disad-vantage is the probability of misidenti�
ation (signal entries at the very left (ba
kgroundlike) and ba
kground entries at the right end of the s
ale (signal like)). The overlap for84



7.2. Resultsthe RuleFit 
lassi�er is worse but it is possible to get a 
leaner sample 
ompared to theLikelihood 
lassi�er by loosing e�
ien
y.The performan
e of the di�erent 
lassi�ers 
an be summarised in a plot where theba
kground reje
tion is plotted versus the signal e�
ien
y. This is shown in �gure 7.7for �ve methods. In this �gure the dis
riminators 
an dire
tly be 
ompared to ea
h other.

Figure 7.7: Ba
kground reje
tion versus signal e�
ien
y obtained for the various
lassi�ers after evaluating the events from the data samples sele
ted for testing.The boosted de
ision tree gives 
learly the best result for this appli
ation. The ba
k-ground reje
tion is better than for any other 
lassi�er independent of the signal e�
ien
y.It 
an be used for appli
ations where the purity is important but also for studies wherethe e�
ien
y is more fundamental. The disadvantage is the large output and the 
orre-sponding problems for the further usage of the 
ode (see end of se
tion 7.1.2).The ba
kground reje
tion of the multilayer per
eptron is 
ompareable to that of theBDT, ex
ept that it drops steeper towards high e�
ien
ies.The 
omparison of the 
urves for the Likelihood and the RuleFit methods shows againthe better ba
kground reje
tion of RuleFit in the region where the e�
ien
y is belowabout 95 %.In general a high ba
kground reje
tion 
an be a
hieved at a low 
ost of e�
ien
y.A more detailed analysis of the dis
riminating 
lassi�ers 
an be made by means of the
orresponding 
ut e�
ien
y graphs. There the run of the 
urves for signal and ba
k-ground e�
ien
y as well as for the purity is shown. The number of events for signal and85



Chapter 7. Multivariate Analysisba
kground is normalised for this �gures. The quantity Q = P · ǫ, where P is the signalpurity and ǫ the signal e�
ien
y is an indi
ator for the quality of the 
ut value on thedis
riminator. For the boosted de
ision tree and the multilayer per
eptron the 
urvesare shown in �gures 7.8 and 7.9. Figure 7.10 shows the 
ut e�
ien
ies for the Likelihoodand RuleFit methods.

Figure 7.8: Cut e�
ien
y plot for the BDT 
lassi�er. The signal and ba
kgrounde�
ien
ies are shown versus the 
ut values of the dis
riminator as well as the signalpurity.These �gures are helpful to sele
t a working point for a given analysis. They allow to
hoose a suitable 
utting point on the dis
riminator for the spe
i�
 needs. The expe
tedamount of ba
kground 
an be weighed up against the a
hievable signal e�
ien
y.The signal e�
ien
y and the signal purity 
urves of the BDT 
lassi�er show possible
ut values for nearly optimal e�
ien
y or purity. The run of the 
urve for the quality
Q = P · ǫ shows a maximum value for a single 
ut value. For the MLP dis
riminator asteep de
rease of the ba
kground e�
ien
y and a �at distribution of Q is visible. Thisshows that a looser 
ut on the dis
riminator de
reases the signal e�
ien
y whithout in-
reasing the purity mu
h.The quality Q of the Likelihood 
lassi�er shows a �at distribution allowing a low 
utvalue. Compared to the BDT and MLP methods the quality and the signal purity donot rea
h the same high values. The RuleFit algorithm shows similar 
urve shapes 
om-pared to the BDT 
lassi�er. This re�e
ts the similarity of the underlying algorithms.But the e�
ien
y is lower in general.
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7.2. Results

Figure 7.9: Cut e�
ien
y plot for the MLP 
lassi�er. The signal and ba
kgrounde�
ien
ies are shown versus the 
ut values of the dis
riminator as well as the signalpurity.

Figure 7.10: Cut e�
ien
y plot for the Likelihood (left) and the RuleFit (right)
lassi�ers. The signal and ba
kground e�
ien
ies are shown versus the 
ut values ofthe dis
riminator as well as the signal purity.
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Chapter 7. Multivariate AnalysisTraining without dE/dxThe whole pro
ess of training, testing and performan
e evaluation is done a se
ond timefor the same samples. The information about the spe
i�
 energy loss dE/dx from theCJC is not given to the training as an input variable. At this time the information ofdE/dx is not present in the Monte Carlo simulations. Therefore without this estimatorone has the opportunity to 
ompare the results of the multivariate analysis from the datasample with those of the training with the Monte Carlo samples.A se
ond reason for this step is the fa
t, that the information of dE/dx has already beenused to sele
t the data for the training samples. By using the spe
i�
 energy loss ofthe parti
les a bias might be introdu
ed. A way to avoid this bias would be to train adis
riminator without the information of dE/dx on the present data samples. With this�nder one 
ould sele
t new samples and then train a new dis
riminator with dE/dx asan estimator.In the following the results for this training pro
ess are presented. Figures 7.11 and 7.12illustrate the distribution of the trained 
lassi�ers.The 
orresponding 
orrelation 
oe�
ients are identi
al to them in �gures 7.3 and 7.4resulting from the �rst training using dE/dx.

Figure 7.11: Distributions of the trained dis
riminators without dE/dx. Left: MLP,right: BDT.
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7.2. Results

Figure 7.12: Distributions of of the trained dis
riminators without dE/dx. Left:Likelihood, right: RuleFit.Compared to the distributions obtained from the �rst training using the informationof dE/dx, the separation between the signal and ba
kground histograms is 
onsiderablyworse. The overlap is in general more pronoun
ed and the probability of misidenti�
ationhas in
reased. Although with the MLP and the BDT dis
riminators it is still possibleto get a pure sample, but with 
learly de
reased e�
ien
y. The advantages of the MLPand BDT methods are more obvious than in 
ase of the �rst training.The 
omparison between the performan
e of the dis
riminators without the use ofdE/dx is shown in �gure 7.13. The de
rease in e�
ien
y and ba
kground reje
tion 
om-pared to the 
urves from the �rst training is visible.
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Chapter 7. Multivariate Analysis

Figure 7.13: Ba
kground reje
tion versus signal e�
ien
y obtained for the various
lassi�ers without the information of dE/dx after evaluating the test samples. To
ompare the results with the previous training, the same s
ale is shown as in �gure 7.7.

Figure 7.14: Unzoomed version of Ba
kground reje
tion versus signal e�
ien
y ob-tained for the various 
lassi�ers without the information of dE/dx after evaluating thetest samples.
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7.2. ResultsThe 
ut e�
ien
y graphs for the training without the spe
i�
 energy loss of a parti
lein material are shown in �gures 7.15 and 7.16.

Figure 7.15: Cut e�
ien
y plot for the BDT (left) and the MLP (right) 
lassi�er. Thesignal and ba
kground e�
ien
ies are shown versus the 
ut values of the dis
riminatoras well as the signal purity.

Figure 7.16: Cut e�
ien
y plot for the Likelihood (left) and the RuleFit (right)
lassi�ers. The signal and ba
kground e�
ien
ies are shown versus the 
ut values ofthe dis
riminator as well as the signal purity.The e�
ien
ies and therefore the quality measure are lower for all dis
riminators 
om-pared to the results from the previous training.This 
omparison of the two di�erent trainings shows the importan
e of the estimatordes
ribing the spe
i�
 energy loss of parti
les in order to get a 
lear separation betweenthe signal from the ele
trons and from the pions.
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Chapter 7. Multivariate AnalysisTraining using the Monte Carlo samplesIn the following paragraphs the out
ome of the multivariate analysis of the 
hosen esti-mators using the signal and ba
kground samples generated by Monte Carlo simulationis given. The spe
i�
 energy loss in material 
an not be used for this training, as dE/dxis not implemented in the available Monte Carlo programs. Therefore the results 
an be
ompared to the training dis
ussed before (Training without dE/dx).Figures 7.17 and 7.18 show the 
orrelation 
oe�
ients of the input variables for thesamples generated by Monte Carlo simulation.

Figure 7.17: Correlation matrix for the estimating variables of the Monte Carlo signal(ele
tron) sample.

92



7.2. Results

Figure 7.18: Correlation matrix for the estimating variables of the Monte Carlo ba
k-ground (pion) sample.The 
orrelation 
oe�
ients of the input variables for the training of the simulateddata samples show the same tenden
ies as 
an be seen for the data samples (�gures 7.3and 7.4). In general the 
orrelation 
oe�
ients are slightly higher or nearly equal forthe Monte Carlo samples 
ompared to the data, ex
ept for the 
orrelation between thetransversal momentum pt and the ele
tromagneti
 energy Eelmag.The resulting distributions of the dis
riminators MLP and BDT for the Monte Carlosimulated samples are shown in �gure 7.19.
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Chapter 7. Multivariate Analysis

Figure 7.19: Distributions of the trained dis
riminators for the samples generated byMonte Carlo simulation. Left: MLP, right: BDT.Although the agreement of the estimators between data and Monte Carlo simulationis good (se
tion 6.4), the result of the multivariate analysis for the MLP and the BDT
lassi�er using the Monte Carlo samples di�ers from that of the training using the datasamples.The overlap of the signal and ba
kground distributions for both 
lassi�ers is signi�
antlyhigher for the Monte Carlo samples 
ompared to the training using the data samples.The amount of signal like (MLP > 0.5) ba
kground events for the Monte Carlo samplesis 
onsiderable. For the data sample no su
h events are visible. The distributions of theBDT 
lassi�er for data and Monte Carlo only di�er signi�
antly in the region aroundBDT ≈ 0. The peak in the Monte Carlo distribution is very pronoun
ed 
ompared tothe data distribution.These di�eren
es in the distributions are not understood yet.Figure 7.20 shows the ba
kground reje
tion versus the identi�
ation e�
ien
y resultingfrom the training of the Monte Carlo samples.Although the separation between signal and ba
kground events in the distribution ofthe trained 
lassi�ers is worse for Monte Carlo simulation the resulting signal e�
ien
yand ba
kground reje
tion seems to be better than for the data samples. The run of the
urves are 
omparable but the Monte Carlo 
urve lies above the data 
urve.This result is not 
omprehensible at the moment.The 
ut e�
ien
y graphs of the MLP and BDT 
lassi�ers for the training using theMonte Carlo samples are shown in �gure 7.21.
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7.2. Results

Figure 7.20: Ba
kground reje
tion versus signal e�
ien
y obtained for the various
lassi�ers trained on the Monte Carlo samples.

Figure 7.21: Cut e�
ien
y plot for the BDT (left) and the MLP (right) 
lassi�er. Thesignal and ba
kground e�
ien
ies are shown versus the 
ut values of the dis
riminatoras well as the signal purity.
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Chapter 8First Appli
ation of the FinderIl n'est pas 
ertain que tout soit in
ertain.Blaise Pas
al
The intention of this diploma thesis is to develop an algorithm to identify ele
trons atlow energy in data measured by the H1 dete
tor. The identi�
ation is based on informa-tion 
olle
ted by the tra
king dete
tor and the liquid argon 
alorimeter (see se
tion 3.2).This information is used to de�ne estimators whi
h show di�erent distributions for signalor ba
kground like tra
ks. These variables are evaluated and analysed using data andMonte Carlo samples (
hapter 6). A dis
riminating variable is trained by means of asoftware toolkit (TMVA), whi
h allows to set a working point for the ele
tron identi�
a-tion a

ording to the spe
i�
 needs for an analysis (
hapter 7).In this 
hapter a �rst appli
ation of the developed ele
tron �nder is presented and theresult is 
ompared to that of another �nder.8.1 Inelasti
 Produ
tion of J/ψ Ve
tor MesonsIn order to test a newly developed ele
tron �nder a suitable pro
ess to analyse is 
hosen.An interesting pro
ess for this purpose are inelasti
ally produ
ed J/ψ mesons, where theregime of photo-produ
tion (low Q2) is 
hosen. The reasons for this 
hoi
e are the 
learsignal of the peak, the similarity of the pro
ess to the de
ay b → eX and the fa
t thatthis pro
ess is 
hallenging and di�
ult.In 
ontrast to the data sele
tion for the signal sample this time the inelasti
 pro
essis 
hosen. In the elasti
 pro
ess two isolated tra
ks are involved whi
h improves theidenti�
ation probability. As the number of tra
ks in an inelasti
 pro
ess is larger thisappli
ation is more demanding to a �nder.The identi�
ation of the de
ay ele
trons of the inelasti
 J/ψ mesons is performed fortwo 
lassi�ers. The methods of boosted de
ision trees and multilayer per
eptrons are97



Chapter 8. First Appli
ation of the Finder
hosen, as they give the best results and have been dis
ussed in more details in this the-sis. These results are followed by those of the KALEP [2℄ �nder as a 
omparison to theexisting methods of ele
tron identi�
ation. The implementation of this study on inelasti

J/ψ and the �gures presented in the following se
tions are 
onstituents of a PhD thesisanalysing B-physi
s [24℄. This analysis studies the de
ay 
hain ep → bb̄X → e+e−X ′ inthe H1 experiment at HERA. The re
onstru
tion of an invariant mass peak mee is a testfor the operational reliability of the ele
tron identi�
ation implemented in this thesis.Another reason for this test is the fa
t, that the events of J/ψ de
ays are ba
kgroundevents in a beauty analysis. This is illustrated for instan
e in a paper of the ZEUS 
ollab-oration about the measurement of beauty produ
tion from dimuon events at HERA [25℄.The invariant mass distribution and the breakdown into the expe
ted 
ontributions fromdi�erent pro
esses is shown in �gure 8.1.

Figure 8.1: Dimuon mass distribution of unlike sign dimuon pairs in separated lowand high mass regions and the breakdown into the expe
ted 
ontributions from di�erentpro
esses [25℄.The following paragraphs show the distributions of the re
onstru
ted invariant mass
mee with di�erent requirements on the dis
riminator and other used quantities. The useddata was taken during the high energy run in 2007 while the new ele
tron trigger [1℄ wasa
tive. The trigger and vertex requirements are shown in table 8.1. No further tra
kquality requirements are applied to the starting sample.8.1.1 Boosted De
ision TreeFigure 8.2 shows the distributions of the re
onstru
ted invariant mass for the identi�edele
trons for two di�erent threshold values of the BDT dis
riminator. The event sele
tionis done by requiring two leptons.
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8.1. Inelasti
 Produ
tion of J/ψ Ve
tor MesonsTrigger Transversal momentum Number of ele
tron 
andidatesS29 pet > 1.5 GeV 1 (single tag)S32 pet > 1.2 GeV 2 (double tag)S34 pet > 2 GeV 1 (single tag)Vertex requirement
|zvertex| < 35 cmTable 8.1: Requirements on the ele
tron trigger for the study of inelasti
 J/ψ events.

Figure 8.2: Distributions of the re
onstru
ted invariant mass of inelasti
 J/ψ mesonsin dilepton events for two threshold values of the BDT 
lassi�er. Left: BDT > 0.15,right: BDT > 0.3 [24℄.Both distributions of the re
onstru
ted invariant mass show a 
lear peak above 3 GeVwithout any further requirements on the tra
ks. A threshold value of 0.3 of the BDT
lassi�er leads to a redu
tion of the ba
kground and underlines the peak stru
ture.The sele
tion 
riteria for the 
hosen events are further improved by applying 
uts ondi�erent quantities, motivated by a preliminary of the H1 
ollaboration about inelasti

J/ψ produ
tion at HERA [26℄ (see also se
tion 8.1.4). The �rst kinemati
 variable isthe fra
tional energy of the J/ψ meson. It is de�ned by z = (pψ · p) / (q · p), where pψdenotes the J/ψ-, p the proton- and q the virtual photon four-momentum. The fra
tional
J/ψ energy is bounded by 0.3 < z < 0.9. The transversal momentum squared of the
J/ψ meson p2

t has to be above a threshold of p2
t > 1 GeV2, respe
tively p∗2t > 1 GeV2for the transversal momentum squared of the J/ψ in the γ∗p 
enter-of-mass frame. Afurther requirement is that the 
harges of the two leptons have opposite signs (c1 · c2 < 0).Two more 
uts are applied in order to improve the peak stru
ture. The used quantitiesdes
ribe the event properties. The 
entre of mass energy of the photon-proton system hasto be in the interval 50 < Wγp < 225 GeV and the restri
tion on the tra
k multipli
ity99



Chapter 8. First Appli
ation of the Finderis done by requiring at least four tra
ks (ntra
k ≥ 4).The improvements of these 
uts 
an be seen in �gure 8.3.

Figure 8.3: Distribution of the re
onstru
ted invariant mass of inelasti
 J/ψ mesonsin dilepton events with 
uts on tra
king and event information for a threshold valueof 0.15 of the BDT 
lassi�er: 0.3 < z < 0.9, p2
t > 1 GeV2, p∗2t > 1 GeV2, c1 · c2 < 0,

50 < Wγp < 225 GeV, ntra
k ≥ 4 [24℄.The ratio of signal to ba
kground has improved and the amount of ba
kground is low.Below mee = 3 GeV a slight radiative tail 
an be seen. At about mee = 3.6 GeV a smallpeak is visible originating from the de
ay of ψ′ mesons.The presented presele
tion 
uts in 
ombination with the trained BDT dis
riminator showa 
lear peak of the re
onstru
ted invariant mass for the inelasti
 J/ψ meson in photo-produ
tion.8.1.2 Multilayer Per
eptronThe ele
tron identi�
ation 
an also be done using another 
lassi�er. The out
ome forthe method of multilayer per
eptrons is now presented. The approa
h is the same as forthe boosted de
ision tree dis
riminator. The results are shown in the following �gures.The applied presele
tion 
uts are identi
al to the already presented ones.Figure 8.4 shows the distributions of the re
onstru
ted invariant mass for the MLPdis
riminator. Two di�erent 
uts are applied on the dis
riminator and the event sele
tionis done by requiring two leptons.100



8.1. Inelasti
 Produ
tion of J/ψ Ve
tor Mesons

Figure 8.4: Distributions of the re
onstru
ted invariant mass of inelasti
 J/ψ mesonsin dilepton events for two threshold values of the MLP 
lassi�er. Left: MLP > 0.75,right: MLP > 0.9 [24℄.For both 
ut values the peak is weakly visible although the 
ut values of the dis
rimi-nator are high. Compared to the BDT 
lassi�er the result is 
learly worse.The event sele
tion is improved by applying the same 
uts as for the BDT 
lassi�er.The result for all applied 
uts is shown in �gure 8.5.This distribution of the re
onstru
ted invariant mass shows a 
lear peak above 3 GeV.Moreover the peak of the ele
trons deriving from the ψ′ de
ay is slightly visible. Theapplied 
uts redu
e the ba
kground 
onsiderably and the radiative tail is visible. Thesignal to ba
kground ratio is 
learly worse 
ompared to the result of the BDT 
lassi�erwith a smaller threshold value.The 
omparison of �gures 8.3 and 8.5 shows the advantage of the BDT 
lassi�er andjusti�es its 
hoi
e.
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ation of the Finder

Figure 8.5: Distribution of the re
onstru
ted invariant mass of inelasti
 J/ψ mesonsin dilepton events with 
uts on tra
king and event information for a threshold valueof 0.75 of the MLP 
lassi�er: 0.3 < z < 0.9, p2
t > 1 GeV2, p∗2t > 1 GeV2, c1 · c2 < 0,

50 < Wγp < 225 GeV, ntra
k ≥ 4 [24℄.8.1.3 KALEP FinderIn order to 
ompare the results of the ele
tron �nder developed in this thesis to theexisting ele
tron identi�
ation algorithms, the same pro
edure is done using the KALEP�nder. The applied presele
tion 
uts on the tra
k and event information are identi
al.The presented distributions illustrate the di�erent performan
es of the 
hosen methods.Figure 8.6 shows the re
onstru
ted invariant mass distribution for the KALEP �nderrequiring two ele
trons of the highest quality.The 
hosen presele
tion requiring two KALEP ele
trons of high quality does not reveala peak stru
ture. Further 
uts are ne
essary to redu
e the ba
kground.In order to 
ompare the results of the di�erent ele
tron identi�
ation methods thesame 
uts for the event sele
tion are applied to the KALEP algorithm as presented forthe BDT and MLP 
lassi�er in the previous paragraphs. The resulting distribution ofthe re
onstru
ted invariant mass is presented in �gure 8.7.The invariant mass distribution after applying the additional 
uts shows the peak ofthe J/ψ ve
tor meson slightly above 3 GeV. The amount of ba
kground is 
learly higher
ompared to the previous 
lassi�ers.
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8.1. Inelasti
 Produ
tion of J/ψ Ve
tor Mesons

Figure 8.6: Distributions of the re
onstru
ted invariant mass of inelasti
 J/ψ mesonsin dilepton events for the KALEP �nder. The ele
trons are sele
ted with the highestKALEP quality [24℄.

Figure 8.7: Distribution of the re
onstru
ted invariant mass of inelasti
 J/ψ mesonsin dilepton events with 
uts on tra
king and event information for high quality KALEPele
trons: 0.3 < z < 0.9, p2
t > 1 GeV2, p∗2t > 1 GeV2, c1 · c2 < 0, 50 < Wγp < 225 GeV,

ntra
k ≥ 4 [24℄.
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Chapter 8. First Appli
ation of the FinderRe
apitulatory one 
an say that the performan
e of the ele
tron identi�
ation devel-oped within this thesis is 
onsiderably higher 
ompared to the existing ele
tron �nder.8.1.4 H1 PreliminaryIn springtime of 2007 a H1 preliminary result was released about inelasti
 ele
tropro-du
tion of J/ψ mesons in ep-s
attering at HERA [26℄. In this preliminary, beside otherquantities, the re
onstru
ted invariant mass distribution is studied by identifying ele
-trons in the regime of deep inelasti
 s
attering (DIS). Therefore this is another possibilityto 
ompare the performan
e of the ele
tron �nder presented in this thesis.The invariant mass distribution of the preliminary is shown in �gure 8.8.
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Figure 8.8: Invariant mass spe
trum of two oppositely 
harged ele
trons. All sele
tion
uts are applied: 3.6 < Q2 < 100 GeV2, 0.3 < z < 0.9, 50 < Wγp < 225 GeV, pt,e >
0.8 GeV, p∗t,ψ > 1 GeV. The line shows the result of a �t to signal and ba
kground.
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Chapter 9Summary and Con
lusionsS
ien
e 
annot solve the ultimate mystery of na-ture. And that is be
ause, in the last analysis, weourselves are a part of the mystery that we aretrying to solve.Max Plan
k
An identi�
ation method for low energy ele
trons at the H1 experiment was developedwithin this thesis. The algorithm of this ele
tron �nder uses tra
king and 
alorimeterinformation.The di�erent properties of ele
tromagneti
 and hadroni
 showers in dete
tor materialwere employed to de�ne estimating variables with good separation power between signaland ba
kground. The separation power of the estimators was investigated in measureddata and the des
ription of these variables by the dete
tor simulation was ver�ed.In a multivariate analysis the estimators were 
ombined to train a dis
riminator on signaland ba
kground data samples using di�erent 
lassi�er methods. The performan
e of theused 
lassi�ers was analysed and 
ompared.The resulting ele
tron �nder was implemented in the software environment of H1 andtested on inelasti
 J/ψ-events. The resulting ele
tron identi�
ation was 
ompared toother ele
tron �nders.The 
hosen variables des
ribing the di�erent behaviour of ele
trons 
ompared to pionsin the dete
tor are in good agreement with the predi
tion of Monte Carlo simulations.Moreover the separation power of the estimators is good and the 
orrelation 
oe�
ientsare signi�
antly high only for a few variables.The results from the multivariate analysis show that boosted de
ision trees 
learly arethe best 
lassi�ers for an ele
tron �nder using the estimators based on tra
king and
alorimeter information. A very powerful variable for dis
riminating between ele
tronsand pions is the spe
i�
 energy loss in the tra
king 
hamber dE/dx.The studies of de
ay ele
trons of inelasti
ally produ
ed J/ψ ve
tor mesons and the 
om-parison to an existing ele
tron �nder show the in
rease in the identi�
ation e�
ien
y105



Chapter 9. Summary and Con
lusionsand in the ba
kground reje
tion whi
h has been a
hieved within this thesis.There are however still a few topi
s to be studied in more detail.Some of the deviations between the distributions of the estimators in data and simulationare not fully understood. The e�e
ts for di�erent energies and dete
tor regions 
ould befurther analysed.The usage of dE/dx for the data sele
tion of the training samples and as an estimatingvariable as well 
ould introdu
e a bias. A possible way to investigate this problem is totrain a dis
riminator without using dE/dx as an estimator. In a se
ond step one 
ouldsele
t data samples using this dis
riminator and then train a new dis
riminator on thesesamples now using the information of dE/dx. This would allow to analyse the impa
t ofthe dE/dx-estimator on the dis
riminator used in this thesis.The number of used variables for the training of the dis
riminators 
ould be studiedin more detail. The 
orrelation 
oe�
ients show that the information provided by theestimators is not 
ompletely 
omplementary. A redu
tion in the number of used variablesmight redu
e the 
omplexity of the training at a low 
ost of identi�
ation e�
ien
y. Oneof the following estimators is probably redundant: Eelmag
p , θ, pt and Eelmag. A

ording tothe presented distributions and the 
orrelation 
oe�
ients the absen
e of Eelmag wouldlikely not in�uen
e the resulting 
lassi�er mu
h.Another way to redu
e the number of variables would be to use the polar angle θ andthe transversal momentum pt only for reweighting and not as an estimator. This wouldallow to respe
t the kinemati
 properties without a�e
ting the training.The number of used 
alorimeter variables 
ould be redu
ed by de�ning only one energyvariable E = Ehad

Eelmag+Ehad . This quantity is espe
ially suitable for a multivariate analysisas the 
odomain is de�ned by 0 < E < 1, whi
h improves the performan
e.The separation power of the spe
i�
 variables 
learly di�ers. The estimator with thesmallest separation power and the highest 
orrelation to other variables is probably themeasure for the lateral shower distribution Srad. A further study 
ould show the e�e
ton the training without this estimator.Beside the study of the used estimators the performan
e of the implemented ele
tron�nder 
ould be dis
ussed in more detail. The identi�
ation performan
e 
ould be studiedin dependen
e of the transversal momentum pt and the polar angle θ. It is expe
ted thatthis would show the impa
t of the z-
ra
ks in the 
alorimeter (transition between the
alorimeter wheels) on the e�
ien
y. Moreover it would be interesting to know how theidenti�
ation performes in the forward region of the dete
tor, as the forward tra
ker doesnot provide a dE/dx measurement.The lower boundary for the ele
tron identi�
ation in the transversal momentum pt isanother quantity whi
h 
ould be determined.The algorithm to identify ele
trons implemented within this diploma thesis is beingin
luded in a PhD thesis analysing the de
ay 
hain ep → bb̄X → e+e−X ′ at the H1106



experiment [24℄.Hopefully this work and the impulses given in this outlook may 
ontribute to a su

essfulldevelopment of the PhD thesis.
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