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Populärvetenskaplig Sammanfattning

Makroskopiska objekt beskrivs inom den klassiska fysiken av Newtons mekanik och den
allmänna relativitetsteorin. Bland annat kan läget och rörelsemängden hos objektet bestämmas
exakt i varje ögonblick. Detta är inte fallet för objekt i mikrokosmos där den klassiska
mekaniken inte längre är tillämpbar. De objekt som vi pratar om i mikrokosmos är de
partiklar som bygger upp den materia som vi best̊ar av och som vi ser runt omkring oss.
För att beskriva s̊adana objekt f̊ar man istället tillgripa den relativistiska kvantmekniken,
som emellertid förutsäger att läge och rörelsemängd inte är oberoende av varandra och
bara kan mätas med en noggrannhet som ges av sambandet

∆x · ∆P ≥ h/4π.

Här är ∆P och ∆x osäkerheterna i rörelsemängd respektive läge, samt h ett tal, som
kallas Planks konstant. En liknande relation gäller mellan tid och energi

∆t · ∆E ≥ h/4π,

där ∆t och ∆E är osäkerheterna i dessa observabler. Den senare relationen säger att
energi kan skapas ur vakuum och existera under en tid som motsvarar ∆t, dvs det är
till̊atet att bryta fysikens lagar under detta lilla tidsrum. Partiklar som skapas under dessa
förutsättningar brukar kallas kvantfluktuationer.

All materia är uppbyggd av atomer, som i sin tur best̊ar av protoner, neutroner och
elektroner. Protonen och neutronen ans̊ags länge vara fundamentala best̊andsdelar, men
numera vet man att dessa i sin tur är uppbyggda av kvarkar. Elektronen däremot har liksom
kvarkarna, s̊a vitt vi vet, ingen inre struktur och de kallas därför för punktformiga partiklar.
De fundamentala byggstenar som vi känner till idag är sex olika typer av kvarkar och lika
många leptoner, varav elektronen är en. Byggstenarna h̊alls samman genom inverkan av
naturkrafterna. Inom den gängse teorin, som kallas för Standardmodellen, anses krafterna
verka genom utbyte av s̊a kallade kraftförmedlarpartiklar. S̊aledes h̊alles t.ex. kvarkarna
samman genom den starka kraften som förmedlas av gluoner. Den starka kraften har den
speciella egenskapen att kvarkarna inte kan bryta sig ur den partikel de bygger upp, vilket
har benämnts innestängdhet. Om en kvark ges hög rörelsemängd s̊a att den avlägsnar
sig fr̊an de andra kvarkarna s̊a kommer gluonfältet mellan dem att brytas upp och nya
partiklar best̊aende av kvarkar kommer att bildas. Vid tillräckligt höga rörelsemängder
kommer dessa nybildade partiklar att bilda kollimerade partikelflöden, s.k. partikeljettar.

HERA acceleratorn vid forskningslaboratoriet DESY i Hamburg konstruerades för att
studera egenskaperna hos kvarkarna och gluonerna inuti protonen. Metoden g̊ar ut p̊a att
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2 POPULÄRVETENSKAPLIG SAMMANFATTNING

kollidera elektroner och protoner vid höga energier, vid vilka den punktformiga elektronen
utnyttjas som en sond för att titta in i protonen. Den fysikaliskt riktiga beskrivningen
är att elektronen växelverkar med protonen via ett utbyte av fotoner, som förmedlar den
elektromagnetiska kraften. Den utbytta fotonens v̊aglängd bestämmer hur små strukturer
som kan observeras inuti protonen. Små strukturer i detta sammanhang är ekvivalent med
partoner som bär p̊a små br̊akdelar av protonens rörelsemängd. Ju högre kollisionsenergier
desto mindre strukturer kan observeras. Resultat fr̊an HERA visar att protonen är en
komplicerad soppa av kvarkar och gluoner och tätheten av partonerna blir större d̊a pro-
tonen studeras med allt högre upplösning. Förutom de tre kvarkar (valenskvarkarna) som
ger protonen dess egenskaper, s̊a inneh̊aler den även de gluoner som kontinuerligt utbytes
mellan kvarkarna. Dessutom kan gluonerna fluktuera till kvark-antikvark par, vilka kallas
sjökvarkar. Med högre upplösning hos den utbytta fotonen kommer en större andel av
sjökvarkarna att kunna studeras.

P̊a samma sätt som en gluon spontant kan bilda ett kvark-antikvark par, s̊a kan ocks̊a en
foton spontant bilda ett kvark-antikvark par s̊a att växelverkan under vissa omständigheter
sker mellan en parton i fotonen och en parton i protonen genom gluonutbyte. Eftersom
tätheten av partoner är stor vid höga kollisionsenergier s̊a blir sannolikheten för att flera
partoner växelverkar per kollision hög. Ju högre kollisionsenergier desto mer betydelse-
fulla blir dessa s̊a kallade multipla partonväxelverkningar. En teoretisk beskrivning av
växelverkningsprocesser mellan elektroner och protoner är generellt mycket komplicerad
och blir än mer komplicerad i fallet d̊a man måste ta hänsyn till flera växelverkningar i
samma process. För närvarande är den teoretiska först̊aelsen för dessa processer d̊alig och
därför är det viktigt att experimentalisterna förser teoretikerna med mätresultat som kan
användas för att utveckla bättre modeller.

Denna analys har sökt efter signaler, som kan förväntas i en situation med multipla
växelverkningar. Principen har varit att isolera de slutprodukter i form av partikeljet-
tar, som bildas fr̊an den h̊arda spridningen mellan tv̊a partoner, vilka förväntas kunna
beskrivas med de standardmodeller som utvecklats och finns tillgängliga för jämförelser
mellan experimentella data och teoretiska förutsägelser. Omr̊aden av fasrummet, som inte
antas p̊averkas i n̊agon stor utsträckning av den h̊arda processen har därefter undersökts
med avseende p̊a partikeljettar. Analysen visar p̊a avvikelser mellan det som modellerna
förutsäger och resultaten fr̊an mätningarna, i dessa omr̊ade skulle kunna förklaras med
spridningsprocesserna som omfattar mer än en partonväxelverkan. En definitiv slutsats
ang̊ande ursprunget till de jetaktiviteter som observerats, utöver dem som förväntas fr̊an
den h̊arda processen, är sv̊ar att dra eftersom de existerande modellerna lämnar visst
utrymme för andra tolkningar. Resultaten av analysen ger emellertid värdefull information
som kan användas till att förbättra beskrivningen av dessa komplicerade spridningspro-
cesser och därmed ge en ökad först̊aelse för den grundläggande fysiken bakom multipla
växelverkningar.



Introduction

In the HERA collider at DESY in Hamburg, electrons and protons are collided at high
energies. The electrons are used as pointlike probes to investigate the proton constituents,
the quarks and gluons. The scattering of the electrons against the partons of the proton
proceeds via either electromagnetic or weak interaction through the exchange of virtual
photons or the weak vector bosons, Z0 or W±. Since the partons can not exist as free
particles and can therefore not be measured directly by the experiments, information about
the dynamics of the partons has to be obtained from particle jets produced by the partons
in the scattering process. Quantum Chromo Dynamics (QCD) is the theory of strong
interaction, within which QCD processes are calculated using perturbative expansions in
the coupling constant. Processes, where the exchanged boson is strongly virtual, are called
Deep Inelastic Scattering (DIS), subdivided into neutral and charged current processes
dependent on whether the exchanged boson is neutral or charged. The details of the
proton structure, that can be probed, is related to the resolution power, or equivalently
the four-momentum, of the exchanged boson. At low resolutions only partons carrying a
large fraction of the proton momentum (valence quarks) can be investigated, whereas at
high resolution mainly the sea-quarks are probed. The exchanged photon may fluctuate
into quark-antiquark pairs and under certain kinematic conditions the scattering will take
palce between the partons of the photon and the partons of the proton, similar to hadron-
hadron scattering.

Among the most spectacular early observations at HERA was the strong rise of the
proton structure function, F2(x,Q2), which means that when the proton is probed at high
resolution the density of partons is high and consequently each parton only carries a small
fraction of the proton momentum, x. A class of events with a large rapidity gap close to the
proton direction, produced by diffractive scattering was also observed, constituting about
10% of the total event sample. Since these early observations, the structure function of
the proton has been measured at HERA to high precision in a wide range of the tranfered
momentum squared, Q2, of the exchanged photon and the fractional proton momentum,
x. Also diffractive scattering has been studied extensively.

Although it is possible to describe the F2 data by the exchange of a single gluon ladder,
rapidity gaps can only be produced if the scattering takes place via the exchange of a system
forming a colour singlet state, called the pomeron. Multi-gluon exchange, where a pair of
gluons is the minimum to create a colour singlet, can describe diffractive scattering and
can consequently be regarded as the new definition in QCD of the mysterious pomeron. At
very high parton densities the probability of having more than one interaction per collision,
between the partons of the photon and the proton, becomes significant, which means that
more than one gluon ladder is exchanged in the scattering process, similar to the case
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4 INTRODUCTION

in diffractive processes. Thus, it is reasonble to assume that Multiple Parton Interaction
(MPI) and diffractive processes are related in some way.

Via a QCD reformulation of the so called Abramovasky- Griboov- Kanchelli (AGK)
cutting rules a natural connection between saturation, diffractive processes and MPI is
obtained by performing different cuts through the ladder diagrams in a multi-pomeron
exchange. The contributions from MPI has turned out to be substantial in hadron collision
at the TEVATRON energy scale. At the LHC the scattering will take place at even smaller
x-values, where the parton density is extremely high and thus the influence of MPI will be
even larger. So far MPI is theoretically not well understood and described. One reason is
that existing QCD models rely upon the DGLAP parton evolution, which is not expected to
be valid in the small x region. Another reason is that the exchange of several gluon ladders
makes the description of the scattering process more involved, especially since it contains
several scales. Direct evidence of MPI from HERA has been obtained in photoproduction,
Q2 = 0, whereas the present work is the first study of MPI in DIS. The modelling of MPI
in DIS has the additional complication that not only the PDF of the proton but also of
the photon has to be known, and so far the precision in the measurements of the photon
PDF is not to the same precision as that of the proton.

The strategy of the analysis presented in this thesis is to identify the jet(s) of the hard
scattering and define angular regions in azimuth, which are mainly populated by these.
The regions in azimuth transverse to the hard scattering products are then investigated for
additional jet activities, where the influence of the hard scattering is expected to be small.

The content of the thesis is structured as follows. In Chapter 1 a short description
of QCD is given together with an overview of DIS, phenomenological QCD models and
MPI. The HERA collider and the H1 detector are presented in Chapter 2. The event
reconstruction and the event selection are explained in Chapter 3. In Chapter 4 a new
method for calibrating measurements of jet energies in the region PT < 10 GeV is described
and the results from tests are presented. The physics analysis concerning MPI in DIS is
discussed in Chapter 5 and the results are presented, followed by an interpretation of the
results based on comparisons to various models.



Chapter 1

Theoretical Framework

In this chapter a short introduction to the theory of the strong force, Quantum Chromo
Dynamics (QCD), is given. The perturbative and non-perturbative treatments of the
strong interaction are discussed. Deep Inelastic Scattering (DIS) is introduced and differ-
ent approaches to modeling DIS are presented. Finally, an overview of Multiple Parton
Interaction (MPI) is given.

1.1 Quarks and Gluons

The concept ’atom’, meaning indivisible, was introduced by the Greek in about 400 B.C. as
the smallest constituent of matter. It took until 1897 before J.J. Thompson [1] proved that
atoms are not indivisible by showing that electrons were produced when an electric field
was applied across the electrodes in a cathode ray tube. In 1911 Ernest Rutherford [2, 3]
used α-particles to scatter against a thin gold foil and discovered that essentially the entire
mass of the atom was restricted to a very small volume inside the atom. This discovery
led to the atomic model of Niels Bohr and it was realised that the nucleus of the atom
must contain positively charged particles, protons. In 1932 James Chadwick [4] discovered
a new particle with no charge and with a mass close to the proton mass, the neutron.
The neutron provided the explanation to why, for example, helium is about four times
as heavy as hydrogen and not just twice as heavy, as could be assumed if the nucleus
contained only protons. It was not clear at that time whether the protons and neutrons
are point-like objects or not. During the 1950s and 1960s, a variety of particles, called
hadrons, were discovered in scattering experiments at particle accelerators and they were
initially regarded as fundamental particles. Around 100 new particles were discovered
during that period. This large number was in contradiction to the general belief that
the number of fundamental consituents should be small. With the introduction of quarks
in 1964 by Murray Gell-Manng [5] and George Zweig [6], it was possible to group the
hadrons into multiplets, based on an SU(3) symmetry group, where the members of each
multiplet have similar properties. Three quark flavours, the up-, down- and strange-quarks
(u, d, s), with the electric charges 2/3, -1/3 and -1/3, were initially needed to account for
all hadrons known at that time. The fundamental representation of the special unitary
group SU(3) is thus the u, d, s-quarks or u, d, s-antiquarks, from which the different hadron

5



6 CHAPTER 1. THEORETICAL FRAMEWORK

Figure 1.1: Diagrams showing the self coupling between three and four gluons.

multiplets can be constructed. The hadrons could be subdivided into mesons which were
assumed to consist of a quark-antiquark pair and baryons described as a system of three
quarks. The mesons could thus be assigned to either spin 0 or spin 1 flavour octets, and
the baryons were included into either a spin 1/2 octet or a spin 3/2 decuplet. The quark
content of the proton is uud and of the neutron udd. Since the quarks are fermions (spin
= 1/2) they have to obey the Pauli exclusion principle. However, some of the baryons
like the ∆++ with spin 3/2 have the same spin directions of all three u-quarks and would
violate the exclusion principle. In the middle of 1960s, Oscar W. Greenberg [7], Yoichiro
Nambu [8, 9] and Moo-Young Han [9] proposed that quarks carry an additional degree of
freedom (quantum number), which later was called colour. Three colours, red, green and
blue, had to be introduced in order to circumvent the problem with the Pauli exclusion
principle. The combination of colour-anticolour and three different colours (or anticolours)
both give colour neutral states, which is consistent with the fact that no experimental
evidence of coloured particle states exists.

After the introduction of the quarks extensive effort was invested by the experimental-
ists in finding free quarks, but all attempts were in vain; no free quarks were found and still
have not been found. An experiment at the Stanford Linear Accelerator Centre (SLAC)
in 1968, where electrons were scattered against protons in deep inelastic processes, gave
the first experimental evidence for a proton substructure. The constituents of the proton
were called partons and they were later identified with the quarks. In order to explain
the result from the SLAC experiment Richard P. Feynman, J. Bjorken and E. Paschos
proposed, in 1969, that the electron interacts, via a photon exchange, with one of the three
loosely bound point-like partons. The model was called the Quark Parton Model (QPM).
This model predicted scaling which means that the cross section for scattering against a
point-like object should not depend on the square of the momentum transferred by the
exchanged photon, Q2. As deep inelastic scattering experiments were extended to cover a
larger Q2 range, it was observed that scaling is violated. This scaling violation could be
explained by the existence of the gluon, which is the mediator of the strong force.

The Standard Model (SM) of particle physics is the theoretical framework that de-
scribes three of the four known fundamental interactions between the elementary particles:
the electromagnetic, the weak and the strong forces. Models describing the forces as an
exchange of force mediating particles (bosons) combine quantum mechanics and special rel-
ativity into a quantum field theory. Such theories were developed between 1954 and 1973.
Perturbation calculations of for example a strong interaction process can be performed



1.1. QUARKS AND GLUONS 7

using Feynman diagrams, which describe all possible interactions between quarks and glu-
ons leading to a specific final state, once the initial state has been defined. The Feynman
rules, which have to be applied to such calculations can be derived from a Lagrangian
density, which describes the interaction between coloured spin 1/2 quarks of mass m with
massless spin 1 gluons. The various terms in the Lagrangian can be associated with a set
of propagators and interaction vertices.

The gluons are the quanta of the colour field that binds the quarks together into hadrons.
The exchange of a gluon between two quarks may change the colour of the quarks due to
the fact that the gluons themselves carry a charge of colour-anticolour. Since there are
three colours, the group of colour transformations is represented by an SU(3) symmetry
group, which equivalently to the flavour states of a quark-antiquark pair, would lead to
an octet of colour charge-anticharge combinations, i.e. there are eight gluons with differ-
ent colour-anticolour content. The ninth combination is a colour singlet state which can
not couple to colour charge. The first experimental evidence for the existence of gluons
was presented in 1979 by experiments at the electron-positron collider PETRA [10] at
DESY in Hamburg. By analogy with electromagnetic interactions, described by Quantum
Electrodynamics (QED), where photons are exchanged between particles carrying electric
charge, the strong interaction acts through the exchange of gluons between particles carry-
ing colour charge. Consequently the theory describing the strong force can be constructed
according to the same principles as QED and thus the theory of strong interactions has
been named Quantum Chromo Dynamics (QCD) [11–13]. The fact that the photon has
zero mass means that the electromagnetic interaction has an infinite range, which can eas-
ily be understood from the uncertainty principle of Heisenberg. It is well known that the
strong force has a very short range, of the order of the extension of the nucleon (10−15 m),
in spite of the fact that the gluon is massless. The explanation for the different behaviours
of the two forces is given by the possibility for gluons to interact with (couple to) other
gluons, since they carry coulour charge themselves, whereas photons can not interact with
other photons, since the photon has no electric charge. The interaction between gluons is
illustrated in Figure 1.1. The consequence of the gluon self-coupling is that, in contrast
to the electromagnetic field, the colour field does not spread out in space as the interact-
ing particles are moving apart. Instead it is confined to a colour tube, giving a constant
force between the interacting quarks as they are separated. Thus, the quarks will notice
the strong force at large distances, which prevents them from escaping the nucleon. This
is called confinement. On the other hand, the quarks can essentially be treated as free
particles when they are close together, which is called asymptotic freedom. Since short
distances can be probed at high energies and large distances are probed at lower energies
it has been found that the coupling strength of the strong force decreases with the energy
of the probe.

Although perturbative methods can be used to describe the interactions between quarks
and gluons at small distances, where the quarks can be regarded as free particles and
thus the coupling strength is small, this is not true at the scale of hadrons (∼< 1 GeV),
where the coupling constant, αs, is of the order of unity and perturbative expansions
do not converge. The lattice formulation of QCD provides a non-perturbative tool for
calculating the hadronic spectrum and matrix elements. Lattice QCD has also been used
to demonstrate the confinement of quarks, which can not be understood perturbatively. In
this theory QCD is formulated on a discrete space-time grid , which can be used to perform
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computerized calculations. The only tunable parameters entering into the theory are the
strong coupling constant and the bare quark masses. Detailed predictions of quantities that
depend on the strong coupling constant and the quark masses would then be possible. An
alternative method of treating hadronic interactions at low energies is given by the theory
of chiral perturbation theory, which relies on the symmetries of QCD alone, to construct
an effective field theory. Chiral symmetry is a symmetry of QCD in the limit of vanishing
quark masses. However, in comparison to hadronic scales the masses of the lightest quarks
are small and the chiral symmetry may be considered as an approximate symmetry of
strong interaction. Spontaneous breaking of the chiral symmetry predicts the existence of
massless Goldstone bosons, which can be identified with the lightest pseudoscalar mesons.

1.2 Perturbative QCD

As long as the quarks can be regarded as free particles inside the hadrons, i.e. as long as they
are probed at high enough energies, their interactions can be calculated analytically from
QCD using perturbation theory (pQCD). Experimentally the cross section of a process
with specific initial and final states can be measured, but the experimental information
does not explain how the initial state has been turned into the final state. Theoretically,
Feynman diagrams are used to write down the various possibilities for the two particles
to interact via the exchange of virtual force mediators. The virtual force mediators are
produced in a quantum fluctuation process and exist only for a short period of time,
given by Heisenberg’s uncertainty relation. Numerous diagrams can be drawn, describing
more and more complex possibilities. The most basic diagram is the one with the smallest
number of coupling vertices between the virtual force mediator and the interacting particles.
This is called the lowest order diagram. More complicated diagrams are of higher orders in
the coupling constant. Among the higher order diagrams are some that include quark or
gluon loops as shown in Figure 1.2. In order to get the calculation correct, in principle all
possible diagrams of higher orders have to be taken into account, which will, however, form
an infinite power series in the coupling constant. The amplitudes for the different terms
should be well behaved, which means that they should be non-divergent at high energies
and for high orders in the coupling constant. It turns out that field theories, like QCD,
in fact will contain divergent terms associated with integrals specified by the Feynman
rules for calculating the amplitudes of the intermediate states. However, the masses and
coupling constants that appear in the original Feynman diagrams are the so called ’bare’
masses and coupling constants, which can never be measured. Instead we may use physical
masses and coupling constants, which are the ones that are measurable, and are the same
as the so called renormalized values. These are related to the ’bare’ masses and couplings
by:

mphysical = mo + δm gphysical = g0 + δg

Even if δm and δg are not well behaved it doesn’t matter since they can not be measured
anyhow.
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Figure 1.2: QCD diagrams showing a gluon which fluctuates into a loop containing gluons
and quarks.
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Figure 1.3: The lowest order diagram for quark-antiquark scattering.
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1.2.1 The Strong Coupling Constant and Renormalization

So called ultraviolet divergences appear for example in the amplitude calculation of qq
→ qq scattering, where the lowest order process is described by the Feynman diagram
shown in Figure 1.3. Here Q2 is the four-momentum of the propagating gluon, which
is used as the ’scale’ in the evolution of the strong coupling constant, and in case Q2 is
large enough, αs is small enough so that the perturbation expansion will converge. The
coupling at the vertices of the Feynman diagram is given by the ’bare’ coupling strength,
αs, which however is neither provided by QCD itself nor by measurements, and this is
also true for the ’bare’ mass. The lowest order diagram has two vertices but there are a
number of diagrams in second order which have four vertices. In some of these the gluon
propagator undergoes fluctuations into a quark-antiquark pair or alternatively into two
gluons as illustrated in Figure 1.2. Although the four-momentum has to be conserved at
each vertex, the momentum in the loop itself is unrestricted such that it can take any
value between zero and infinity. Thus, for the calculation of the scattering amplitude, it is
necessary to integrate over all possible momenta of the internal loop. The regularization
and renormalization procedures used to deal with infinities in perturbative calculations,
is discussed in some detail for QED processes by for example [14, 15]. Below only the
major steps are given in the case of QCD, where the essential difference to QED comes
from the gluon self coupling. Only 1-loop contributions, like the ones shown in Figure 1.2,
are considered here. The integral over internal momenta of the gluon propagator can be
written for large Q2:

I(Q2, αs) =
αs

4π
C1

∫

∞

Λ2

dp2

p2
− αs

4π
C1log(

Q2

Λ2
) (1.1)

where C1 is a coefficient. Since the gluons are massless and the quarks are treated as
massless, these loops lead to infrared divergences and consequently a lower cut-off, Λ2, has
to be introduced. The term

∫

dp2/p2 = log p2 in the integral gives rise to logarithmic
divergences (ultraviolet divergences) as the momentum goes to infinity. In order to avoid
this an upper cut M2 is introduced. This is called momentum cut-off regularisation. The
integral becomes:

I(Q2, αs, M) =
αs

4π
C1log(

M2

Λ2
) − αs

4π
C1log(

Q2

Λ2
) =

αs

4π
C1log(

M2

Q2
). (1.2)

In general, each order n of the amplitude of the process qq → qq contains n loops
as illustrated schematically in Figure 1.4. Their contributions are proportional to In =
αs I(Q2, αs,M)n. If |In| < 1 the summation over all orders will converge. The relation
between the physical, αs(Q

2), and ’bare’ couplings including higher orders is given by the
following geometric series:

αs(Q
2) = αs(1 + I(Q2, αs,M) + I(Q2, αs,M)2 + ...) = αs

1

1 − I(Q2, αs,M)
. (1.3)
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Figure 1.4: A schematic illustration of the summation over 1-loop diagrams contributing
to the running of the strong coupling constant.

This relation tells us that the coupling that is experimentally measured depends on the
scale Q2 at which the measurement takes place and is referred to as the ’running’ coupling.
The running coupling describes how the effective coupling depends on the separation be-
tween the two interacting particles. The strong coupling can be calculated at a specific
value of the gluon four-momentum, Q2 = µ2

r, where µr is called the renormalization scale
and is related to the experimental measurement:

αs(µ
2
r) = αs

1

1 − I(µ2
r, αs,M)

. (1.4)

Then, comparing the left hand side of Equations (1.3) and (1.4) and using the calculation
of I(Q2, αs,M) given in Equation (1.2), M2 and αs can be eliminated (renormalized) in
the expression of the strong coupling. The normalized strong coupling constant, in first
order i.e. only including corrections from one-loop diagrams, becomes:

αs(Q
2) =

αs(µ
2
r)

1 + αs(µ2
r)

4π
C1log(Q2

µ2
r
)

. (1.5)

The coefficient C1 can be determined by calculating I(Q2) in QCD. This gives the value
of the coefficient C1 equal to:

11 − 2

3
nf (1.6)

where nf is the number of quark flavours included in the calculation with a mass less than
Q2.

The theory of the strong force must not suffer from divergences caused by the loop
calculations in QCD, since then it can not be used to make predictions. However, since
these infinities can be controlled, by the renormalization procedure, the theory will still
have a predictive power. Nevertheless, there is no reason to believe that QCD will still be
a valid theory of the strong interaction at very high energies, since our ignorance of strong
interaction theory in the physical limits is hidden in the measurable quantities.

The renormalized coupling αs(µ
2
r) depends on the value of the renormalization constant,

which is an arbitrary parameter. Different choices of µr will lead to different expansions of
the amplitude, which corresponds to different renormalization schemes. However, for any
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Figure 1.5: An example of a 2-loop diagram.

theory which is renormalizable a physical observable, R, must not depend on µr, implying
that:

µ2
r

dR

dµ2
r

≡ µ2
r

∂R

∂µ2
r

+ µ2
r

∂αs

∂µ2
r

∂R

∂αs

= 0 . (1.7)

This is true if all diagrams, which contribute to the physical observable, are included in
the calculation of R. The running coupling constant is determined by the renormalization
group equation:

Q2 ∂αs

∂Q2
= β(αs) = −β0α

2
s(1 + β1αs + ...) (1.8)

where the loop diagrams at each order in αs have to be calculated so as to determine:

β0 = (33 − 2nf )/12π

β1 = (153 − 19nf )/2π(33 − 2nf )

... . (1.9)

The second term β1 describes contributions from gluon propagators with 2-loops like
the one shown in Figure 1.5. From Equation (1.5) it can be seen that at large value of Q2

the strong coupling gets small, leading to asymptotic freedom of the partons. This means
that the partons are loosely bound at small distances.

Since αs is increasing with decreasing Q2 the value of the strong coupling constant will
eventually get so large that perturbation technique in QCD cannot be used. This limit, at
which the coupling would no longer converge, is given by the scale ΛQCD. In this limit the
quarks and gluons start forming hadrons. Experimental data suggest a value of ΛQCD ≈
0.200 GeV, which corresponds to about 1 fermi, i.e. the size of light hadrons.

To summarize, it has been shown that loop diagrams lead to divergencies in the cal-
culation of the cross section, which however, can be removed by redefining the coupling
constants and propagator mass in a renormalization procedure. From the renormalization
procedure it becomes clear that the coupling depend on the energy scale at which the
measurement is made. This dependence is given by the renomaliztion group equation. The
different behaviour of the running coupling in QCD compared to QED is due to the gluon
self-interaction.
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Figure 1.6: A schematic illustration of factorization in γp scattering.

1.2.2 Factorization

The predictions of QCD can be tested experimentally by comparing them to results ob-
tained by collider experiments at high energies. In collisions between electrons and pro-
tons, the electron is used as a point-like probe to study the partonic content of the proton.
At not too high energies (below the masses of the weak vector bosons W± and Z0) the
electron-proton interaction is dominated by an exchange of virtual photons. Effectively the
scattering takes place between the virtual photon and one of the partons inside the pro-
ton. Thus, the most basic scattering process is a pure electromagnetic interaction, whereas
higher order processes include strong vertices as well.

The electron-proton cross section can be obtained by convoluting the analytically cal-
culable partonic cross section, σ̂i, with a ”bare” parton density function, f , that provides
the probability of scattering against a parton carrying a certain four-momentum k.

σγp(k, q) =
∑

fi(k) ⊗ σ̂i(k, q, αs) (1.10)

where q is the four-momentum of the exchanged photon. The ”bare” parton density func-
tion can, by analogy with the ”bare” coupling constant αs introduced in section 1.2.1, not
be calculated or measured. The partonic cross section σ̂i of the hard interaction, between
the photon and the parton i, is obtained by summing over all possible final states given by
QED and QCD:

σ̂i = σ̂(γi → i) + σ̂(γi → qq) + σ̂(γi → qg) + σ̂(γi → gqq) + .. . (1.11)

The higher order terms of σ̂i, suffer from logarithmic divergences in various limits
of the particle kinematic phase space. These divergences appear for example when the
transverse momentum of a final state gluon approches zero as its energy becomes very
small (soft divergence) or as it is emitted at very small angles (collinear divergence). As in
the case of the strong coupling where divergences are absorbed into the definition of αs, the
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singular terms in σ̂i can be separated (factorized) and resummed into the parametrization
of the Parton Distribution Functions (PDF). This introduces a new arbitrary scale called
factorization scale, µf . Thus, Equation (1.10) now becomes

σγp(k, q) =
∑

fi(k, µ2
f ) ⊗ σ̂fact

i (k, q, αs, µ
2
f ), (1.12)

where fi(k, µ2
f ) and σ̂fact

i are now the factorized parton distribution function and the fac-
torized partronic cross section, respectively. Although factorization provides a prescription
for handling the logarithmic divergencies, there is an arbitrariness how the finite contribu-
tions should be treated. How much of the finite contribution is factored out depends on the
factorization scheme used. In the DIS scheme all the gluon contributions are included into
the parton distribution, whereas in the MS scheme only the divergent terms are hidden in
the PDF.

There are two main approaches to factorizing DIS cross sections: collinear factorization
and kt-factorization. In the collinear case, (used in the MS and the DIS schemes) the
transverse momenta of the incoming partons involved in the hard interaction are neglected
(collinear with the proton). Collinear factorization works well in a large fraction of the
phase space covered by HERA. As the energy of the probe gets very large, the scattering
mainly takes place against the sea-quarks, which means that essentially the gluon density
is probed. In the region where the partons carry a very small fraction of the proton
momentum, the collinear factorization scheme will no longer reproduce the data, since
the transverse momenta of the partons are no longer small compared to their longitudinal
components. In this region the kt-factorization scheme has to be used, describing the
scattering cross section as a convolution of the kt-dependent partonic cross section, where
the incoming partons are treated off-mass shell, and un-integrated Parton Distribution
Functions (uPDF), where the transverse momenta of the partons are taken into account.

The cross section σγp(k, q) should not depend on the choice of µ2
f , which means that

the product of the partonic cross section and the PDF should be independent of the factor-
ization scale, if all contributing processes are included in the calculations of the partonic
cross section σ̂. Although the PDF’s themselves can not be analytically calculated, the
dependence of the quark and gluon distribution functions on the factorization scale can be
calculated perturbatively. Taking the derivative of Equation (1.12) with respect to µ2

f gives
the µ2

f dependence of fi(k, µ2
f ) as a differential equation, which is known as the DGLAP

equation. In kinematic regions where kt-factorization is valid, the so called BFKL equation
is used to evolve the un-integrated PDF.

Only a few higher order terms in the expression of σ̂i have been calculated analytically
due to the increasing complexity of the calculations. Contributions from the missing higher
orders are included via phenomenological treatment of parton emissions before (initial
state radiation) and after (final state radiation) the hard sub-process. Depending on the
kinematic region the DGLAP and BFKL evolution equations are used to describe initial
and final state radiation, as explained in section 1.4.3. This concept is used in Monte Carlo
generators in order to simulate higher order effects, see section 1.6.
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Figure 1.7: The QCDC diagram indicating the production of collimated flows of hadrons,
jets, along the direction of the partons.

1.3 Non-perturbative QCD

As discussed in the previous section, higher order scattering processes involve the emission
of additional partons, which if they are soft can not be described by the parton evolution
equations. At the end of the parton showering process, the partons will be converted into
hadrons, in a process called hadronization. This process will happen at large distances
between the partons and can also not be described by perturbative calculations. Similar to
the case with PDF’s, into which all non-perturbative contributions are absorbed, fragmen-
tation functions are introduced to describe the probability for a parton to hadronize into
a particular hadron, carrying a certain fraction of the parton’s energy. As in the case of
PDF’s, the parameters of the fragmentation functions have also to be determined through
fits to experimental data. This has been done for an example by comparisons to e+e−-data.

1.3.1 Hadronization

The Lund string fragmentation model and the cluster fragmentation model are widely used
in MC generators to provide the link between the partons (at the parton level) and the
measurable hadrons (at the hadron level). Below, both models are described briefly.

The Lund string fragmentation model

The basic idea of the Lund string fragmentation model [16, 17] is that the colour field,
connecting a quark with an antiquark or a quark with a diquark, is contained in a narrow
colour tube, due to the gluon self-interaction. Mathematically, the colour field is approxi-
mated by a massless relativistic one dimensional string, described by a Coulomb potential
plus a term, which gives a linear increases with the distance r between the partons,

V (r) = −A

r
+ κr.

The constant κ (≈ 1 GeV/fm) is the energy per unit length of the colour tube, called
the string tension. If a quark and an antiquark are forced to move apart, which is what
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Figure 1.8: Illustration of the hadronization process according to the Lund string model.

happens in a scattering experiment, a colour tube is formed as the distance between the
quarks exceeds ≈ 1 GeV−1, and it will be stretched out with time. A qq-pair, which is
produced out of vacuum from a quantum fluctuation process, may tunnel through the
barrier presented by the constant field inside the tube, with a probability given by

exp(−π(m2 + P 2
T )

κ
),

where m is the mass of the quark-pair and PT is the transverse momentum of the quark
and the anti-quark relative to the string. The new qq-pair will be pulled apart by the
field of the original quarks and the field that is built up between them will at some point
cancel the original field in that region, and cause the tube to split up in two parts of lower
energy. If the initial energy in the string is very high a number of new string fragments
will be created. Since the energy of the string is higher at the ends than in the center, due
to the kinetic energy carried by the initial quark and antiquark, the string will primarily
break at the ends and the produced particles will essentially move in the same directions
as the original quark and antiquark, respectively. This gives rise to collimated flows of
particles, called jets. Figure 1.8 illustrates how mesons are produced through consecutive
string breaking.

In case a diquark and an antidiquark is produced as the string breaks, the original
quark will connect to the diquark via one colour string and the original antiquark will be
colour connected to an antidiquark, i.e. a baryon and an antibaryon have been created.
The probability of creating baryons is lower than that of creating mesons due to the higher
masses of the baryons. If the quark or antiquark emits a gluon this will cause a kink
in the colour string, which will gain kinetic energy in the direction of the gluon. In the
hadronization process this leads to an additional jet so that a three jet event will be
observed.

The cluster fragmentation model

The cluster fragmentation model [18] contains two steps. In the first step primary clusters
are created which, in the second step, decay into secondary clusters or directly into hadrons.
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Figure 1.9: Illustration of the hadronization process according to the cluster fragmentation
model.

When the showering process comes to an end (at some scale, typically ≈ 1 GeV) the
quarks are brought to their constituent masses and the gluons are assigned a finite mass.
The creation of colour-singlet clusters is performed through a non-perturbative splitting of
the gluons into quark-antiquark pairs. Neighbouring quarks and antiquarks, not coming
from the same gluon, are then combined into clusters. Large mass clusters may decay
isotropically into secondary clusters, whereas clusters of lower masses decay directly into
hadrons. This hadronization procedure is illustrated for a DIS event in Figure 1.9.

The cluster mass spectrum is universal and follows a steeply falling behavior with
increasing mass. This gives most of the clusters masses of a few GeV, and they are treated
as superpositions of meson resonances. These may decay isotropically, in their rest frames,
into pair of hadrons, with probabilities given by the density of states. Decays into heavier
mesons or baryons are less frequent due to the reduced phase space, in accordance with
experimentally measured multiplicity distributions can be described. It turns out that the
experimentally obtained hadron energy and transverse momentum distributions can be
reproduced quite well without introducing any adjustable fragmentation functions.

1.4 Deep Inelastic Scattering

The dynamics of the partons, confined inside the hadrons, might be explored by using
a probe of sufficiently high energy. There is an obvious advantage if the probe itself
is a particle without any substructure i.e. a point-like particle. Electrons and positrons
have been chosen to probe the partonic structure of the proton in the HERA collider.
Such a scattering process where the electron interacts with the proton via the exchange
of a photon is illustrated in Figure 1.10. If the photon is quasi-real the process is called
photoproduction, whereas virtual photon exchange gives rise to Deep Inelastic Scattering
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(DIS). The resolution power of the probe is given by its wavelength, or equivalently by
the four-momentum. The higher the four-momentum, the smaller the structures can be
resolved. Smaller structures in this context means partons carrying smaller fractions of the
proton momentum. DIS processes can also proceed through weak interactions, but due to
the large masses of the weak vector bosons (Z0 and W±), the photon exchange dominates
at low energies. For the energy range covered in this analysis the contributions from weak
interaction can be neglected.

1.4.1 Event Kinematics and the DIS Cross Section

A schematic diagram of the DIS process ep → eX is shown in Figure 1.10 where the
incoming electron, with a four-momentum k, interacts with the proton, of four-momentum
P , via a photon, carrying a four-momentum q. The final state contains the scattered
electron, having four-momentum k

′

, and a hadronic final state X, of four-momentum W .
The kinematic variables of a DIS event can be defined using the four-momenta of the
incoming particles and the scattered electron. Due to the rotational symmetry of the event
with respect to the incident beam directions, a DIS event can be determined by three
Lorentz invariant variables, which are:

The virtuality of the exchanged photon:

Q2 ≡ −q2 = −(k − k
′

)2,

The Bjorken scaling variable:

xBj ≡
Q2

2P · q , xBj ∈ [0, 1],

The inelasticity:

y ≡ P · q
P · k , y ∈ [0, 1].

Since k and k
′

are time-like the resulting photon four-momenta is space-like, q2 < 0,
and thus Q2 is always positive. The resolution power of the photon by which the proton
is probed, is ∼ 1/

√

Q2. In general the fraction of the longitudinal proton momentum
taken by the parton is denoted x. For the lowest order scattering process the xBj variable
gives the fractional proton momentum carried by the interacting quark i.e. x = xBj. In the
proton rest frame the inelasticity is the energy fraction of the incoming electron transferred
by the photon to the proton. Further, the center-of-mass energy

√
s of the collision is given

by:
s = (P + k)2.

The invariant mass of the hadronic final state X is:

W 2 = (P + q)2.
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Figure 1.10: A generic diagram showing a DIS event. The four-momentum notation of the
involved particles are given in brackets.

At HERA collision energies the proton and the electron masses can be neglected. The
three variables Q2, xBj and y are related by:

Q2 = xBjys ≈ W 2 xBj

(1 − xBj)

and since s is known, only two independent variables are needed to describe the full kine-
matics of a DIS event.

Already before the introduction of the quark-parton model, the one photon approxi-
mation was used to describe deep inelastic scattering. This model took into account that
the proton is not a point-like object and described the cross section as being proportional
to the leptonic and hadronic tensors:

σ ≈ LµνW
µν

Here W µν is an unknown quantity describing the photon proton scattering, which can
be expressed in terms of two scalar structure functions, F1 and F2. A fundamental problem
of the theory is to determine these functions, which at this stage are completely arbitrary
and have to be measured experimentally.

In Section 1.2.2 it was discussed that the cross section of ep → eX processes can be
factorized into two parts, where one is the calculable partonic cross section and the other
the parton density function. The parton density functions have mainly been determined
from measurements of the proton structure functions, which in leading order QCD are
related to the PDF’s. In the quark parton model the inclusive double differential neutral
current electron-proton cross section can be expressed in terms of the structure functions,
F1(xBj, Q

2) and F2(xBj, Q
2) according to:

d2σ

dxBjdQ2
=

4πα2

Q4

[

[1 + (1 − y)2]F1 +
(1 − y)

xBj

(F2 − 2xBjF1)

]

. (1.13)

where α is the fine structure constant.
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Figure 1.11: A lowest order DIS event (a so called QPM event), where the photon interacts
with a parton carrying a longitudinal momentum fraction xBjP .

Due to the fact that the interacting photon in DIS is not real but virtual, in addition
to being transversely polarised it also has a longitudinal component. The longitudinal
structure function is given by FL = F2−2xF1. The structure functions can be expressed in
terms of the cross sections σT and σL, which are related to the coupling with transversely
and longitudinally polarised photons, respectively, such that σγp

tot = σL + σT . At energies
where photon exchange dominates and at small xBj, the cross section is dominated by
contributions from F2, which can be written in the DIS scheme as:

F2(xBj, Q
2) =

Q2

4πα2
(σL + σT ) =

∑

q

e2
q(xBjfq(xBj, Q

2) + xBjf q(xBj, Q
2)) (1.14)

i.e. the sum of the momentum weighted quark and antiquark densities, xBjfq(xBj, Q
2)

and xBjf q(xBj, Q
2), and the electromagnetic couplings to the photon given by the electric

charge of the quarks.

The longitudinal structure function, FL, describes the interaction with longitudinally
polarised photons.

FL(xBj, Q
2) =

Q2

4πα2
σL ∼ xfg(xBj, Q

2) (1.15)

with xfg(xBj, Q
2) being the momentum weighted gluon distribution. At high energies the

contribution from longitudinally polarised photons is normally neglected due to helicity
conservation suppression.

1.4.2 The Quark Parton Model

The Quark Parton Model (QPM) [19, 20] is valid for electron-proton scattering in the
’infinite momentum frame’ (Mp ≪ |P̄ |) where the quarks, confined inside the proton,
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move parallel with the proton direction. A schematic diagram of a QPM event is shown
in Figure 1.11, where the virtual photon interacts with a quark carrying a momentum
fraction x. The quarks not involved in the hard interaction, which constitute the proton
remnant, are also shown. In the QPM process the fractional proton momentum carried by
the scattered quark can be identified with xBj, as was already mentioned.

If the exchanged photon scatters against an object with no extension, like the point-like
quarks in the QPM, then it is expected that the structure functions should not depend on
the momentum (scale) of the probe, since there is no structure to be resolved, i.e. scal-
ing should be valid. In the QPM, interactions of the quarks via gluon exchange are not
considered, which means that the cross section given by Equation (1.13) is reduced to:

d2σ

dxBjdQ2
=

4πα2

Q4xBj

[1 + (1 − y)2]F2(xBj). (1.16)

In Figure 1.12 the structure function F2 is shown as a function of Q2 for different values
of xBj. It can be noted that the structure function is independent of the scale Q2 for xBj

values around 0.13. At low values of xBj, F2 is increasing with increasing Q2, whereas
at high values of xBj, F2 is decreasing with increasing Q2. Thus, experimental data from
HERA clearly demonstrate that scaling is violated. This is related to the QCD structure of
the hadrons. Thus, with high resolution power of the exchanged photon (high Q2) smaller
distances are probed i.e. the sensitivity to partons carrying a small fraction of the proton
momentum (small x) is high, whereas with low resolution of the photon only partons having
a large fraction of the proton momentum (large x) can be probed. Due to the fact that
the structure functions depend on Q2 and the strong coupling, αs, the scaling violation
effect can be used to extract the parton density functions and the strength of the strong
coupling.

At very high parton densities the wave functions of the partons will start to overlap
and cause interference effects, such that the partons interact and recombine, which is called
saturation of the parton density. Such an effect will damp the strong rise of the structure
function at very small x-values. In Figure 1.13 the structure function F2 is shown as a
function of xBj for different values of Q2. The data in the lowest x range are from the H1
experiment at HERA. The strong rise of F2 with decreasing x is clearly seen but there is
no clear evidence for saturation from the F2 data.

1.4.3 QCD in DIS

The Feynman diagram shown in Figure 1.11 corresponds to the lowest order DIS diagram.
This is a pure electromagnetic process and thus of order zero in the strong coupling con-
stant. Processes of higher orders in αs involve the emission of gluons. Each additional
gluon emission or virtual parton loop increases the order in αs by one unit. A virtual
correction to the zeroth order diagram is shown in Figure 1.14a, whereas the scattering
processes of first order in αs are the QCD-Compton (QCDC) and Boson-Gluon Fusion
(BGF) processes, shown in Figure 1.14(b, c). In Figure 1.15 a higher order diagram is
drawn, where the soft parton activities, which can not be perturbatively calculated, are
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Figure 1.12: The proton structure function F2(x,Q2) as a function of Q2 at fixed values of
xBj, obtained from measurements by the H1, BCDMS and NMC experiments [21].
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LO virtual correction(a) (b) QCDC BGF(c)

Figure 1.14: Diagrams showing a) the virtual correction to the lowest order DIS diagram,
b) the QCDC and c) the BGF processes.

hidden in the PDF, represented by the shaded blob. The semi-hard emissions which are in-
dicated in the figure, are treated phenomenologically using the parton evolution equations
and the hard scattering is calculated analytically using matrix elements. There are three
different approaches to perform the parton evolution depending on which kinematic region
is probed. These are the evolution equations of the DGLAP, BFKL and CCFM models.

The DGLAP evolution equation

At Q2, large enough for perturbative calculation too be valid, and for not too small values
of xBj, the DGLAP [23–26] evolution equations can be used to evolve the density function
of quarks, qi(x, µ2), and gluons, g(x, µ2), from the starting scale µo to the scale of the
interaction. The DGLAP equation can be described by the matrix equation:

µ2 ∂

∂µ2

(

qi(x, µ2)

g(x, µ2)

)

=
αs

2π

∑

qj ,qj

∫ 1

x

dx′

x′

(

Pqi,qj
( x

x′
, αs) Pqi,g(

x
x′

, αs)

Pg,qj
( x

x′
, αs) Pg,g(

x
x′

, αs)

) (

qj(x
′, µ2)

g(x′, µ2)

)

.

(1.17)

Here, Pij(z), z = x/x′, are the splitting functions, which describe the probability of
finding a parton of type i with an energy fraction x in a parton of type j with an energy
fraction z. The splitting functions depend on the renormalization and the factorization
scheme (e.g. the MS and DIS schemes). They can be expressed as a perturbative expansion
in the strong coupling constant:

P (z, αs) = P 0(z) +
αs

2π
P (1)(z) +

α2
s

(2π)2
P (2)(z)... . (1.18)

Recently, the splitting functions have been calculated up to order α2
s [27]. In O(α0

s)
processes the splitting functions, P 0

ij, derived from 2 → 2 scattering processes, describe
branchings of the types q → qg, q → gq, g → qq and g → gg, and are given by:
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P 0
qq(z) =

4

3

1 + z2

1 − z
(1.19)

P 0
gq(z) =

4

3

1 + (1 − z)2

z
(1.20)

P 0
qg(z) =

1

2

[

z2 + (1 − z)2
]

(1.21)

P 0
gg(z) = 6

(

z

1 − z
+

1 − z

z

)

+ z(1 − z) (1.22)

where the terms 1/(1 − z) and 1/z are called singular terms, since they give infinite con-
tributions as z → 1 and z → 0, respectively.

As mentioned previously the choice of the scale µ2 is arbitrary. In the Leading Loga-
rithmic Approximation (LLA), only the leading term of the splitting functions, P 0(z), is
taken into account. The DGLAP equation, Equation 1.18, in LLA contains a resummation
over all terms of the type (αsln(µ2/µ2

0))
n, where n denotes the order of the term in the

expansion of the cross section. It can be shown that the leading log terms (αsln(µ2/µ2
0))

n

corresponds to an evolution, in which the parton virtuality is strongly ordered,

Q2 ≫ |k2
n|.. ≫ |k2

i+1| ≫ |k2
i |.. ≫ |k2

0|, (1.23)

where ki is the four-momentum of parton i. Also, the parton momentum fraction has to be
ordered, xi+1 < xi, since momentum conservation has to be fulfilled in each splitting. The
condition k2

t,i = (1 − xi)|k2
i | is fulfilled in each splitting, which leads to a strong ordering

of the transverse momenta of the propagating partons,

Q2 ≫ |k2
t,n|.. ≫ |k2

t,i+1| ≫ |k2
t,i| ≫ |k2

t,0|. (1.24)

Since the virtualities and transverse momenta of all the parton propagators are small
compared to the hard scale, given by Q2, the partons can be treated as massless and as-
sumed to move in the same direction as the incoming proton. Due to the fact that DGLAP
evolution resums (αsln(µ2/µ2

0))
n terms, it will only be valid at large enough values of Q2,

where these terms are dominating. The DGLAP evolution generally gives a good descrip-
tion of data in this region but it should be remembered that higher order contributions
to the splitting functions lead to smaller x values for the partons, which at the end might
spoil the convergence.

The BFKL evolution equation

At high four-momenta of the probe, more of the gluon content in the proton will be resolved.
The sea quarks, which are created from quantum fluctuations of gluons, will carry small
fractions x of the proton momentum. The smaller the x-values that are probed the more
important terms of the type αsln(1/x), in the evolution, become and eventually they will
dominate over the terms αsln(µ2/µ2

0). On entering the small x region, it is thus expected
that the fixed order DGLAP approximation will break down and has to be replaced by
the BFKL evolution scheme [28–30], which resums terms of the type (αsln(1/x))n and
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consequently is only valid at small x. A strong ordering in the longitudinal momentum
fraction of the parton propagators is assumed in this evolution scheme i.e.

x2
o ≫ x2

1.. ≫ x2
i ≫ x2

i+1.. ≫ x2
n ≫ x2

Bj (1.25)

which means that the evolution is made in increasing ln( 1
x
). This implies that the emitted

partons will take a large fraction of the propagator momentum. Since there are no restric-
tions in k2 or k2

t , the virtualities and transverse momenta of the propagators can take any
kinematically allowed value and need not be smaller than the photon virtuality as was the
case in the DGLAP description. Consequently, the collinear approach is no longer applica-
ble and therefore the parton masses and the transverse momenta of the parton propagators
can no longer be neglected. Instead kt-factorization has to be applied. Here the matrix
elements, which are used to calculate the partonic cross section, must be taken off mass
shell, by giving the partons a virtual mass, and un-integrated parton densities have to be
used, in which the transverse momenta of the propagators are taken into account. The
cross section can be written as the convolution of a kt-dependent partonic cross section
and a kt-dependent parton density function:

σ =
∑

i

∫ 1

0

dx

∫

d2kt Fi(x, k2
t , µ

2
f )σ̂i(x, k2

t ). (1.26)

Here Fi(x, k2
t , µ

2
f ) are the Un-integrated Parton Density Functions (UPDF), and σ̂i(x, k2

t )
the off-shell parton cross section. Integrating out the kt dependence of the partons and
neglecting the kt dependence in σ, the UPDF is reduced to the collinear PDF by the
relation:

f(x, µ2
f ) ≃

∫ µ2

f

0

dk
′2
t F(x, k

′2
t , µ2

f ). (1.27)

The BFKL evolution is of the form:

dF(x, k2
T )

d ln( 1
x
)

=

∫

dk
′2
T F(x, k

′2
T )K(k2

T , k
′2
T ), (1.28)

where the function K is the splitting function (also called the BFKL splitting kernel). One
consequence of non ordering in kt of the emitted partons, is the absence of a lower limit
in the transverse momentum which is received by the propagator after each branching and
thus the calculations may enter into non perturbative regions. The cross section (1.26) is
dominated by the gluon distribution at very small x and thus it is a good approximation
to only consider the gluon evolution in Equation (1.28).

The CCFM evolution equation

The CCFM [31–34] evolution equation is valid both at large and small x-values, since
it resums terms of the types (αsln( 1

x
))n and (αsln( 1

1−x
))n. This means that the CCFM

evolution will be DGLAP-like at large x-values and BFKL-like at small values of x. The
CCFM evolution introduces strong angular ordering of the parton emissions, which gives
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Figure 1.16: Parton showering according to the Colour Dipole Model (CDM).

a correct treatment of colour coherence effects [35]. The emission angles, ξ, are increasing
according to:

Ξ ≫ ξn ≫ ..ξi ≫ ξi+1 ≫ ξo (1.29)

where the maximum angle Ξ allowed in the emission is given by the hard scattering quark
box. The original CCFM splitting function is given by:

P̃g(zi, qi, k
2
ti) =

αs(q
2
i (1 − zi)

2)

1 − zi

+
αs(k

2
ti)

zi

∆ns(zi, q
2
i , k

2
ti) (1.30)

were αs = 3αs/π and ∆ns is the non-Sudakov form factor (includes all higher order virtual
corrections to the gluon vertex), zi = xi/xi−1 is the ratio of the energy fractions in the
branching (i− 1) → i, and kti is the transverse momentum of the gluon in the initial state
of the gluon cascade. The rescaled transverse momenta of the emitted gluons, qi, is defined
as:

qi =
pti

1 − zi

= xi−1

√

sξi. (1.31)

1.4.4 The Colour Dipole Model

The DGLAP, BFKL and CCFM parton evolution schemes have in common that the parton
emissions are described by splitting functions. In the Colour Dipole Model (CDM) [36–40]
gluons are emitted from colour dipoles, which are stretched between the emitted partons
in an avalanche process. Dipoles can be stretched between pairs of qq̄, qg and gg, where
the probability for an emission is:
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Figure 1.17: a) The emission of a gluon, which according to the colour string model causes
the original colour dipole between the quark and the antiquark to break up into two secondary
dipoles, stretched between the quark and the gluon and between the antiquark and the gluon.
The phase space for gluon emission is shown in (b), expressed in terms of ln(p2

t ) and η,
i.e. the momentum and rapidity of the gluon, where the gluon is emitted from a dipole of
mass W . The thick line indicates the reduction in phase space due to the extension of the
proton [40].

dσ =
αs

4π
Nc

dP 2
T

P 2
T

dydφ, (1.32)

with y, PT and φ being the rapidity, transverse momentum and the azimuth angle, re-
spectively, of the emitted gluon in the dipole center of mass system. A schematic picture
of a parton cascade from a DIS event as described by the CDM is shown in Figure 1.16.
The first dipole, spanned between the proton remnant and the scattered quark, radiates a
gluon. Two new dipoles are stretched between the emitted gluon and the scattered quark
on one hand , and the proton remnant on the other hand. These dipoles independently
radiate one gluon each. Thereby, four new dipoles are created and so on. This continues
until no dipole gives a transverse momentum above a certain cut-off value, which defines
the point at which the hadronization starts. The independent radiation of the dipoles leads
to non-ordering in the transverse momenta of the parton emissions, similar to the BFKL
evolution scheme.

Figure 1.17 illustrates how the emission of a gluon from the colour dipole, formed by
a quark and an antiquark, causes a kink in the original dipole, which results in two new
dipoles. The available phase space for gluon emissions can be represented by a triangular
area with η, on the horizontal axis and ln p2

t on the vertical axis, where η and pt are the
pseudo rapidity and transverse momentum, respectively, of the emitted gluon in the dipole
center-of-mass system. This is illustrated in Figure 1.17b. For dipoles stretched between
point-like particles the phase space boundaries are given by |η| < ln(W/pt). However, the
proton remnant is an extended object, from which radiation of wavelengths smaller than
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its extension is suppressed. This corresponds to an extra restriction of the phase space,
which is indicated by the thick line in Figure 1.17b.

1.4.5 Fixed Order αs Calculations

QCD predictions in leading order (LO) of some measurable observable normally suffer from
large higher order corrections and scale uncertainties. The corresponding order expressed
in the strong coupling constant is related to the measured observable, such that LO inclu-
sive jet production means O(α0

s), whereas LO dijet production means O(α1
s). Generally

speaking LO is the lowest order on which the observable obtains a non-zero contribution,
and next-to leading order (NLO) is the next higher order in αs. In LO calculations all
higher order contributions are absorbed into the parametrization of the parton density
function. In NLO one additional real or virtual gluon is taken into account and in next-
to-next-to leading order (NNLO) two additional gluons are added. The additional real
gluons in next orders are restricted kinematicly. The more terms that are included into the
perturbative expansion of the parton evolution the smaller the dependence on the choice of
the factorization and renormalization scales will be. However, the degree of complication
in the calculations increases dramatically with each order that is added.

The matrix element calculations diverge if one of the partons produced in the hard
sub-process become either collinear with the incoming or outgoing parton or if they are
soft. However, these divergencies in principle are cancelled by the negative contributions
from the virtual gluon corrections. There are two different techniques to perform the
cancellation of soft and collinear singularities in the computations. One is the so called
phase space slicing method [41,42], in which an invariant mass resolution cut is introduced
to isolate the soft and collinear singularities. The other is the subtraction method [43], in
which the virtual loop corrections are subtracted by defining an approximate cross section
that regularise the real corrections. However, depending on how the physical observable
is defined it might happen that the virtual contributions are still not completely cancelled
since there are not enough soft or collinear emissions included in the calculations due to
kinematic restrictions [44–46]. In order to make a relevant comparison between higher
order calculations and the experimental results, the observables must be either infrared-
safe, i.e. safe with respect to collinear and soft singularity, or kinematic cuts have to be
introduced in order avoid the problematic regions of the phase space.

LO and NLO 2-jet processes

The BGF and QCDC processes, shown in Figure 1.14(b-c), are of order αs with two partons
of high transverse momenta in the final state, which hadronize into two jets. Since the cross
section of these processes depend on both the strong coupling constant and the parton
densities of the proton, they have been used to experimentally measure these quantities.
Since QCDC is dominating in the high xBj-region, where the dependence of the gluon PDF
is small, it has been used to determine αs(µr). The gluon initiated BGF process, on the
other hand, dominates at low xBj and has therefore been measured to directly determine
the gluon density. Due to momentum conservation, the two final state partons of the
QCDC and BGF processes will have equal and opposite momenta. Such a process can be
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d)a) b) c)

Figure 1.18: Diagrams showing NLO contributions to dijet production, where (a− b) show
the real, and (c − d) the virtual emissions.

calculated analytically using so called matrix elements. Calculations to LO order, however,
do not reproduce the experimental data.

The inclusion of NLO corrections, significantly reduces the dependence of the renormal-
ization and factorization scales, present in LO calculations, and much more reliable cross
sections are obtained. However, with the experimental requirement of two back-to-back
jets with equal momenta, the phase space for additional gluon radiation is limited to what
can be allowed within the measuring accuracy. This means that in the symmetric jet situ-
ation the gluon emission will be either very soft or essentially collinear with the outgoing
parton. As was discussed above, such a situation will cause errors in the NLO calcula-
tions due to the effects of infrared divergencies. The insufficient cancellation of soft gluons,
Figure 1.18(a-b), with virtual corrections, Figure 1.18(c-d), will introduce large logarithms
in the cross section calculations, which give the cross section an unphysical behavior. A
reliable perturbative expansion can be obtained if the large logarithms are resummed to
all orders in αs. Such calculations have recently been performed [45]. The alternative is to
introduce experimental cuts like asymmetric jet energies, which opens up the phase space
for additional radiation and makes the dijet cross section infrared stable.

LO and NLO 3-jet processes

The diagrams in Figure 1.19(a-b) would be regarded as NLO corrections to dijet production
in case the emitted gluon is soft enough not to produce a reconstructed jet (compare
Figure 1.18a. However, if the gluon is hard the diagram represents a 3-jet event, which is
of order α2

s in LO. The real and virtual NLO corrections to the BGF and QCDC processes
are shown in Figure 1.19(c-d) and Figure 1.19(e-d), respectively. Also calculations of 3-jet
cross sections encounter problems with singularities due to the emission of soft or collinear
gluons as discussed above.

1.4.6 The photon in DIS

The time taken for the electron and proton to interact in DIS is related to the scale of the
hard sub-process (µ) via the Heisenberg uncertainty principle and is given by τint. ∼ 1/

√

µ2.
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Figure 1.19: Diagrams showing (a − b) the LO 3-jet production, and the the NLO contri-
butions (c − f).

��
��
��
��

��
��
��
��γ    =

Direct

Resolved 

Anomalous VMD

+ +

Figure 1.20: The three quantum states of the photon given by the ’bare’ photon providing
direct interactions, the anomalous contribution where the photon fluctuates into a quark-
antiquark pair, and the VDM (Vector Meson Dominance) contribution where the photon
fluctuates into a bound quark-antiquark state.

If the sea-quark structure of the proton is to be resolved, τint. has to be smaller than the
life time of the parton fluctuation in the proton, 1/Rp ∼ ΛQCD. Similarly, if τint. is smaller

than the lifetime of the photon fluctuation into partons, 1/Rγ ∼ 1/
√

Q2, the photon can
be treated as an object with a hadronic structure. This means that the photon interacts
either as a point-like particle or as a resolved object via its partonic content. The photon
can fluctuate into either a bound qq-state, creating a vector meson, or into a decoupled
quark and antiquark, provided the pt of the partons is large enough. The latter is called the
anomalous contribution (see Figure 1.20). Soft processes like the creation of vector mesons
can not be calculated using pQCD. Instead the Vector Dominance Model (VDM) has been
used to describe how the photon fluctuates into a vector meson (ρ0, ω, φ, J/ψ, ...) before it
interacts with the proton. Contributions of the VMD state are negligible in regions where
Q2 is larger than the vector meson masses (Q2 > 4 GeV2).

A quark (antiquark) produced in the anomalous process can interact either directly
with a gluon from the proton (γ → qq) or it may first emit a gluon (γ → qqg), which
then interacts with a parton from the proton. The partonic processes can be described
perturbatively by calculating the various splittings in the evolution of the partons. The
perturbative calculations have to be complemented by a photon structure function, F γ

2 ,
describing the parton momentum distribution in the photon at the starting scale of the
evolution. Although the photon structure function has been determined to good precision
in photoproduction (Q2 = 0), its dependence on Q2 has not yet been extracted to very
high accuracy. The total cross section is given by the sum of the three contributions:

σtot
γp = σDir

γp + σAnom
γp + σV MD

γp (1.33)
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Figure 1.21: A diagram of higher order, illustrating the interaction between a resolved
photon and the proton, including two DGLAP ladders.

Including the possibility of having interactions with resolved photons the total cross
section has to be factorized into partonic cross sections and structure functions of both the
proton and the photon. The scale dependence of the photon structure functions can, as for
the proton, be described by the DGLAP evolution function in the collinear factorization
approximation. A resolved photon event thus will contain two ladders where one describes
the parton evolution from the photon PDF to the hard scattering scale and the other
describes the evolution from the proton PDF to the hard scattering scale, as illustrated in
Figure 1.21.

The NLO BGF process can be described either as a gluon from the proton, which
after having emitted another gluon, splits up into a quark-antiquark pair and the hard
interaction takes place with a point-like photon, as shown in Figure 1.22a, or alternatively
the photon splits up into a quark-antiquark pair (resolved photon) and the interaction takes
place via a gluon exchange, shown in Figure 1.22b. This means that a fraction of the NLO
corrections in direct processes are naturally included via the resolved contribution. This is
true if the photon virtuality, Q2, is of the same order as the scale of the hard sub-process
µ2 = P 2

T of the hardest parton.

1.5 Multiple Parton Interactions in DIS

Due to the fact that hadrons contain quarks and gluons, collisions between two hadrons
may involve more than one parton interaction. The probability for Multiple Parton In-
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Figure 1.22: Diagrams with a three parton final state, O(α2
s), where a) represents a NLO

2-jet diagram whereas b) represents a LO 2-jet diagram with a photon remnant.

σ

Figure 1.23: An example of multiple parton interaction in ep scattering.
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Figure 1.24: The lowest contributions to the γp elastic scattering.

teractions (MPI) increases with increasing collision energy because of the strongly rising
parton density at low x-values. MPI may also accur in electron-proton collisions. One pos-
sibility is that the exchanged photon fluctuates into a qq-pair and thus interacts through
its hadronic component with the proton. A second contribution may come from gluon ex-
change between the scattered quark and the quarks of the proton remnant (rescattering).
The additional interaction may be hard (can be described by pQCD) or soft (part of non-
perturbative QCD). Figure 1.23 illustrates a scattering process with the exchange of an
additional gluon between the scattered quark and the proton. In the collinear factorization
scheme, with momentum ordered gluon ladders, MPI can be regarded as so-called higher-
twist contributions, which provide power corrections to the structure functions, given by:

F2(x,Q2) =
∞

∑

n=0

F
(n)
2 (x,Q2)

Q2n
, (1.34)

where the superscript n indicates the ’order of the twist’ and thus F
(0)
2 (x,Q2) is the con-

tribution from the lowest order DIS process (the leading-twist diagram).

At small x, higher order twist diagrams may become important due to the large loga-
rithms ln(1/x). According to the so called cutting rules of Abramovasky-Gribov-Kanchelli
(AGK) [47–49], MPI is related to diffraction, i.e. events where the exchanged particle is in
a colour singlet state, and to saturation of the parton density.

There is a general consensus that all final state particles not produced directly by the
hard scattering are included into the so called underlying event (UE). Thus, the UE will
have contributions from initial and final state radiation, from additional soft or semi-hard
parton interactions and from the beam remnant. Experimentally it is far from obvious how
these contributions can be separated and although agreement with Monte Carlo models,
including all contributions, can be obtained, it is not guaranteed that each contribution to
the UE is correctly described by the model.

1.5.1 The Optical Theorem and Regge Theory

A scattering processes can be described as an initial incident state, followed by an inter-
action between the components of the system, resulting in a final scattered state. The
scattering matrix (or S-matrix) describes how the initial state is transformed into the final
state. Conservation of probability in the transformation requires that the scattering matrix
to be unitary. By summing over all intermediate states it can be shown that the imaginary
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part of the forward scattering amplitude is related to the total scattering cross section, via
the optical theorem:

σtot
γp =

1

s
Im[ Aγp→γp(s, t = 0) ] (1.35)

Here, Im[A] is the imaginary part of the amplitude, s and t are the Mandelstam variables
defined as s = (Pγ + Pp)

2 and t = (Pp − P ′
p)

2, where Pγ , Pp and P ′
p are the four-momenta

of the γ, the incoming proton and the scattered proton, respectively. In Figure 1.24 the
lowest order contributions to γp → γp scattering are shown. After the interaction, the
proton remains intact and therefore the exchanged virtual particles are in a colour singlet
state. It can be shown that the total cross section cannot rise faster than ln2(s) at very
large value of s if all contributions to the scattering are summed over.

In a space-like representation, i.e. the exchanged particle is space-like, s is the square of
the center-of-mass energy, whereas t is the squared four-momentum transfer at the proton
vertex. In the crossed diagram, which is the time-like representation, the two variables are
interchanged so that t is the square of the center-of-mass energy, while s is the momentum
transfer squared. The time-like representation of γp → γp scattering, via one particle
exchange, is shown in Figure 1.25. The analytic properties of the S-matrix ensures that
Aγp→γp can be calculated from Aγγ→pp scattering after exchanging s with t. The scattering
process can thus be interpreted in either of two representations, a fact exploited in Regge
theory.

In the Regge theory, formulated long before the introduction of QCD, the exchanged
particles leading to inelastic scattering are identified as mesons, in the time-like represen-
tation. The scattering amplitude is analytically extended to complex angular momenta,
which gives an interpolating function A(l, t). This is reduced to Al(t) for integer values
of the angular momentum and for energies t, which give rise to singularities, poles, in the
scattering matrix. These so called Regge poles can be identified with the exchanged objects
of masses Ml. A sequence of poles with l = L1 at t = t1, l = L2 at t = t2 and so on, are
found to fall on a straight trajectory, called the Regge trajectory, in a representation where
the angular momentum is plotted against t, where t = M2 in the t-channel representation.
Such plots are called Chew-Frautschi plots. The Regge trajectories can be parametrized
as:

α(t) = α(0) + α
′

t, (1.36)

where α(0) is the intercept at t = 0 and α′ is the slope of the trajectory. It can be shown
that the total cross section is proportional to sα(0)−1.

Figure 1.26 shows the Regge trajectories of the pion and of the Reggeon for M2 < 6
GeV2, which fitted to data give α(t) = 0.0 + 0.7t and α(t) = 0.5 + 0.9t, respectively. All
trajectories associated with meson exchange have intercepts smaller than 1 and thus a
decrease of the total cross section is expected as a function of s.

Empirically, the total cross section of a scattering process AB → CD can be described
by:

σ = XABsǫ + Y ABs−η, (1.37)
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Figure 1.25: The t-channel process of the 1-particle exchange of γp → γp scattering.

Figure 1.26: A Chew-Frautschi plot showing Regge trajectories of vector mesons and the
pomeron [50].

where A and B denote the interacting particles and X,Y, ǫ and η are constants extracted
from fits to data. Results from fits to pp, pp̄ and γp scattering data, are all nicely described
by the parametrization of Equation (1.37), as shown in Figure 1.27. It should be noted
that the fit results predict universal values of the fit parameters ǫ and η, independent of
the interacting particle types.

At low center-of-mass energies the s dependence of the cross section is dominated by the
second term in Equation (1.37), with η = 0.4525 from the fits. This value agrees well with
the intercept of the pion trajectory, since sα(0)−1 = s−η gives η = −0.4525 + 1 = 0.5475.

However, in going to higher energies the cross section first reaches a minimum and then
starts rising. In the high energy region the first term of the fit is dominating such that
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Figure 1.27: The total cross section of pp, pp̄ and γp scattering as a function of the center-
of-mass energy. The fits according to σ = XAB ∗sǫ +Y AB ∗s−η are shown and the resulting
parameter values are given [53].

sα(0)−1 = s0.0808 gives an intercept of α(0) = 1 + 0.0808 ≈ 1.1. In order to explain this
behaviour of the total cross section a trajectory with the quantum numbers of vacuum with
the intercept of 1.1 was introduced, called the Pomeron trajectory, which is also indicated
in Figure 1.26. So far no particles belonging to the pomeron trajectories have been found.
It is obvious that single pomeron exchange will cause the cross section to grow faster than
lns2 and thus violate unitarity. However, by introducing multiple gluon exchange this
problem of the model prediction can be solved [51,52].

1.5.2 Diffraction, Saturation and MPI in DIS

Regge theory and the optical theorem provide a powerful tool to understand how the total
cross section of AB → CD scattering can be calculated and interpreted. The Regge theory
is however not applicable to calculate multi-jet cross sections, for which QCD is needed.

From a closer investigation of the multi-pomeron exchange diagram, which contributes
to the total cross section via the optical theorem, final states, f , with specific characteristics
can be identified:

1

s
Im[ Aγp→γp(s, t) ] =

∑

f

∫

dΩf |Aγp→f |2 . (1.38)

In lowest order QCD the pomeron is described as two connected parton ladders, which
can be described by either of the DGLAP, BFKL or CCFM evolution equations depending
on the kinematic region. The specific types of final state f are recognized by applying
different cuts through the exchanged ladders.
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Figure 1.28 shows some amplitude diagrams of single and double ladder exchange. A
cut through the amplitude diagram, as specified by the dashed line in Figure 1.28a, will
split the diagram into a real part (A) and an imaginary part (A∗).

Three different ways of applying cuts to a double gluon ladder exchange are shown in
the Figure 1.28(b-d). From the different possibilities of introducing the AGK cuts through
these amplitude diagrams, different contributions to the imaginary part of the scattering
amplitude can be identified, which through the optical theorem correspond to different
contributions to the total cross section. A cut through either of the two gluon ladders
in Figure 1.28b leads to single gluon exchange with the same final state as the diagram
in Figure 1.28a, but including a higher order correction from the second gluon ladder.
Even if the additional gluon ladder does not effect the final state multiplicity it gives a
negative contribution to the cross section. A cut through two overlapping gluon ladders,
as shown in Figure 1.28c, gives rise to two independent gluon chains, corresponding to
multiple parton interaction. A cut between two separated gluon ladders, as shown in
Figure 1.28d, corresponds to a ladder exchange leading to diffractive scattering (scattering
via an exchange of a colourless object). Thus, multi-ladder exchange provides natural
connections between inclusive scattering, diffractive scattering and multiple interactions
via the QCD reformulation of the AGK cutting rules.

From photoproduction results (Q2 = 0) at HERA evidence for soft and hard MPI [54]
have been reported. The large fraction of diffractive processes also provides a strong
indication of multi-gluon chain exchanges. Such events, which are usually identified by a
large rapidity gap, with no particle activity close to the incoming proton direction, are only
described by models where the interaction involves pomeron and Reggeon exchange. The
structure function F2(x,Q2), for example, has been measured at HERA in the transition
region between the non-perturbative and perturbative domains (Q2 ∼ 1 GeV2) in order
to investigate its x-dependence. According to simple Regge phenomenology a F2(x,Q2) ∼
xλ(Q2) dependence is expected, where λ = αIP (0) − 1 is given by the pomeron intercept.
From the results shown in Figure 1.29, a clear break in a linear dependence is observed
at around Q2 of 1 GeV2, below which the λ-parameter becomes essentially constant at
a level of 0.1. This value is consistent with the intercept αIP (0) = 1.1 of the pomeron
trajectory [55, 56]. Models which are based on multiple gluon ladder exchange, provide a
good description of the cross section dependence at low Q2 and x [57–59]. However, so far
there is no well established model, which can provide a detailed description of MPI in DIS.
There are some calculations [60], which predict that the fraction of events with hard MPI
in the kinematic region covered by HERA is about 14% at Q2 =4 GeV2 and 6% at Q2 =40
GeV2.

Properties of the UE in hadron-hadron collisions have been studied extensively in 1-
and 2-jet events at the Tevatron [62,63]. Global event variables like charged particle multi-
plicity and the scalar sum of the charge particle transverse momenta have been investigated
as a function of the leading jet momentum in angular regions where the jets from the hard
interaction have been excluded. The basic observations are that the average charged par-
ticle multiplicity and the total scalar sum of the transverse momentum grow rapidly with
the leading jet transverse momentum but flattens out above 5 GeV to become independent
of the leading jet transverse momentum above 50 GeV. The corresponding measurements
from minimum bias events (without requiring hard jets) exhibit activities which are twice
as low at the same collision energies. The experimental data have been compared to the
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Figure 1.28: Diagrams showing the exchange of a) single and (b-d) double gluon ladders
in γp scattering. The dashed line illustrates various cuts through the ladders leading to
different final state configurations. The cut in a) gives a single gluon exchange, whereas
the cut in b) corresponds to a higher order single ladder exchange. The cut in c) repre-
sents multiple parton interaction and d) gives an exchange of a colourless object leading to
diffraction.
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Figure 1.29: The slope (λ) of F2 as a function of Q2 in the region above 0.1 GeV2 [61].

MC models of Pythia (with MPI) and Herwig. Only after elaborate tuning of Pythia could
good agreement with data be obtained, whereas Herwig without tuning was less successful
in reproducing the data.

The investigation of MPI in DIS at HERA is interesting from several aspects:

• Although evidence for MPI and diffraction events has been reported from measure-
ments at the TEVATRON and from photoproduction data obtained at HERA there
is still no established signal of MPI from DIS despite the fact that diffraction events
correspond to as much as 10% of the total cross section.

• Models involving multiple gluon ladder exchange have been successful in describing
data on diffractive scattering at low Q2 from HERA. It would be interesting to
investigate whether these models are also able to describe MPI data from DIS in
kinematic regions which are expected to contain a significant signal.

• The dependence of the MPI rate on Q2 and xBj can only be measured at HERA.

• Due to the asymmetric beam conditions at HERA with 27.5 GeV electrons scattering
against 920 GeV protons, it can be expected that the soft interactions of MPI will be
boosted along the proton direction. Thus, experimentally a separation between the
soft physics and the hard scattering process might be possible. Such a separation is
not possible at the TEVATRON where the laboratory system is identical to the pp
center-of-mass system.

In Chapter 5 an anlysis dedicated to study MPI effects in DIS will be presented.
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1.6 Monte-Carlo Generators

Frequently the main goal of an experiment is to test existing theoretical models and possibly
contribute to an increased understanding of the physics involved, which can be used to
improve the theory. Analytic calculations are complemented with phenomenological models
where the calculations are too complicated or where perturbative methods can not be
applied. Various Monte Carlo (MC) event generators use in addition to matrix element
calculations different modelings of parton showering and fragmentation in order to produce
the final state particles on the so called hadron level.

Below the MC generators used in this thesis are described briefly.

Rapgap

The Rapgap [64] Monte Carlo program was originally developed to model diffractive events
from electron-proton interactions. However, it was later extended into a multi-purpose
event generator also covering non-diffractive processes in ep-scattering both for photopro-
duction and for deep inelastic scattering. The latest version of Rapgap includes calculations
of standard LO matrix element calculations of the cross sections for direct and resolved pho-
ton interactions together with initial and final state radiation obtained using the DGLAP
evolution equations in the leading log approximation. In order to provide a smooth tran-
sition between direct and resolved processes the renormalization scale has been chosen to
be µ2 = Q2 +P 2

T where PT is the transverse momentum of the final state partons produced
in the hard scattering. The hadronization is performed using the Lund string fragmenta-
tion model as given by the Jetset Monte Carlo program [65, 66]. Initial photon radiation,
usually called QED radiation, is simulated via an interface to the Heracles [67] program.
Rapgap does not include any model for multiple parton interactions.

Ariadne

In Ariadne [68] the CDM is implemented. In QCD-Compton processes the gluon emission
is generated by a colour dipole stretched between the scattered quark and the diquark of
the proton remnant. The hard scattering of the BGF process cannot be generated by the
colour dipole approximation but is calculated from LO matrix element calculations. In
the BGF process the emitted gluon splits up into a quark-antiquark pair, either of which
interacts with the exchanged photon. Two colour dipoles are formed in the BGF event,
one between the hard antiquark and a quark in the proton remnant, and the other between
the hard quark and the remaining diquark system in the proton remnant. The dipoles
radiate independently to create a QCD parton Cascade with no ordering in the transverse
momenta of the emitted partons. Ariadne is used in combination with other MC programs
to calculate the hard BGF interaction, and to describe hadronization and particle decays.

Lepto

The original Lepto [69] event generator, just like Rapgap, uses LO matrix elements to
calculate the hard scattering process, followed by DGLAP evolution in the leading log
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approximation to account for higher order emissions and the Lund string fragmentation
to describe the hadronization. In this thesis, however, Lepto is used in connection with
Ariadne so that the hard scattering is calculated by Lepto and the higher order emissions
are generated according to the CDM. Initial QED radiation is simulated with Heracles via
an interface provided by the Django program [70].

Pythia

The Pythia generator [66,71] can provide complete events from e+e−, pp and ep collisions.
It uses leading order αs matrix elements supplemented by initial and final state radiation
generated according to the DGLAP evolution scheme in the leading logarithm approxima-
tion. The renormalization and factorization scales are both chosen to be the transverse
momentum, PT , of the partons produced in the hard scattering, which always causes the
scale to be higher than Q2. A lower cut in the transverse momenta of the final partons
from the 2 → 2 diagrams, PT ≥ Pmin

T is necessary in order to avoid the region where
the QCD cross section of hard parton scattering diverges and to ensure that perturbative
calculations can be applied. For low values of Pmin

T it may happen that the partonic hard
scattering cross section, σhard, becomes larger than the total cross section, σtot. However,
if the virtual photon and the proton are regarded as colliding beams of partons, there is
a certain probability for more than one interaction per beam crossing. In that respect it
should be perfectly allowed that σhard > σtot. The interactions are assumed to occur inde-
pendently of each other with the number of interactions given by a Poisson distribution.
The number of additional interactions is sensitive to the Pmin

T cut-off such that an increase
in Pmin

T decreases the number of multiple interactions. The hadronization is performed
according to Lund string fragmentation model within the JETSET program. In this thesis
Pythia6224 is used with the default parameter setting except for the following parameters:

• MSEL(1)= 1 and MSTP(14)= 30 to provide good mixing of different contributions
of the resolved and non resolved virtual photon.

• MSTP(32)= 9 will ensure that µr and µf are always higher than Q2, which is the
case for resolved virtual photon processes.

• PARP(67)= 4 to increase the contribution from initial state radiation.

Two options are considered, Pythia without MPI, referred to as Pythia, and Pythia
including MPI, denoted Pythia+MPI.

Herwig

Herwig [72] is a general purpose event generator with the options to simulate Lepton-
Lepton, Lepton-hadron as well as hard and soft hadron-hadron collisions. In addition to
first order αs matrix elements it uses the parton-shower approach for initial- and final-
state QCD radiation, including colour coherence effects and azimuthal correlations both
within jets and between jets. Cluster fragmentation is used for the parton hadronization.
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Soft additional interactions between the resolved photon and the proton remnant, in ep-
scattering, can also be generated. In the language of Herwig, this is called Soft Underlying
Events (SUE) and cannot be calculated in pQCD. The underlying event is implemented
by superimposing on the hard emission an underlying event structure similar to that of
a minimum-bias collision, where the amount of SUE has to be specified by hand. In this
thesis the Herwig version 65 in the direct and resolved photon mode is used. The two cases
of 0% and 10% probability for SUE are simulated in the resolved photon interactions, and
are referred to as Herwig and Herwig+SUE10%, respectively.

Cascade

Cascade [73, 74] is a full hadron level generator using kt-factorization of the cross section
into an off-shell matrix element and an unintegrated gluon density function. Higher order
emissions are generated by the CCFM evolution equations. In the present versions, only
gluons are used in the parton Cascade. Different parametrizations of the unintegrated
gluon density are available, where the parameter values have been obtained from fits to
structure function data. The UPDF set ’A0’ [75] is evolved using only the singular terms in
the splitting function (see section 1.4.3), while for the ’J2003 set2’ [76,77] also non-singular
terms are also included in the splitting function.

1.6.1 Detector Simulation

To allow for comparisons between the measured data and the predictions of theoretical
models, detector effects such as resolution, acceptance, dead material and inefficient de-
tector components, have to be considered. Therefore a full simulation of the detector
performance has to be applied to events generated on hadron level by the MC programs.
From the ratio of the detector simulated MC events and the generated hadron level MC
data, corrections due to the influence of the detector can be obtained. These corrections are
then applied to the experimental data to receive the measured signal on hadron level. In-
formation on the performance of the various detector components have been obtained from
measurements at test beams and has been implemented, together with a detailed descrip-
tion of the detector geometry and the material properties, into the H1SIM program [78].
The H1SIM package is based on the GEANT program [79].



Chapter 2

Experimental Setup

This chapter provides an introduction to the HERA accelerator and the H1 experiment.
An overall description of the general construction of the H1 detector is given but only the
detector components essential to this thesis are presented in more detail as of their status
during the data taking period 1999/2000.

2.1 The HERA Accelerator

The Hadron-Electron Ring Accelerator (HERA) situated at DESY in Hamburg was orig-
inally designed to collide 820 GeV protons with 30 GeV electrons. However, as it came
into operation in 1992 the electron beam energy was limited to 27.5 GeV. In the year 1998
the proton beam was upgraded to 920 GeV. After more than 15 years of successful opera-
tion HERA was closed down in the summer of 2007. Initial technical problems in storing
high electron currents could be circumvented by using positrons instead of electrons. Al-
though these problems were solved later on, the major part of the data were collected with
positrons1.

A schematic view of the accelerator facilities at DESY can be seen in Figure 2.1, which
also contains a magnification of the pre-accelerators necessary for the injection of protons
and electrons into HERA. Four experiment are located along the HERA ring, out of which
two are collider experiments H1 and ZEUS, and the other two are the fixed target ex-
periments HERMES and HERA-B. Their locations at the HERA ring are marked in the
figure. The H1 and ZEUS detectors were designed to cover the same type of ep-physics,
and consequently results from the two experiments can be used not only for cross checks,
but also for combining data to reduce the experimental errors. The HERA-B experiment
used the proton beam to collide with thin wires of Carbon in order to produce a large sam-
ple of B-mesons. The main purpose of the experiment was to measure the CP-violation in
B-meson decay and to study rare B-meson decays. The HERMES experiment made use of
the electron beam, which was polarized using the Siberian snake procedure, and brought to
collide with polarized protons from a gas jet target. The main physics goal was to measure
the spin structure of the nucleons.

1In the following, electrons are used as a generic name for both electrons and positrons
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Figure 2.1: Overview of the DESY accelerator facilities shown to the left with the pre-
accelerator system magnified to the right.

On the right hand side of Figure 2.1 the pre-accelerators used to prepare the beam
particles for the HERA ring are shown. H− ions with an energy of 50 MeV, accelerated in
H−-LINAC, are passed through a stripper foil to produce the proton beams. The protons
are then sent to the DESY-II accelerator in bunches. The proton bunches are accelerated
to an energy of 7.5 GeV, at which point they are injected into the PETRA ring where
they are accelerated further to 40 GeV. After injection into the HERA-ring, the protons
are accelerated to their final energy of 920 GeV. The electron beams are produced in the
e±-LINAC and brought to an energy of 500 MeV. In DESY II the electron bunches are
accelerated to 7 GeV and in PETRA to 12 GeV. Finally, the electrons are accelerated in
HERA to 27.5 GeV.

The HERA collider consists of two separate storage rings, one for the electrons and one
for the protons. It is placed in a tunnel of about 6.4 km circumference, 10-15 m under
the ground level. The large difference in beam energies which can be reached for protons
and electrons is related to the large difference in mass between protons and electrons. A
charged particle which is forced to deviate from a straight path will lose energy by emitting
photons, called synchrotron radiation. In a circular ring with radius R, the radiative energy
loss per turn, ∆E, of a charged particle with energy E and mass m is:

∆E =
E4

m4R

Acceleration fields are provided by radio frequency (RF) cavities and as long as the
energy delivered by the cavities is larger than the energy lost from synchrotron radiation,
the particles will be accelerated to higher energies. Strong acceleration fields have been
obtained by using superconducting RF cavities. Due to the 1/m4 dependence electrons will
suffer a lot from synchrotron radiation, which will be the limiting factor for its maximum
energy, whereas for protons the radiative losses are negligible. Instead the maximum proton



2.2. THE H1 DETECTOR 47

beam energy is dictated by the strength of the magnetic field, that is needed to keep the
protons in their orbit. This is given by the relation:

p = B · e · R,

where p is the particle momentum, B is the magnetic field strength, e is the electric charge
of the particle and R is the bending radius. In HERA superconducting magnets have been
used, providing a field of 4.2 T. From 1998 the magnetic field of the bending magnets could
be raised to 4.7 T leading to an increase in the proton energy from 820 GeV to 920 GeV.
The proton and electron energies of 920 GeV and 27.5 GeV, respectively, were used during
the 1999-2000 run period, and this corresponds to a centre-of-mass energy

√
s ≈ 318 GeV.

At HERA the time between two bunch crossings is 96 ns and the transverse size of the
bunches is σx ≈ 300 µm and σy ≈ 80 µm for the protons and σx ≈ 300 µm and σy ≈ 40 µm
for the electrons. The luminosity L is defined as:

L =

∫

f
N1N2

A
dt

were A is the transverse area of the collision, N1 and N2 are the number of particles in
each bunch and f is the collision frequency of the particles. In the years 1999 and 2000
the delivered luminosity was 45.045 pb−1 and 67.889 pb−1 respectively.

2.2 The H1 Detector

In Figure 2.2 a schematic view of the H1 detector is given. The electrons enter the detector
from the left hand side in the figure and the protons from the right. The reference frame
of the H1 detector is described by a Cartesian coordinate system with its origin placed at
the nominal interaction point. The proton beam direction defines the positive z direction.
The y-axis points upwards and the x-axis is directed towards the center of the HERA ring.
The polar angle θ is the angle with respect to the positive z-axis. Thus, for an unscattered
electron, θ is equal to 180o. The region of small θ-angles is referred to as the forward region.
The azimuthal angle φ is measured with respect to the positive x-axis in the xy-plane

The central region of the H1 detector, closest to the nominal collision point, is sur-
rounded by silicon detectors. The silicon trackers provide excellent position resolution
which gives a precise reconstruction of particle tracks. Thus, they are used to give an
accurate determination of the interaction vertex and are able to resolve secondary ver-
tices from short lived particle decays. The central 2 and forward tracking 3 detectors
provide together with the silicon detectors measurements of charged particle trajectories.
The tracking detectors are enclosed by a calorimeter system consisting of a Liquid Argon
electromagnetic 4 and hadronic 5 calorimeter, covering the forward and central regions,

complemented by an electromagnetic and hadronic Spagetti Calorimeter 12 , in the back-

ward region. The liquid argon calorimeter is surrounded by a superconducting coil 6
providing a magnetic field of ∼ 1.15 T parallel to the beam axis. Charged particles will
follow a helical path in the magnetic field and from the measured trajectories the particle
momenta can be determined. To eliminate the influence on beam particles from small
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Figure 2.2: Schematic cross-section of the H1 detector.
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Figure 2.3: A side view of the electromagnetic and the hadronic part of the LAr calorimeter,
showing the segmentation into calorimeter wheels.

transverse magnetic field components in the solenoidal field, an additional magnet close
to the beam 7 is used for compensation. The magnetic field from the superconducting
coil is closed by the iron return yoke, which consists of thick iron slabs interleaved with
streamer chambers. The instrumented iron 10 is used to measure energy not deposited
in the calorimeter system. The outside of the return yoke is covered by muon chambers
9 . Muons going in the forward region are detected and their momenta are measured by
a muon spectrometer, consisting of drift chamber planes in front of and after a toroidal
magnet 11 .

The main components of the H1 detector relevant for this analysis are the electromag-
netic and hadronic calorimeters, the tracking system, the Time-of-Flight counters (sec-
tion 2.2.3) and the trigger system. These are described in some detail below. A complete
description of the H1 detector can be found in [81,82].

2.2.1 Calorimeters

There are four calorimeters in the H1 detector which provide energy measurments of parti-
cles produced in the collisions: the Liquid Argon (LAr) calorimeter, the SPACAL calorime-
ter, the PLUG and the Tail Catcher (TC). The LAr calorimeter has the widest coverage
for energy measurement of electromagnetically interacting particles and hadrons. The
SPACAL is mainly used to measure the energy of electrons scattered at small angles for
the determination of the event kinematics, but it also has a hadronic section. The TC
complements the LAr calorimeter by providing a rough measurement of hadronic energy,
which is not completely deposited in the LAr calorimeter. The TC is only important for
jets with very high energies (above 120 GeV). The PLUG is used to measure particles in
the extreme forward region 0.6o < θ < 3o. The TC and the PLUG are not used in this
analysis.

The LAr calorimeter is described in some detail since on the one hand it is especially
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important for the analysis presented in this thesis and on the other hand the development
of a new calibration method for jet measurements is part of the thesis work.

The Liquid Argon Calorimeter (LAr)

The LAr calorimeter [81, 82] covers the polar angle range 4◦ < θ < 154◦ and consists of
two sections: an inner electromagnetic section and an outer hadronic section. It is also
segmented along the z-direction into eight wheels (see Figure 2.3), called the Forward
Barrel calorimeters (FB1, FB2), the Central Barrel calorimeters (CB1, CB2, CB3), the
Inner Forward calorimeters (IF), the Outer Forward (OF) hadronic calorimeters and the
Backward Barrel Electromagnetic calorimeter (BBE). The wheels consist of eight identical
octants in φ (see Figure 2.4). The LAr calorimeter is of sandwich type, which means that
it contains absorber plates and LAr as the active material. The purpose of the absobers
is to make the incoming particles interact so that a shower of energy degraded particles
are produced. These may ionize the active material and the charge produced is a measure
of the energy contained in the shower. The LAr calorimeter is segmented further into 45
000 calorimeter channels (cells), and the cells are combined into 256 trigger towers (Big
Towers). The energy collected in the Big Towers is used by the H1 trigger system to select
jet events. The electronic noise fluctuations correspond to an energy variation of between
10 and 30 MeV per cell on the average. Various noise suppression algorithms have been
applied in order to minimize the influence of the electronic noise. However, from studies of
MC simulated DIS events, it has been shown that the energy loss due to electronic noise
suppression can be as large as 17% of the total signal [82] at low Q2. After application
of electronic noise suppression and some additional corrections, the charge collected in the
calorimeter cells is converted into energy by a reconstruction algorithm [80], as will be
described later

Electromagnetic calorimeters are optimized to measure the energies of photons and
electrons (and positrons) through the production of electromagnetic showers, from interac-
tions of the particles with the calorimeter material. The showers are produced by repeated
bremsstrahlung and pair production processes until the shower particles have reached a
critical energy, below which the photons produce electrons via the photoelectric effect or
by Compton scattering and the electrons will lose their energy in ionization processes. The
longitudinal extension of the electromagnetic shower depends strongly on the energy of the
incident particle (∝ ln(E)), and the Z-value of the material used in the absorber plates.
The transverse shape of an electromagnetic shower is given by the opening angles of the
e+e−-pairs and the emission angle of the bremsstrahlung photons. In the low energy part
of the shower the multiple scattering of the electrons and positrons dominates, giving a
transverse structure containing a high energy core and a low energy halo. The depth of an
electromagnetic calorimeter is usually specified in radiation lengths (X0), with 1 X0 being
the average length over which the energy of a particle is reduced by a factor 1/e. The ab-
sorbers in the LAr electromagnetic calorimeter of H1 are made of 2.4 mm thick lead plates,
which for the full depth of the electromagnetic part of the calorimeter corresponds to a
total of 20-30 radiation lengths depending on the orientation of the absorber plates and the
impact angle of the particle. The orientation of the absorber plates in the different wheels
is indicated by the vertical and horizontal lines in Figure 2.3. The reason for the different
orientations is that the impact angle for particles, produced in the nominal collision point
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of HERA, should always be larger than 45o. This is to minimize the variation in absorber
material seen by particles and thereby a reasonably uniform energy resolution is obtained.

As mentioned above the experimentally determined energy is derived from the charge
produced by the ionization of the LAr. The electromagnetic calibration constant, which
converts the collected charge to visible energy, has to be determined from measurements
in test beams of well defined energies. The electromagnetic scale Ei

0 for cell i is defined as

Ei
0 = Cexp · Qi (2.1)

where Cexp is the experimentally determined calibration constant and Qi is the charge
deposited in cell i. More details can be found in [84]. The calibration factors for the
electromagnetic stacks were obtained from the electron test-beams at CERN and MC
simulations. For the hadonic stacks, additional MC simulations of electrons detected only
by the hadonic stacks were used to scale the factors obtained from the electromagnetic
stacks [80].

Hadronic showers are produced from strong interaction processes of the hadrons with
nuclei in the calorimeter absorber plates. The transverse shape of a hadronic shower is
much broader than that of an electromagnetic shower, and this can be used to distinguish
between the two types of shower. The depth of the calorimeter, which is needed to fully
contain a hadronic shower is much larger than what is needed to have a fully contained
electromagnetic shower. For hadronic calorimeters the depth is given in terms of interaction
lengths, λ, where 1 λ is the average length before a particle undergoes a nuclear interaction.
The hadronic stacks in the LAr hadron calorimeter are made of 19 mm thick stainless steel
plates. The total longitudinal thickness of the hadronic calorimeter sections varies between
5-8 interaction lengths depending on the orientation of the absorber plates and the polar
angle of the incoming hadron.

Hadron showers contain not only charged hadrons but also π0 and η, which decay mainly
into two photons, and leptons produced in the hadronic interactions. Therefore, a hadronic
shower can be divided into an electromagnetic component and a hadronic component. A
significant fraction of the hadronic component is not measurable like the recoil energy of
the atoms and soft neutrons, which get lost in the absorber plates. Muons produced from
meson decays are not measured in the calorimeter and neutrino particles escape detection
completely. Also the energy required to break up atomic nuclei will not be measured by the
calorimeter. The energy of the electromagnetic component of the hadronic shower increases
with the incident particle energy and may get larger than the hadronic component. Since
a much larger fraction of an electromagnetic component is measured in the detector than
is the case for the hadronic one, the difference in visible energy has to be corrected for. In
the LAr calorimter 30% of the energy deposited by the hadronic shower is not measured.

Equalization of the energy response for electromagnetic and hadronic components can
be obtained either by hardware compensation or, if the granularity of the calorimeter
is high enough, by software compensation. In hardware compensation the method is to
decrease the sensitivity to the electromagnetic component and simultaneously increase the
sensitivity to the hadronic component. By choosing a high Z material like Uranium a larger
fraction of the electromagnetic component is absorbed in the Uranium and consequently
the visible energy will decrease. On the other hand neutrons in the hadronic component
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will produce spallation of the Uranium nuclei, giving products that will deposit their energy
in the active material. This obviously increases the sensitivity to the hadronic component
of the shower. Another possibility of hardware compensation is to use thin absorber plates,
so that a significant fraction of the low energy neutrons escape into the active material.
The interaction of the neutron in the active material will produce recoil protons which
contribute to the calorimeter signal. By carefully tuning the thickness of the absorber and
the active material full compensation can be achieved. A high Z material has to be chosen
in order to keep the total depth of the calorimeter within limits. Although the energy
resolution for hadrons will improve using hardware compensation, the energy resolution
for electromagnetically interacting particles is deteriorated.

A different approach is to apply software compensation which can be done for calorime-
ters of high granularity, where the signals of the detector cells can be weighted in such a
way that the response from electrons and hadrons depositing the same energy is equalized.
During the event reconstruction, all cells from the electromagnetic and hadronic stacks are
calibrated, using equation (2.1), to the electromagnetic scale. The method exploits the fact
that local energy deposits of high density are mainly of electromagnetic origin. Thus, in a
calorimeter with high granularity the amount of energy deposited in the cells can be used
for statistical separation of the two components. Cells from the hadronic and the electro-
magnetic calorimeters are combined into groups, clusters, by an Electron/Pion separation
method implemented in a reconstruction algorithm [83]. The purpose of the clustering
algorithm is to collect cells into groups related to particle showers. Clusters not classified
as electromagnetic are used for the clustering of the hadronic shower [80,82]. Showers from
hadrons consist of many clusters due to the properties of the hadronic shower. Correction
for energy losses due to the dead material in front of the calorimeter, calorimeter stacks
and electronic noise suppression are done by the reconstruction algorithm. As mentioned
above, in order to find the proper hadronic scale, which equalizes the response to the elec-
tromagnetic and the pure hadronic components of a hadron shower, a software weighting
technique is applied to the cells which have been classified by the Electron/Pion separation
method as belonging to hadronic clusters. In the reconstruction the weighted energy in a
cell i, Ei

rec, belonging to a hadronic cluster is calculated from the cell energy corrected to
the electromagnetic energy scale, Ei

0 , according to:

Ei
rec = [a0 + a1 · exp(−αEi

0/V
i)]Ei

0 (2.2)

where a0, a1 and α are the parameters of the weighting function and V i is the volume
of the cell. Note that the parameters are different for the electromagnetic and hadronic
calorimeter parts. After the compensation the hadronic clusters are on the correct scale,
i.e. the hadronic scale. With equal response the influence of large fluctuations in the
hadronic shower composition on the energy reconstruction is suppressed.

The fine granularity for e/π separation, homogeneity of the signal response and the
stability are some of the main reasons for choosing a sampling calorimeter with a liquid
argon technology. The energy resolution of σem(E)/E ≈11% /

√

(E/GeV) ⊕ 1% for the

electromagnetic section and σhad(E)/E ≈50% /
√

(E/GeV) ⊕ 2% for the hadronic section
was obtained from the test beam measurements at CERN.



2.2. THE H1 DETECTOR 53

Figure 2.4: A transverse view of a LAr calorimeter wheel.
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The SPACAL

During the shutdown in 1994/1995 the Backward Electromagnetic Calorimeter, BEMC,
was replaced by the Spaghetti Calorimeter (SPACAL) [85–89]. It was designed to have
a large geometric acceptance in the backward region, high electromagnetic energy and
position resolution, a good pion-electron separation and good time resolution. The main
purpose of the SPACAL is to accurately measure the energy and polar angle of the scattered
electron from which the kinematics of DIS processes in the region of 0.4 < Q2 < 150
GeV2 can be calculated. In this Q2 region xBj values as low as 10−5 can by reached.

The SPACAL calorimeter consists of an electromagnetic section and a hadronic section
as shown in Figure 2.5. The SPACAL is a sampling calorimeter with lead as absorber and
scintillating plastic fibers as active material. Particles interacting with the absorber pro-
duce particle showers which cause scintillations in the plastic fibers. The light is collected
and conducted to the photomultiplier tubes.

The scintillating fibres, with 0.5 mm diameter in the electromagnetic section and 1 mm
diameter in the hadronic section, are embedded in lead. The electromagnetic section of the
SPACAL contains 1192 cells, where 2 cells constitute one construction unit, as indicated
by the thin lines in Figure 2.6. Eight two-cell units are grouped to form a supermodule,
confined by the thicker lines in the figure. A VETO layer close to the beam pipe should
only contain a limited energy deposition to guarantee a good reconstruction of the scattered
electron energy (see also Chapter 3.3.3). The pupose of the hadronic SPACAL is to measure
the energy leakage from the electromagnetic section and, in combination with it, determine
the hadronic energy flow in the backward region. The hadronic section has a depth of
approximately 1 λ and contains 128 modules in total. The coverage in polar angle of the
SPACAL is 153o < θ < 177.5o.

A resolution of σem(E)/E ≈7% /
√

(E/GeV) ⊕ 1% for the electromagnetic sections

and σhad(E)/E ≈56% /
√

(E/GeV) ⊕ 7% for the hadronic section was measured in test
beams at CERN and DESY.

2.2.2 The Tracking System

Figure 2.7 gives a schematic side view of the H1 tracking system, which can be subdivided
into three parts: the central tracker, the forward tracker and the backward drift chamber.

The Forward Tracker

The Forward tracker [82] consists of three sections. Each section contains three planar
drift chambers, a multi-wire proportional chamber, a passive transition radiation detector
and a radial drift chamber. The forward tracker covers the angular region 5o < θ < 30o.
The planar chambers consist of parallel drift cells, each having four wires. The three
chambers are rotated by 60o in φ with respect to each other. The radial chamber consists
of 48 drift cells, with each cell containing 12 radially strung wires separated by 10 mm in
the z direction. The multi-wire proportional chamber consists of tree chambers, which are
used to provide a fast trigger for the forward tracks. The combined information from the
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Figure 2.5: A schematic side view showing the backward part of the inner detector with the
BDC immediately in front of the electromagnetic and hadronic SPACAL.

Figure 2.6: The transverse (x,y) view of the electromagnetic SPACAL, where the thin lines
indicate construction units consisting of two calorimeter cells, whereas the thicker lines
mark the supermodules, containing 8 construction units.
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Figure 2.7: A side view of the H1 tracking system with the different tracking chambers
indicated.

planar chambers, the radial chamber and the multi-wire proportional chamber provides
the curved trajectories of forward going particles in the solenoidal field, from which the
particle momenta can be calculated. It was designed to achieve a momentum resolution
σp/p

2 < 0.003 GeV−1 and an angular resolution σφ,θ < 1 mrad.

The Central Tracker

The central tracking system consists of the Central Silicon Tracker (CST), shown in Fig-
ure 2.5, the inner (CJC1) and outer (CJC2) Central Jet Chambers (CJC), the Central
Silicon Tracker (CST), the Central Inner and Outer Z-chambers (CIZ/COZ) and the Cen-
tral Inner and Outer Proportional chambers (CIP/COP) which are shown in Figure 2.7.

The CST [91, 92] is located nearest to the interaction point. It provides vertex in-
formation from precision measurements of charged particle tracks close to the interaction
point. Including the precise CST rφ-hits in the track reconstruction of the wire chambers
improves the transverse momentum resolution.

CJC1 covers the angular range 11o < θ < 169o and contains 30 drift cells with 24
sense wires each, whereas CJC2 covers 26o < θ < 154o and contains 60 drift cells with
32 sense wires each (see Figure 2.8). Electrons released through ionization of the CJC
gas by charged particles will drift towards the anode wires along the electric field between
the anode- and the cathode-wires. From the known drift velocity of electrons in the gas
and a measurement of their arrival time at the anode wire, given by the appearance of a
signal, the position of the ionization point can be reconstructed in the rφ-plane. A space
resolution of σrφ = 130 µm per measuring point has been achieved. A large number of
such measurements are made in order to reconstruct the particle trajectory. The z-position
of a hit can be reconstructed using the charge division method, which makes use of the
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Figure 2.8: A radial view of the central tracking system. The 32 and 60 sense wires in
CJC1 and CJC2, respectively, is shown.

fact that the amplitude of the signal is damped as it travels through the anode wire. By
comparing the amplitudes of the signals at both ends of the signal wire the z-coordinate
can be determined with a resolution of σz = 22 mm.

The CIZ and COZ drift chambers have wires strung perpendicular to the beam di-
rections and are used to provide precise z-coordinates of the tracks. The CIZ chamber is
located inside the CJC1, and the COZ chamber in between the CJC1 and CJC2. The polar
angles covered by the CIZ and COZ chambers are 16o < θ < 169o and 25o < θ < 156o,
respectively. The information from these chambers improves the z-resolution by two orders
of magnitude compared to a measurement with the CJC alone.

The CIP and COP Multi-Wire Proportional Chambers (MWPC), which are located
close to the CIZ and COZ, respectively, have a time resolution better than the 96 ns
separation between two HERA bunch crossings. By combining hits in these chambers a
fast decision can be made on whether the tracks are produced in the vertex region or
not. This information is used to select collision events on the first trigger level, which is
discussed in more detail in section 2.2.4.

The Backward Drift Chamber

The Backward Drift Chamber (BDC) [82] consists of four double layers of drift cells,
covering an angular range of 153o < θ < 176o. The layers are subdivided into octants, with
the drift cells oriented so as to provide an accurate measurement of r i.e. the distance to
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Figure 2.9: A side view of the H1 detector with the TOF system indicated.

the beam axis. Each double layer is rotated by 11.25o with respect to the neighbouring
ones, allowing for an extraction of the φ coordinate of a track. The BDC was designed
for both triggering purposes and to deliver short track segments of particles entering the
SPACAL. In this analysis the BDC and SPACAL information is combined to identify and
reconstruct the scattered electron and also to measure hadrons in the backward region.

2.2.3 The Time-of-Flight System

The Time-of-Flight (ToF) system [82] consists of scintillator layers placed at various dis-
tances from the interaction point. The positions of the different scintillator detectors com-
posing the ToF system are shown in Figure 2.9. They are the BToF (backward ToF) at
z=-275 cm, the PToF (Plug ToF) at z=+540 cm and the FToF (forward ToF) at z=+790
cm. In addition there are two layers of Veto scintillator walls, not shown in the figure. The
big Veto wall at z=-810 cm covers essentially the entire surface of the H1 detector, whereas
the small Veto wall is positioned close to the beam pipe. The system is calibrated such
that the ToF measured in detectors upstream and downstream should give a difference
that is close to zero for particles produced in the interaction region, whereas larger time
differences would come from particles produced at some distance from the nominal collision
point by interactions of the beams with the walls of the beam pipe or the residual gas in
the vacuum tube, called beam-wall and beam gas events, respectively. The ToF resolution
of 1 ns has resulted in a definition of the vertex region given by -35 < zvtx < +35 cm.

2.2.4 The Trigger System

The purpose of the trigger system in H1 [81] is to select physically interesting events out
of a large sample in a very short time. Only a small fraction of the total events is selected
as ep collision events. The main backgrounds in the H1 detector originate from beam-gas
and beam-wall events, synchrotron radiation and cosmic rays. Events considered to be
uninteresting are also rejected by the H1 trigger system. The trigger system consists of
four on-line trigger levels (L1-4) and one off-line (L5) trigger level. The beams cross every
96 ns which corresponds to a beam crossing frequency of 10 MHz. The event rate presented
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to the first trigger level (L1) is 100 kHz. This has to be decreased to 1-10 Hz after the
fourth trigger level (L4) in order to limit the data stored for later analysis to a reasonable
level.

At the first trigger level, the information from each part of the detector is stored in
buffers (pipelines) to avoid dead time until the L1 trigger has taken a decision, which occurs
within 2.3 µs, corresponding to 25 bunch crossings. An event is selected by the L1 trigger
if the event fulfills at least one of the 128 subtrigger requirements. The subtriggers built
out of logical combinations of 256 trigger elements obtain their information from different
components of the H1 detector. If a subtrigger condition is fullfilled then the ”raw” bit is
set (true). Subtriggers with high counting rates are down-scaled (prescaled) with respect to
those with lower counting rates. Thus, the actual number of events passing the subtrigger
will be smaller than the true number of events fulfilling the trigger conditions. The ”actual”
bit will be set for the subtrigger if the event is selected. If the ”actual” bit of at least one
of the subtriggers is set then the event is transferred to the second level trigger, L2.

The input rate of the L2 trigger is about 1 kHz. The L2 trigger consists of Neural
Network (L2NN) and Topological (L2TT) triggers. The L2TT uses stored topology infor-
mation of the background mapped into a grid in φ and θ. L2 provides a decision in about
20 µs. If the event is accepted by L2 it is sent to the fourth level trigger. During the
1990-2000 run period the L3 trigger was not implemented.

At the fourth trigger level an online event reconstruction is performed and the events
are classified into different physical classes. All events assigned to physics classes are kept.

2.2.5 The Luminosity System

The number of events, N, from a specific process with the cross section σ can be extracted
from the relation L = N/σ, where L is the integrated luminosity measured in a time interval
over which the analysis is performed. The so called integrated luminosity is obtained from
L =

∫

L dt, where L is the instantaneous luminosity, measured in units of cm−2sec−1.
At HERA the instantaneous luminosity is determined from the measured rate of Bethe-
Heitler events, ep → e

′

pγ, the cross section, of which has been calculated to a high degree
of accuracy [92]. Thus, by measuring the number of events from a specific process and
knowing L for the measuring period, the cross section of that process can be calculated.
The luminosity system [81] consists of the electron tagger located 33.4 m from the nominal
interaction point in the direction of the electron beam and the photon detector, which is
placed at z = -102.8 m. A Bethe-Heitler process is recognized from a coincidence between
signals in the photon and electron luminosity detectors.



Chapter 3

Event Reconstruction and DIS
Selection

The analyses presented in this thesis has used data collected by the H1 detector in the
run periods of the years 1999-2000 and 2006-2007. The kinematics of DIS events are
determined from measuring the polar angle and the energy of the scattered positron (the
electron method). In this chapter the reconstruction of the electron will be described
as well as the event selection based on various phase space cuts. The resolution of the
reconstructed event variables is discussed. Furthermore, the construction of combined
objects of calorimeter clusters and particle tracks, which are used in the jet finding, are
explained. Finally, the jet finding algorithm is described.

3.1 Run Selection

A run is defined as a collection of events measured during over a period of time during which
the experimental conditions remained approximently the same. Runs with fully operational
detector components relevant to the studies presented in this thesis are selected. A fully
operational detector means that the detector has been operated at its nominal high voltage.
The detectors important for this analyis are the SPACAL and LAr calorimeters, the CJC,
forward tracker, CIP, COP and BDC tracking chambers, the TOF counters, the trigger
system and the luminosity system. Runs with low luminosity and poor beam conditions
have been excluded. The total number of events which fulfil the selection criteria during
the 1999-2000 run period corresponds to a luminosity of 64 pb−1.

3.2 The Event Vertex

To reduce the contribution from beam-gas and beam-wall events the reconstructed z-
position of the measured interaction point, is required to be close to the nominal collision
point. The nominal z-vertex defines the origin of the H1 coordinate system, at which the
center of gravity of the electron and proton bunches are tuned to collide. The proton beam

60
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Figure 3.1: The measured z-vertex distribution before (left) and after (right) the z-vertex
weights have been applied.

may contain so called ’satellite bunches’, which are created during the injection from PE-
TRA to HERA. These satellite bunches are shifted by a few nanoseconds with respect to
the main proton bunch and consequently collisions between the positrons and such satellite
bunches will have z-vertices shifted compared to the nominal collision point. The z-profile
of a bunch has a Gaussian shape and the typical length of a proton bunch in terms of σ is
11 cm whereas the typical length of an electron bunch is 1 cm. The z-vertex is required to
lie within ±35 cm from the nominal interaction point. In the left hand plot of Figure 3.1
the experimentally obtained vertex distribution for a specific run is compared to the one
generated by the H1 detector simulation program. It is observed that the simulated distri-
bution does not agree with the data. This is due to the fact that the position of the actual
collision point is normally not exactly at the nominal vertex position and it is also not the
same from run to run. It actually depends on how the beam conditions from individual
beam fills are optimized and such variations have not been accounted for in the detector
simulation. In order to take a shift of the measured vertex distribution into account the
Monte Carlo events are reweighted to describe the z-profile. After the reweighting the
agreement is excellent as can be seen in the right hand plot of Figure 3.1b.



62 CHAPTER 3. EVENT RECONSTRUCTION AND DIS SELECTION

3.3 The Electron Identification

The scattered electron is identified by requiring a shower in the electromagnetic part of the
SPACAL, connecting to a charged particle track. The energy measurement of the scattered
electron is provided by the electromagnetic SPACAL calorimeter in the kinematic region
5 < Q2 < 100 GeV2. A track is defined by hits in the BDC and its direction is given by
combining these hits with a well reconstructed interaction vertex. The information from
the hadronic part of the SPACAL is used to improve the correct recognition of the scattered
electron.

3.3.1 Trigger Selection and Prescale Weights

The first step in the procedure to identify and measure the scattered electron is to find
events with a shower in the electromagnetic part of the SPACAL, by demanding the
SPACAL subtriggers for DIS events to be set. Data from the 1999-2000 run period used
here must fulfill the total subtrigger requirement of (S0∨S3∨S61)1. Each subtrigger con-
sists logically of different trigger elements. The logical structure of the subtriggers is given
in Appendix A. Below only the main trigger elements of the subtriggers are considered.

The so called trigger towers in the SPACAL contain four (2×2) contigous SPACAL
cells. A simple inclusive electron trigger (IET) requires at least one trigger tower to have a
deposited energy above some threshold. The size of the trigger tower has been chosen such
as to ensure the transverse containment of the electromagnetic shower at any scattering
angle within the acceptance of the SPACAL. Using a sliding window method, the trigger
towers are required to partly overlap in such a way that also when the impact point is at one
of the borders of one trigger tower the shower will be fully contained in one of the overlap-
ping trigger towers. The subtrigger S0 is fulfilled if at least one of the outer trigger towers
contains an energy larger than 6 GeV. This is denoted SPCLe IET > 2. The subtrigger S3
has the additional requirement compared to the S0 trigger that the total energy deposit
in the SPACAL should be at least 12 GeV within a certain time window. The combined
requirement is according to the H1 notation written as SPCLe IET > 2∨SPCLe ToF E 2.
Due to the inclusive nature of the S0 and S3 subtriggers, they have high trigger efficiencies
but also high rates. Therefore, S0 and S3 are prescaled during the data taking in order to
suppress the number of events being read out. The average prescales of the S0 and S3 trig-
gers are 3.28 and 1.49, respectively, for the data taking period 1999-2000. Consequently,
a large fraction of the events will be rejected due to the prescale and the events accepted
have to be given a large prescale weight.

The total requirement of the subtrigger S61 is given by:

(SPCLe IET > 2 ∨ SPCLe IET Cen 3) ∧ DCRPh THig ∧ zV tx sig,

where SPCLe IET Cen 3, similar to SPCLe IET > 2, requires an energy deposition of more
than 6 GeV but for one of the central trigger towers. The trigger element DCRPh THig
is fullfilled if a track candidate with transverse momentum of 400-800 MeV is found in the
CJC and zVtx sig indicates a signature for the vertex. S61 is thus a more exclusive trigger

1The symbols ∨ and ∧ stands for logical OR and AND, respectively
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and has accordingly a lower trigger rate compared to the S0 and S3 triggers. On the other
hand it has a lower efficiency and is assigned a lower prescale factor (1.14).

Using the trigger combination (S0∨S3∨S61), the weight calculated from the prescale
may suffer from large variations from event to event. Also events with the same logical
pattern (e.g. S0 and S3 is true but s61 is false) belonging to different runs could be as-
signed different prescale weights due to the fact hat the luminosity of different runs varied
significantly over the 1999-2000 run period. Therefore the prescale weights were smothed
by averaging the event weights over the run luminosities [93].

3.3.2 Electron Kinematics

As well as the fulfilled trigger condition (S0∨S3∨S61), which flags an electromagnetic
shower in the SPACAL, a correct identification of the scattered electron also needs verifi-
cation that the shower is not produced by a photon. This is done by requiring hits in the
BDC matching the position of the electromagnetic shower. The scattering angle, θe, and
the azimuthal angle, φe, can be calculated to high precision by combining the information
from the BDC with a well reconstructed interaction vertex, as obtained from charge tracks
in the central tracker. The energy of the scattered electron, Ee, is thus provided by the
cluster energy measured in the SPACAL. To ensure a well confined shower and to suppress
contributions from photoproduction events, where the scattered electron disappears down
the beam pipe and a hadron from the hadronic final state imitates a scattered electron, it
is required that:

Ee > 9 GeV. (3.1)

Further cuts to reduce background events from photoproduction are given in sec-
tion 3.3.3. The angular requirement

156 < θe < 175◦ (3.2)

restricts the electron to fall inside the coverage of the SPACAL and the BDC, avoiding the
θe region with low hit efficiency.

3.3.3 Technical cuts

In the following, additional cuts to improve the reconstruction of the scattered electron in
the electromagnetic SPACAL calorimeter are presented. These cuts are applied both to
the data and the detector simulated MC events.
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Rejection of ”Fake” Electron Candidates

The transverse size of a cluster is a property that can be used to efficiently distinguish
between hadrons and electrons detected by the SPACAL calorimeter, since showers from
hadrons are expected to be broader than those induced by electrons. The transverse size
can be estimated by the cluster radius which is defined as

Rcl =
ΣiEi

√

(xcl − xi)2 + (ycl − yi)2

Ecl

,

where xcl and ycl define the center of gravity of the cluster, whereas Ecl is the cluster
energy. The central impact position of each cell i contributing to the cluster is represented
by the coordinates xi, yi, and its energy content by Ei. The energy of a cluster is obtained
by summing over all contributing cells, Ecl = ΣiEi, and the center-of-gravity of the cluster
is given by:

xcl =
ΣiEixi

ΣiEi

and ycl =
ΣiEiyi

ΣiEi

.

For the SPACAL it has been found that a cut on the cluster radius of:

Rcl < 3.5 cm,

optimizes the separation between showers produced by electrons and hadrons [94]. A
further rejection of hadrons, potentially being identified as electrons, is obtained using
the information from the hadronic part of the SPACAL. Hadrons hitting the SPACAL will
normally start showering in the electromagnetic part of the SPACAL but will deposit a large
fraction of their energy in the hadronic part. Electrons, however, will lose almost all their
energy in the electromagnetic part of the SPACAL. Adding up the energy measurements
of the cells in the hadronic SPACAL, which belong to the electron candidate, will allow to
define an energy cut, Ehad, to reject hadrons. This cut has been set to:

Ehad < 0.5 GeV.

As mentioned above the signature of a scattered electron is a shower in the electromag-
netic part of the SPACAL correlated with a particle track. The electron will produce hits
in the BDC, which is positioned immediately in front of the SPACAL. The space points
extracted from the BDC information provide a short track segment that can be extrapo-
lated to the entrance surface of the SPACAL to give an impact position. This should agree
with the center of gravity of the cluster within certain limits. The cut applied is

∆RBDC < 3.0 cm,

where ∆RBDC is the distance between the cluster center in the SPACAL and the calculated
impact position.

In the initial state, the scalar E −Pz is obtained by summing the four-momenta of the
electron and the proton, giving:
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Figure 3.2: The reconstructed E − Pz before (left) and after (right) the cluster calibration
has been performed.

E − Pz = [920 − 920 + 27.5 − (−27.5)] GeV = 55 GeV = 2E0
e

where E0
e is the energy of the incoming electron beam. Due to the momentum and energy

conservation the total sum of the scalar E −Pz in the final state is equal to the initial one.
E − Pz in the final state is

∑

j

Ej − Pz,j = 2E0
e = E − Pz,

where the summation j extends over all measured particles (also the scattered electron in
the SPACAL) in the H1 detector. Due to the restricted acceptance of the H1 detector
(leading to particle leakage) and the limited accuracy in the energy measurement of the
final state particles, E − Pz is smeared around 2E0

e .

In photoproduction the scattered electron is not detected (θe → 180o) and a charged
hadron can then be identified as the scattered electron candidate. In these cases the E−Pz

is much smaller than 2E0
e , due to the unmeasured scattered electron.

This is also the case in events where the incoming electron radiates a highly energetic
photon which escapes detection. To reduce these effects the cut

35 GeV < E − Pz < 70 GeV (3.3)

is applied. In Figure 3.2 the E − Pz distributions, after applying the selections in Equa-
tion( 3.3), is shown as calculated from combined objects of clusters and tracks. The left
hand plot shows the distribution before the calibration of the energy measurement has been
applied to the cluster energies and it is observed that the distribution is not peaked at 2E0

e .
This is however the case after the corrections from the calibration have been applied as
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seen from the right hand side plot of Figure 3.2, although the shape of the distribution is
not perfectly reproduced. More about combined objects can be found in Section 3.5 and
the calibration of the calorimeter energy measurements is presented in Chapter 4.

SPACAL Cell Selections

Due to the steeply falling Q2 spectrum, the scattered electrons are strongly peaked in the
backward region (θe = 180o). A large fraction of the electrons detected in the SPACAL
will thus hit the detector close to its inner edge. Part of the shower from such electrons
will not be measured due to transverse energy leakage. In order to avoid such problems so
called VETO regions close to the beam pipe have been defined in the SPACAL. Requiring
the energy in these regions, Eveto, to be less than 1 GeV ensures that the electron shower
is essentially fully contained in the SPACAL.

Problems with wrongly measured shower energies also appear in the case of dead cells
or cells with high counting rates. Scattered electrons at the outer regions of the SPACAL
will of course also suffer from transverse energy leakage in the same way as electrons close
to the inner edge. To avoid the problematic regions a number of fiducial cuts have been
introduced. These decrease the acceptance of the SPACAL but increase the efficiency of the
S0 and S3 triggers. The following regions of the SPACAL were excluded for the 1999-2000
year data:

(−49.6 < xcl < −36.9) and (−34.2 < ycl < −20.8)

(−13.0 < xcl < 0.2) and (−55.5 < ycl < −41.0)

(44.8 < xcl < 57.5) and (35.4 < ycl < 49.9)

(−17 < xcl < 9) and (−9 < ycl < 17)

y2
cl + x2

cl < 152

y2
cl + x2

cl > 702,

where xcl and ycl are given in cm with respect to the z-axis. Figure 3.3 shows the hit
positions of the scattered electrons in the SPACAL before (left plot) and after (right plot)
the fiducial cuts have been applied. The fiducial cuts are also applied to the detector
simulated Monte Carlo samples.

3.4 DIS Sample

Different methods, based on different quantities measured in the detector, are available
for calculating the kinematics of a DIS event. The kinematic variables, which have to be
reconstructed are any two of the variables Q2, y and xBj since they are related through Q2 =
s·x·y, where s is the center-of-mass energy. Below, three of the methods for calculating the
event kinematics will be described. The resolutions of the kinematic variables have been
investigated by comparing the values generated by the Django(CDM) event generator with
the values reconstructed from detector simulated MC data. The method giving the best
resolution will be used for comparisons with the DIS data in various control plots.
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Figure 3.3: The position of clusters (xcl, ycl) produced by the scattered electrons in the
SPACAL before (left plot) and after (right plot) the fiducial cuts have been applied.

3.4.1 Reconstruction of the Event Kinematics

The three methods presented here are the Electron (e), Sigma (Σ), and the Electron Sigma
(eΣ) methods.

The electron method: The most commonly used method to reconstruct the kine-
matics of events in the low Q2 region is the electron method. In this method the event
kinematics are obtained from measuring the scattered electron alone. The variables Q2, y
and xBj are obtained from the relations:

Q2 = Q2
e = 4E0

eEecos
2(θe/2)

y = ye = 1 − Ee

E0
e

sin2(θe/2)

xBj = xBj,e =
Q2

e

ye · s
.

(3.4)

where Eo
e and Ee are the energies of the incoming and scattered electron, respectively, and

θe is the polar angle of the scattered electron.

At high Q2 and low y the reconstruction of the event kinematics by the electron method
is sensitive to QED radiation. The emission of a hard photon from the initial state electron
will not be noticed since it will proceed undetected in the beam tube. The collision energy
for such events will be lower than the nominal one, which will lead to a wrong determination
of the event kinematics by the electron method.

The Σ- and the eΣ-methods: To reduce the effect of QED radiation, the hadronic
final state particles can be used to calculate the event kinematics [95, 96]. Although the
energy of the hadronic final state is measured with much lower precision than that of the
scattered electron, it is directly related to the true collision energy. In these two methods
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the energy and momentum of all measured final state hadrons are used to calculate the
total hadronic energy, Eh, and longitudinal momentum, Pz,h.

Eh − Pz,h =
∑

i Ei − Pz,i (3.5)

The summation i extends over all measured particles in the angular range (3o < θi <
175o) except for the scattered electron, which is excluded. The quantity Eh−Pz,h is mostly
sensitive to the energy calibration of the LAr calorimeter in the central region, whereas the
effect from particles in the forward and backward regions is smaller. Thus particles lost
through the holes in the detector for the beam pipe have little influence on the quantity
Eh − Pz,h. The DIS variables Q2, y and xBj are reconstructed in the Σ-method according
to:

Q2 = Q2
Σ =

E2
esin

2θe

1 − yΣ

y = yΣ =
Eh − Pz,h

E − Pz

xBj = xBj,Σ =
Q2

Σ

yΣ4EeEp

(3.6)

Since the term Eh −Pz,h is calculated using hadrons measured by the LAr calorimeter,
the Σ-method is suffers from the poor resolution of the calorimeter. In the eΣ-method [95,
96] a mix of the electron and Σ-methods is used:

Q2 = Q2
eΣ = Q2

e

y = yeΣ =
2Ee(Eh − Pz,h)

(E − Pz)2

xBj = xbj,eΣ = xBj,Σ

(3.7)

The eΣ-method provides a better reconstruction of the event variables than the Σ-
method.

3.4.2 Resolution of the Event Kinematics

The precision in the determination of the event kinematics can be investigated by compar-
ing Monte Carlo events on generator level and after detector simulation. The distributions
of the ratio yrec/ygen have been used to determine the mean value 〈yrec/ygen〉 and the res-
olution, in terms of standard deviations, σ, as a function of ygen. From the measurement
of the mean value, shown in Figure 3.4, it is observed that the kinematics reconstructed
by the electron method gives better agreement with the hadron level MC data than the
Σ- and eΣ-methods, although especially the eΣ method exhibits improved performance as
the y-value increases. The electron method gives also a better resolution (smaller σ-values)
than the Σ- and eΣ-methods, except for the lowest ygen bin, as can be seen in Figure 3.5.
The resolution increases with higher values of y, but most dramatically for the electron-
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Figure 3.4: Distributions of 〈yrec/ygen〉 (mean values) for the e-, Σ- and eΣ-methods ob-
tained from Django(CDM) Monte Carlo data, shown as a function of ygen.

and eΣ-methods. The problems of the Σ- and eΣ-methods are related to the rather poor
energy measurement of the hadronic final state which suffers from the limited detector
acceptance in θ, particle leakage, mismeasurements of the particle energy and poor energy
calibration of the LAr calorimeter (only in second order). A behaviour similar to that ob-
served for the reconstruction of the y-variable can be seen in the reconstruction of the xBj

variable, shown in the Figures 3.6-3.7, resulting in the same conclusions. In the electron-
and eΣ-methods, Q2 is reconstructed in the same way and therefore they have identical
perfomancies as shown in the Figures 3.8-3.9. The Σ-method fails to give a reasonably
good reconstruction of Q2 and has the worst resolution.

3.4.3 The Phase Space and DIS Event Selection

From the study described in section 3.4.2 it is obvious that the electron method offers by
far the most accurate reconstruction of the event kinematic. This is a reflection of the
fact that energy measurements of electromagnetically interacting particles are much more
accurate than those of hadrons. The resolutions of Ee and θe are shown in Figure 3.10.
The good resolution of the electron momentum is also important for the calibration of the
LAr calorimeter, which is presented later in this thesis.

The following phase-space cuts are applied in order to obtain a well defined DIS sample:

5 < Q2
e < 100 GeV2

0.1 < ye < 0.7
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obtained from Django(CDM) Monte Carlo data, shown as a function of xgen. Note that
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eΣ = Q2
e follows from the definition of eΣ method.

In addition to the geometrical cut 156o < θe < 175o, a cut in Q2 is applied, which is
consistent with the scattered electron being restricted to the SPACAL acceptance region.
However, this cut also helps to reduce contributions from photoproduction.

The cuts on detector level which define the selection of DIS events are summarized in
Table 3.1.

3.4.4 Quality of the DIS Cuts and Control Plots

The DIS events, selected by applying the cuts in Table 3.1, have been used to produce
various control plots in order to investigate how well predictions from MC event generators
compare to the experimental data. In Figure 3.11 distributions of Q2, y, xBj, θe, φe and
Ee are shown and compared with the predictions of the Rapgap(dir) and Django(CDM)
programs at the detector level. The distributions are normalised to the integrated lumi-
nosity. The two MC programs are able to predict the DIS cross section quite well, except
for a small deviation at large xBj. It should however be noticed that the vertical scale is
logarithmic.

Some of the cuts in the DIS selection are are especially introduced in order to suppress
the photoproduction background. The background remaining after these cuts have been
estimated to be less than 1%.
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Figure 3.11: Control distributions for the DIS sample, showing Q2, y, xBj, θe, φe and Ee.
The cross sections are compared to detector simulated Monte Carlo data from Rapgap(dir)
and Django(CDM), respectively.
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DIS Cuts
5 GeV2 < Q2 < 100 GeV2

9 GeV < Ee

0.1 < y < 0.7

156◦ < θe < 175◦

35 GeV < E − Pz < 70 GeV

|zvtx| < 35 cm

Rcl < 3.5 cm

Ehad < 0.5 GeV

RBDC < 3. GeV

Eveto < 1.0 GeV

fiducial cuts

S0∨S3∨S61 (data only)

Run selections (data only)

Table 3.1: A summary of cuts used for the DIS event selection.

3.5 The Hadroo2 Algorithm

The quarks and gluons emitted in the scattering process will produce hadrons through the
fragmentation process, giving rise to the hadronic final state. Decays of short lived parti-
cles may produce photons and leptons, which have to be distinguished from the scattered
electron. Photons and neutral hadrons will only be measured in the calorimeters, whereas
charged particles may be measured both in the tracking devices and the calorimeters. How-
ever, some of the charged particles will have too low momenta to reach the calorimeter and
some might have so high momenta that their curvature is too small to be measured in the
tracking device. In order to obtain the best possible measurement of the hadronic final
state particles it has to be determined in which momentum ranges the tracking informa-
tion and the calorimeter information should be used. Thus, a reconstructed track of a
charged hadron has to be associated with a shower in the calorimeters in order to perform
a comparison of the energy measurements. In this process tracks from isolated electrons
and muons are not considered, since they most probably originate from decays of short
lived hadrons before the decay products enter the detector volume. The requirements for
defining particles as isolated are given in Appendix B.

The purpose of the Hadroo2 reconstruction algorithm [97], is thus to associate a se-
lected track (see Appendix B for definition) of a charged hadron to a cluster and determine
whether the momentum measurement provided by the tracker or the energy measure-
ment by the calorimeter is the most accurate to reconstruct the kinematics of the particle
candidate. By assuming all tracks to originate from pions the resolution in the energy
measurement from the track reconstruction can be determined through:

σEtrack

Etrack

=
1

Etrack

√

P 2
track · cot2 θ · σ2

θ +
σ2

PT

sin2θ
(3.8)
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where σPT
and σθ are the errors in PT and θ, respectively, obtained from the track fitting

error information. The energy of the track is given by:

E2
track = P 2

track + m2
π (3.9)

The error which can be expected from measuring this track in the LAr can be estimated
according to:

(σE

E

)

LAr,expect.
=

σELAr,expect.

Etrack

=
0.5√
Etrack

(3.10)

where σELAr,expect.
is the expected uncertainty from the energy measurement in the LAr

calorimeter, of a track with an energy Etrack as measured by the tracking system. From
measurements in test beams the energy resolution of the hadronic section of the LAr
calorimeter has been determined to be 50%/

√
E.

If σEtrack
/Etrack < σELAr,expect.

/Etrack then the track energy measurement is preferred.
For a charged particle originating from the interaction point and measured by both the
tracker and the calorimeter, the tracker will always provide the best measurement unless
the particle momentum is above 12 GeV in the forward region and 25 GeV in the central
region. In such cases the track related cluster in the calorimeter has to be identified
and removed in order to avoid double counting. Due to the fact that the visible energy,
generated by a particle with energy Etrack in the LAr calorimeter, is always smaller than
the true energy of the particle, a direct energy comparison can not be used to identify
the corresponding cluster. The starting point for identifying the cluster is to extrapolate
the track along a helix up to the surface of the calorimeter and from there connect it to
a straight line tangential to the helix. The energy in the calorimeter, which is associated
to the particle track, Eassoc., is given by the sum of all clusters which are confined by the
volume of a cone centered around the extrapolated track direction and with an opening
angle of 67.5o, overlapping with one cylinder of radius 25 cm in the electromagnetic section
and one cylinder of radius 50 cm in the hadronic part.

The next step is to compare Eassoc. with Etrack including fluctuations in the cluster and
track measurements. In the cases where one finds:

Eassoc. < Etrack



1 + 1.96

√

(

σEtrack

Etrack

)2

+
(σE

E

)2

LAr expected



 (3.11)

the total energy of Eassoc. has to be removed and the track information is used. In other
cases an energy Etrack is removed from Eassoc. and the energy difference Eassoc. − Etrack is
assumed to originate from neutral particles or other charged particles.

If σEtrack
/Etrack > σE LAr expected/Etrack is true then three cases are considered:

1. |Etrack − Eassoc.| < 1.96σEassoc.
, where σEassoc.

= 0.5
√

Eassoc.

The energy measurement from the track agrees with that of the clusters within the
fluctuations.
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2. Etrack > Eassoc + 1.96σEassoc.

The energy measurement from the track exceeds that of the clusters including the
upward fluctuation.

3. Etrack < Eassoc. − 1.96σEassoc.

The energy measurement from the track is smaller than that of the clusters including
the downward fluctuation.

In the cases 1 and 2 the calorimeter measurement is used and the track is removed.
In case 3 the track measurement is chosen and the cluster energy is removed as explained
above.

3.6 Jet Reconstruction

In high energy particle collisions the interesting physics is related to the properties of the
partons and leptons involved in the primary interaction. In contrast to leptons the partons
can not be measured directly in the detector, since colour confinement prevents them from
appearing as free particles. Instead hadrons are produced through the fragmentation and
hadronisation processes. Provided the parton momentum is high enough collimated flows of
hadrons are created, called particle jets. As the parton momentum increases the jets tend to
be more pencil-like, which simplifies their identification. Although the fragmentation and
hadronization processes are not understood from first principles, they can be well described
by phenomenological models. In all fragmentation models the kinematic properties of a
jet are strongly correlated with those of the parton from which it evolved. One should
keep in mind that jets at the detector level (data and detector simulated MC data) and at
the hadron level (after fragmentation and hadronization of partons) are colourless objects
which are used to describe the underlying properties of quarks and gluons, which carry
colour charges. Despite that, jets will reflect the properties of the partons involved in the
short distance interactions, provided the jet is sufficiently well defined.

Different types of algorithms have been developed in order to reconstruct jets. However,
the definition of a jet is not unambiguous. The picture of a jet as a collimated flow of
particles implies that a minimum energy has to be available for the jet formation. Due to
the fact that the definition of a jet is not unique, the existing jet-finding algorithms are
based on different observables in the jet reconstruction. The success of an algorithm is
given by its ability to reproduce the four vector of the original parton i.e. its momentum
and direction of flight.

The procedure to group hadrons together into jets is by no means obvious. The algo-
rithm used in this analysis is the longitudinally invariant k⊥ clustering algorithm [98–100].
The advantage of the k⊥ algorithm is that the clustering procedure is safe from infrared
divergencies because soft partons are first combined with harder partons and it is also safe
from collinear divergencies since two collinear partons are first combined with the original
parton. Particles which are found to belong to the same jet, are merged together into a
pseudoparticle using the k⊥ recombination scheme [101]. Eventually, the pseudoparticles,
represented by momentum vectors, will correspond to the jet momentum vectors.



78 CHAPTER 3. EVENT RECONSTRUCTION AND DIS SELECTION

3.6.1 The Longitudinally Invariant k⊥ Algorithm

In the longitudinally invariant k⊥ algorithm two resolution variables di,B and di,j are de-
fined. They measure the distance of particle {i} with respect to the direction of the beam,
B, and the separation {i, j} of the particle {i} to all other particles {j}. Particles are
merged into a pseudoparticle if their momenta are nearly parallel. The algorithm starts
with an original list of particles and proceeds as follows:

1. Calculate the distance between the particle {i} and the beam direction

di,B = P 2
T,iR

2.

where R represents the radius of a cone in the η-φ plane which is given the value 1
in this analysis.

2. Define for each pair of particles {i, j}, the longitudinally invariant distance

di,j = min(P 2
T,i, P

2
T,j) ·

(

(ηi − ηj)
2 + (φi − φj)

2
)

3. Find the minimum of di,j and di,B.

4. If the minimum is given by di,j, then the particle i and j are merged together into a
massless pseudo particle k according to the k⊥ recombination scheme:

PT,k = PT,i + PT,j

ηk =
PT,iηi + PT,jηj

PT,k

φk =
PT,iφi + PT,jφj

PT,k

.

Replace particles {i, j} with the pseudo particle k.

5. If the minimum is given by di,B, then the particle {i} is removed from the list and
defined as an jet.

6. Move back to step one until no particles are left in the list.



Chapter 4

Calibration of Jet Energy
Measurements

As already discussed in section 2.2.1 the energy measurement of hadronic showers suffers
from the limited energy fraction of the shower that is measurable (the visible energy)
which leads to a systematic shift and poor energy resolution. Thus, the measured energy
is significantly smaller than the energy carried by the hadron that initiated the shower.
The losses in the energy measurement have to be corrected for so as to reconstruct, as
closely as possible, the energy of the initial hadron. The correction factors are applied in
order to bring the measured data to the correct scale i.e. the absolute energy scale of the
measurement. The absolute scale of track momentum measurements and its uncertainty,
has been determined to better than 1 %, whereas the absolute energy scale for cluster
measurements in the hadronic calorimeter is known to substantially worse precision (several
percent). The uncertainty in the determination of the absolute energy scale will have a
direct impact on how well the energy of hadronic final state particles (HFS particles) can
be measured. The precision in the determination of the energy scale also depends on how
well the detector simulation is done. Not only has the performance of the calorimeter itself
to be accurately described but also the material budget in front of the calorimeter has to be
known in detail in order to correctly reproduce the energy measurement of the calorimeter.

Different calibration methods have been used by the H1 experiment, with the aim of
reducing the uncertainty and improving the absolute scale in the measurement of cluster
energies. The Iterative method [102] and the High Pt Jet Calibration method [97, 103]
are the most frequently used ones. The Iterative method provides a global calibration of
hadronic energy measurements i.e. it includes all calorimeter clusters in the event, while
in the High Pt Jet Calibration method only clusters belonging to the reconstructed jets
in the event are considered. The High Pt Jet Calibration method has been developed for
calibrating energy of jets with tranverse momenta larger than 10 GeV and for high Q2

events (Q2 > 100 GeV2).

In this chapter, a method of calibrating measurements of jets with transverse momenta
below 10 GeV, the Low Pt Jet Calibration method, is described. This method is inspired
by the method presented in [97,103]. Data collected in the years 1999-2000 and 2006-2007
have been used to test the performance of the Low Pt Jet Calibration method. Since

79
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Figure 4.1: The mean value of the ratio between the reconstructed and generated PT,e

distributions (left) and the relative resolution, defined as the standard deviation, σ, of the
P rec

T,e /P gen
T,e distribution (right) , both plotted as a function of P gen

T,e . A comparison is made
between the cases where PT,e has been reconstructed using the double angle method and
electron method, respectively.

clusters are considered to be massless objects, energy is equivalent to momentum and in
the following these concepts are used without distinction.

In section 4.1 general considerations about the jet energy calibration are given. The
selection criteria used to define the calibration sample are presented and motivated in
section 4.2. In section 4.3 the calculation of calibration constants is discussed, and the
performance of the calibration method is examined in section 4.4. A summary is given in
section 4.5 together with a discussion of possible future improvements.

4.1 General Considerations

At HERA, the electron and proton beams collide head-on, which means that the total
transverse momentum of the initial state is zero. Thus, the total transverse momentum of
the final state also has to be zero due to momentum conservation. This means that the
transverse momentum of the scattered electron has to be balanced by the transvers mo-
mentum of the hadronic final state, in the laboratory system. However, the experimental
measurement suffers from limitations given by the detector, such as the acceptance, the
resolutions of energy and momentum measurements and particles that escape detection
(like neutrinos). Provided the scattered electron can be measured with high precision, the
influence of the detector effects can be studied by using the measured transverse momen-
tum of the scattered electron as reference in a comparison with the measured transverse
momentum of the hadronic final state. It should be noted that the Hadroo2 algorithm was
used previoulsy (section 3.5) to reconstruct clusters in the LAr calorimeter, related to an
incoming hadron, and thus isolated electrons and muons were excluded. If, however, the
scattered electron is used as reference all particles in the hadronic final state have to be
included i.e. also isolated electrons and muons.
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T = PT,h/PT,e, shown for uncalibrated data

from DIS events, and for the Monte Carlo predictions of Rapgap(dir) and Django(CDM).

At high Q2 the scattered electron is detected in the LAr calorimeter, in which case the
best reconstruction of its transverse momentum is offered by the double angle method,
where P da

T is given by:

P da
T =

2E0
e

tan θe

2
+ tan θh

2

(4.1)

with

tan
θh

2
=

Eh − Pz,h

PT,h

. (4.2)

The polar angle, θh, extracted from Equation (4.2), is called the angle of the hadronic
system in the event. Eh − Pz,h is given by the Equation (3.5) and PT,h is defined as:

PT,h =
√

(
∑

i Px,i)2 + (
∑

i Py,i)2. (4.3)

Due to its good performance at high Q2, the double angle method has been used to calibrate
the energy measurements of high PT jets [97,103].

At low Q2, the scattered electron is detected in the SPACAL for which the electron
method provides the best determination of its transverse momentum, PT,e. The perfor-
mance of the PT,e-reconstruction can be estimated by comparing the reconstructed and
generated values from Monte Carlo generated events. Figure 4.1 shows the mean value
of the ratio between the reconstructed and generated PT,e distributions, 〈P rec

T,e /P gen
T,e 〉, to-

gether with the relative resolution, defined as the standard deviation, σ, of the P rec
T,e /P gen

T,e -
distribution, both plotted as a function of P gen

T,e . A comparison between the electron method
and double angle method, in the low Q2-region, proves that the generated PT,e-values are
very well reconstructed by the electron method, whereas the double angle method gives
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a much worse reconstruction, especially at low PT,e. The resolution in the reconstruction
is also much better for the electron method compared to the double angle method. It
should, however, be kept in mind that the PT,e-reconstruction from the electron method
also depends on the uncertainty in the absolute energy scale of the SPACAL, whereas the
error in the absolute energy scale of the LAr calorimeter cancels to first order if the double
angle method is applied. Still, the electron method provides by far the most accurate
determination, due to the high precision in the energy calibration of the electromagnetic
SPACAL. Thus, the electron method will be used for the investigations of the balance
between the transverse momenta of the scattered electron and the HFS particles. The
transverse momentum balance is defined by:

P bal
T =

PT,h

PT,e

(4.4)

where PT,h is the total transverse momentum of the HFS particles. The limited resolution
of the experimental measurement will lead to Gaussian like PT -distributions, whereas the
losses due to acceptance and non-measurable particles will give a systematic shift of the
distributions compared to the PT of the scattered electron.

The P bal
T distribution extracted from experimental data, is compared with those ob-

tained from detector simulated Monte Carlo data using the Rapgap(dir) and Django(CDM)
programs, in Figure 4.2, for low Q2 events. As can be seen the Rapgap(dir) distribution
reproduces the data somewhat better than that of Django(CDM). It can also be noticed
that the peak value of the distributions is around 0.9, indicating that the amount of energy
lost in the event is about 10%, on the average. The calculated mean value of the P bal

T

distributions is used as an indicator of the absolute energy scale i.e. how well the total PT

of the hadronic system is reconstructed. In order to gain some knowledge of how well the
response of the detector is described by the detector simulation and how well the events are
reconstructed, the double ratio of the mean P bal

T -values for data and Monte Carlo events
can be studied. The double ratio is defined as:

DR(P bal
T ) = 〈PT,h

PT,e

〉data/〈
PT,h

PT,e

〉MC (4.5)

where 〈PT,h/PT,e〉 is the mean value of the P bal
T distributions. If DR(P bal

T ) is not equal to
unity, different amounts of transverse momentum are reconstructed from the data and MC
events, suggesting that our knowledge of the detector and/or the event reconstruction is
not good enough. Thus, the double ratio, DR(P bal

T ), measures the systematic uncertainty
of the HFS transverse momentum. Since PT,h ≈ Ehsin(θh) and the uncertainty in the θh

reconstruction is expected to be small compared to the PT,h measurement, DR(P bal
T ) is

essentially equivalent to the systematic uncertainty in the absolute energy scale. From the
methods described in [97,102,103] it has been demonstrated that the absolute energy scale
can be determined from the double ratio method to better than 2% with an uncertainty
less than 2%.

The method described above can be used to find calibration constants for measurements
of the total hadronic final state but in the case of jets the principle is to re-weight the energy
measurement of clusters belonging to jets only. The weights are extracted separately for
the different wheels of the LAr calorimeter, see Figure 2.3. The position of the wheels,
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given in polar angle, and their coverage, in terms of rapidity, is specified in Table 4.1. The
calibration weights for the jets in the low Q2 region are extracted from a sample containing
exactly one reconstructed jet, above some momentum threshold, and the scattered electron
detected by the SPACAL (Jet calibration sample), i.e. QPM like events. In the ideal case
the total transverse momentum of the hadronic final state, PT,h, would be equal to the
tranverse momentum of the jet, provided the jet algorithm clusters ’all’ HFS particles into
the jet, and consequently the mean value of the P bal

T distribution would reflect the absolute
energy scale of the jet measurement. However, according to the string fragmentation model
it is not unambigous which particles belong to the jet in a QPM event and which particles
belong to the proton remnant. Problems might also be caused by two-jet events where one
of the jets is too soft to fulfill the jet transverse momentum cut and therefore the events
will be treated as QPM events. Different selections have been studied with the aim of
reducing the fraction of problematic events in the calibration sample. Two MC programs,
Rapgap(dir) and Django(CDM), are used in order to study the model dependence of the
calibration method.

IF1 IF2 OF FB CB3 CB2 CB1 BBE

θ [deg.] 7 − 10 10 − 15 15 − 30 30 − 55 55 − 80 80 − 110 110 − 135 135 − 155

| ∆η | 0.36 0.41 0.71 0.68 0.43 0.54 0.53 0.62

Table 4.1: The different regions in polar angle of the LAr wheels to be calibrated and their
coverage in η.

4.2 The Calibration Sample

The DIS calibration sample was selected by applying the standard cuts for the DIS event
selection as presented in Table 3.1, except for the following changes:

• Ee > 15 GeV has been imposed to improve the electron energy reconstruction, but
also to reduce the contamination from photoproduction processes.

• In order to increase the acceptance of QPM jet events at low θ angles (the forward
region) the lower cut on y has been removed.

• In order to further reduce the contamination from photoproduction processes and
the effects from QED radiation, a narrower window of the scalar E − Pz has been
defined, 52 GeV < E − Pz < 70 GeV.

• Exactly one isolated electron in the SPACAL is required.

The jets are found and reconstructed in the laboratory frame by applying the inclusive
k⊥ algorithm. Events in the DIS calibration sample, with a jet of PT,jet > 3 GeV within the
angular range 7o < θjet < 155o, are selected. In order to calculate calibration weights for
the individual calorimeter wheels, the full jet has to be contained within the wheel i.e. the
transverse size of the jet has to be smaller than the rapidity coverage of the wheel.
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The transverse size of a jet is represented by an energy weighted radius, Rw, defined
by:

Rw =
∑

i

Ei

√

(φjet − φi)2 + (ηjet − ηi)2 / Ejet,

where Ejet, φjet and ηjet are the energy of the jet, and the azimuthal angle and rapidity
of the jet axis, respectively, whereas Ei, φi and ηi are the energy, azimuthal angle and
rapidity of particle i in the jet. The sum runs over all particles in the jet. In Figure 4.3 the
Rw-distributions are shown in different bins of PT,jet, obtained from data and Monte Carlo
events generated by Rapgap(dir) and Django(CDM). Again it is seen that Rapgap(dir)
gives a better description of the data compared to Django(CDM). Further the average
transverse jet size is seen to increase from Rw ≈ 0.32, for jets with PT in the range 6 - 7
GeV, to Rw ≈ 0.35 for jets with PT 3.5 - 4 GeV. Thus, the transverse size of the jets is
always smaller than or comparable to the coverage, in η, of the separate LAr wheels (see
Table 4.1), even at the lowest PT,jet of the calibration sample.

The uncertainty in the absolute scale of the jet transverse momentum reconstruction is
given by DR(P bal

T ), as defined by Equation (4.5). The mean value of the P bal
T distributions

is obtained by fitting a Gaussian around the peak of the distribution. In order to obtain
a distribution around the peak value, it is obvious that PT,h must be allowed to become
smaller than PT,e. This requirement is met by introducing a cut on PT,e that is larger than
the PT cut used in the jet reconstruction. For this reason the transverse momentum of the
scattered electron has to fulfill:

PT,e > 4 GeV. (4.6)

For a pure one-jet event the polar angle of the hadronic system θh essentially represents
the scattering angle of the struck quark, θjet, except for small deviations due to the string
fragmentation. For events where all particles, except the remnant particles, are clustered
into one jet by the jet algorithm, the polar angle of the jet, θjet, and the angle of the hadronic
system, θh, will coincide by default. The angle θh is determined from a measurement of the
hadronic final state particles according to Equation (4.2) and is thus directly dependent on
the LAr calibration, which is undesireable. By using instead the y-value determined from
either the electron method, Equation (3.4), or the eΣ- method, Equation (3.7), θh is given
by:

tan(θh,eΣ/2) =
yeΣ

1 − yeΣ

tan(θe/2). (4.7)

However, as was noted in section 3.4.1 the reconstruction of the event kinematics by
the electron method gives bad resolution in the low y-region partly due to the influence of
QED radiation. Figure 4.4 contains plots of the angular distributions of the jet axis, θjet,
and of the angle of the hadronic system as determined by the double angle method (θh),
by the eΣ-method (θh,eΣ) and by the electron method (θh,e), for data and the Monte Carlo
samples of Rapgap(dir) and Django(CDM). As can be seen, the agreement between data
and the Monte Carlo distributions is good except in the forward region, where the influence
of the beam remnant is expected to be large. The distributions of θh and θh,eΣ have similar
shapes although they do not agree well with the θjet distribution. The θh,e distribution is
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Figure 4.3: Distributions of the transverse jet size Rw, where Rw =
∑

i Ei

√

(φjet − φi)2 + (ηjet − ηi)2/Ejet. Data are compared to the predictions of Rap-
gap(dir) and Django(CDM) in different regions of PT,jet. The mean value, µ, and the
standard deviation, σ, are obtained by fitting a Gaussian to the central part of the data
distributions.
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Figure 4.4: The distributions of polar ang θjet, θh, θh,eΣ and θh,e. Where θjet is the polar
angle of the jet, θh is the polar angle of the hadronic system, θh,eΣ and θh,e are the polar
angle of the hadronic system calculated with the eΣ and e methods, respectively. Data are
compared to the predictions of Rapgap(dir) and Django(CDM).

much flatter than the others. Based on the considerations above the eΣ method has been
used to reconstruct the angle of the hadronic system.

In principle the calibration of the jet energy measurement should account for the loss
of jet particles that fall outside the acceptance of the LAr calorimeter but should avoid
including particles that belong to the proton remnant. Since the influence of the beam
remnant gets problematic in the very forward direction it is necessary to require that the
angle of the hadronic system is reconstructed well inside the solid angle of the calorimeter.
Therefore the following cut is imposed:

10o < θh,eΣ < 150o. (4.8)

To further constrain the selection of QPM events, the difference between the polar angle
of the jet and of the total hadronic system is required to be small,

|θh,eΣ − θjet| < 20o. (4.9)
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For the purpose of extracting the calibration constants of jet energy measurements the
definition of PT,h and P bal

T have been modified in the following way:

P
′

T,h =

√

(
∑

i

P
i

T −
∑

i∈jet

P
i

T + P T,jet)2. (4.10)

The summation i extends over all measured particles, represented by clusters and tracks,
in the angular region 3o < θi < 175o, except for the scattered electron. Here, the jet
is considered as one object, given by the k⊥ algorithm, which carries the struck parton
momentum and therefore, to avoid double counting, the transverse momenta of the particles

belonging to the jet,
∑

i∈jet P
i

T , are subtracted from the transverse momenta of all particles

in the event,
∑

i P
i

T , in Equation (4.10). From MC studies it was found that this definition
of P

′

T,h provides a better description of the generated momentum of the hadronic system.

The ratio between PT,jet and P
′

T,h is demanded to be close to one, in order to reject
events where a large fraction of the transverse momentum is carried by particles, which
are not allocated to the jet.

0.8 <
PT,jet

P
′

T,h

< 1.4 (4.11)

After these additional cuts have been applied the DIS calibration sample has been
reduced to a Jet calibration sample.

The imbalance of the transverse momentum of the event can in the general case be
written as (1 − P bal

T ). In the case of QPM events the imbalance, corrected for clusters
not included in the jet, is given by (1 − P bal

T ) · (PT,JetClus/PT,Clus), where PT,JetClus is the
transverse momentum of the clusters in the jet and PT,Clus is the transverse momentum
of all particles in the event. It should be remembered that it is the uncorrected cluster
energies that enter into PT,JetClus. Thus, a revised definition of the transverse mometum
balance for QPM events is introduced:

P bal ′

T = 1 − (1 − P bal
T ) · (PT,JetClus

PT,Clus

). (4.12)

This modification minimizes the contribution to the momentum imbalance from par-
ticles not allocated to the jet. In Figure (4.5-4.8) the control plots of the Jet calibration
sample are shown. In Figure 4.5 and Figure 4.6 the distributions of PT,jet/P

′

T,h and Ejet/Eh,
are shown for different regions of θjet, respectively. From Figure 4.6 it is seen that events
with jets reconstructed in the central region have a significant fraction of the total energy
outside the jet (Ejet/Eh ≪ 1), whereas Figure 4.5 shows that most of the transverse mo-
mentum of the event is carried by the jet (PT,jet/P

′

T,h ≈ 1). The data are well described
by Django(CDM), while Rapgap (dir) does not reproduce the energy distribution of QPM
events.

Distributions of the DIS kinematic variables are shown for the Jet calibration sample
in Figure 4.7. As observed Rapgap(dir) provides an almost perfect description of the data,
whereas the predictions of Django(CDM) exhibit some deviations.
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Figure 4.5: Distributions of the PT,jet/P
′

T,h ratio presented for different regions in θjet for
the Jet calibration sample.

In Figure 4.8 the distributions of θjet and θh are compared to the predictions of Rap-
gap(dir) and Django(CDM) for the Jet calibration sample. It can be observed that the two
distributions have shapes that are more similar than those observed for the corresponding
distributions of the DIS calibration sample (see Figure 4.4).

The absolute scale of the measurements, is given, as mentioned already, by the mean
values of the P bal′

T distributions, obtained from a fit of a Gaussian distribution around the
peak of the P bal′

T distributions. The fit covers one standard deviation from the mean value.
In Figure 4.9 the P bal′

T distributions are shown together with the fits in the angular range
30o < θjet < 55o for the Jet calibration sample. In Figure 4.10 the mean values of the
P bal ′

T distributions, 〈P bal ′

T 〉, are plotted as a function of PT,e in different bins of θjet for
the Jet calibration sample, using data from the 1999-2000 run periods, together with the
distributions obtained from the Monte Carlo samples of Rapgap(dir) and Django(CDM).
The PT,e dependence of 〈P bal′

T 〉 is extracted from fits using the function:

F bal(θjet, PT,e) = Aθjet
(1 + exp(−Bθjet

− Cθjet
PT,e)) (4.13)
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Figure 4.6: Distribution of the Ejet/Eh ratio presented for different regions in θjet for the
Jet calibration sample.



90 CHAPTER 4. CALIBRATION OF JET ENERGY MEASUREMENTS

]2 [GeV2Q
10 20 30 40 50 60 70 80 90

]
-2

 [
G

eV
2

1/
N

 d
N

/d
Q

-310

-210

y
0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45

1/
N

 d
N

/d
y

0
1
2
3
4
5
6
7
8
9

Data (99/00)
Django (CDM)
Rapgap (dir)

 Bjx
0 0.002 0.004 0.006 0.008 0.01

B
j

1/
N

 d
N

/d
x

210

 [rad.]eθ
2.7 2.75 2.8 2.85 2.9 2.95 3 3.05

]
-1

 [
ra

d
.

eθ
1/

N
 d

N
/d

0

2

4

6

8

10

 [rad.]
e

φ
-3 -2 -1 0 1 2 3

]
-1

 [
ra

d
.

eφ
1/

N
 d

N
/d

0

0.05

0.1

0.15

0.2

0.25

0.3

 [GeV]eE
10 12 14 16 18 20 22 24 26 28

]
-1

 [
G

eV
e

1/
N

 d
N

/d
E

0

0.05

0.1

0.15

0.2

0.25

0.3

Figure 4.7: Control distributions of the variables Q2, y, xBj, θe, φe and Ee for the Jet
calibration sample. The experimental data are compared to detector simulated Monte Carlo
data from Rapgap(dir) and Django(CDM). The distributions have been normalised to the
total number of events.
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Figure 4.8: The distributions of θjet and θh for the Jet calibration sample, normalised to
the total number of events.

where Aθjet
, Bθjet

and Cθjet
are the calibration coefficients to be determined. Less than

1% difference between the Monte Carlo predictions of Rapgap(dir) and Django(CDM) is
observed in all θjet bins.

In Figure 4.11 the corresponding plots are shown for data taken in the 2006-2007 run
periods. It should be mentioned that the understanding of the detector and the perfor-
mance of the event reconstruction algorithm in the years 2006-2007, were not completely
satisfactory as the results, presented in this thesis, were extracted. Thus, the predictions
of P bal ′

T from the Monte Carlo programs exhibit large deviations with respect to the data
in the forward region.

4.3 Correction Factors

The absolute scale of the jet measurement as a function of the reference momentum PT,e

is determined using the function F bal(θjet, PT,e), separately for the different wheels of the
LAr calorimeter (θ bins). A correction factor, f , is applied to clusters belonging to jets of
transverse momenta 3 < PT,jet < 9 GeV, which have been reconstructed in the laboratory
frame within the angular region of 7o < θjet < 155o. The correction factor is given by:

f =
1 − F bal(θjet, PT,jet) × (1 − Ccls)

F bal(θjet, PT,jet) × Ccls

(4.14)

where:

Ccls =
P JetClus

T

P JetTracks
T + P JetClus

T

(4.15)

is the transverse momentum fraction of the jet taken from the cluster information com-
pared to the total transverse momentum of the jet given by the sum of cluster and track
measurements. F bal(θjet, PT,jet) is the fitted function in Equation (4.13) using PT,jet as
reference. It is clear that since PT,e gives the transverse momentum balance to the total
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Figure 4.9: P bal′

T distributions for uncalibrated experimental data (99/00), and for Monte
Carlo data generated by the Rapgap(dir) and Django(CDM) programs, in the angular range
30o < θjet < 55o for the calibration sample. Fits around the mean values are also shown.
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Figure 4.10: 〈P bal′

T 〉-values as a function of PT,e in bins of θjet for experimental data col-
lected in the 99/00 run period and Monte Carlo data generated by the Rapgap(dir)and
Django(CDM) programs. The function F bal(θ, PT,e) = Aθjet

(1 + exp(−Bθjet
−Cθjet

PT,e))
have been fitted to data, Rapgap(dir) and Django(CDM) points and are represented by the
full, dashed and dash-dotted lines, respectively.
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Figure 4.11: 〈P bal′

T 〉-values as a function of PT,e in bins of θjet for experimental data col-
lected in the 06/07 run period and Monte Carlo data generated by the Rapgap(dir) and
Django(CDM) programs. The function F bal(θ, PT,e) = Aθjet

(1 + exp(−Bθjet
−Cθjet

PT,e))
have been fitted to data, Rapgap(dir) and Django(CDM) points and are represented by the
full, dashed and dash-dotted lines, respectively.
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hadronic final state system, it can not be used as reference for the jet measurements. How-
ever, the absolute scale of the jet momentum measurement is not known, but has to be
determined in the following iterative process. First, the uncalibrated cluster information
is inserted in Equation (4.15) and the obtained value of Ccls is used to extract a correction
factor f1 from Equation (4.14). In the second step the correction factor f1 is applied to the
cluster energies and a new value of Ccls is calculated. This can now be inserted into Equa-
tion (4.14) to obtain an improved correction factor f2. This procedure can be repeated
but it has been found that two iterations are enough to get a sufficiently good correction
factor [97].

The transverse momentum measurement of jets with PT,jet larger than 9 GeV is cal-
ibrated using the High Pt Jet Calibration method, where a slightly different function is
used for F bal:

F bal(θjet, PT,e) = Aθjet
(1 − exp(−Bθjet

− Cθjet
PT,e)). (4.16)

Clusters which have not been allocated to the jet have not been included in the calibra-
tion procedure described above but their energy measurement may be calibrated using the
Iterative calibration method. Here the correction factors are different for electromagnetic
and hadronic clusters, and for different regions in the LAr calorimeter.

4.4 The Calibration Performance

In order to test the performance of the Low Pt Jet calibration the DIS calibration sample
was used with the additional requirement that the events contained exactly one jet with
PT,jet > 3.5 GeV. Two calibration methods have been considered:

• The transverse momentum measurement of jet clusters is calibrated using the Low
and High Pt Jet Calibration methods. In the following this procedure is denoted M3.
After the calibration has been completed the jet algorithm is applied once again to
the full event i.e. including the energy calibrated jet clusters, the energy uncalibrated
clusters not allocated to the jet and the tracks. Hereby information is gained on how
frequently a cluster, which was not allocated to the jet in the initial jet reconstruction
step, will be included into the jet after energy calibration.

• In order also to include clusters not allocated to the jet in the calibration procedure,
a combination of the Low and High Pt Jet Calibration methods with the Iterative
method have to be used. Thus, in this method, called M5, all clusters in the event
are calibrated.

After the calibration constants have been obtained, all variables that are related to
the hadronic final state are recalculated, e.g. PT,h, and θh, since the performance of the
calibration method is tested using the total hadronic final state.

The model dependence of the calibration method is obtained by first extracting the
calibration constants using Rapgap(dir) and Django(CDM), respectively, and thereafter



96 CHAPTER 4. CALIBRATION OF JET ENERGY MEASUREMENTS

applying each constant to both Rapgap(dir) and Django(CDM). This was done using the
M3 calibration procedure.

An additional control sample with at least two reconstructed jets of PT,jet > 3.5 GeV,
the dijet sample, is defined.

4.4.1 The One-Jet Test Sample

Various plots have been produced to illustrate the performance of the calibration procedure.
The Figures 4.12, 4.14, 4.15 and 4.17 have been organized in the same way. The plots a)
show distributions before calibration. The distributions in the plots b) and d) have been
obtained by applying correction factors calculated using the Django(CDM) data, whereas
in the distributions c) and e) corrections factors calculated from Rapgap(dir) data have
been used. In the plots b) and c) the M3 calibration procedure was followed, while in the
plots d) and e) the M5 scheme was used.

In Figure 4.12 〈P bal
T 〉 is shown as a function of θjet for experimental data (99/00),

and for the Monte Carlo samples of Rapgap(dir) and Django(CDM). Before calibration
(Figure 4.12a) the scale is systematically below unity, decreasing to 0.75-0.8 in the forward
region for both data and the Monte Carlo samples. With the M3 calibration procedure,
the deviations of the absolute scale from unity are smaller than or about 6%, except
for the lowest θjet-bin, where the deviation is almost 10%. Using the M5 calibration
scheme improves the situation such that the deviations are approaching 2%, again with the
exception of the extreme forward region, where it remains 10%. This deviation originates
mainly from particles escaping detection in the forward region, as can be seen from plotting
the transverse momentum balance on generator level, in a plot of P bal,gen

T = P gen
T,h /P gen

T,e ,
shown in Figure 4.13. Although consistent with unity over most of the angular range,
the deviations increases up to 6% when approaching the most forward going region. It
should be mentioned that an attempt to correct for the missing transverse momentum
in the forward region led to a deterioration in the resolution of the jet four-momentum
reconstruction due to an overcalibration of the jet energy.

The uncertainty of the absolute energy scale, DR(P bal
T ), as a function of θjet, is pre-

sented in Figure 4.14. Before calibration the uncertainty is outside the 2% window in
the forward direction, whereas after calibration the uncertainty is well inside 2%. In this
representation some dependence on the correction factors calculated from the Rapgap(dir)
and Django(CDM) samples can be observed which is of the order of 1% . A difference of
about 1.5% in DR(P bal

T ) obtained from Rapgap(dir) and Django(CDM) is also observed.
The M3 calibration scheme gives somewhat smaller uncertainties than the M5 scheme.

Figure 4.15 and Figure 4.17 show how the 〈P bal
T 〉 and DR(P bal

T ) distributions depend
on PT,e. An imbalance is observed as PT,e increases and this remains after calibration,
although it gets smaller. The difference between data and the MC predictions, seen before
calibration, disappears once the calibration has been performed. Events of the one-jet test
sample predominantly contain forward jets as PT,e gets high. This is demonstrated by
Figure 4.16, where the correlation between θjet and PT,e is shown. The fraction of one-
jet events where the jet is in the forward region and PT,e is in the range up to 6.5 GeV,
constitutes around 25%, and should be compared to the fraction of forward jet events
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where PT,e is above 6.5 GeV, which is as high as 45%. Thus, the increase of the imbalance
at high PT,e is due to particle leakage in the forward region i.e. the imbalance observed
in Figure 4.12 for small θjet and in Figure 4.15 for high PT,e have the same origin. From
Figure 4.17 it is established that the uncertainty of the absolute scale, DR(P bal

T ), is smaller
than 2% over the full PT,e range for both the M3 and M5 schemes, although M3 exhibits
a somewhat better performance.

The mean value of the ratio between the reconstructed and generated PT,jet distribu-
tions, 〈P rec

T,jet/P
gen
T,jet〉, together with the relative resolution, defined as the standard devia-

tion, σ, of the P rec
T,jet/P

gen
T,jet distribution, are both plotted as a function of P gen

T,jet in Figure 4.18
and as a function of θgen

jet in Figure 4.19. An improvement in the absolute energy scale of
the jet measurements in going from uncalibrated to calibrated data can be observed over
the full P gen

T,jet range. The relative jet energy resolution is somewhat worse for calibrated
data compared to uncalibrated at lower P gen

T,jet but becomes better at higher P gen
T,jet. This

is due to the fact that some jets with low transverse momenta in the MC data, which
originally failed to fulfill the PT,jet > 3.5 GeV requirement on detector level might do so
after the calibration and thus deteriorates the energy resolution of calibrated data com-
pared to uncalibrated. The relative resolution is somewhat worse for energy calibrated
data compared to uncalibrated data over the full angular range. In Figures 4.20 and 4.21
the mean value of the ratio between the reconstructed and generated PT,h distributions,
〈P rec

T,h/P gen
T,h 〉, together with the relative resolution, defined as the standard deviation, σ,

of the P rec
T,h/P gen

T,h distribution, are shown as a function of P gen
T,jet and θgen

jet . The P gen
T,jet de-

pendence of uncalibrated data almost disappears once the data have been calibrated. The
relative resolution shows little dependence of P gen

T,jet. The θgen
jet dependence of the absolute

scale and the relative resolution is similar to what was observed for jets.

Plots similar to the above have been produced to study the performance of the cali-
bration using data from the 2006-2007 run periods. The data, compared to Rapgap(dir)
and Django(CDM), are presented in Figures 4.22 and 4.25, where only calibration factors
calculated from the Django(CDM) sample using the calibration scheme M3. The overall
performance is similar to that found in the 1999-2000 data sample.

The performance of the Method M5 for the 2006-2007 data sample is not presented,
since it is similar to that found in the 1999-2000 data sample i.e. the performance of the
method M5 is close to that of M3.

4.4.2 The Two-Jet Test Sample

The absolute scale and the uncertainty in the absolute scale obtained from the two-jet
sample collected in the years 1999-2000 are shown as a function of PT,e in Figures 4.26
and 4.27, and as a function of θh in Figures 4.28 and 4.29. The data are compared to
Rapgap(dir) and Django(CDM). Only correction factors extracted from the Django(CDM)
sample were used together with the calibration procedure M3. Again the general behaviour
of the distributions are similar to those of the one-jet sample, with the uncertainty of the
absolute energy scale within 2% for the energy calibrated data.
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Figure 4.12: 〈P bal
T 〉 as a function of θjet for the one-jet test sample, extracted from ex-

perimental data (99/00) and from Monte Carlo data generated by the Rapgap(dir) and
Django(CDM) programs. Shown are in plot (a) the distributions for uncalibrated data, in
plots (b) and (c) distributions for data calibrated according to the M3 scheme and in plots
(d) and (e) distributions calibrated according to the M5 procedure. In the plots (b) and (d)
Django(CDM) was used to calculate the calibration factors, whereas in plots (d) and (e)
the calibration factors were obtained using Rapgap(dir).



4.4. THE CALIBRATION PERFORMANCE 99

  jet 
 gen θ

20 40 60 80 100 120 140

 >
T

,e g
en

 / 
P

T
, h g
en

< 
P

0.75

0.8

0.85

0.9

0.95

1

1.05

Django(CDM)

Rapgap(dir)

Figure 4.13: The mean value of the PT balance as a function of θjet on generator level over
the full range of the detector coverage, 3o < θ < 176o.
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Figure 4.14: DR(P bal
T ) distributions as a function of θjet for the ratio between 〈P bal

T 〉 of ex-
perimental data (99/00), using the one-jet test sample, and of Monte Carlo data generated
by the Rapgap(dir) and Django(CDM) programs. Shown are in plot (a) the distributions
for uncalibrated data, in plots (b) and (c) distributions for data calibrated according to the
M3 scheme and in plots (d) and (e) distributions calibrated according to the M5 procedure.
In the plots (b) and (d) Django(CDM) was used to calculate the calibration factors, whereas
in plots (d) and (e) the calibration factors were obtained using Rapgap(dir).
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Figure 4.15: 〈P bal
T 〉 as a function of PT,e for the one-jet test sample, extracted from ex-

perimental data (99/00) and from Monte Carlo data generated by the Rapgap(dir) and
Django(CDM) programs. Shown are in plot (a) the distributions for uncalibrated data, in
plots (b) and (c) distributions for data calibrated according to the M3 scheme and in plots
(d) and (e) distributions calibrated according to the M5 procedure. In the plots (b) and (d)
Django(CDM) was used to calculate the calibration factors, whereas in plots (d) and (e)
the calibration factors were obtained using Rapgap(dir).
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Figure 4.16: The correlation between the polar angle of the QPM jet, θjet, and the transverse
momentum of the scattered electron, PT,e, for the one-jet test sample.
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Figure 4.17: DR(P bal
T ) distributions as a function of PT,e for the ratio between 〈P bal

T 〉
of experimental data (99/00), using the one-jet test sample, and of Monte Carlo data
generated by the Rapgap(dir) and Django(CDM) programs. Shown are in plot (a) the
distributions for uncalibrated data, in plots (b) and (c) distributions for data calibrated
according to the M3 scheme and in plots (d) and (e) distributions calibrated according
to the M5 procedure. In the plots (b) and (d) Django(CDM) was used to calculate the
calibration factors, whereas in plots (d) and (e) the calibration factors were obtained using
Rapgap(dir).
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Figure 4.18: The mean value (a) and the relative resolution (b) of the P rec
T,jet/P

gen
T,jet dis-

tributions as function of P gen
T,jet for the one-jet test sample generated by the Django(CDM)

program. Compared are the distributions of uncalibrated data (•), and those where the cal-
ibration was performed according to the M3 (¥) and the M5 (⋆) recipe, using calibration
coefficients obtained from Django(CDM). The definition of the relative resolution is given
in the text.



4.4. THE CALIBRATION PERFORMANCE 105

  jet 
 gen θ

20 40 60 80 100 120 140

 >
T

, j
et

 g
en

 / 
P

T
,je

t
 r

ec
< 

P

0.75

0.8

0.85

0.9

0.95

1

1.05
( a )

No Cal., Django

M3, Django, Coe(Dja)

M5, Django, Coe(Dja)

( a )

No Cal., Django

M3, Django, Coe(Dja)

M5, Django, Coe(Dja)

( a )

No Cal., Django

M3, Django, Coe(Dja)

M5, Django, Coe(Dja)

  jet 
 gen θ

20 40 60 80 100 120 140

R
el

at
iv

e 
R

es
o

lu
ti

o
n

0.08

0.1

0.12

0.14

0.16

0.18

0.2
( b )( b )( b )

Figure 4.19: The mean value (a) and the relative resolution (b) of the P rec
T,jet/P

gen
T,jet dis-

tributions as function of θgen
jet for the one-jet test sample generated by the Django(CDM)

program. Compared are the distributions of uncalibrated data (•), and those where the cal-
ibration was performed according to the M3 (¥) and the M5 (⋆) recipe, using calibration
coefficients obtained from Django(CDM). The definition of the relative resolution is given
in the text.
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Figure 4.20: The mean value (a) and the relative resolution (b) of the P rec
T,h/P gen

T,jet dis-
tribution as function of P gen

T,jet for the one-jet test sample generated by the Django(CDM)
program. Compared are the distributions of uncalibrated data (•), and those where the cal-
ibration was performed according to the M3 (¥) and the M5 (⋆) recipe, using calibration
coefficients obtained from Django(CDM). The definition of the relative resolution is given
in the text.
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Figure 4.21: The mean value (a) and the relative resolution (b) of the P rec
T,h/P gen

T,h distribution
as function of θgen

jet for the one-jet test sample generated by the Django(CDM) program.
Compared are the distributions of uncalibrated data (•), and those where the calibration
was performed according to the M3 (¥) and the M5 (⋆) recipe, using calibration coefficients
obtained from Django(CDM). The definition of the relative resolution is given in the text.
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Figure 4.22: 〈P bal
T 〉 distributions as a function of θjet for the one-jet test sample, extracted

from experimental data (06/07) and from Monte Carlo data generated by the Rapgap(dir)
and Django(CDM) programs. Shown are in plot (a) the distributions for uncalibrated
data and in plot (b) distributions for data calibrated according to the M3 scheme, where
Django(CDM) was used to calculate the calibration factors.
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Figure 4.23: DR(P bal
T ) distributions as a function of θjet for the ratio between 〈P bal

T 〉 of ex-
perimental data (06/07), using the one-jet test sample, and of Monte Carlo data generated
by the Rapgap(dir) and Django(CDM) programs. Shown are in plot (a) the distributions
for uncalibrated data and in plot (b) distributions for data calibrated according to the M3,
where Django(CDM) was used to calculate the calibration factors.
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Figure 4.24: 〈P bal
T 〉 distributions as a function of PT,e for the one-jet test sample, extracted

from experimental data (06/07) and from Monte Carlo data generated by the Rapgap(dir)
and Django(CDM) programs. Shown are in plot (a) the distributions for uncalibrated
data and in plot (b) distributions for data calibrated according to the M3 scheme, where
Django(CDM) was used to calculate the calibration factors.
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Figure 4.25: DR(P bal
T ) distributions as a function of PT,e for the ratio between 〈P bal

T 〉
of experimental data (06/07), using the one-jet test sample, and of Monte Carlo data
generated by the Rapgap(dir) and Django(CDM) programs. Shown are in plot (a) the
distributions for uncalibrated data and in plot (b) distributions for data calibrated according
to the M3, where Django(CDM) was used to calculate the calibration factors.



110 CHAPTER 4. CALIBRATION OF JET ENERGY MEASUREMENTS

 [GeV] T , eP
4 5 6 7 8 9

   
  

T b
al

P

0.6
0.65

0.7
0.75

0.8
0.85

0.9
0.95

1
1.05

1.1
No Cal. 2% level

Data 99/00
Django (CDM)
Rapgap (dir) ( a )

 [GeV] T , eP
4 5 6 7 8 9

   
  

T b
al

P

0.6
0.65

0.7
0.75

0.8
0.85

0.9
0.95

1
1.05

1.1
M3, Coe(Dja) 2% level

( b )

Figure 4.26: 〈P bal
T 〉 distributions as a function of θjet for the two-jet test sample, extracted

from experimental data (99/00) and from Monte Carlo data generated by the Rapgap(dir)
and Django(CDM) programs. Shown are in plot (a) the distributions for uncalibrated
data and in plot (b) distributions for data calibrated according to the M3 scheme, where
Django(CDM) was used to calculate the calibration factors.
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Figure 4.27: DR(P bal
T ) distributions as a function of PT,e for the ratio between experimen-

tal data (99/00), using the two-jet test sample, and Monte Carlo data generated by the
Rapgap(dir) and Django(CDM) programs. Shown are in plot (a) the distributions for un-
calibrated data and in plot (b) distributions for data calibrated according to the M3, where
Django(CDM) was used to calculate the calibration factors.
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Figure 4.28: 〈P bal
T 〉 distributions as a function of θh for the two-jet test sample, extracted

from experimental data (99/00) and from Monte Carlo data generated by the Rapgap(dir)
and Django(CDM) programs. Shown are in plot (a) the distributions for uncalibrated
data and in plot (b) distributions for data calibrated according to the M3 scheme, where
Django(CDM) was used to calculate the calibration factors.
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Figure 4.29: DR(P bal
T ) distributions as a function of θh for the ratio between experimen-

tal data (99/00), using the two-jet test sample, and Monte Carlo data generated by the
Rapgap(dir) and Django(CDM) programs. Shown are in plot (a) the distributions for un-
calibrated data and in plot (b) distributions for data calibrated according to the M3, where
Django(CDM) was used to calculate the calibration factors.



112 CHAPTER 4. CALIBRATION OF JET ENERGY MEASUREMENTS

4.5 Summary, Comments and Outlook

Measurements of jet energies suffer from statistical fluctuations due to the evolution of the
hadronic showers but also from systematic errors due to the fact that a large fraction of the
jet energy will not be measured in the detector. In physics analyses involving measurements
of jet energies in H1, the uncertainty in the absolute scale of the energy measurement has
so far provided the biggest contribution to the total systematic error. Thus, it is strongly
motivated to try to improve the jet calibration procedure. In H1, a calibration method to
reduce the uncertainty in the absolute scale of jet energy measurements at PT > 10 GeV
is available. Here, an improved method to calibrate energy measurements of low PT jets,
PT < 9 GeV, has been introduced and tested for data taken during the years 1999-2000
and 2006-2007.

The SPACAL is used to measure the scattered electron of DIS events at low Q2. The
absolute scale of the electron energy measurement in the SPACAL is known to better
than 1% and thus the measured energy of the scattered electron can be used as reference
to compare with the energy measurement of hadronic energy in the LAr calorimeter. In
order to extract the absolute scale of jet energy measurements, DIS events with exactly
one reconstructed jet were selected. In the ideal case the transverse momentum of the
scattered electron should be balanced by the transverse momenta of the hadrons in the
jet, if one disregards the problem of associating some soft particles to either the jet or the
proton remnant. Thus, the ratio P bal

T ≡ PT,h/PT,e is a measure of the absolute energy scale
and the double ratio DR(P bal

T ) = 〈P h
T /PT,e〉data/〈P h

T /PT,e〉MC gives the uncertainty in the
absolute scale. The electron method is used to reconstruct the transverse momentum of
the scattered electron. Different selection criteria have been tried in order to improve the
purity of the one-jet calibration sample.

In the Low Pt Jet Calibration method only those clusters which have been measured
in the LAr calorimeter and allocated to the jet are included in the calibration i.e. energy
contributions to the jet from track measurements are not considered. The calibration
factors are calculated for different θ regions, corresponding to the polar angle coverage of
the LAr calorimeter wheels.

Using the Jet calibration sample, selected from the 99/00 data, an absolute energy
scale could be determined to better than 2% over the full central region (15o < θ < 155o)
and to about 10% in the forward region (θ < 15o). It was shown that (4-6)% of the total
imbalance in the forward region is caused by the limited θ acceptance of the calorimeter. In
the central region it should be possible to determine the absolute calibration to better than
2% but this needs further investigation. The limited acceptance of the LAr calorimeter in
the forward direction is also responsible for a large fraction of the transverse momentum
imbalance at high PT,e.

The uncertainty in the absolute energy scale for jet measurements is about 2% after
calibration. The relative resolution of the jet transverse momentum measurement is deteri-
orated after calibration for PT,jet < 6 GeV. One explanation for this could be that a global
event quantity, P bal

T = PT,h/PT,e, based on the final state hadrons, is used to calibrate
jets, which are regarded as single objects. An improved calibration might be possible using
a different definition of P bal

T and/or a different selection of the one-jet sample, which might
reduce the influence of clusters outside the jet.
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Two Monte Carlo event generators, Rapgap(dir) and Django(CDM), are used to esti-
mate the dependence of the calibration on the choice of model. The model dependence
is observed to be on the level of 1.5%. The difference in performance of the M3 and M5
calibration schemes is marginal. M3 is better in some respects and M5 in other. This
indicates that clusters not allocated to a jet have significant impact on the calculation of
the correction factors.

The calibration of data from the 2006-2007 run periods, show the same overall perfor-
mance as for data taken in 1999-2000. Due to the large data sample collected in 2006-2007,
it might be possible to use events from diffractive scattering to derive the calibration co-
efficients. Since there is no colour string between the scattered parton and the proton in
diffractive events, it is less ambigous to reconstruct the jet and there should be no contri-
butions from clusters not belonging to the jet. Diffractive events are selected by requiring
a rapidity gap in the forward region, with no hadronic activites.



Chapter 5

Multiple Interactions in DIS

Following the discussions in section 1.5.2 an analysis dedicated to study a possible signal
of MPI in DIS at HERA is presented in this chapter. The analysis has been inspired by
the MPI study at the Tevatron [62,63], where the multiplicity and energy flow of charged
particles have been measured in the regions transverse to the hardest jet of the event. The
current analysis follows the same principle by investigating the jet production rate and the
amount of transverse momentum carried by the jets in azimuthal areas transverse to the
direction of the jets of the hard scattering. Since interactions in addition to the primary
interaction involve lower momenta by default, the transverse momentum required to define
jets has been lowered from 5 GeV for the hardest jets to 3.5 GeV for so called mini-jets.
Two different event samples have been studied, where one is based on the selection of
inclusive 1-jet events and the other inclusive 2-jet events, where the latter is a subsample
of the first.

In the following, the main ideas of the analysis method are given and the effects of dif-
ferent event topolgies are discussed after which the event selection is described. The results
are presented and discussed with respect to comparisons with different model predictions.
In order to draw the correct conclusions the predictions of the models have been investi-
gated in terms of scale dependence, choice of PDF, mini-jet production and reproduction
of basic event observables.

5.1 Measuring Philosophy

The challenge in finding a significant signal from MPI is essentially to separate the final
state products of the hard scattering from those originating from additional interactions.
As an example Figure 5.1 shows schematic views of a single parton exchange process and
an MPI process, both delivering four jets. Per definition additional interactions are always
softer than the hard scattering and in general they are much softer i.e. the transverse
momenta of the particles produced are small. Although secondary interactions obviously
are kinematically dependent on the momenta involved in all preceding interactions, one
may to a first approximation assume that the different interactions occur independently of
each other. This means that the products of additional interactions can occupy any region

114
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Figure 5.1: An example of a four jet final state produced in ep-scattering from single parton
exchange and multiple parton interaction, respectively.

of the available angular phase space, independent of where the hard scattering products
go.

The basic philosophy of the measurement is to study jet production in the Hadronic
Centre-of-Mass (HCM) frame, where the virtual photon collides head-on with the proton.

P̄γ + P̄p = 0̄ (5.1)

In this system the requirement of a hard jet must always be accompanied by jets which
balance its transverse momentum. The dominating topology contains two jets back-to-back
and all final states with more jets will be suppressed by factors of αs. In order to explain
the basic idea of the measurement, the simplest topology is discussed to start with. In this
case regions in azimuthal angle, which are oriented back-to-back, can be defined in such a
way that they essentially contain all the transverse momentum carried by two oppositely
directed jets. Consequently, angular regions which are transverse to the directions of the
hard jets should be the ones where the sensitivity to a signal from additional scatterings
is the highest. Consistent with the cone radius defined in the longitudinally invariant
k⊥-algorithm four regions in ∆φ∗ 1 have been chosen as given below:

|∆φ∗| < 60o called the toward region

|∆φ∗| > 120o called the away region

60o < ∆φ∗ < 120o and

−120o < ∆φ∗ < −60o are called the transverse regions

(5.2)

1Variables labeled with a * are given in HCM frame.
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 ∆φ∗ = 120o
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Toward Region

The Leading Jet

o ∆φ∗ = 140

Region

The Sub−leading Jet

Figure 5.2: An illustration of an MPI event shown in the azimuthal plane, with the toward,
away and transverse regions indicated. ∆φ∗ is defined with respect to the leading jet in the
HCM system. The sub-leading jet is restricted to the region |∆φ∗| > 140◦, marked by the
bold line.

Here, ∆φ∗ is the azimuthal angle relative to the jet with the highest transverse mo-
mentum reconstructed in the HCM frame, called the leading jet, in the event. The angle
φ∗ is defined relative to the transverse momentum of the scattered electron in HCM. Fig-
ure 5.2 illustrates the orientation of the four ∆φ∗ regions with respect to the two hard jets
and possible products from additional interactions. Following the measuring concept out-
lined above a selection of events with two oppositely directed jets would obviously give the
cleanest measuring conditions. On the other hand, an experimental requirement of two jets
being exactly back-to-back would lead to an unacceptably low statistical sample. Therefore
the angular requirements have to be somewhat relaxed and in this analysis inclusive 2-jet
events have been extracted by requiring the second hardest jet, called the sub-leading jet,
to fall inside the angular region |∆φ∗| < 140o, as indicated by the area surrounded by the
thick solid line in Figure 5.2. This specifically means that the jet axis has to fall within
this region. Although essentially all the transverse momentum carried by the leading jet is
restricted to the toward region, the sub-leading jet may spill over some of its transverse mo-
mentum into one of the transverse regions depending on its direction. In order to limit the
amount of transverse momentum entering into the transverse regions from the sub-leading
jet, the angular acceptance region of the jet has been somewhat restricted compared to
that of the away region. In any case the fact that the jets are not exactly back-to-back
means that the phase space is opened up for production of additional jets, which in some
cases may populate the transverse regions. This is of course even more true in the case
that only hard jet is required in the event selection, i.e. in the inclusive 1-jet sample. The
latter sample has however the advantage of containing more events. Thus, as always, there
is a trade off between large statistical samples and clean measuring conditions. In this
analysis both the inclusive 1-jet sample and the inclusive 2-jet sample have been analysed.
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The problem of hard scattering jets, from single parton interactions, delivering momentum
into the transverse regions will be discussed in more detail in the next section.

Jets produced in the primary scattering process will carry higher momenta than those
coming from additional interactions. Regarding this the leading jet in the inclusive 1-jet
sample, and both the leading and sub-leading jets in the inclusive 2-jet sample are required
to have momenta higher than 5 GeV. The additional jets have to carry at least 3.5 GeV
in order to be accepted as mini-jets. For each event the two transverse regions defined in
Equation (5.2) have been separated into a high activity region and a low activity region,
depending on which region contains the highest scalar sum of the transverse momenta of
the mini-jets.

As discussed already in section 1.6, DIS may give rise to MPI in both direct and
resolved photon processes, whereas the Pythia and Herwig event generators have only
implemented MPI and SUE, respectively, for resolved photon processes. Experimentally,
the contributions to mini-jet production from direct and resolved photon processes may
be separated by subdividing the available phase space into different regions. Thus, the
inclusive 1-jet sample is measured in three different bins of Q2, where in the lowest bin the
resolved photon process is enhanced. The inclusive 2-jet sample is split up with respect to
xγ, which gives the fraction of the photon four-momentum carried by the parton involved
in the hard scattering. A value of xγ equal to unity means direct photon interaction, since
the photon itself carries all the momentum into the hard scattering. In resolved processes,
on the other hand, the photon fluctuates into a quark pair and thus only a fraction of
the photon momentum enters the hard scattering via one of the quarks and consequently
xγ < 1. However, xγ can not be determined directly but has to be reconstructed from the
jets produced in the hard interaction.

Since the parton density dramatically increases with decreasing xBj, the probability for
having MPI increases correspondingly. Small xBj corresponds to large W 2 for a given Q2,
since xBj = Q2/(Q2 + W 2), and therefore the mini-jet production has been investigated in
two regions of W . The requirement of a high momentum jet in the forward region i.e. small
polar angles with respect to the proton, is a good selection criterion for low x events in
DIS, as has been shown in studies of forward jet production [104, 105]. This motivates
sub-divided the samples into two regions of pseudorapidity in which the leading jet is either
central or forward.

The results of the experimental measurements on mini-jets are compared to the predic-
tions of various QCD based models. The strategy of the analysis is as follows:

• Measure the mini-jet activities in regions expected to be sensitive to MPI (transverse
regions).

• Compare results on mini-jet production with the predictions of Monte Carlo programs
based on different QCD models in DIS ( e.g. DGLAP, CCFM and CDM) in order to
study how well the modelling of higher order processes agrees with the measurements.

• Compare the experimental results with the predictions of Monte Carlo generators,
which include the generation of additional activities like MPI (Pythia) and SUE
(Herwig).
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5.2 Jet Toplogy in the HCM Frame

In this section the jet topologies of three and four jet production via single parton interac-
tion are discussed. Jets from such events constitute the main background to the jets from
MPI.

In the laboratory frame the transverse momentum of the hadronic final state produced
in an ep-collision is balanced by the transverse momentum of the scattered electron. For
high collision energies, it can too a good approximation be assumed that the transverse mo-
mentum of the jets is responsible for most of the hadronic transverse momentum. Boosted
to the HCM the total transverse momentum of the jets becomes zero. Jets from the hard
scattering might appear in the regions transverse to the leading jet if at least three jets
are produced. Examples of such a jet topolgies are shown in Figure 5.3. The definition
of the leading jet is that it is the jet of highest momentum (> 5 GeV), and it is used to
define ∆φ∗ = 0. The jets in the figure have been ordered in transverse momenta according
to PT,Jet1 > PT,Jet2 > PT,Jet3 > PT,Jet4. The most common scenario for a three jet event
is when the sub-leading Jet2 is accompanied by a softer jet, Jet3, as illustrated in Fig-
ure 5.3a. The most probable topology is that the third jet also goes into the away region.
Although the angular restrictions of Jet2 together with the transverse momentum require-
ment of Jet3 somewhat limit the possible topologies in the φ∗ plane, it is still possible
that the third jet enters into the transverse region with enough momentum to fulfill the
requirements of a mini-jet. The kinematic restrictions of a Mercedes star event, as shown
in Figure 5.3b, is such that it might just be able to produce three jets, where none is going
into the away region. However, the most probable case when no jet is observed in the away
region is that the jets do not fall inside the acceptance in rapidity. The four jet scenario
might give two jets which populate the transverse regions, as shown in Figure 5.3c. In
a four jet event the jets may be produced either by a single parton interaction or by a
two parton exchange. In the first scenario the transverse momenta of the two pairs of jets
Jet1, Jet2 and Jet3, Jet4 do not necessarily balance. However, this must be true for the
second case. By defining the high and low activity transverse regions, on an event by event
basis, most of the contributions from hard scattering are expected to fall in the high acitiv-
ity region. Contributions from MPI are to first approximation assumed to be uncorrelated
with the primary interaction and should not prefer one or other of the transverse regions.
Thus, higher order effects might preferably be studied in the high activity region, whereas
the effects of MPI should be most visible in the low activity region.

The interpretation of the data suffers from two difficulties. Experimentally, the contri-
butions from higher order processes can not be identified on an event by event basis, and
such jets entering into the transverse regions can thus not be rejected. Theoretical calcu-
lations of 2- and 3-jet cross sections can not be used to estimate the effect statistically,
since the leading and sub-leading jets in most of the cases are essentially back-to-back,
which leads to divergencies in the calculations and thus unphysical results are obtained
(see section 1.4.5). For inclusive jet production, where only one reconstructed jet is re-
quired, a NNNLO calculation (next-to-next-to-next-to-leading order, corresponding to 1+3
jets) would be needed in order to estimate jet emissions into all four ∆φ∗ regions. Such
calculations do not yet exist. Instead phenomenological Monte Carlo models have to be
applied, where higher order contributions are accounted for by initial and final state ra-
diation. A necessary requirement for reliable conclusions concerning MPI to be drawn
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Figure 5.3: Examples of possible jet topologies for three and four jet events from a hard
scattering process, leading to jet activities in the transverse regions. ∆φ∗ is defined with
respect to the leading jet in the HCM system. The jets are ordered by decreasing transverse
momenta PT,Jet1 > PT,Jet2 > PT,Jet3 > PT,Jet4.
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from comparisons of the model predictions with data, is that the models should be able
to reproduce the properties of the hard scattering, i.e. the jet activities in the toward and
away regions should be reasonably well described.

Secondly, deviations from the predictions of these models in the transverse regions
would indicate activities in addition to the modelled hard interactions but would not nec-
essarily constitute evidence for MPI. Only one model exists which describes MPI in DIS.
Unfortunately this model in not developed to be valid for high Q2 and comparisons to it
can therefore not be expected to be very conclusive.

5.3 Event Selections

Data and detector simulated Monte Carlo events passing the selection criteria for DIS
events, presented in Table 3.1, have been used to extract the jet samples in this analysis.

As already mentioned, the analysis is carried out in the HCM frame. All hadronic
final state particles measured in the event have been energy corrected using the Low and
High Pt Jet Calibration method and the Iterative method (denoted M5 in Chapter 3.6) in
the laboratory frame and are boosted to the HCM frame. The photon four-momentum,
Pγ, used to define the boost transformation to the HCM frame is reconstructed from the
four-momentum P 0

e and Pe of the incoming and the scattered electron, respectively:

Pγ = (Eγ, P̄γ) = Pe − P 0
e .

The longitudinally invariant kT algorithm, using the kT recombination scheme, is used
to find and reconstruct jets in the HCM frame with P ∗

T,jets > 3.5 GeV, from all measured
particles, except the scattered electron.

To ensure well defined mini-jets, the requirement that the jet transverse momentum has
to be larger than 3.5 GeV, must be fulfilled in the laboratory frame as well. The jet axis
in the laboratory frame has to fall inside the pseudo-rapidity range −1.5 < ηjets < 2.79,
which is well covered by the LAr calorimeter. In order to apply jet cuts in the laboratory
system, the same particles as were assigned to each jet in the HCM frame, were used to
calculate the jet kinematics in the laboratory system.

The inclusive 1-jet sample is defined by demanding that the transverse momentum of
the leading jet (lj) in the laboratory frame, PT,lj, and the HCM frame, P ∗

T,lj, are both
larger than 5 GeV.

In the inclusive 2-jet sample the transverse momenta of both the leading and sub-
leading jets (sl) are required to be larger than 5 GeV both in the laboratory frame and
the HCM system. As explained already, the jet axis of the sub-leading jet is restricted to
the angular region |φ∗

lj − φ∗
sl| > 140◦, which is well inside the away region.

Since xγ can not be measured directly it has to be reconstructed from the jets produced
in the hard interaction. Two methods for the xγ reconstruction are considered:

xγ =

∑2
i=1 P ∗

T,i e−η∗
i

2E∗
γ

(5.3)
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Figure 5.4: The resolution in xγ calculated from Django(CDM) Monte Carlo events, using
two different methods. A fit of a gaussian distribution around the peak value of the distri-
bution is used to extract the mean value and the standard deviation (σ), as given in the
figure.

and

xγ =

∑2
i=1 E∗

i − P ∗
z,i

(E∗ − P ∗
z )h

. (5.4)

All quantities are given in the HCM frame, where E∗
i , P ∗

z,i, P ∗
T,i and η∗

i correspond
to the energy, the longitudinal momentum, the transverse momentum and the pseudo-
rapidity, respectively, of the leading jet (i=1) and the sub-leading jet (i=2). E∗

γ is the
photon energy and (E∗ − P ∗

z )h is defined by Equation (3.5). The inclusive 2-jet sample
has been used to study the resolution of xγ for each of the two reconstruction methods.
Figure 5.4 shows the distribution of the difference between xγ on detector, xdet

γ , and hadron
level, xhad

γ . For a quantitative comparison, the central part of the distribution has been
fitted to a Gaussian distribution. The results of the fits are given in the figure. As can
be seen the method 5.4 provides a better resolution than Equation (5.3). This is mainly
due to the resolution of the cluster energy measurement. In method 5.3, the numerator
depends on the cluster measurement while the denominator does not and thus xγ depends
strongly on the resolution of the LAr measurement. In method 5.4, both the denominator
and numerator depend on the LAr measurement resulting in a xγ definition less sensitive
to the resolution of the cluster energy measurement. In this thesis, method 5.4 is used.

The multiplicity and the transverse momentum of the mini-jets in each of the four
∆φ∗ regions, are calculated for each event. The final results are presented in terms of the
average multiplicity, 〈N〉, and the average transverse momentum, 〈PtSum∗〉, defined as:
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〈N〉 =

∑Nev

i=1 Ni

Nev

(5.5)

〈PtSum∗〉 =

∑Nev

i=1 PtSum∗
i

Nev

. (5.6)

Here, Ni is the multiplicity of mini-jets in event i and PtSum∗
i is the scalar sum of

their transverse momenta, both observables calculated separately for the four ∆φ∗ regions.
Nev is the number of events included in the calculation. The results are extracted for the
following bins of the available phase space.

• The inclusive 1-jet sample is subdivided in 2 samples in ηlj: the central inclusive 1-jet
sample −1.5 < ηlj < 1.5 and the forward inclusive 1-jet sample 1 < ηlj < 2.79. Each
ηlj sample is subdivided further into 3 bins in Q2 and 2 bins in W :

3Q2 × 2W bins = [5− 10, 10− 25, 25− 100] GeV2 × [100− 200, 200− 300] GeV.

• The inclusive 2-jet sample is subdivided into four bins:

2xγ × 2W bins = [0 − 0.7, 0.7 − 1] × [100 − 200, 200 − 300] GeV.

In table 5.1 the jet cuts applied to the forward and central inclusive 1-jet samples and
to the inclusive 2-jet sample are summarized. The central ηlj region is defined by the
coverage of the central tracker, whereas the forward region has been defined in such a way
that the statistics obtained in the two regions is approximately the same. This means that
the forward region has been allowed to overlap with the central region somewhat. Thus,
the central and forward regions are not strictly separated. It should be noted that this
subdivision only concerns the leading jet, whereas the mini-jets are measured in the full
range of −1.5 < η < 2.79 for all three event samples.

5.4 Measurement of the Mini-jet Production

The measured data has to be corrected for detector effects in order to perform a comparison
to model predictions, which are given on hadron level. Corrections for the influence of the
detector are done by simulating its perfomance in a Monte Carlo program. The correctness
of the detector simulation has to be verified through comparisons to data in various con-
trol plots. The Monte Carlo generators, Rapgap(dir) and Django(CDM), have been used
together with the detector simulation program H1SIM to generate data on detector level.
The detector geometry, measuring resolutions and efficiencies of subdetectors are the main
information used as input to the detector simulation program. Two different methods to
correct the measured data for detector effects have been applied, the bin-by-bin method
and the unfolding method. These methods are described and the results are compared and
discussed. The most important systematic uncertainties in the measurement have been
identified and their magnitudes have been calculated.
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Central Inclusive 1-Jet Sample

Leading Jet Sub-leading Jet Mini-jets

−1.5 < ηlj < 1.5 −1.5 < ηjets < 2.79
PT,lj > 5 GeV PT,jets > 3.5 GeV
P ∗

T,lj > 5 GeV P ∗
T,jets > 3.5 GeV

Forward Inclusive 1-Jet Sample

Leading Jet Sub-leading Jet Mini-jets

1 < ηlj < 2.79 −1.5 < ηjets < 2.79
PT,lj > 5 GeV PT,jets > 3.5 GeV
P ∗

T,lj > 5 GeV P ∗
T,jets > 3.5 GeV

Inclusive 2-Jet Sample

Leading Jet Sub-leading Jet Mini-jets

−1.5 < ηlj < 2.79 −1.5 < ηsj < 2.79 −1.5 < ηjets < 2.79
PT,lj > 5 GeV PT,sj > 5 GeV PT,jets > 3.5 GeV
P ∗

T,lj > 5 GeV P ∗
T,sj > 5 GeV P ∗

T,jets > 3.5 GeV

|φ∗
lj − φ∗

sl| > 140◦

Table 5.1: A summary of the jet cuts for the various samples: the central inclusive 1-jet
sample, the forward inclusive 1-jet sample and the inclusive 2-jet sample.

5.4.1 Trigger Efficiency

It is important to have a high trigger effeciency to avoid that events of interest are rejected.
To study the efficiency of the trigger used in the analysis its acceptance has been compared
to a set of so called monitor triggers. A trigger is composed of a set of trigger elements,
which are defined in Appendix A. It is important that the trigger used in the analysis, here
called the physics trigger, and the monitor trigger have no trigger elements in common. The
physics trigger, PyTr, used in this analysis, is composed of the following trigger elements
(S0∨S3∨S61), which relies upon information from the CJC, the SPACAL. The combination
of trigger elements (S39∨S64∨S66∨S67∨S77) is used for the monitor trigger, MoTr, which
only depends on the LAr calorimeter information. The trigger efficiency, ǫ, is defined by:

ǫ =
N(PyTr ∧ MoTr)

N(MoTr)
,

where N(PyTr ∧ MoTr) is the number of events accepted by both the physical trigger and
the monitor trigger, whereas N(MoTr) is the number of events triggered by the monitor
trigger. The trigger efficiency for the inclusive 1-jet sample is shown as a function of ηlj, φlj

and PT,lj in Figure 5.5. For the inclusive 2-jet sample the efficiency is shown in Figure 5.6
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Figure 5.5: The trigger efficiency, ǫ (see text for definition), as a function of ηlj, φlj and
PT,lj for the inclusive 1-jet sample.

as a function of the same variables, for both the leading and sub-leading jets. As can be
seen the efficiency is close to 100% for both samples.

5.4.2 Control Plots

In this section data are compared to the predictions of Rapgap(dir) and Django(CDM),
where the Monte Carlo data include corrections from QED radiation, and have been subject
to a full detector simulation. Control plots have been produced to check how tracks and
clusters are reproduced in terms of various kinematic variables. The measurement of the
scattered electron and the reconstruction of kinematic variables, using the electron method,
have been checked. Further, the description of the leading and sub-leading jet kinematics in
different parts of the available phase space have been investigated. Finally, the kinematics
of mini-jets has been studied.

Tracks and Clusters

In Figure 5.7 the distributions of pseudo-rapidity, transverse momentum and azimuthal an-
gle of HFS particles (cluster and tracks) are shown for data, Django(CDM) and Rapgap(dir)
for the inclusive 1-jet sample. The plots on the left hand side show the distributions in
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Figure 5.6: The trigger efficiency, ǫ (see text for definition), as a function of psuedo-
rapidity, azimuthal angle and transverse momentum of the leading jet (plots to the left)
and the sub-leading jet (plots to the right) for the inclusive 2-jet smaple.
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Figure 5.7: The distributions of pseudo-rapidity, transverse momentum and azimuthal angle
for HFS particles in the inclusive 1-jet sample, presented in both the HCM (plots to the
left) and the laboratory frame (plots to the right). Data are compared to the predictions of
Django(CDM) and Rapgap(dir). The distributions are normalised to the total number of
entries.
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Figure 5.8: The pseudo-rapidity distribution for final state particles of the inclusive 1-jet
sample, on detector level (solid line) and hadron level (dotted line). The distributions have
been calculated using the Django(CDM) event generator

the HCM frame, whereas those on the right hand side are in the laboratory frame. The
distributions are normalised to the total numer of entries. As observed, the MC predictions
are in good agreement with data, although Django(CDM) overshoots the data somewhat
at negative values of η∗, which is in the proton fragmentation region. The dips seen in
the φ spectrum is caused by the edges of the calorimeter octants, that build up the LAr
calorimeter, but this behaviour is well reproduced by both MC’s. In order to find the
explanation for the two peaks at η ≈ 1.7 and η ≈ 2.6, the pseudo-rapidity distributions on
detector and hadron level have been compared using events generated by Django(CDM).
From Figure 5.8 it can be seen that the peaks are not present on hadron level. A detailed
study of this phenomenon in [106], shows that the peak at η ≈ 1.7 originates from nuclear
scattering of protons against a beam collimator, used for shielding against synchrotron
radiation, while the peak at η ≈ 2.6 is mainly produced by electronics noise in the LAr
calorimeter. Also these effects are successfully described by the detector simulation. In
any case the influence of these effects on the production of high momentum jets is small.

In Figure 5.9 the distributions of pseudo-rapidity, transverse momentum and azimutal
angle are shown for individual particles in the inclusive 1-jet sample, both in the HCM
frame and the laboratory system. Both MC programs give an excellent description of the
data. The distributions of the distance of closest approach from the extrapolated track to
the measured vertex, dca′, and the track length, Rlength, projected onto the (x, y) plane at
the zvertex, are shown in Figure 5.10 together with the number of hits per track, Nhits. The
overall description by the MC’s is good, although Rapgap(dir) is somewhat below data in
the dca′ distribution and the number of hits is slightly less than what data shows.

The same level of agreement is obtained in the corresponding distributions for particles
in the inclusive 2-jet sample.
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Figure 5.9: The distributions of pseudo-rapidity, transverse momentum and azimuthal angle
for tracks in the inclusive 1-jet sample, presented for the HCM frame (plots to the left)
and the laboratory frame (plots to the right). Data are compared to the predictions of
Django(CDM) and Rapgap(dir). The distributions are normalised to the total number of
entries.
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Figure 5.10: The distributions of the closest distance between the extrapolated track and
the reconstructed vertex, dca′, the track length, Rlength, and the number of hits on a track,
Nhits, for the inclusive 1-jet sample. Data are compare to the predictions of Django(CDM)
and Rapgap(dir).
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Figure 5.11: The distributions of Q2, y, xBj, θe , φe and Ee for the inclusive 1-jet sample.
Data are compared to the prediction of Rapgap(dir) and Django(CDM). The distributions
are normalised to the total number of events.

The Scattered Electron and DIS Quantities

In Figures 5.11 and 5.12 the distributions of the DIS variables Q2, y, xBj and the scat-
tered electron variables θe, φe and Ee are compared to the predictions of Rapgap(dir) and
Django(CDM) for the inclusive 1-jet and 2-jet samples, respectively. The distributions are
normalised to the total number of events. Only small deviations are observed in the MC
description of data. For example a somewhat better description of the high Q2 and xBj

regions is given by Rapgap(dir) compared to Django(CDM) for the inclusive 1-jet sam-
ple. On the other hand the scattering of electrons by small angles (large θe) is slightly
better reproduced by Django(CDM) for both the inclusive 1- and 2-jet samples. The W -
distributions, normalised to the total number of events, are shown for the DIS sample,
where no jets are required, and for the inclusive 1- and 2-jet samples in Figure 5.13. It
is observed that the distribution peaks towards higher W as the number of jets required
in the sample increases. This is expected since more energy is needed in order to produce
more jets. Both MC’s provide good agreement with data for all three samples. A good
description of these distributions is essential, since the data are subdivided into bins of W .

Leading and Sub-leading Jet Kinematics

The description of the jet kinematics is the most important demand on the Monte Carlo
generators used to correct data for detector effects, but it is also the most difficult task since
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Figure 5.12: The distributions of Q2, y, xBj, θe , φe and Ee for the inclusive 2-jet sample.
Data are compared to the prediction of Rapgap(dir) and Django(CDM). The distributions
are normalised to the total number of events.
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Figure 5.14: The P ∗
T,lj-distribution for data and MC events from Django(CDM) before

(dashed lines) and after (solid line) re-weighting.

it relies upon a good understanding of QCD. Especially it is not easy to correctly describe
distributions of jet variables for events where several jets are required, since this needs a
good modelling of higher order QCD processes. In these cases the Monte Carlo events
might have to be re-weighted such that the generated distributions agree with data. In
Figure 5.14 the distribution of P ∗

T,lj for data is compared to the prediction of Django(CDM)
for the inclusive 1-jet sample. As can be seen, the P ∗

T,lj distribution is not well reproduced
by the CDM model, whereas after re-weighting the agreement is excellent. It should be
mentioned that the Monte Carlo events are re-weighted on both detector level and hadron
level, but only in cases where the required jets are found on both levels. Different methods
of re-weighting have been tested in order to check their influence on the systematic errors
and it was found to be small. In this analysis the P ∗

T,lj and η∗
lj in the inclusive 1-jet sample

have been adjusted to agree with data. For the inclusive 2-jet sample, the P ∗
T,lj, η∗

lj, xγ and
|φ∗

lj − φ∗
sl| have been corrected.

The distributions of P ∗
T,lj, φ∗

lj and η∗
lj for the forward inclusive 1-jet sample are shown

in Figure 5.15 for 100 < W < 200 GeV, and for 200 < W < 300 GeV in Figure 5.16. In
Figures 5.17 and 5.18 the same distributions are shown for central inclusive 1-jet sample
in the low and high W regions, respectively. The distributions are normalised to the
total number of events. The data are compared to the predictions of Django(CDM) and
Rapgap(dir) after the re-weighting procedure has been performed. All distributions are
well described by both Monte Carlo event generators. Kinematic cuts, introduced in the
laboratory system to ensure that jets are reconstructed well inside the LAr acceptance, are
responsible for the non-flat φ-distribution in the HCM.

The same distributions are shown for the inclusive 2-jet sample, separately for the
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Figure 5.15: The distributions of P ∗
T,lj, φ∗

lj and η∗
lj of data compared to the predictions

of Django(CDM) and Rapgap(dir) for the forward inclusive 1-jet sample at low W . The
distributions are normalised to the total number of events.
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Figure 5.16: The distributions of P ∗
T,lj, φ∗

lj and η∗
lj of data compared to the predictions of

Django(CDM) and Rapgap(dir) for the forward inclusive 1-jet sample at high W . The
distributions are normalised to the total number of events.
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Figure 5.17: The distributions of P ∗
T,lj, φ∗

lj and η∗
lj of data compared to the predictions

of Django(CDM) and Rapgap(dir) for the central inclusive 1-jet sample at low W . The
distributions are normalised to the total number of events.
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Figure 5.18: The distributions of P ∗
T,lj, φ∗

lj and η∗
lj of data compared to the predictions

of Django(CDM) and Rapgap(dir) for the central inclusive 1-jet sample at high W . The
distributions are normalised to the total number of events.
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Figure 5.19: The distributions of the transverse momentum, the pseudo-rapidity and the
azimuthal angle of the leading (upper plots) and sub-leading jet (lower plots) of data com-
pared to the predictions of Django(CDM) and Rapgap(dir) for the inclusive 2-jet sample at
low W . The distributions are normalised to the total number of events.

leading and sub-leading jets in Figure 5.19 for the low W region and in Figure 5.20 for the
high W region. Although the agreement between MC predictions and data in general is
good, some deviations can be observed for Django(CDM), especially in the P ∗

T,sl spectra.

The distributions of xγ and |φ∗
lj − φ∗

sl|, normalised to the total number of events, are
shown for the inclusive 2-jet sample in Figures 5.21 and 5.22, respectively. The agreement
between the MC predictions and data is good except for large values of xγ. As observed the
xγ-distribution has a significant tail towards small values, indicating a substantial contri-
bution of resolved photon events in the inclusive 2-jet sample. The |φ∗

lj − φ∗
sl|-distribution

is peaked at 180◦ as expected, since the inclusive 2-jet sample is dominated by events with
exactly two reconstructed jets, resulting in a back-to-back topology.
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Figure 5.20: The distributions of the transverse momentum, the pseudo-rapidity and the
azimuthal angle of the leading (upper plots) and sub-leading jet (lower plots) of data com-
pared to the predictions of Django(CDM) and Rapgap(dir) for the inclusive 2-jet sample at
high W . The distributions are normalised to the total number of events.
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Figure 5.21: The xγ-distribution of data compared to the predictions of Django(CDM) and
Rapgap(dir) for the inclusive 2-jet sample. The distributions are normalised to the total
number of events.
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Django(CDM) and Rapgap(dir) for the inclusive 2-jet sample before the cut |φ∗
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Figure 5.23: The distributions of PT, MiniJets (upper plots) and ηMiniJets (lower plots) for the
inclusive 1-jet sample, with the leading jet going forward, shown separately for the toward,
away, high- and low activity regions, for data compared to the predictions of Django(CDM)
and Rapgap(dir) at low W .

Kinematics of Mini-jets

Figure 5.23 shows the distributions of transverse momentum, PT,MiniJets, and pseudo-
rapidity, ηMiniJets, for mini-jets from the inclusive 1-jet sample, where the leading jet is in
the forward region. The distributions are shown separately for the toward, away, high- and
low activity regions at low W . The leading jet in the toward region has been excluded from
the plots. It is observed that Rapgap(dir) gives a better agreement with data compared to
Django(CDM). The same level of agreement is found for the central inclusive 1-jet sample
and for the inclusive 2-jet sample.

5.4.3 Purity and Stability

The limitations of the detector perfomance results in errors on reconstructed quantities,
which leads to detector level distributions that are smeared and shifted with respect to
the true values. Thus, an event reconstructed in bin i on the hadron level might be
reconstructed in a different bin on the detector level. This effect is called bin migration
and can be studied using Monte Carlo simulations. In order to study migration between
bins, the two variables purity, (P ), and stability, (S), are used.
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Pi =
Ni(HAD ∧ DET )

Ni(DET )
(5.7)

Si =
Ni(HAD ∧ DET )

Ni(HAD)
. (5.8)

Here, Ni(DET ) and Ni(HAD) are the number of events reconstructed in bin i on the
detector and hadron levels, respectively, and Ni(HAD ∧ DET ) is the number of events
reconstructed in the same bin i on hadron and detector level. For a perfect detector, purity
and stability are equal to unity. The purity, Pi, measures the fraction of events which have
been correctly reconstructed in bin i. The stability, Si, gives the fraction of events in bin i
which will not migrate out of that bin at detector level. A large fraction of these migrations
are from/to neighboring bins. One obvious way to decrease the migrations is to increase
the bin size.

Figure 5.24 shows the stability and purity in bins of Q2 as calculated by Django(CDM)
and Rapgap(dir) for the inclusive 1-jet sample, where the leading jet has been reconstructed
in the forward region, both for low and high values of W . In all cases the stability and
purity are better than 50%, and the prediction of Django(CDM) and Rapgap(dir) differ at
most by 10%. For the sample where the leading jet is reconstructed in the central region,
the stability and purity exceeds 60%, as seen from Figure 5.25, which means that there
are fewer migrations. This is due to the good momentum resolution of the central tracker,
which is reflected in the momentum resolution of jets. In the central region the calculations
of the two Monte Carlo programs give almost idential values.

Figure 5.26 shows the Django(CDM) and Rapgap(dir) calculations of the stability and
purity as a function of xγ for the inclusive 2-jet sample, separately for the low and high
W -regions. The purity is on the level of 60% or above. The stability is on the level of 60%
for high values of xγ and between 40% and 50% in the low xγ-region.

The main reason for migrations in the jet sample is the fairly poor energy resolution of
jet clusters.

5.4.4 Correction Factors

The experimental data are corrected for detector and QED effects by taking the ratio
between MC generated data on hadron level without QED radiation and on detector level
including QED radiation. Due to the limited resolution of the detector it may happen that
events generated in one kinematic bin migrate into another, as discussed in section 5.4.3.
In analyses were the migrations are small the bin-by-bin method can be used to correct the
data. However, if the migrations are substantial the unfolding method, which takes the
effects of migrations into account, has to be used. In this analysis the Monte Carlo event
generators Rapgap(dir) and Django (CDM) have been used to calculate the correction
factors for both methods and the results have been compared.
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Figure 5.24: The Stability (S) and the Purity (P ) as a function of Q2 for the forward
inclusive 1-jet sample in two bins of W , calculated by Django(CDM) and Rapgap(dir). The
thin broken line at 0.4 represents the lowest acceptable value of the stability and purity.

]2 [GeV2Q
10 20 30 40 50 60 70 80 90 100

   
  S

ta
b

ili
ty

   
   

0.2

0.4

0.6

0.8

1

100<W<200 [GeV]

Django(CDM)

Rapgap(dir)

]2 [GeV2Q
10 20 30 40 50 60 70 80 90 100

   
  S

ta
b

ili
ty

   
   

0.2

0.4

0.6

0.8

1

200<W<300 [GeV]

]2 [GeV2Q
10 20 30 40 50 60 70 80 90 100

   
   

  P
u

ri
ty

   
   

   

0.2

0.4

0.6

0.8

1

]2 [GeV2Q
10 20 30 40 50 60 70 80 90 100

   
   

  P
u

ri
ty

   
   

   

0.2

0.4

0.6

0.8

1

Figure 5.25: The Stability (S) and the Purity (P ) as a function of Q2 for the central
inclusive 1-jet sample in two bins of W , calculated by Django(CDM) and Rapgap(dir). The
thin broken line at 0.4 represents the lowest acceptable value of the stability and purity.
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Figure 5.26: The stability (S) and purity (P ) as a function of xγ for the inclusive 1-jet
sample in two bins of W , calculated by Django(CDM) and Rapgap(dir). The thin broken
line at 0.4 represents the lowest acceptable value of the stability and purity.

5.4.5 The Bin-by-Bin Correction Method

In the bin-by-bin method the correction factor, Ci, with respect to an observable A in bin
i is defines as:

Ci(〈A〉) =
〈A〉i,Had,NonRad

〈A〉i,Det,Rad

, 〈A〉 = 〈N〉, 〈PtSum∗〉. (5.9)

Here, 〈A〉i,Had,NonRad and 〈A〉i,Det,Rad are the observable A on the hadron level without
QED radiation and detector level with QED radiation, respectively, in bin i. Below, a
selection of correction factors of 〈N〉 and 〈PtSum∗〉 for the inclusive 1- and 2-jet samples
for various ∆φ∗ and phase space regions are presented.

In the Figures 5.27-5.30 the corrections factors C(〈N〉) calculated using Django(CDM)
and Rapgap(dir), are plotted as a function of Q2 for the inclusive 1-jet sample, subdivided
into the central and forward η-regions of the leading jet, and two W ranges. This set of
plots are shown separately for the four regions in azimuthal angle, the toward (Figure 5.27),
the away (Figure 5.28), the high (Figure 5.29) and low (Figure 5.30) activity regions. As
observed the correction factors are essentially equal to unity in the whole phase space
coverage of the toward region. In the away region the correction factors are in general
larger being highest in the case of the leading jet going forward and the invariant mass of
the hadronic system being low. A possible explanation is that in the forward η-region of
the LAr calorimeter the energy resolution of the leading jet is poor. The corrections of
〈N〉 in the high and low activity regions are everywhere below 30%.
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Figure 5.27: The correction factors for the average mini-jet multiplicity, C(〈N〉), as a
function of Q2 for the inclusive 1-jet sample, shown for the toward region in two bins of
W .

For the inclusive 2-jet sample C(〈N〉) is shown as a function of xγ for the two W regions
in Figures 5.31 and 5.32. The results on 〈N〉 for the toward, away, high and low activity
regions, respectively, are shown in the Figures 5.31 and 5.32. The corrections factors are
close to unity in the toward and away regions, whereas in the transverse regions the average
corrections from Django(CDM) and Rapgap(dir) are below 20%.

The correction factor C(〈PtSum∗〉) for the 1- and 2-jet samples are shown in Fig-
ures (5.33-5.34) and in Figure 5.35, respectively. As can be seen, the corrections factors
for 〈PtSum∗〉 are similar to those of 〈N〉.

The fact that the corrections factors calculated from Django(CDM) and Rapgap(dir)
are different, is a reflection of the different models used for parton production. Therefore,
the average correction factors obtained from the two MC generators are used. Also, half
of the difference between the correction factors is taken as an estimate of the systematic
uncertainty (see also section 5.4.7).
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Figure 5.28: The correction factors for the average mini-jet multiplicity, C(〈N〉), as a
function of Q2 for the inclusive 1-jet sample, shown for the away region in two bins of W .
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Figure 5.29: The correction factors for the average mini-jet multiplicity, C(〈N〉), as a
function of Q2 for the inclusive 1-jet sample, shown for the high activity region in two bins
of W .
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Figure 5.30: The correction factors for the average mini-jet multiplicity, C(〈N〉), as a
function of Q2 for the inclusive 1-jet sample, shown for the low activity region in two bins
of W .
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Figure 5.31: The correction factors for the average mini-jet multiplicity, C(〈N〉), as a
function of xγ for the inclusive 2-jet sample, shown separately for the toward and away
regions in two bins of W .
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Figure 5.32: The correction factors for the average mini-jet multiplicity, C(〈N〉), as a
function of xγ for the inclusive 2-jet sample, shown separately for the high and low activity
regions in two bins of W .
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Figure 5.33: The correction factors for 〈PtSum∗〉 as a function of Q2 for the inclusive 1-jet
sample, shown for the low activity region, with the leading jet going forward and central,
respectively, and in two bins of W .
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Figure 5.34: The correction factors for 〈PtSum∗〉 as a function of Q2 for the inclusive 1-jet
sample, shown for the low activity region, with the leading jet going forward and central,
respectively, and in two bins of W .
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Figure 5.35: The correction factors for 〈PtSum∗〉 as a function of xγ for the inclusive 2-jet
sample in the high- and low activity regions in two bins of W .
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Figure 5.36: The smearing matrix of the mini-jet multiplicity, N , for the central inclusive
1-jet sample in the away region, 5 < Q2 < 10 GeV2 and 200 < W < 300 GeV as generated
by Rapgap(dir).

5.4.6 The Unfolding Method

The migrations in some variable A, are given by a smearing matrix, S, which provides
the number of events generated in bin i on hadron level and found in bin j on detector
level, i.e. the smearing matrix reflects the influence of the detector on the recorded data.
Figure 5.36 shows the smearing matrix of the mini-jet multiplicity in the away region
for the inclusive 1-jet sample, where the leading jet is going in the forward direction,
5 < Q2 < 10 GeV2 and 200 < W < 300 GeV. The diagonal elements are as expected
most populated, since they correspond to the number of events where equally many mini-
jets are reconstructed as are produced. This essentially only means that the number of
migrations out of one specific bin is equal to the number of migrations into that bin. The
off-diagonal elements give the net number of migrations into neigbouring bins with respect
to the bins where they were generated and they should be substantially smaller if the degree
of migrations is reasonably low. The migrations between non-neighbouring bins especially
should be quite small if the bin-by-bin method is to be used. The bins (0, j) represent the
case where a leading jet but no further jets has been generated on hadron level although j
jets (excluding the leading jet) were found on detector level. Similarly, the situation where
i jets (excluding the leading jet) have been generated but no jets (excluding the leading
jet) were reconstructed on detector level, is given by the bins (i, 0). The bins (−1, j) and
(i,−1) contains event where not even the leading jet (PT > 5 GeV) has been generated and
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reconstructed, respectively. The bin (−1,−1) consequently corresponds to the case where
a leading jet was neither generated nor reconstructed, which are events of no relevance for
the unfolding procedure since it doesn’t contain any information about migrations. The
migration of the mini-jet multiplicity between the ∆φ∗ regions is not taken into account in
the best way. This due to the fact that there is no trivial way of linking a jet on hadron
level to the corresponding jet on detector level. This informations is needed to study for
example migration of mini-jets from the away regions into the high activity regions. It
should be mentioned here that the migrations of the event between the Q2 and W is small.
One smearing matrix is used for each bin of Q2, W , ηlj and ∆φ∗.

By applying the smearing matrix to the generated data the measured distributions will
be obtained. However, since we start out with the experimental measurements and want
to extract the distributions on hadron level we need to use the inverted smearing matrix.
Thus the relation between the hadron and detector levels can be written as:

h = S−1d,

where h and d is the unfolded mini-jet multiplicity distribution on hadron and detector
level, respectively. However, the inversion of the smearing matrix may suffer from statis-
tical uncertainties or large statistical fluctuations in some of the bins and therefore more
sophisticated methods might have to be used, like the regularized unfolding method [107]

The method used here, in order to avoid the problems with matrix inversion, is the
iterative method based on Bayes’ theorem [108–110]. The method has been used in many
analyses by H1 [111–114]. The task is to determines the unfolding matrix, which delivers
the hadron level data if applied to the measured data. This in principle requires knowledge
about distributions on both levels, which is unfortunately not the case since the hadron
level distribution is the one that has to be determined. However a reasonable ansatz
concerning the ’true’ hadron level distribution can be made and the distribution after
unfolding can be assumed to be a better approximation to the ’true’ distribution than
the starting distribution. The unfolded distribution can then be used as input for the
following step in an iterative procedure to get closer to the ’true’ distribution. The number
of iterations needed can be found by unfolding detector simulated MC events from one MC
generator, using the smearing matrix and a starting distribution produced by a different
MC program. The unfolded distribution of the first MC generator is then compared to the
true hadron level distribution from the same MC. The deviations between the unfolded
and true distributions is given by:

χ =
∑

i

|ni,unfold − ni,had|
ni,had

which is summed over all bins i.

In Figure 5.37 the mini-jet multiplicity, N , of Rapgap(dir) and Django(CDM) is shown
at detector level for the central inclusive 1-jet sample in the away region (left plot) and the
low activity region (right plot) for 5 < Q2 < 10 GeV2 and 200 < W < 300 GeV.

Figure 5.38 shows χ as a function of the number of iterations obtained from the un-
folding of 〈N〉 in the away region (left plot) and the low acivity region (right plot) for
the inclusive 1-jet sample with the leading jet being central, 5 < Q2 < 10 GeV2 and
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Figure 5.37: The mini-jet multiplicity distribution for the inclusive 1-jet sample, with the
leading jet being central, shown separately for the away and low activity regions, 5 < Q2 <
10 GeV2 and 200 < W < 300 GeV, as calculated by Rapgap(dir) and Django(CDM).
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Figure 5.38: The difference, χ, as a function of the number of iterations for the inclusive 1-
jet sample, with the leading jet being central, shown separately for the away and low acitivity
regions, 5< Q2 < 10 GeV2 and 200 < W < 300 GeV, as calculated by Rapgap(dir) and
Django(CDM) using the smearing matrix provided by the Rapgap(dir) generator, SRap.

200 < W < 300 GeV. Here, Rapgap(dir) and Django(CDM) are unfolded using the smear-
ing matrix provided by Rapgap(dir), SRap. As can be seen the best agreement with the
hadron level distribution is obtained after 2-3 iterations for both MC samples. A systematic
investigation shows that 1-2 iterations are optimal for unfolding the inclusive 1-jet sample
in the toward and away regions, whereas for the high and low activity regions usually a
few more iterations are needed.

Figure 5.39 shows the smearing matrix of the mini-jet multiplicity for the inclusive
2-jet sample in the low activity region requiring 200 < W < 300 GeV. The inclusive 2-
jet sample suffers from larger migrations compared to the inclusive 1-jet sample, as was
already concluded from the lower values of the stability and purity (see section 5.3.3).
Again the optimal number of iteration needed in order to unfold the data is determined
by MC simulations. Figure 5.40 shows χ versus the number of iterations for the inclusive
2-jet sample in the low activity region and at low W values, giving a minimum already at
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Figure 5.39: The smearing matrix of the mini-jet multiplicity, N , for the inclusive 2-jet
sample in the away region and for 200 < W < 300 GeV as generated by Rapgap(dir).

the first iteration.

The results of using the two correction methods on 〈N〉 are compared in Figures 5.41
and 5.42 for the inclusive 1-jet and 2-jet samples, respectively. It can be observed that the
two methods agree within errors in all regions. Thus, the bin-by bin method can be used
with confidence for this analysis.

5.4.7 Systematic Errors

The systematic uncertainties considered in this analysis are originating from the following
sources:

• The uncertainty in the hadronic energy scale of the HFS energy was found to be ±
2% in Chapter 4. The influence of this on the mini-jet multiplicity is determined
with Rapgap(dir) and Django(CDM), where the HFS energies have been increased
and decreased by this amount.

• The absolute value of the electromagnetic energy scale in the SPACAL is determined
to an accuracy of ± 1%.

• The scattering angle of the electron is measured to a precision of ±1 mrad.
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GeV, as calculated by Rapgap(dir) and Django(CDM) using the smearing matrix provided
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Figure 5.41: The average mini-jets multiplicity, 〈N〉, on hadron level as a function of
Q2, obtained by the bin-by-bin method (circles) and the unfolding method (squares) for the
inclusive 1-jet sample, with the leading jet going forward and central, respectively, shown
separately for the high and low activity regions in two bins of W .
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Figure 5.42: The average multiplicity of mini-jets, 〈N〉, on hadron level as a function of
xγ, obtained by the bin-by-bin method (circles) and the unfolding method (squares) for the
inclusive 2-jet sample, shown separately for the high and low activity regions in two bins of
W .

• The systematic uncertainties in the correction factors due to the model dependence
is taken to be half of the difference between the correction factors obtained by Rap-
gap(dir) and Django(CDM).

A summary of the systematic errors of 〈N〉 introduced from the various sources men-
tioned above are given in Table( 5.2). The largest systematic uncertainties are coming
from the model dependence of the correction factors which can be as large as 10 %. All
systematic uncertainties and the statistical error are added in quadrature to get the total
error of the measurement.

Systematic sources Inc. 1-jet Inc. 2-jet
Average Syst. Average Syst.

The HFS energy uncertainty (± 2%) 2 % 2 %
SPACAL EM energy scale (± 1 %) < 1 % < 1 %

Angle of the scattered electron( ±1 mrad) <1 % <1 %

Model dependence (C(Rap)−C(Dja)
2

) 8 % 8 %

Table 5.2: Summary of the systematic errors of 〈N〉.

5.5 Results

In this chapter the results on the average mini-jet multiplicity, < N >, and the total
transverse momentum, < PtSum∗ >, carried by the mini-jets are presented and compared
to the predictions on hadron level by models not including QED effects. The statistical
errors are calculated as the standard error of the mean value according to:
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√

〈A2〉 − 〈A〉2
Nev

, 〈A〉 = 〈N〉, 〈PtSum∗〉. (5.10)

where Nev is the number of events. The statistical errors are given by the inner error
bars while the systematic errors correspond to the outer error bars in the figures. In this
section, Rapgap dir+res denotes Rapgap including direct and resolved photon procceses.
The notation Lepto(CDM) indicates that the Lepto generator is using CDM for intial and
final state radiations. The following Monte Carlo generators are used for data comparison:
Rapgap dir+res, Lepto(CDM), Pythia with and without MPI, Herwig with and without
SUE, and Cascade.

The presentation of the results is organised such that the inclusive 1-jet sample is
discussed first and thereafter the inclusive 2-jet sample. For each sample a comparison
to the various MC predictions is initially presented for the toward and away regions in
order to see how well the different models are able to describe the hard scattering. This is
followed by a description of the results obtained in the transverse regions, where a signal
of MPI is most likely to be visible.

5.5.1 The Inclusive 1-jet Sample

The results on 〈N〉 and 〈PtSum∗〉 as a function of Q2 are shown in the Figures 5.43
and 5.44, respectively, in the toward and away regions for the inclusive 1-jet sample, with
the leading jet in the central and forward regions and for the two W bins. The general
observation from data is that 〈N〉 in the toward regions is sligtly above unity as expected
since the presence of the leading jet is required. In the away region 〈N〉 ≈ 0.7, which is also
reasonable due to the fact that the jets balancing the leading jet in 3-jet events might spill
over to the transverse regions or be outside the acceptance of mini-jets in psuedorapidity,
−1.5 < ηjets < 2.79.

In Figures 5.43 and 5.44 comparisons are made with the Rapgap dir+res and Lepto(CDM)
models. An inspection of the results on 〈N〉 shows that there is agreement with data by
both MC models within the measuring errors in the toward region. Rapgap dir+res is also
able to reproduce the data in the away region if the leading jet is going forward but exhibit
some deviations if the leading jet is central. Lepto(CDM) does quite well in all regions
except for the away region, in case where the leading jet is forward and W is high. The de-
scription of 〈PtSum∗〉 by Rapgap dir+res is satisfactory except for centrally going leading
jets in the away region, where the observed deviation is related to the fact that the num-
ber of mini-jets in this region undershoots the data as seen in Figure 5.43. Lepto(CDM)
provides a good description in all regions except in the toward region if the leading jet is
going forward. This is a reflection of the well-known fact that CDM generates a higher
energy flow in the forward region than is observed in the data, as already concluded from
the P ∗

T,lj distribution shown in Figure 5.14. The 〈PtSum∗〉 and 〈N〉 dependence on Q2 is
essentially described by both models.

In Figures 5.45 and 5.46 the predictions on 〈N〉 and 〈PtSum∗〉 of Rapgap dir+res and
Lepto(CDM) are compared to data in the high and low activity regions. The general obser-
vation for the transverse regions is that the predictions of both MC programs significantly
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undershoot the data for both observables in all regions. The high acitivity region has a
mini-jet activity, which is roughly a factor ten higher than in the low activity region. This
can be explained by contributions from jets produced in the hard scattering, which are
not confined to the away region. It can also be observed that the jet activities are higher
when the leading jet is going forward compared to when it is central. It should be noticed
that Rapgap dir+res predicts a weak increase in 〈N〉 and 〈PtSum∗〉 with increasing Q2,
whereas Lepto(CDM) indicates a decrease with increasing Q2. Data seem to support a
weak decrease.

Figures 5.47-5.50 show the predictions of Pythia and Pythia MPI compared to data in
the various regions. As expected the inclusion of MPI has very little influence on the results
in the toward and away regions, since these are dominated by the hard scattering products.
Although the mini-jet multiplicity is well described by Pythia in the toward region only the
lowest Q2-bin is reproduced in the away region. As Q2 increases the deviations from data
become increasingly large. The situation is even worse for 〈PtSum∗〉, where Pythia only
provides agreement with data in the low Q2 region for both the toward and away regions.
Since Pythia fails to reproduce the high Q2 behaviour in the regions of the hard scattering,
it can obviously not be trusted for high Q2 in the transverse regions either. Comparing
the Phythia predictions with data in the transverse regions for the lowest Q2 bin alone, it
is noticed that the inclusion of MPI improves the agreement significantly and especially
in the low activity region, where an MPI signal should appear most clearly, there is good
agreement.

The predictions of Herwig and Herwig 10% SUE are shown in Figures 5.51-5.54 together
with data. Again, the effects of SUE in the toward and away regions are almost negligible
as expected. The agreement with data on 〈N〉 is excellent in the toward region but slightly
high in the away region. The 〈PtSum∗〉 distributions are also well described in the toward
region but significantly above data in the away region. This is consistent with the mini-
jet multiplicity being somewhat high in this region. The predictions of Herwig in the
transverse regions are substantially below data for both 〈N〉 and 〈PtSum∗〉 The inclusion
of 10% SUE adds some jet activity in the low Q2 bins of the transverse regions, but it
is far from sufficient to reproduce the data. Increasing the amount of SUE would further
improve the situation in the transverse regions but would at the same time worsen the
situation in the regions of the hard scattering products.

Finally the predictions of Cascade and Cascade J2003 set2 are compared to data in
Figures 5.55-5.58. Although not perfect, Cascade J2003 set2 provides by far the best
agreement with data, both on 〈N〉 and 〈PtSum∗〉. This is the only model that is able to
reproduce the data in the transverse regions.
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Figure 5.43: The average multiplicity of mini-jets, 〈N〉, as a function of Q2 for the inclusive
1-jet sample, with the leading jet being forward and central, respectively, shown separately
for the toward and away regions in two bins of W . Data are compared to the predictions
of Lepto(CDM) and Rapgap dir+res.
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Figure 5.44: The average of the total transverse momentum of mini-jets, 〈PtSum∗〉 as a
function of Q2 for the inclusive 1-jet sample, with the leading jet being forward and central,
respectively, shown separately for the toward and away regions in two bins of W . Data are
compared to the predictions of Lepto(CDM) and Rapgap dir+res.
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Figure 5.45: The average multiplicity of mini-jets, 〈N〉, as a function of Q2 for the inclusive
1-jet sample, with the leading jet being forward and central, respectively, shown separately
for the high and low activity regions in two bins of W . Data are compared to the predictions
of Lepto(CDM) and Rapgap dir+res.
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Figure 5.46: The average of the total transverse momentum of mini-jets, 〈PtSum∗〉 as a
function of Q2 for the inclusive 1-jet sample, with the leading jet being forward and central,
respectively, shown separately for the high and low activity regions in two bins of W . Data
are compared to the predictions of Lepto(CDM) and Rapgap dir+res.
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Figure 5.47: The average multiplicity of mini-jets, 〈N〉, as a function of Q2 for the inclusive
1-jet sample, with the leading jet being forward and central, respectively, shown separately
for the toward and away regions in two bins of W . Data are compared to the predictions
of Pythia and Pythia MPI.
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Figure 5.48: The average of the total transverse momentum of mini-jets, 〈PtSum∗〉 as a
function of Q2 for the inclusive 1-jet sample, with the leading jet being forward and central,
respectively, shown separately for the toward and away regions in two bins of W . . Data
are compared to the predictions of Pythia and Pythia MPI.
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Figure 5.49: The average multiplicity of mini-jets, 〈N〉, as a function of Q2 for the inclusive
1-jet sample, with the leading jet being forward and central, respectively, shown separately
for the toward and away regions in two bins of W . Data are compared to the predictions
of Pythia and Pythia MPI.
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Figure 5.50: The average of the total transverse momentum of mini-jets, 〈PtSum∗〉 as a
function of Q2 for the inclusive 1-jet sample, with the leading jet being forward and central,
respectively, shown separately for the toward and away regions in two bins of W . Data are
compared to the predictions of Pythia and Pythia MPI.
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Figure 5.51: The average multiplicity of mini-jets, 〈N〉, as a function of Q2 for the inclusive
1-jet sample, with the leading jet being forward and central, respectively, shown separately
for the toward and away regions in two bins of W . Data are compared to the predictions
of Herwig and Herwig 10%SUE.
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Figure 5.52: The average of the total transverse momentum of mini-jets, 〈PtSum∗〉 as a
function of Q2 for the inclusive 1-jet sample, with the leading jet being forward and central,
respectively, shown separately for the toward and away regions in two bins of W . . Data
are compared to the predictions of Herwig and Herwig 10%SUE.
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Figure 5.53: The average multiplicity of mini-jets, 〈N〉, as a function of Q2 for the inclusive
1-jet sample, with the leading jet being forward and central, respectively, shown separately
for the toward and away regions in two bins of W . Data are compared to the predictions
of Herwig and Herwig 10%SUE.
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Figure 5.54: The average of the total transverse momentum of mini-jets, 〈PtSum∗〉 as a
function of Q2 for the inclusive 1-jet sample, with the leading jet being forward and central,
respectively, shown separately for the toward and away regions in two bins of W . Data are
compared to the predictions of Herwig and Herwig 10%SUE.
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Figure 5.55: The average multiplicity of mini-jets, 〈N〉, as a function of Q2 for the inclusive
1-jet sample, with the leading jet being forward and central, respectively, shown separately
for the toward and away regions in two bins of W . Data are compared to the predictions
of Cascade and Cascade J2003 set2.
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Figure 5.56: The average of the total transverse momentum of mini-jets, 〈PtSum∗〉 as a
function of Q2 for the inclusive 1-jet sample, with the leading jet being forward and central,
respectively, shown separately for the toward and away regions in two bins of W . . Data
are compared to the predictions of Cascade and Cascade J2003 set2.
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Figure 5.57: The average multiplicity of mini-jets, 〈N〉, as a function of Q2 for the inclusive
1-jet sample, with the leading jet being forward and central, respectively, shown separately
for the toward and away regions in two bins of W . Data are compared to the predictions
of Cascade and Cascade J2003 set2.
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Figure 5.58: The average of the total transverse momentum of mini-jets, 〈PtSum∗〉 as a
function of Q2 for the inclusive 1-jet sample, with the leading jet being forward and central,
respectively, shown separately for the toward and away regions in two bins of W . Data are
compared to the predictions of Cascade and Cascade J2003 set2.
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5.5.2 The Inclusive 2-jet Sample

For the inclusive 2-jet sample, results on 〈N〉 and 〈PtSum∗〉 are presented for two regions
in xγ, where xγ > 0.7 is dominated by direct photon interactions and xγ < 0.7 by re-
solved photon scattering. The same two regions in W as for the inclusive 1-jet sample are
covered. Comparisons of data to the predictions of all models for the toward and away
regions are shown in Figures 5.59-5.66. Except for some deviations by Rapgap dir+res and
Lepto(CDM), mainly for resolve photon processes, the agreement for all other models is
excellent in these regions. Consistent with the observation from the inclusive 1-jet sample,
the influence of MPI and SUE in these regions is very small.

In the Figures 5.67-5.74 comparisons between data and all models are provided for the
transverse regions. From Figures 5.67 and 5.68 the predictions on 〈N〉 and 〈PtSum∗〉 of
Rapgap dir+res and Lepto(CDM) it is seen that direct photon processes (xγ > 0.7) are
described well by both MC models. Data in the resolved photon region are substantially
higher than predicted by the models, although Lepto(CDM) is closer to data than Rapgap
dir+res.

The results of Phythia in the transverse regions are compared to data in Figures 5.69 and
5.70. It is noticable that Phythia is not able to describe the direct photon interactions in all
bins, even where the influence of MPI is small. This is consistent with the comparatively
bad description of the inclusive 1-jet data by Pythia. The predictions of Pythia clearly fall
below data for resolved processes. The inclusion of MPI gives a significant contribution as
expected for resolved interactions but it is not enough to provide agreement.

Herwig also fails to describe data in the direct photon region in the same bins as Pythia,
which can be seen from Figures 5.71 and 5.72. The Herwig predictions for resolved photons
are well below data and the addition of 10% SUE does not drastically change this situation.

The predictions of Cascade and Cascade J2003 set2 in the transverse regions are shown
in Figures 5.73 and 5.74 together with experimental data. There is substantially more
jet activity in the direct photon region predicted by Cascade compared to data, whereas
Cascade J2003 set2 agrees well with data. Also jets produced in resolved processes are
predicted to be more frequent by Cascade than what is the case. Cascade J2003 set2 gives
prediction in the resolved region for the high activity region, which are somewhat high but
gives on the other hand a good description of the low activity region.
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Figure 5.59: The average multiplicity of mini-jets, 〈N〉, as a function of xγ for the inclsuive
2-jet sample, shown separately for the toward and away regions in two bins of W . Data
are compare to the predictions of Lepto(CDM) and Rapgap dir+res.
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Figure 5.60: The average of the total transverse momentum of mini-jets, 〈PtSum∗〉, as
a function of xγ for the inclsuive 2-jet sample, shown separately for the toward and away
regions in two bins of W . Data are compare to the predictions of Lepto(CDM) and Rapgap
dir+res.



166 CHAPTER 5. MULTIPLE INTERACTIONS IN DIS

 Data Pythia

Pythia MPI

0 0.2 0.4 0.6 0.8 1
0

1

Inclusive 2-jet sample. Toward Region
 100 < W  < 200  [GeV]

< 
N

 >

γx

(a)

0 0.2 0.4 0.6 0.8 1
0

1

 200 < W  < 300  [GeV]

γx

(b)

 Data Pythia

Pythia MPI

0 0.2 0.4 0.6 0.8 1
0

1

Inclusive 2-jet sample. Away Region
 100 < W  < 200  [GeV]

< 
N

 >
γx

(c)

0 0.2 0.4 0.6 0.8 1
0

1

 200 < W  < 300  [GeV]

γx

(d)

Figure 5.61: The average multiplicity of mini-jets, 〈N〉, as a function of xγ for the inclsuive
2-jet sample, shown separately for the toward and away regions in two bins of W . Data
are compare to the predictions of Pythia and Pythia MPI.

 Data Pythia

Pythia MPI

0 0.2 0.4 0.6 0.8 1
0

10

Inclusive 2-jet sample. Toward Region
 100 < W  < 200  [GeV]

< 
P

tS
u

m
* 

> 
[ 

G
eV

 ]

γx

(a)

0 0.2 0.4 0.6 0.8 1
0

10

 200 < W  < 300  [GeV]

γx

(b)

 Data Pythia

Pythia MPI

0 0.2 0.4 0.6 0.8 1
0

10

Inclusive 2-jet sample. Away Region
 100 < W  < 200  [GeV]

< 
P

tS
u

m
* 

> 
[ 

G
eV

 ]

γx

(c)

0 0.2 0.4 0.6 0.8 1
0

10

 200 < W  < 300  [GeV]

γx

(d)

Figure 5.62: The average of the total transverse momentum of mini-jets, 〈PtSum∗〉, as
a function of xγ for the inclsuive 2-jet sample, shown separately for the toward and away
regions in two bins of W . Data are compare to the predictions of Pythia and Pythia MPI.
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Figure 5.63: The average multiplicity of mini-jets, 〈N〉, as a function of xγ for the inclsuive
2-jet sample, shown separately for the toward and away regions in two bins of W . Data
are compare to the predictions of Herwig and Herwig 10%SUE.
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Figure 5.64: The average of the total transverse momentum of mini-jets, 〈PtSum∗〉, as
a function of xγ for the inclsuive 2-jet sample, shown separately for the toward and away
regions in two bins of W . Data are compare to the predictions of Herwig and Herwig
10%SUE.
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Figure 5.65: The average multiplicity of mini-jets, 〈N〉, as a function of xγ for the inclsuive
2-jet sample, shown separately for the toward and away regions in two bins of W . Data
are compare to the predictions of Cascade and Cascade J2003 set2.
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Figure 5.66: The average of the total transverse momentum of mini-jets, 〈PtSum∗〉, as
a function of xγ for the inclsuive 2-jet sample, shown separately for the toward and away
regions in two bins of W . Data are compare to the predictions of Cascade and Cascade
J2003 set2.
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Figure 5.67: The average multiplicity of mini-jets, 〈N〉, as a function of xγ for the inclsuive
2-jet sample, shown separately for the high and low activity regions in two bins of W . Data
are compare to the predictions of Lepto(CDM) and Rapgap dir+res.
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Figure 5.68: The average of the total transverse momentum of mini-jets, 〈PtSum∗〉, as a
function of xγ for the inclsuive 2-jet sample, shown separately for the high and low activity
regions in two bins of W . Data are compare to the predictions of Lepto(CDM) and Rapgap
dir+res.
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Figure 5.69: The average multiplicity of mini-jets, 〈N〉, as a function of xγ for the inclsuive
2-jet sample, shown separately for the high and low activity regions in two bins of W . Data
are compare to the predictions of Pythia and Pythia MPI.
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Figure 5.70: The average of the total transverse momentum of mini-jets, 〈PtSum∗〉, as a
function of xγ for the inclsuive 2-jet sample, shown separately for the high and low activity
regions in two bins of W . Data are compare to the predictions of Pythia and Pythia MPI.
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Figure 5.71: The average multiplicity of mini-jets, 〈N〉, as a function of xγ for the inclsuive
2-jet sample, shown separately for the high and low activity regions in two bins of W . Data
are compare to the predictions of Herwig and Herwig 10%SUE.
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Figure 5.72: The average of the total transverse momentum of mini-jets, 〈PtSum∗〉, as a
function of xγ for the inclsuive 2-jet sample, shown separately for the high and low activity
regions in two bins of W . Data are compare to the predictions of Herwig and Herwig
10%SUE.
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Figure 5.73: The average multiplicity of mini-jets, 〈N〉, as a function of xγ for the inclsuive
2-jet sample, shown separately for the high and low activity regions in two bins of W . Data
are compare to the predictions of Cascade and Cascade J2003 set2.
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Figure 5.74: The average of the total transverse momentum of mini-jets, 〈PtSum∗〉, as a
function of xγ for the inclsuive 2-jet sample, shown separately for the high and low activity
regions in two bins of W . Data are compare to the predictions of Cascade and Cascade
J2003 set2.
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5.6 Interpretation of the Results

The philosophy of the analysis is to define regions in azimuth such that the hard scattering
products should essentially be contained in the toward and away regions. Thereby a possi-
ble signal of MPI should be visible in the transverse regions. However, as already discussed
higher order processes of the hard scattering may produce mini-jets, which contaminate
the transverse regions. Such contributions are expected to be most prominent in the high
activity region. Model predictions of MPI are thus influenced by the way mini-jets are
generated by higher order processes in the primary interaction. Since calculations can only
be performed to finite orders, the uncertainties related to the higher order corrections, not
included in the calculations, are estimated by variations in the renormalization and fac-
torization scales. The dependence on the scales of the mini-jet production from the hard
scattering are studied in section 5.6.1.

Another source of uncertainty is the choice of parton density functions describing the
structure of the proton and the photon. The PDF of the proton is determined to a high
degree of accuracy in the kinematic region covered by this analysis, and its uncertainty is
not expected to produce a large effect on the results of MPI. The uncertainty of the photon
PDF, on the other hand, is much larger and therefore two different parametrisations have
been used in Pythia to study their influence on MPI. Some typical results from this study
are presented in section 5.6.2.

A discussion and study of mini-jet production from MPI in Pythia and SUE in Herwig
is presented in section 5.6.3. Especially the different properties of mini-jets produced by
Pythia and Herwig are investigated.

In order to interpret the results as correctly as possible in the light of the predictions
by the various models, basic event variables have been investigated in more detail. Thus, it
was studied how the different models describe multiplicity distributions of charged particles
and their PT spectra in section 5.6.4.

Finally, some possible interpretations of the predictions delivered by the Monte Carlo
generators are discussed in section 5.6.4. The sensitivity of the data to parton showering
models is discussed.

5.6.1 Scale Dependence

The choice of renormalization scale, µr, and factorization scale, µf , is not defined by first
principles in QCD. In DIS the choice is especially difficult since the scattering process
involves several scales. There are theoretical motivations for using different scales like for
example Q2 or PT of the hardest jet, or some combination of the two. A change of the scale
is equivalent to a change in the coefficient of the higher order terms in the perturbative
expansion. The scale dependence is reduced by including more and more of the higher
order terms. As it is not obvious what parameter should be used as the scale, it is also
not obvious over which range it should be varied in order to account for the uncertainties
from higher order corrections. A general consensus has, however, been developed that the
scale should be varied by a factor of 2 up and a factor 1/2 down. Pyhtia uses the mass
squared of the propagating partons in the ladder as scale for both the renormalization and
factorization.
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Figure 5.75: The average multiplicity of mini-jets, 〈N〉, as a function of Q2 for the inclusive
1-jet sample, with the leading jet being forward and central, respectively, shown separately
for the toward and away regions in two bins of W . Data are compared to the predictions
of Pythia using three different values of the evolution scale, 2µ (dotted line), µ (solid line)
and 0.5µ (broken line).

In Figure 5.75 the mini-jet multiplicity is shown for the 1-jet inclusive sample in the
toward and away regions with the leading jet forward and central, respectively, and for
low and high values of W . As observed from the figure the predictions of the mini-jet
production in the toward and away regions are not sensitive to the choice of the scale. The
largest dependence of about 5% is observed when the leading jet is going in the forward
region and at high values of W .

The predictions of Pythia on mini-jets in the low and high activity regions, for the same
sample as above, are shown in Figure 5.76. The dependence on the scale is significant,
especially in the regions of high W .

The scale dependence of the mini-jet activity of the inclusive 2-jet sample is shown in
Figure 5.77 for the low and high activity regions in two bins of xγ . A scale dependence of
about 10% is observed.

It is clear from the results obtained that the scale dependence is not large enough to
account for the deviation of the Pythia predictions from data.

5.6.2 Photon PDF Dependence

Data have been compared to the predictions of Pythia using two different parametrizations
of the photon PDF. In Figure 5.78 the mini-jet multiplicity of the inclusive 1-jet sample
is shown for the low and high activity regions, where the leading jet is in the forward and
central regions and for low and high W values. The solid line represents the photon PDF
parametrization of SaS1D, whereas the dotted line corresponds to the Drees-Grassie [115]
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Figure 5.76: The average multiplicity of mini-jets, 〈N〉, as a function of Q2 for the inclusive
1-jet sample, with the leading jet being forward and central, respectively, shown separately
for the high and low activity regions in two bins of W . Data are compared to the predictions
of Pythia using three different values of the evolution scale, 2µ (dotted line), µ (solid line)
and 0.5µ (broken line).
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Figure 5.77: The average multiplicity of mini-jets, 〈N〉, as a function of xγ for the inclusive
2-jet sample, shown separately for the high and low activity regions in two bins of W . Data
are compared to the predictions of Pythia using three different values of the evolution scale,
2µ (dotted line), µ (solid line) and 0.5µ (broken line).
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Figure 5.78: The average multiplicity of mini-jets, 〈N〉, as a function of Q2 for the inclusive
1-jet sample, with the leading jet being forward and central, respectively, shown separately
for the high and low activity regions in two bins of W . Data are compared to the predictions
of Pythia using two different photon PDF’s, the SAS 1D (solid line) and the Drees-Grassie
(dotted line) parametrizations.

parametrization. As can be seen there is a sensitivity of 10-20 % to the choice of PDF in
events with a forward going leading jet and having high W values.

The corresponding results from the inclusive 2-jet sample are shown in Figure 5.79. In
this case the uncertainty due to the choice of the photon PDF on the mini-jet activity is
about 20 % in the low xγ bin.

It is obvious that the failure of Pythia to reproduce the data is not due to the uncertainty
in the description of the photon PDF.
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Figure 5.79: The average multiplicity of mini-jets, 〈N〉, as a function of xγ for the inclusive
1-jet sample, shown separately for the high and low activity regions in two bins of W . Data
are compared to the predictions of Pythia using two different photon PDF’s, the SAS 1D
(solid line) and the Drees-Grassie (dotted line) parametrizations.
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5.6.3 Mini-jet Production in Pythia and Herwig

The fact that the inclusion of SUE to Herwig gives rise to additional jets in the transverse
regions might be surprising, since an isotropic emission of soft particles should in principle
not produce jets. In order to better understand this an investigation and comparison of the
properties of mini-jets in the transverse regions for the inclusive 1-jet sample reconstructed
from events generated by Herwig, Herwig 10%SUE, Pythia and Pythia MPI, respectively.
An interesting and obvious question in this context is whether mini-jets produced in Herwig
by adding SUE to the events can be rejected by making appropriate cuts in the data sample.

Figure 5.80 shows the rapidity distribution and transverse momentum spectrum of mini-
jets reconstructed from the MC data in the azimuthal regions transverse to the leading jet.
The rapidity distribution clearly shows that SUE mainly contribute to mini-jets in the
forward (proton) region, which is not so pronounced for MPI in the case of Pythia. From
the PT,MiniJets spectrum we can conclude that both the inclusion of SUE and MPI give
an increased number of mini-jets over the full PT,MiniJets range of the mini-jets. Thus,
an increase of the PT,MiniJets cut in the jet reconstruction is not expected to provide any
suppression of SUE in favor of MPI

The next step is to look at the particle composition of the mini-jets, where the particle
distributions shown have been normalised to the number of mini-jets in the transverse
regions. In Figure 5.81a the particle multiplicity of the mini-jets is shown. It can be
observed that mini-jets reconstructed from events generated by Pythia have the same
particle multiplicity of about 8 on the average, independent of whether MPI is included
or not. Mini-jets reconstructed from events generated by Herwig without SUE give an
average particle multiplicity similar to what Pythia gives, but if SUE is included the average
particle multiplicity increases by nearly one unit. This means that the jets coming from
additional interactions (MPI) have the same particle content as those from the primary
interaction, which is not surprising since they are produced in the same way but from
different gluon ladders. In contrast to this the additional jets from the inclusion of SUE
include more particles. There might be two explanations for this. One explanation for the
increased number of mini-jets caused by the SUE might be that mini-jets from initial or
final state radiation, which were originally rejected for not exceeding the PT,MiniJets cut
of 3.5 GeV, might gain one or more particles from the SUE, which make them fulfill the
PT,MiniJets requirement. That is, no additional jets are produced but instead jets from
higher order processes might become visible when the jet reconstruction algorithm merges
additional particles from SUE into the jet. Another possible explanation could be that the
jet algorithm simply forces uncorrelated soft particles into jets. It might also be possible
that there are contributions from both sources.

The average multiplicity of the particles in the mini-jets, 〈NPartInJet〉, as a function of
particle transverse momenta are shown in Figure 5.81b. 〈NPartInJet〉 with and without MPI
from Pythia are identical, as expected since the jets produced from one gluon ladder should
look the same as those produced by another. For Herwig the 〈NPartInJet〉 spectrum shows
a significant excess of low momentum particles as SUE is included. Thus, SUE mainly
contributes particles with transverse momenta lower than 700 MeV. From the spectrum of
the total particle momenta, shown in Figure 5.81c, it is evident that the shapes are the
same over the full momentum range. This means that the higher the total momentum
of a particle from SUE is, the more it has to go into the forward region in order to have
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a transverse momentum lower than 700 MeV. This is confirmed by Figure 5.81d, which
shows the polar angle distribution of 〈NPartInJet〉 from which it is clearly seen that particles
from SUE are peaked in the forward region (θ < 40◦).

It is obvious that a cut of PT,PartInJet > 700 MeV is most efficient to remove particles
produced by the SUE, as seen in Figure 5.81b. On the other hand this is a fairly hard
cut, which severely reduces the Pythia mini-jet sample to about 20% of the original. The
effects of a cut on the particle momentum at 700 MeV can be further appreciated from
Figure 5.82(a-d). The particle multiplicity in the mini-jets is naturally decreased by this
cut, as shown in Figure 5.82a, since now only few particles are needed to add up to the
PT,MiniJets cut of the jet. As now essentially the full contribution from SUE has been
removed, the average particle multiplicity of mini-jets from the samples generated with
and without SUE is the same. Moreover, it is the same as the particle multiplicity of
mini-jets reconstructed from events generated by Pythia with and without MPI. Also
the distributions of 〈NPartInJet〉 as a function of the total jet particle momenta, shown
in Figure 5.82c, agree independently on whether the samples with or without SUE or
MPI have been used. Although the polar angle distributions of 〈NPartInJet〉 are different
for Herwig and Pythia, the Herwig distribution no longer contains any contribution from
SUE, as seen in Figure 5.82d.

The behavior of the rapidity and the transverse momentum distributions of the mini-
jets, after having applied the PT,PartInJet > 700 MeV cut on the mini-jet particles, is
shown in Figure 5.83a and b. Now, the rapidity distribution of Herwig does not exhibit
any extra contribution from SUE, whereas for Pythia there is still a remaining excess of
mini-jets from MPI. This becomes more evident from Figure 5.83b where it is clearly seen
that there is essentially no contribution to the transverse momentum spectrum of mini-jets
from SUE (except for a very small excess in the lowest PT,MiniJets bin). On the other hand,
a significant contribution from MPI is noticed up to the highest mini-jet momenta. Due
to the fact that the particles from SUE are mainly directed into the forward region, the
number of mini-jets in this region gets strongly suppressed from the PT,PartInJet > 700 MeV
cut. This is not the case for mini-jets from MPI, where the rapidity distribution has the
same shape with or without the PT,PartInJet > 700 MeV cut.

Although, contributions from MPI can be separated from those of SUE, the required
cuts could not be applied due to statistical reasons.
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Figure 5.80: The a) ηMiniJets and b) PT,MiniJets distributions of mini-jets in the transverse
regions. The predictions of the Monte Carlo generators Herwig, Herwig 10%SUE, Pythia
and Pythia MPI.
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Figure 5.81: The a) distribution of particle multiplicty in the mini-jets, NPartInJet, and the
average value , 〈NPartInJet〉, as a function of b) the transverse momentum (PT,PartInJet),
c) the total momentum (PPartInJet), and d) the polar angle (θPartInJet) of the particle jets
in the transverse regions. The predictions of the Monte Carlo generators Herwig, Herwig
10%SUE, Pythia, and Pythia MPI are shown.
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Figure 5.82: The a) distribution of particle multiplicty in the mini-jets, NPartInJet and the
average value , 〈NPartInJet〉, as a function of b) the transverse momentum (PT,PartInJet),
c) the total momentum (PPartInJet), and d) the polar angle (θPartInJet) of the particle jets
in the transverse regions. The predictions of the Monte Carlo generators Herwig, Herwig
10%SUE, Pythia and Pythia MPI are shown for mini-jets reconstructed from particles with
PT > 0.7 GeV.
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Figure 5.83: The a) ηMiniJets and b) PT,MiniJets distributions of mini-jets in the transverse
regions from particles with PT > 0.7 GeV. The predictions of the Monte Carlo generators
Herwig, Herwig 10%SUE, Pythia and Pythia MPI are shown.
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Figure 5.84: The PT spectra and the multiplicity distributions of charged particles from
the inclusive 1-jet sample in the away and transverse regions. Data on hadron level are
compared to the predictions of Pythia, Herwig and Cascade set2.

5.6.4 Discussions and Comments

The claim of a signal from MPI in this analysis has to rely upon an observation of jet
activities in excess of what is predicted by standard Monte Carlo generators. This, how-
ever, requires that the event generator is able to give a reasonable description of data in
regions where the influence of MPI is expected to be small. As is noticed from the re-
sults of the inclusive 1-jet sample some of the MC predictions exhibit significant deviations
from the data in these regions and in order to better understand the reason for this, a
first comparison in terms of some basic event parameters has been performed. Thus, the
multiplicity distributions of charged particles with PT > 0.15 GeV and their PT spectra
have been studied. Such distributions have been extracted separately for the toward and
away regions, whereas the transverse regions have not been split into high and low activity
regions. In order to discuss the discrepancies in detail such plots should be produced for
each of the kinematic bins that have been investigated, which, however, could not been
realized due to time limitations. Therefore, only the most spectacular deviations between
data and MC results can be expected to be understood at this stage. Figure 5.84 shows
the PT spectra and the multiplicity distributions of charged particles for experimental data
and MC data from three of the event generators used in this analysis, when the leading
jet is central. Furthermore, the charged particles are restricted to fall within the rapidity
range of |ηlab| < 1.5. This is not quite consistent with the allowed range of mini-jets in
the analysis which is −1.5 < ηjets < 2.7. However, in order to study the description of the
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hard scattering this should not have a big impact.

It was observed that although Pythia gives excellent agreement with data in the toward
region, there are large deviation in the away and transverse regions for the higher Q2 bins.
In the away region the high mini-jet multiplicity is consistent with the high multiplicity of
charged particles predicted by Pythia and the excess of 〈PtSum∗〉 is a consequence of the
harder PT spectrum of charged particles. The charged particle multiplicity in the transverse
regions is in good agreement with data and the PT is also reasonably well described, the
deviations leaving room for contributions from MPI, consistent with the predicted rate in
the low Q2 bins.

Herwig gives approximately the same description of the multiplicity and transverse
momenta of charged particles as Pythia in the away region, which makes it overshoot data
on mini-jets somewhat for both 〈N〉 and 〈PtSum∗〉. In the transverse regions the charged
particle multiplicity is well reproduced but the PT spectrum is too soft. This probably
explains some of the deviation compared to data but it is unlikely that it will account for
the whole gap.

The predictions of Cascade J2003 set2 give the best overall agreement with mini-jets
data and especially it is very successful in the transverse regions. This suggests that the
data might be explained by using unintegrated parton densities and applying non kt ordered
emissions, which consequently would mean that no MPI is needed. An inspection of the
charged particle multiplicity, however, shows that this is in general significantly higher
than what is the case for the data so this could be the reason for the good agreement with
mini-jet data in the transverse regions.

A more complete study would clearly be necessary in order to understand the details
of the deviations between model predictions and data, but the general conclusion is that
there is no model that gives a good description of data in all phase space regions and
consequently a claim of MPI from the 1-jet sample is not straight forward.

5.7 Summary and Outlook

A study of mini-jets in deep inelastic electron proton scattering has been performed with the
aim of finding evidence for hadronic activities in excess to those expected from the primary
interaction. The multiplicity of mini-jets has been measured in four different regions of the
azimuthal angle with respect to the hardest (leading) jet of the event. The region around
the leading jet, called ’the toward region’ and the region opposite to this, ’the away region’,
are expected to contain most of the transverse momentum which is needed to restore the
momentum balance of the primary interaction. In the regions perpendicular to the leading
jet the signal from additional hadron activities are expected to be most visible. For each
event these regions have been separated into ’the high activity region’, which contains the
highest transverse momentum of the two, and ’the low activity region’.

Two samples have been used, one of which contains inclusive 1-jet events and the other
inclusive 2-jet events, where the second hardest (sub-leading) jet is required to proceed in
’the away region’. The inclusive 1-jet sample has been subdivided into three Q2, two W
and two rapidity regions, corresponding to the leading jet being produced in the central
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or forward region. This subdivision has not been possible for the inclusive 2-jet sample
due to statistical reasons but instead a cut on xγ has been applied to separate direct and
resolved photon processes.

The observation for the inclusive 1-jet sample can be summarized in the
following way:

The toward region

The average jet multiplicity, 〈N〉 is well described by all models, whereas the average
transverse momentum carried by the mini-jets, 〈PtSum∗〉, is not so well reproduced by
Lepto(CDM) and Pythia exhibits large deviations in the higher Q2 bins.

The away region

〈N〉 is reasonably well described by most models except Pythia, which fails in the high Q2

region. The model predictions of the 〈PtSum∗〉-distributions in general show somewhat
larger deviation from the data and again Pythia fails to describe the high Q2 bins.

The high activity region

All DGLAP based models produce 〈N〉-distributions which undershoot the data. Cascade
using CCFM evolution predicts much higher values of 〈N〉 and Cascade J2003 set2 is in
agreement with data. However, Lepto(CDM), which also produces parton emission non-
ordered in kt, gives significantly smaller 〈N〉-values. Pythia with MPI essentially agrees
with data in the lowest Q2 bin, whereas 10% SUE is not enough to bring Herwig in agree-
ment with data. The same conclusions can be drawn from the 〈PtSum∗〉-distributions.

The low activity region

The DGLAP based models again give 〈N〉-distributions, significantly lower than data,
which is also true for Lepto(CDM). Both Cascade models are more or less in agreement
with data as is also Pythia MPI in the lowest Q2 bin, while Herwig with 10% SUE still
undershoots the data. Again essentially the same conclusions are true for the 〈PtSum∗〉-
distributions.

Thus, the predictions on 〈N〉 and 〈PtSum∗〉 of the DGLAP based models and of
Lepto(CDM) exhibit deviations in the transverse regions which leave room for MPI. Al-
though the predictions by Cascade J2003 set2, with CCFM evolution and unintegrated
gluon densities, indicate that no MPI is needed, the agreement with data may be ex-
plained by the too high particle multiplicity produced by this model. Herwig including
SUE on a reasonable level is clearly not able to reproduce data. The inclusion of MPI in
Pythia significantly improves the agreement with data in the lowest Q2 bin.
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The observations from the inclusive 2-jet sample are summerized in the
following:

The toward region

The agreement of all models with data on 〈N〉 is very good. The 〈PtSum∗〉-distributions
are also well described by all models except for Rapgap dir+res and Lepto(CDM), especially
for resolved photon processes (xγ < 0.7).

The away region

The 〈N〉 and < PtSum >-distributions are well desribed, with the exception of Rapgap
dir+res for low xγ .

The high activity region

The DGLAP based models and Lepto(CDM) predict distributions for 〈N〉 and 〈PtSum∗〉,
which are significantly too low and would thus call for additional parton activity like MPI.
The inclusion of MPI in Pythia makes a significant constribution to the resolved photon bin,
bringing it much closer to data. Again 10% SUE is too little to account for the deviation to
data. The Cascade model predictions even overshoot the data in some regions, consistent
with a too high particle multiplicity.

The low activity region

The same conclusion are valid as for the high activity region.

The results from the inclusive 2-jet sample are consistent with additional jet activities in
the transverse regions for resolved photon processes, which are not predicted with standard
MC models but might be explained by MPI.

Altogether, model comparisons to data from the inclusive 1-jet and 2-jet samples consis-
tently point at jet activities in addition to what is expected for the hard scattering process,
in the regions transverse to the leading jet(s) in the event. The much improved agreement
for resolved photon events due to the inclusion of MPI in Pythia supports the assumption
that this might come from MPI.

Although it is clear that the discussion of MPI is by no means concluded as a result
of this analysis, it nevertheless provides valuable experimental information, which can be
used by theorists to test and improve their models.

The significantly higher statistics collected by H1 in the years 2001-2007 would allow
a much more detailed analysis of MPI based on an inclusive dijet sample, for which the
dependence on Q2 and xBj could be studied and the sample could be subdiveded two
η regions, as in the case of the inclusive 1-jet sample. The forward region is especially
interesting since this is where the MPI signal is expected to be the strongest.
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Appendix A

Definition of Trigger Elements

The definitions of the physics sub-triggers (S0, S3, S61) and the monitor sub-triggers (S39,
S64, S66, S67, S77) are presented here. The sub-trigger definitions changed during the
1999-2000 run period, therefore the definition of the main trigger elements is given here.

SPCLe IET > 2: An energy deposition above 5.7 GeV in one of the trigger Towers of
the outer SPACAL.
BG: A combination of trigger elements used to reject background events in DIS.
SPCLe ToF E 2: Rejection of background events in DIS.
SPCLe IET Cen 3: An energy deposition of E > 6 GeV in the central SPACAL region.
DCRPh THig: At least one high momentum track candidate in the CJC.
zVtx sig : A signature for the z-vertex existence.
LAr IF: Energy summed over all Big Towers lying in IF.
LAr BR: Big Tower energy above a given threshold and a validated track from MWPC.
LAr Etmiss > 1(2): Missing transverse energy above a given threshold from the Big
Towers calculation.
LAr electron 1: An energy deposition in the electromagnetic part of the LAr calorimeter
above 11 GeV.
LAr electron 2: An energy deposition in the electromagnetic part of the LAr calorimeter
above 6 GeV.
LAr 2or3 electrons: Two or three electrons found in the LAr.
FwdRay T0 : At least one track found in the MWPCs.

Subtrigger Definitions of the Trigger Elements

S0 = SPCLe IET > 2 ∧ BG
S3 = SPCLe IET > 2 ∧ SPCLe ToF E 2
S61 = (SPCLe IET > 2 ∨ SPCLe IET Cen 3) ∧ DCRPh THig ∧ zVtx sig
S39 = LAr BR ∧ LAr electron 2 ∧ FwdRay T0 ∧ LAr IF ∧ LAr 2or3 electrons
S64 = LAr IF > 1 ∧ LAr Etrans > 2
S66 = LAr IF > 1 ∧ LAr Etmiss > 2
S67 = LAr electron 1
S77 = LAr Etmiss > 1
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Appendix B

Final State Particle Classification

Selected Tracks: Three classes of tracks are defined: Central (tracks reconstructed only
from CJC measurements), Forward (tracks reconstructed only from Forward tracker mea-
surements) and Combined (tracks reconstructed from CJC and Forward tracker measure-
ments) tracks. The main cuts are summarised in the tables below.

Central Track
PT > 120 MeV

20o < θ < 160o

|dca′| ≤ 2 cm

RS ≤ 50 cm

Rlength ≥ 10 cm for θ < 150o

Rlength ≥ 5 cm for θ > 150o

Forward Track
PT > 1 MeV

P ≥ 500 MeV

6o ≤ θ ≤ 25o

Combined Track
PT > 120 MeV

θ < 40o

|dca′| ≤ 5 cm

RS ≤ 50 cm

The dca′ is the distance of the closest approach of the track extrapolated to the measured
vertex in the (x, y, zvertex) plane. Projected onto the xy-plane, RS is the distance from the
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vertex point at which the track starts, and Rlength is the length of the track. More details
how the tracks are obtained can be found in [116].

Isolated muons and electrons:

A muon is isolated if:

Eem
r=35 + Eh

r=75 < 5 GeV,

N sel.track.
R=0.5 = 1

Eem
r=35 and Eh

r=75 are the energy deposited in a cylinder with radius of 35 cm and 75
cm in the electromagnetic and hadronic LAr section, respectively, around the extrapolated
muon track. N sel.track.

R=0.5 is the number of selected tracks around the muon in a cone of

R =
√

∆φ2 + ∆θ2 = 0.5.

An electron is isolated if:
ER=0.5 < 0.03Ee

where ER=0.5 is the total energy of clusters not belonging to any other electron in a cone
of

R =
√

∆φ2 + ∆θ2 = 0.5

around the electron with energy Ee.
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Mini-Jets in Deep Inelastic Scattering at HERA

S. Osman ∗

Lund University,

Box 118, SE 221 00, Sweden, E-mail: sakar.osman@hep.lu.se

The production of jets with low PT , mini-jets, in deep inelastic electron-proton scat-

tering is studied. Mini-jet multiplicities are presented as a function of the PT of the

leading jet in bins of η and Q2. The analysis is performed for an inclusive jet sample,

and for a dijet sample, where the second jet is required to have an azimuthal angle

larger than 140 degrees with respect to the leading jet. The dijet sample is split into

two samples which are enhanced in direct photon and resolved photon processes, re-

spectively. The results are compared to various QCD based models. Here only the

result for the inclusive jet sample will be presented.

1 Introduction

In electron-proton scattering the partonic content of the exchanged virtual photon may
be resolved if the PT of the interacting partons is larger than Q2 and thereby the photon
will behave like a hadronic object. Thus, similar to hadron-hadron scattering there will
be a certain probability that collisions between the resolved photon and the proton involve
more than one parton interaction, multiple interactions (MI). Previous measurement in
photoproduction at HERA [2] have shown that only models with MI give a satisfactory
description of the data. This analysis constitutes the first study of possible MI in DIS from
measurements of low PT jets produced in addition to the leading jet(s) of the event. The
basic principle of the analysis is to define regions in phase space where contributions from the
final state products originating from the primary hard interaction are expected to be small.
The concept follows closely the one used by the CDF collaboration at the TEVATRON [3]

2 Analysis Method

The starting point is to define and isolate the leading jet(s) originated from the hard primary
interaction and investigate the remaining regions for additional activities, which in this
analysis comprise the presence of jets with low transverse momenta, mini-jets. Two different
event samples are studied; inclusive jet events and dijet events, of which the latter constitutes
a subsample of the inclusive sample. The analysis procedure is the following:

Inclusive jet sample: The leading jet is identified and reconstructed using the kt-algorithm [4]
in the h.c.m. rest frame. The jet with the highest transverse momentum in the h.c.m. rest
frame is taken as the leading jet. The leading jet axis defines the azimuthal angle ∆φ∗=0
a. The region |∆φ∗| < 60o is defined as the ’toward region’, and is expected to contain all
particles belonging to the leading jet. The angular region |∆φ∗| > 140o is called the ’away
region’. The transverse regions, 60o < |φ∗| < 120o are those where contributions from the
primary collision should be small and the effects from additional activities should be most
visible. Event by event a ’high activity’- and ’low activity’ region are defined, depending on

∗On behalf of the H1 Collaboration.
aObservables in the h.c.m. frame are labeled with ∗.
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which region contains the most and least transverse momentum, respectively. These four
regions are shown. in Figure 2

Dijet sample: The dijet sample includes events having at least two jets, where the two
reconstructed jets are required to be almost back-to-back. The leading jet is again defining
∆φ∗=0, whereas the jet axis of the jet with the second highest transverse momentum, the
sub leading jet, is restricted to be inside the ’away region’. This leaves some angular space
to accommodate the transverse spread of the jet within the ’away region’.

3 Event Selection

The Leading Jet

 ∆φ∗ = 60

 ∆φ∗ = 120

Away Region
 ∆φ∗ = 140

 Region

Transverse
Region Region

Transverse

Toward Region

(a)

High activity Low activty
 Region

Figure 1: The transverse , toward and away regions.

The analysis is based on data taken
with the H1 detector in 1999/2000
using colliding positrons and pro-
tons at energies of 27.5 GeV and 920
GeV, respectively. The DIS events
are selected by requiring a positron
in the SPACAL calorimeter with E

′

e

> 9 GeV , 156◦ < θe < 175◦ where
E

′

e and θe are the energy and po-
lar angle of the scattered positron,
respectively. The photon inelastic-
ity, y, and the virtuality, Q2, are de-
termined using the electron method
and must fulfill 0.1 < y < 0.7 and
5 < Q2 < 100 GeV2. The invari-
ant mass of the hadronic final state,
W, is required to be higher than
200 GeV in order to enhance small
xbj contributions and to increase the
probability of mini-jet productions.

The inclusive jet sample consists of events that contain at least one jet, whereas the dijet
sample includes events with at least two jets. For both samples the jet with the highest
transverse momentum is chosen as the leading jet and in the dijet sample the sub leading
jet has to fulfill the requirement |∆φ∗

ls| = |φ∗

lj − φ∗

sj | > 140◦, where φ∗ is the jet azimuthal
angle and the labels lj and sj denotes the leading and sub leading jets, respectively. The jets
are reconstructed by the inclusive kt-algorithm [4] in its pt weighting scheme mode, applied
to combined object of tracks and calorimetric clusters in the h.c.m. rest frame. To ensure a
good jet reconstruction it is required that the leading and sub leading jets must fulfill

-1.7 < ηlab < 2.79 and P
(∗)
T > 5 GeV. Here, the pseudo-rapidity is given by ηj = −ln(tan(θj/2)),

where θj is the polar angle of the jet in the lab frame, and PT is the transverse energy of
the jet. The pt cut are applied both in lab and h.c.m. rest frame.

Mini-jets are reconstructed with the same jet algorithm as the leading jets and within the
same ηlab region. However, the minimum transverse momentum of a mini-jets is required
to be larger than as 3 GeV both in lab and h.c.m rest frame .

Data is corrected for limited detector resolution and acceptance using a bin-by-bin pro-
cedure. Correction factors are determined using detector simulated events, generated by
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the Monte Carlo programs RAPGAP [5] and DJANGO [6] with ARIADNE [7], where QED
radiation has been taken into account.
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Figure 2: The average mini-jet multiplicity at the different ∆φ∗ regions in bins of Q2 as a
function of P ∗

T of the leading jet for the inclusive jet sample. The data is compared with the
CDM model (solid line) and Rapgap (dashed line).

4 Results

The average multiplicity of mini-jets, < Nminijet >, for the inclusive jet sample where the
leading jet proceeds in the forward η region are shown in Figures 2 - 3 for three bins of
Q2. The data are presented as a function of P ∗

T of the leading jet. Results have also been
obtained for leading jets in the central region and for the dijet sample but they are not
shown here, but can be found at [1]. The following can be observed:

The toward and away regions: All the different MC models, with or without MI, describe
the ’toward region’ well in all Q2 bins , as expected. In the ’away region’ there is an overall
reasonable agreement for all models, Figures 2 - 3 (a-f).

The high activity region: The predictions of < Nminijet > by the MC models including
no MI are generally too low in all Q2-bins, Figure 2 (g-i). PYTHIA+MI [8, 9] describes the
data points fairly well in the lowest Q2-bin and somewhat less well in the higher Q2-bins,
Figures 3 (g-i).
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The low activity region: The MC models with no MI included, significantly undershoots
the data, Figure 2 (j-l), in all Q2 bins. These deviations clearly increase with decreasing
Q2-values. PYTHIA+MI gives a much, Figure 3 (j-l), better description of data, although
the deviations are still large in the highest Q2-bin.
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Figure 3: The average mini-jet multiplicity at the different ∆φ∗ regions in bins of Q2 as a
function of P ∗

T of the leading jet for the inclusive jet sample. The data is compared with
Pythia (solid line) and Pythia with MI (dashed line).
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