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Chapter 1

Introduction

In colliders the structure of matter is revealed by scattering experiments.
The use of scattering experiments for the investigation of the structure of
matter has its origin in the work of Rutherford et. al. at the beginning of
the 20th century. In general, incoming objects with known momenta and en-
ergies are scattered on fixed or moving objects, called targets. By measuring
the respective cross sections, information about the interaction between the
object and the target as well as the structure of the target is obtained. Ide-
ally, the incoming objects are pointlike with a well-known interaction, such
as electrons or muons.
In the simplest case the target is pointlike as well. But this is often not
the case. The deviation from a pointlike structure can then be described
by so-called form factors. Form factors describe the spacial distribution of
”charge” in the target and modify the measured cross sections.
This technique was used extensively by Hofstadter et. al. in the 50’s and
60’s to investigate nuclei. Here atomic form factors were introduced as a
modification of the point structure . They are the Fourier transforms of the
charge distribution of a nucleus.
When the investigation of protons began, it soon became clear that they are
not pointlike. Thus, proton form factors were introduced to describe the
deviation of the protons structure from a point.
The higher the energy transfer from the incoming object to the target, the
higher is the resolution for measuring the target’s structure. This fact is
used in electron proton scattering, but it leads to a complication. Because
of the high energy transfer, the proton breaks up - the elastic scattering be-
comes inelastic and inelastic structure functions are introduced to describe
this.. From 1968 on, so-called scattering experiments at 20 GeV were made
at the SLAC (Stanford Linear Acceleration Center). At these energies of a
magnitude before never reached, the incoming electron can probe deep into
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the proton’s structure, a process called Deep Inelastic Scattering (DIS). The
results indicated pointlike structures within the proton. This was explained
in Feynmans Quark Parton Model (QPM)(see sec. 2.2). The idea is that
the proton consists of pointlike constituents - the so-called partons (which
can be identified with the quarks). At sufficiently high energies these par-
tons behave like free (Dirac) particles and are resolved. The electron then
scatters at one of these constituents rather than at the entire proton. The
inelastic structure function can then be expressed as the incoherent sum of
elastic pointlike structure functions.
The distribution of the fraction of the protons momentum over the partons
is described by so-called Parton Distribution Functions (PDFs). They give
the number of partons having a certain momentum fraction x of the proton.
However the QPM is incomplete.
Quantum Chromodynamics (QCD) with the gluons had to be taken into ac-
count to expand the QPM into the QCD improved QPM.
The particle mediating the strong force, the gluon, is now taken into account.
This has the effect, that partons can now radiate partons and by that change
their momentum. Furthermore, scattering of gluons is considered now. With
increasing energies more of these soft (low x) partons can be resolved and
the PDFs become therefore energy-dependent, which leads to the observed
scaling violation.
PDFs build the basis for most QCD calculations.
The world’s only electron proton collider HERA opened from 1992 to 2007
the gate to test QCD at the previously not accessible kinematic regions of
low momentum fractions x and high energy-momentum transfers Q2.
Important tools for theory and experiment, which need PDFs, are Monte
Carlo event generators. They allow a computer simulation of events such
as electron-proton collisions. All scattering products and the kinematics of
these products are then accessible. The PDFs are an important input of
a Monte Carlo event generator, since they describe the distribution of the
partons momentum fraction x.

Parton radiation leads to the variety and the kinematics of the particles
in the final state of an event.
In the QCD improved QPM the kinematics arising from parton radiation are
usually not treated. This is alright when the focus is on calculating cross
sections.

But, in a Monte Carlo event generator the complete final state is impor-
tant. Therefore, it is crucial to keep track of the kinematics arising from
parton radiation, since they determine the kinematics of the final state.
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To treat the individual radiated particles, so-called parton shower are in-
cluded in a Monte Carlo event generator. However, parton shower change
the distribution of the momentum fraction x of the struck parton, which is
given by the PDF.

In this work the influence of parton shower on the PDFs is investigated.
To do so, PDFs are determined by fitting of Monte Carlo event generator-
predictions for the structure functions F2 to measurements from HERA. The
resulting PDFs will be different from PDFs determined by other numerical
methods not keeping track of parton kinematics.

The HERA data used in this work were taken in the years 1996/97 by the
H1 collaboration and covers an x range of 3 × 10−4 to 2 × 10−2 and a Q2

range from 1.5 GeV2 to 150 GeV2. The data includes values for individual
correlated systematic errors. The proper treatment of these errors plays an
important role in the determination of the quality of the fit. In this work
the routine errortreat was written to implement a proper treatment of the
correlated systematic errors.

The influence of parton showers on the fitted PDFs was investigated for
the Monte Carlo event generators Pythia and Rapgap. The latter one is
special, since it does not change the x distribution, although including par-
ton shower. The fitted PDFs are compared with the PDF sets CTEQ6L and
CTEQ6.1 M, which were determined by semi-analytical methods without
parton shower.

The theoretical background, the tools and the results of this analysis are
presented in this thesis.

In this work a system of natural units will be used, whereby ! = c = 1.
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Chapter 2

The structure of the proton

Computing the (strong) color interactions of single gluons and quarks can
be done using e.g. the Feynman rules. But experiments to probe these color
interactions can, due to confinement, measure only interactions with entire
hadrons instead of single gluons and quarks.
At HERA the structure of the proton was investigated in scattering exper-
iments of electrons1 and protons such as H1 or ZEUS. Thereby a virtual
photon γ∗ with four momentum q is exchanged between the electron and the
proton. One defines the quantity Q2 = −q2. With increasing virtuality Q2

the photon resolves the structure of the proton in more detail which can be
observed in the measured cross section. At sufficiently high Q2 a transition
from elastic scattering at the entire proton to an inelastic scattering at the
constituents of the proton takes place. This observation was first described
in the quark parton model and finally in its extension - the QCD improved
quark parton model. In this chapter an overview of the determination of elas-
tic and inelastic cross sections is given (sec. 2.1), as well as the main ideas
of the quark parton model (sec. 2.2) and the QCD improved quark parton
model (sec. 2.3).

2.1 Cross sections

2.1.1 Calculation of cross sections

The transition of an incoming wave function Φi(x) scattered at a 4-vector
potential Aµ(x) into an outgoing wavefunction Φf (x) can be described by

1The electron stands here for electrons and positrons. Both were used during the years.
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the 1st-order transition matrix (see sec. A.4)

S(1)
if = ie

∫

d4xΦ̄f (x′)γµAµ(x′)Φi(x
′) (2.1)

For a four body process p1p2 → p3p4 this matrix can be written according to
the Feynman rules (e.g. [8, 21, 13, 12]) as the product

S(1)
if = M· (2π)4δ4(p3 + p4 − p1 − p2) (2.2)

where M is the so-called matrix element given by the propagator and the
four vector currents of the particles2.
The resulting cross section can be derived from Fermi’s golden rule ([12, 20,
21]), which states, that the transition probability per unit time is

w = 2π
d

dt
|Sif |2δ(pi − pf )ρ(Ef ) (2.3)

where ρ(E) dE is the number states with Energy E in the energy interval
[E, E + dE].
Furthermore the cross section is defined as σ = w

jin
and therefore dσ = dw

jin
.

Thus the differential cross section depends on the product of the following
quantities:

1. the square of the matrixelement (here the normalization 1√
V

of each

spinor is taken into account, which in any case cancels out later).

|M|2

V 4

2. the incoming current

|jin| =
|'v|

V/2E1

3. the number of particles per unit volume in the target (because we have
more than one target)

2E2

V

4. the number of final states in the two body process

V

2E3

d3p3

(2π)3

V

2E4

d3p4

(2π)3

2a brief derivation of the results eq. (2.1) and eq. (2.2) is given in the sections A.1 to
A.5
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5. the delta function (see eq. (2.2)) that guarantees energy-momentum
conservation

(2π)4δ4(p3 + p4 − p1 − p2)

2) and 3) are combined to form the so-called flux factor3

flux factor

V 2
= |'v|

4E1E2

V 2
=

4

V 2
((p1p2)

2 − m2
1m

2
2)

1/2 (2.4)

4) and 5) are combined to form the Lorentz invariant phase factor

V 2 dLips(s, p3, p4) = V 2 (2π)4δ4(p3 + p4 − p1 − p2)
d3p3

(2π)32E3

d3p4

(2π)32E4
(2.5)

One can then write

dσ = |M|2
dLips

flux factor
(2.6)

2.1.2 Elastic scattering of unpolarized pointlike, spin-1
2

particles

Lets have a look now at the specific case of electron-muon scattering. In-
stead of the muon a dirac proton or any pointlike, spin-1

2 particle could be
taken.The electron has the mass me and the muon (dirac proton) the mass
m $ me. The result will be important later considering electron parton
scattering.

If the spin of the incoming and outgoing particles is not measured the spin-
averaged square of M has to be used instead, which is

|M|2 =
1

4

∑

s1,s2

∑

s3,s4

|M|2 =
(e2

q2

)2
LµνM

µν (2.7)

3As the right side is relativistically invariant we can change to the laboratory frame,
where this can easily be seen. Here:

p1 = (E1, !p1), p2 = (m2, 0) ⇒ p1p2 = E1m2

⇒ ((p1p2)
2 − m2

1m
2
2)

1/2 = (E2
1 − m2

1)
1/2m2 = |!v1|E1E2

with !v = !v1 in the labframe
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wherein the leptonic tensors are defined

Lµν :=
1

2

∑

s1s3

ū(p3)γµu(p1)ū(p1)γνu(p3) (2.8)

Mµν :=
1

2

∑

s2s4

ū(p4)γ
µu(p2)ū(p2)γ

νu(p4) (2.9)

”L” and ”M” standing here for lepton and muon.
Using the trace theorems ([21],[13]) the leptonic tensors can be written

Lµν = 2(p1µp3ν + p1νp3µ − (p1 · p3)gµν)

Mµν = 2(pµ
2p

ν
4 + pν

2p
µ
4 − (p2 · p4)g

µν)

In the fixed target frame the product of both tensors gives ([8])

LµνM
µν = 16m2E1E3(cos

2(
θ

2
) +

Q2

2m2
sin2(

θ

2
))

where again Q2 = −q2. Eq. (2.6) is actually a multiple differential cross
section, but is usually written dσ. Therefore one has to integrate over all
quantities that are not observed. When looking for the differential cross
section d2σ

dΩdE3
only the integration over p4 is carried out. Thereby the following

identity is used
d3'p4

2E4
= θ(E4)δ(p

2
4 − m2)d4p4

Integrating dLips now over p4 gives overall 4-momentum conservation and
leaves δ(p2

4 − m2). Since p2
4 = (q + p2)2 = m2 + q2 + 2p2q and ν = p2q one

can rewrite the δ function:

δ(p2
4 − m2) = δ(q2 + 2ν) =

1

2
δ(ν −

Q2

2
)

The differential d3p3 still left in dLips can be rewritten as

d3p3 = |'p3|2d|'p3|dΩ = |'p3|E3dE3dΩ

⇒
d3p3

2E3
=

1

2
|'p3|dE3dΩ ≈

1

2
E3dE3dΩ

which results in

dLips =
E3dE3dΩ

4(2π)2
δ(ν −

Q2

2
).

The flux factor is given by:

flux factor = 4
√

(p1p2)2 − m2
em

2 = 4
√

m2E2
1 = 4mE1
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in the last step m2 = p2
2, m2

e ≈ 0 and, following from that, p2
1 = E2

1−m2
e ≈ E2

1

was used.
Putting all this in (2.6) equates the differential cross section as:

d2σ

dΩdE3
=

4α2e2
i

Q2
mE2

3

(

cos2(
θ

2
) +

Q2

2m2
sin2(

θ

2
)
)

δ(ν −
Q2

2
)

=
α2

q4

E3

E1
4me2

i E1E3

(

cos2(
θ

2
) +

Q2

2m2
sin2(

θ

2
)
)

δ(ν −
Q2

2
)

(2.10)

2.1.3 Inelastic cross section

To investigate the proton structure in more detail the energy-momentum
transfer to the proton, given by the virtuality Q2 of the virtual photon, is
increased. But there is a catch: due to the high energy transfered to the
proton it will often break up and one can no longer assume a system with a
proton coming in and a proton coming out. The bombarding lepton will break
up the proton and only interact with a part of it (which will be identified by
a so-called parton). This parton will form a jet and the rest of the proton,
the so-called beam remnant, will form new hadrons (hadronize) which keep
on flying more or less in the original beam direction. This process results in
the proton loosing its identity after the collision, while the lepton remains
intact (see fig. 2.1).

q

k k′

p

1

3
4
...
n

2

Figure 2.1: Inelastic e−-p-scattering

For the calculation of the matrix element this means, that we do not know
the details of the proton final state, but, at least, the leptonic part stays
the same as in the elastic case. To tackle this problem in a system with the
squared center of mass energy

s = (p + k)2 (2.11)
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in addition to the four momentum of the virtual photon,

q = k − k′

Q2 = −q2 ,
(2.12)

the following variables are defined:

x =
Q2

2pq
(2.13)

is called Bjorken x and will later, in the quark parton model (QPM), be
identified with the fraction of the protons momentum taken by the interacting
parton.
The inelasticity:

y =
pq

pk
(2.14)

is a measure of the amount of energy transferred between the lepton and the
hadron system. It is also related to the scattering angle in the center of mass
frame.
An important relation resulting from these definitions is:

Q2 = sxy (2.15)

The center of mass energy of the γ∗p system is given by:

ŝ = (p + q)2 (2.16)

Next the matrix element is considered. In the elastic case the matrix element
was expressed in form of a product of a leptonic tensor Le

µν and an elastic
hadronic tensor Lp

µν (see eq. (2.7)):

M ∝ Le
µνL

p
µν

now to be replaced by an inelastic hadronic tensor Wµν

M ∝ Le
µνWµν

The hadronic tensor Wµν is usually given in the parametrized form in terms
of p, q and gµν ([8])

Wµν = W1(−gµν +
qµqν

q2
) + W2(pµ −

p · q
q2

qµ)(pν −−
p · q
q2

qν)

The coefficients are so-called structure functions Wi. It can be shown ([8])
that the cross section then has the form:
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d2σ

dΩdE3
=

α2

4ME2
1sin

4( θ
2)

(

W2(Q
2, ν)cos2(

θ

2
) + 2W1(Q

2, ν)sin2(
θ

2
)
)

=
α2

q4

E3

E1

4E1E3

M

(

W2(Q
2, ν)cos2(

θ

2
) + 2W1(Q

2, ν)sin2(
θ

2
)
)

(2.17)

where M is the proton mass.

2.2 Quark parton model

Experimental measurements indicate that the proton consists of structureless
particles, because for sufficiently high Q2 the proton starts behaving like a free
Dirac particle and the cross section (2.17) turns into (2.10). This inelastic
(ŝ $ M2) scattering at high Q2 $ M2 is called deep inelastic scattering
(DIS). But this means that in this regime

2W point
1

M
= e2

i

Q2

2m
δ(ν −

Q2

2
)

W point
2

M
= e2

i mδ(ν −
Q2

2
)

with m being the quark mass. Why this is so, will shortly become clear.
The fact that the scattering behaves at high Q2 pointlike can be interpreted
as follows: in this Q2-regime the substructure of the proton is resolved and
the interaction time τ = 1

ν is short. So the virtual photon ”sees” a single
(high resolution), free (short interaction time) particle and it scatters elasti-
cally of it. These particles were called partons by Bjorken.
This is in contrast to elastic scattering where less energy is transferred and
the interaction time is relatively long. The photon then ”sees” only the
blurred parton cloud comparable to the electron cloud of atoms.
The observation led to the quark parton model (QPM). In this model DIS is
treated as the incoherent sum of point-like elastic scattering of spin-1

2 parti-
cles which are the constituents of the nucleon - the so-called partons.

The mathematical treatment of the parton model uses the approximation
of the infinite momentum frame where p $ M (at HERA this frame is the
laboratory frame). Here the partons can be seen as free, because at these
high velocities the interaction time of the scattering is, due to time dilatation,
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long compared to the time for interactions between the partons inside the
proton. Assuming a parton carries the fraction x′ of the protons momentum,
then

'p = x′'pproton

it then follows in the infinite momentum frame that

Eparton = x′Eproton

⇒ pµ = x′pµ
proton.

One can then define a parton density function (PDF) fj(x′) such that
fj(x′)dx′ gives the probability of finding a parton of type j with momen-
tum fraction between x′ and x′ + dx′. The momentum distribution of a
parton is given by the momentum weighted density x′fj(x′). The kinematics
in the infinite momentum frame are:

Eparton = x′Eproton

⇒ ν = x′νproton

pL = x′pproton, L

pT = pproton, T = 0

m2 = E2
parton − p2 = x′2(E2

proton − p2
proton) = x′2M2

with longitudinal momentum pL and transversal momentum pT .
The structure functions for each parton expressed in terms of these variables
are then

2W point
1

M
= e2

i

Q2

2Mx′ δ(x
′νproton −

Q2

2
) (2.18)

W point
2

M
= e2

i x
′Mδ(x′νproton −

Q2

2
) (2.19)

In this high Q2 regime the Wi’s are usually replaced by their scaling limits
F1, F2, which are defined such that they are dimensionless:

2F point
1 := 2W ′

1
point = e2

i

Q2

2x′ δ(x
′νproton −

Q2

2
) = e2

i

x

x′ δ(x
′ − x) (2.20)

F point
2 :=

νprotonW
point
2

M
= e2

i x
′δ(x′ − x) (2.21)

where x is Bjorken x.
As the partons can be assumed to be free one can simply add the contribu-
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tions of the single partons incoherently and gets

2F1(x) =
∑

i

∫

dx′ e2
i fi(x

′)
x

x′ δ(x
′ − x) (2.22)

F2(x) =
∑

i

∫

dx′ e2
i fi(x

′) x′δ(x′ − x) (2.23)

The delta distribution shows that one can identify Bjorken x with the mo-
mentum fraction x′. Thus, only a virtual photon with the right value for x
can be absorbed by a parton that carries momentum fraction x′.
Accordignly, for high Q2 one can write

F1(x) =
1

2x
F2(x) (2.24)

F2(x) =
∑

i

e2
i x fi(x) (2.25)

The sum runs hereby only over the charged partons. Eq. (2.2) is the Callan-
Gross relation. Eq. (2.25) predicts Bjorken scaling in the QPM, which is,
that F2 depends only on x and not on Q2.

2.2.1 Sum rules

There are constraints for the PDFs, the so-called sum rules, which are:

∫ 1

0

dx uv(x)
!
= 2

∫ 1

0

dx dv(x)
!
= 1

since uv(x) and dv(x) are the quark number distributions for the valence
up-quark and the down-quark respectively and in the QPM one assumes 2
up-quarks and 1 down-quark in the proton.
Of course momentum conservation must be valid and, summing over all
quarks, the fractions x′ have to add up to 1

∑

i

∫

dx′ x′ · fi(x
′)

!
= 1. (2.26)
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But experimentally one finds

∑

i

∫ 1

0

dx x · fi(x) ≈ 0.5 !

Furthermore: were the proton to consist of 3 quarks carrying all the momen-
tum the PDFs should be δ-peaks4 at x = 1

3 .
The solution to these inconsistencies comes from QCD, that introduces glu-
ons as the carriers of the strong force. They carry the rest of the momentum
and can split into qq̄-pairs - the so-called sea quarks (in contrast to the 3
valence quarks, 2 u and 1 d in the proton). The next section treats the QCD
improved QPM.

2.3 QCD improved quark parton model

The basis of any QCD calculations lies in the factorization theorem which
says that the cross section can be factorized in a parton density function and
a hard scattering cross section. In the following the hard scattering cross
section will be calculated.

2.3.1 Factorized cross section

Using the factorization theorem the γ∗p cross section takes the form:

(

σ(x, Q2)
)

γ∗p
=

∑

i

∫ 1

0

dz

∫ 1

0

dξfi(ξ)δ(x − zξ)
(

σ̂(z, Q2)
)

γ∗i

=
∑

i

∫ 1

0

dξ

ξ
fi(ξ)

(

σ̂(
x

ξ
, Q2)

)

γ∗i

(2.27)

Note: the left side is the γ∗-proton cross section (subscript γ∗p), while on
the right side σ̂ is the γ∗-parton cross section (subscript γ∗i).

One can understand this cross section in the following example of a sin-
gle gluon emission (γ∗q → gq).
In the γ∗-parton interaction a parton with initial momentum pi = ξp in-
teracts with a virtual photon of 4-momentum q. The parton can radiate
a gluon and pass some momentum, e.g. a fraction (1 − z) of its initial
momentum pi, to the radiated gluon. It then carries on with a changed

4Due to motion of the quarks inside the proton, the so-called Fermi motion, it would
rather be a Gauss-peak centered at x = 1

3
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pi = ξp

γ∗

p

Figure 2.2: Single gluon emission

momentum p′i = zpi = zξpprot, while the radiated gluon has a momentum
(1 − z)pi = (1 − z)ξp.
(σ̂(z, Q2))γ∗i is the cross section for the absorption of a photon of momen-
tum q by a parton of momentum fraction pi. This cross section depends,
completely analogous to the γ∗-proton case, on the quantity z = Q2

2piq
(γ∗-

proton: x = Q2

2pprotq
). In the γ∗-proton interaction it was a virtual photon

of momentum q that interacted with a parton carrying the appropriate mo-
mentum p = xpprot. Here, in the γ∗-parton interaction, a virtual photon of
momentum q interacts with a parton carrying the appropriate momentum
p′i = zpi(= xξpprot).
The two processes are related to each other by eq. (2.27).
In eq. (2.27) the cross section (σ(x, Q2))γ∗p is calculated at a specific x by in-
tegrating over all those processes resulting in a momentum fraction zξ = x.
The latter condition is reflected by the delta function and an intergration
over all ξ and z in eq. (2.27). This takes into account all combinations of ξ
(momentum fraction before the radiation) and z (momentum fraction carried
away by gluon radiation) that lead to a resulting momentum fraction x (this
is assured by the delta function) and weights them by the probability fi(ξ)dξ
of finding a parton with initial momentum fraction ξ.
The structure functions are related to the cross sections for virtual photons
of transverse and longitudinal polarization ([8]) by

σT =
4πα

s
2F1 =: σ02F1

σL =
4πα

s
[
F2

x
− 2F1] =: σ0[

F2

x
− 2F1]

(2.28)

where σ0 = 4π2α
s .

F2 is then calculated via
F2

x
=

σT + σL

σ0
(2.29)
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It can be shown ([8]), that at γ∗-parton level the cross sections for a single
massless quark of charge ei interacting with a γ∗ have the form

σ̂T = e2
i σ̂0δ(1 − z)

σ̂L = 0
(2.30)

Substituting this in (2.27), summing over all quarks and using (2.29) gives:

F2(x)

x
=

∑

i

∫ 1

x

dξ

ξ
qi(ξ)e

2
i δ(1 −

x

ξ
)

=
∑

i

e2
i qi(x)

(2.31)

This reproduces the result of the QPM model (2.25) and is the zeroth-order
contribution to the structure function.

Turning to the O(αs) contribution to the hard processes:
One process that has to be added to the QPM is gluon radiation by quarks
(QCD Compton process) and is shown in fig. 2.3.

pi

q

γ∗

p′

q′

p′

pi

γ∗

q

q′

+

Figure 2.3: Gluon radiation by quarks

The following formulae are outlined and derived in detail in [13] or [8]. The
QCD compton process γ∗q → qg can be calculated in analogy to the QED
compton process γ∗e → γe.
This gives for the matrix element squared([13]):

|M|2 = 32π2e2
i ααs

4

3

(

−
t̂

ŝ
−

ŝ

t̂
+

2ûQ2

ŝt̂

)

(2.32)

where

ŝ = (q + pi)
2 = Q2 1 − z

z
since z =

Q2

2qpi
=

Q2

ŝ2 + Q2

û = (q − q′)2

t̂ = (q − p′)2
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For

t̂ * ŝ (2.33)

it can be approximated by

|M|2 = 32π2e2
i ααs

4

3

(

−
ŝ

t̂
+

2ûQ2

ŝt̂

)

Using

s = Q2 (1 − z)

z
s + t + u = −Q2

gives

|M|2 = 32π2e2
i ααs(−

1

t̂
)Q24

3

1 + z2

z(1 − z)

Together with the formula for the virtual photon differential cross section
eq. (A.30) (replacing s2 → ŝ(ŝ + q2) in case of a virtual photon)

dσ̂

dt
=

1

16πŝ(ŝ + Q2)
|M|2 (2.34)

and dσ
dk2

⊥

= dσ
dt

dt
dk2

⊥

= −(1 − z)dσ
dt this yields

dσ̂

dk2
⊥
+

∑

i

e2
i σ̂0

1

k2
⊥

αs

2π
Pqq(z) (2.35)

where

Pqq(z) =
4

3

1 + z2

1 − z

Pqq(z) represents the probability of a quark emitting a gluon of momentum
fraction (1− z) in becoming a quark of momentum fraction z. This differen-
tial cross section has two divergencies. One for z → 1, which corresponds to
emission of a soft massless gluon. It is therefore called infrared divergency
and is cancelled by virtual corrections.
The other divergency occurs for k⊥ → 0. As k⊥ is related to the scattering
angle this divergency is called collinear. It will be absorbed in the PDFs.
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The total cross section is now obtained by integrating (2.35)

σ̂(z, Q2) =

∫ k2
⊥

(max)

0

dσ̂

dk2
⊥

dk2
⊥

+ lim
κ→0

∑

i

e2
i σ̂0

αs

2π
Pqq(z)

∫ k2
⊥

(max)

κ

dk2
⊥

k2
⊥

+ ...

+ lim
κ→0

∑

i

e2
i σ̂0

αs

2π
Pqq(z)

(

ln(
Q2

κ2
) + ln(

1 − z

4z
)
)

+ ...

(2.36)

To regulate the divergency for k2
⊥ → 0 the cut-off κ is introduced at the lower

limit. Furthermore it can be shown, that k2
⊥, max = ŝ

4 = Q2(1−z)
4z ([8, 13]).

This can now be added to the zeroth order QPM parton cross section (2.30)
to calculate the structure functions, which gives:

F2(x, Q2)

x
=

∑

i

e2
i

∫ 1

x

dξ

ξ
qi(ξ)

(

δ(1 −
x

ξ
) +

αs

2π
Pqq(

x

ξ
) ln(

Q2

κ2
) +

αs

2π
C(

x

ξ
)
)

(2.37)

where C(z) = ln(1−z
4z ) + ....

The structure function depends now on x and Q2 and not just on x alone,
as it was the case in the parton model! Thus, the scaling prediction of the
parton model is violated due to taking gluon emission into account.

The divergent part κ → 0 is absorbed into a modified quark probability
distribution. Therefore the parton densities are redefined.
The idea is to separate the perturbative part from the non-perturbative, sin-
gular part by introducing the arbitrary collinear factorization scale µ2 $ κ2.
All k2

⊥ < µ2 with the singularity (k⊥ → 0) are now absorbed into a new
renormalized parton density qi(x, µ2). The non-singular part with k⊥ > µ
can be determined perturbatively.
Mathematically one simply uses

ln(
Q2

κ2
) = ln(

Q2

µ2
) + ln(

µ2

κ2
)

and then defines

qi(x, µ2) = q0
i (x) +

αs

2π

∫ 1

x

dξ

ξ
q0
i (ξ)Pqq(

x

ξ
) ln(

µ2

κ2
) (2.38)
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resulting in

F q
2 (x, Q2)

x
=

∑

i

e2
i

∫ 1

x

dξ

ξ
qi(ξ, µ

2)
[

δ(1 −
x

ξ
) +

αs

2π
Pqq(

x

ξ
) ln(

Q2

µ2
) +

αs

2π
C(

x

ξ
))

]

(2.39)
The last term is only correct to order αs. An exact definition of the parton
density and the non-singular piece depends on the renormalization and the
factorization scheme5.
The renormalized PDF cannot be calculated perturbatively, but its variation
with ln(µ2) can be derived from (2.38)

∂qi(x, µ2)

∂ ln(µ2)
=

αs

2π

∫ 1

x

dξ

ξ
qi(x, µ2)Pqq(

x

ξ
) (2.40)

The second additional hard process beyond the QPM is the O(αs) process of
quark-antiquark production by gluons or boson-gluon fusion (BGF) shown
in fig. 2.4.

γ∗

q

p

p′

q′

q

γ∗

p

p′

q′

+

Figure 2.4: Boson gluon fusion

The mean square of the matrix element can be obtained from (2.32) by
crossing and is (see [13])

|M|2 = 32π2e2
i ααs

1

2

(

−
û

t̂
−

t̂

û
+

2ŝQ2

t̂û

)

(2.41)

5In the so-called DIS scheme, for example, the C(z) term is absorbed into the renor-
malized PDF. With the choice µ2 = Q2 as factorization scale (2.39) becomes

F q
2 (x, Q2) =

∑

i

e2
i xqi(x, Q2)

which looks like the QPM result just with qi(x) → qi(x, Q2).
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which gives, once more together with (2.34) and after integrating over k2
⊥

(compare derivative of (2.36)),

σ̂ +
∑

i

e2
i σ̂0

αs

2π
Pqg(z)

(

ln(
Q2

κ2
) + ln(

1 − z

4z
)
)

. (2.42)

As before, κ was introduced to regulate the divergency for k⊥ → 0 and

Pqg :=
1

2
[z2 + (1 − z)2]

is the splitting function that gives the probability for the process g →
q(z)q̄(1 − z).
This process contributes to the structure function F2

F g
2 (x, Q2)

x
=

∑

i

e2
i

∫ 1

x

dξ

ξ
g0(ξ)

αs

2π
Pqg(

x

ξ
) ln(

Q2

κ2
) (2.43)

and has to be added to (2.39).
And, as before, the singular part is separated by the factorization scale µ2

and by renormalizing g0(x) to g(x, µ2).
Including BGF in (2.40) gives then the final expression:

∂qi(x, µ2)

∂ ln µ2
=

αs

2π

∫ 1

x

dξ

ξ

[

qi(x, µ2)Pqq(
x

ξ
) + g(x, µ2)Pqg(

x

ξ
)
]

. (2.44)

This type of equation, describing the variation of a parton density, is called an
evolution equation. In the next section a special form of evolution equations,
the DGLAP evolution equations ((2.44) belongs to them), will be introduced.

The essential idea of improving the QPM is adding processes via splitting
functions such as Pqq(z) and Pgq(z). The procedure of how to achieve this
is given in the derivation of (2.44). To have a complete set of equations
one needs to take two more processes into account in therefore getting two
more splitting functions Pgq(z) and Pgg(z) (the 4 splittings are summarized in
fig. 2.5). They stand for the processes q → g(z)q(1−z) and g → g(z)g(1−z).

The first one, Pgq(z) can simply be derived by the fact that Pgq(z)
!
=Pqq(1−

z) , which yields:

Pgq(z) =
4

3

1 + (1 − z)2

z
(2.45)

Deriving Pgg is a bit more tricky and the result is simply stated

Pgg(z) = 6
[1 − z

z
+

z

1 − z
+ z(1 − z)

]

(2.46)

The Feynman graphs of the four splitting functions are shown in fig. 2.5
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Pgg(z)

Pqq(z)

Pqg(z)

Pgq(z)

g

g

g

g

g

g

q

q

q

q̄

q

z

z

z

z

(1 − z)

(1 − z) (1 − z)

(1 − z)

q

Figure 2.5: The splitting fucntions

2.3.2 Sumrules

The QCD Lagrangian conserves fermion number and flavour. To fulfill these
constraints the PDFs have to obey again sumrules for the renormalized PDFs
- at least to the order of the foregoing calculations which is O(αs). These
rules are: ∫ 1

0

dx[qi(x, Q2) − q̄i(x, Q2)] = vi (2.47)

where vi = 2, 1, 0, ... for the u, d, s, ... flavours in the proton.
As the overall momentum will be conserved the following must be valid:

∫ 1

0

dx x[
∑

i

(qi(x, Q2) + q̄i(x, Q2)) + g(x, Q2)] = 1 (2.48)

i runs here over all active flavours and it is the the proper extension of (2.26).
Conservation of momentum and flavour gives some constraints for the split-
ting functions as well:

∫ 1

0

dz z[Pqq(z) + Pgq(z)] = 0 (2.49)

∫ 1

0

dz z[2nfPqg(z) + Pgg(z)] = 0 (2.50)

Pqq(z) has a singularity for z → 1. Therefore loop corrections have to be
taken into account to correct for this singularity. To do this the following
ansatz for a corrected Pqq(z) is made:

Pqq(z) = P+
qq(z) + kδ(1 − z) (2.51)
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Eq. (2.38) can be written as

qi(x, µ2) =

∫ 1

x

dξ

ξ
q0
i (

x

ξ
)
(

δ(1 −
x

ξ
) +

αs

2π
Pqq(

x

ξ
) ln(

µ2

κ2
)
)

=

∫ 1

x

dξ

ξ
q0
i (

x

ξ
)
(

δ(1 −
x

ξ
) +

αs

2π
(P+

qq(
x

ξ
) + kδ(1 −

x

ξ
)) ln(

µ2

κ2
)
)

(2.52)
(

δ(1− x
ξ )+ αs

2πPqq(
x
ξ ) ln(µ2

κ2 )
)

is the probability that a quark goes into a quark.
Quark number conservation demands therefore

∫ 1

0

dz
(

δ(1 − z) +
αs

2π
(P+

qq(z) + kδ(1 − z)) ln(
µ2

κ2
)
)

= 1 (2.53)

which can only be true when

αs

2π

∫ 1

0

dz(P+
qq(z) + kδ(1 − z)) = 0 (2.54)

To tackle the singularity the ”+”-distribution is introduced:
∫ 1

0

dx
f(x)

(1 − x)+
=

∫ 1

0

dx
f(x) − f(1)

1 − x
(2.55)

Using this for P+
qq(z) in 2.54 gives then k = 3

2 .
This leads to the final expressions for Pqq(z) (2.51) and Pgg(z) (not derived):

Pqq(z) =
4

3

[ 1 + z2

(1 − z)+
+

3

2
δ(1 − z)

]

(2.56)

Pgg(z) = 6
[1 − z

z
+

z

(1 − z)+
+ z(1 − z)

]

+
33 − 2nf

6
δ(1 − z) (2.57)

2.3.3 The DGLAP equations

The formalism described in the previous section was developed over a number
of years by Dokshitzer, Gribov, Lipatov, Altarelli and Parisi and led to four
coupled equations known as the DGLAP equations (an acronym for the five
names)([2, 9, 10, 11, 18]).
They can be summarized in a matrix form

∂

∂ lnQ2

(

qi(x, Q2)
g(x, Q2)

)

=
αs(Q2)

2π

∑

k

∫ 1

x

dξ

ξ
(

Pqiqk
(x

ξ , αs(Q2)) Pqig(
x
ξ , αs(Q2))

Pgqk
(x

ξ , αs(Q2)) Pgg(
x
ξ , αs(Q2))

) (

qk(ξ, Q2)
g(ξ, Q2)

)

(2.58)
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where the qi(x, Q2), qk(x, Q2) can be quark or antiquark distributions.
The splitting functions are expanded as power series in αs:

Pqiqk
(z, αs) = δikP

(0)
qq +

αs

2π
P (1)(z)

qiqk
+ . . .

Pqg(z, αs) = P (0)
qg +

αs

2π
P (1)(z)

qg + . . .

Pqiqk
(z, αs) = P (0)

gq +
αs

2π
P (1)(z)

gq + . . .

Pqiqk
(z, αs) = P (0)

gg +
αs

2π
P (1)(z)

gg + . . .

The δik in front of the leading order term of Pqq stems from the fact that in a
single quark gluon vertex flavour is conserved in leading order. The splitting
functions of the foregoing section can be identified with the leading order
terms P (0) and the sumrules they obey refer to these 0th-order P (0).
The DGLAP equations give a formalism to calculate the evolution of the
PDFs with ln(Q2) from a starting scale Q2

0 but they do not allow the cal-
culation of the PDFs at the starting scale Q2

0 . The PDF at Q2
0 must be

given by non-perturbative methods in form of a parametrization of the x
dependence of the PDF at Q2

0.

2.3.4 DIS cross section

Using the renormalized PDFs, the differential cross section (2.17) can now
be expressed in x, y, Q2 ([8]):

d2σ

dx dQ2
=

2πα2

xQ4
((1 + (1 − y)2)(F2(x, Q2) − y2FL(x, Q2))

=
d2σ

dx dQ2
=

2πα2Y+

xQ4
· (F2(x, Q2) −

y2

Y+
FL(x, Q2))

(2.59)

with the longitudinal structure function FL = F2−2xF1 and Y+ = 1+(1−y)2.
Eq. (2.59) is the key equation for measurements done in this thesis.
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Chapter 3

HERA, the H1-Detector and

the measurement of F2

In this chapter the ep collider HERA at the DESY laboratory in Hamburg,
the H1 detector and the measurement of the structure function F2 are intro-
duced.

3.1 HERA

The HERA (Hadron Elektron Ring Anlage), shown in fig. 3.1, is the first
electron-proton collider. It consists of two independent rings of a circumfer-
ence of 6.3 km - one ring accelerating and storing electrons in one direction
and one accelerating and storing protons in the other.
Before the particles are injected into the HERA, they are pre-accelerated at
different stations.

The acceleration of the proton starts in the H−-LINAC where negatively
charged hydrogen ions are brought to 50 MeV. The electrons are stripped off
the ions and the latter ones are then injected into the DESY III ring in form
of 11 bunches. There they are accelerated up to 7.5 GeV with a crossing
distance equal to HERA’s (which is 96 ns). Then the bunches are injected
into the PETRA (Positron Elektron Tandem RingAnlage) where they are
brought to 40 GeV and then injected into HERA. The procedure is repeated
until HERA is filled with 210 bunches. HERA then accelerates the protons
to their final energy of 920 GeV.

The electron or positrons are first accelerated with the LINAC I or II re-
spectively to 450 MeV. Bunch by bunch the leptons are injected into the
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Figure 3.1: The HERA collider

DESY II ring and accelerated to 7 GeV until a number of 70 bunches is
reached. These are then injected with a distance of 96 ns into PETRA II
and there accelerated to 14 GeV. Finally the 210 bunches are injected into
HERA and accelerated to 27.6 GeV. Every 96 ns the bunches cross each
other (this corresponds to a distance of 28.8 m or a crossing frequency of ≈
10 MHz) but not every bunch has a collision partner. Bunches without a
partner are called pilot bunches and are used to determine the beam induced
detector background.
Every bunch consists either of 0.4 × 1011 electrons or of 0.7 × 1012 protons.

The protons are kept on track by superconducting dipole magnets reach-
ing 4.68 T, while the much lighter electrons only need normal conducting
magnets reaching a field strength of 0.164 T.

There are four experiments installed at HERA. The two collider experiments
H1 and ZEUS and the two fixed target experiments HERMES and HERA-
B. In the following the H1-Detector will be described, on which the data for
this work were recorded.
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3.2 The H1 detector

The H1 detector is a multi-purpose detector that measures direction, momen-
tum, energy and charge of particles resulting from ep collisions. It provides
almost complete coverage of the interaction region. Only the part covered
by the beam pipe is not accessible for the measurement.
The main detector components are shown in fig. 3.2. In all the detector has a
size of 12m× 10m× 15m and a weight of approx. 2800 tons. The protons as
shown in fig. 3.2 come in from the right with 920 GeV1 and the electrons from
the left with 27.6 GeV. All in all the center of mass energy is

√
s =319 GeV.

Two main regions of the detector can be distinguished - the tracking system
and the calorimeters.
The tracking system measures the tracks, the momenta and the charges of
the collision products. The tracks of charged particles are bent by a homoge-
nous magnetic field of 1.15 T provided by an superconducting magnet. The
curvature of the charged particles in the magnetic field allows their charge
and momentum to be determined.
In the calorimeters located in the same magnetic field the energies are mea-
sured (in principle tracks can and will be measured here as well).

3.2.1 Tracking system

The tracking system (fig. 3.3 and fig. 3.4) is located in the inner part of the
detector consisting of two parts - the central tracking detector (CTD) and the
forward tracking detektor (FTD). The former consists of the central silicon
tracker (CST), two central jet chambers (CJC 1 and CJC 2), the central
inner z-chamber (CIZ) and the central outer z-chamber (COZ).

Central silicon tracker

The innermost part of the detector is formed by the central silicon tracker.
It consists of two concentric layers of silicon sensors, that measure tracks of
charged particles close to the interaction vertex with high accuracy. This
allows the decay length of charmed or beauty hadrons, which is in the range
of a few hundred micrometers, to be measured.

1before 1998 it was 820 GeV
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Figure 3.2: The H1 detector
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Figure 3.3: The tracking system (side view)

Central z-chambers

Between CST 1 and CJC 1 the CIZ is located. Together with the COZ,
which lies between CJC 1 and CJC 2, it measures the z-component (parallel
to the beam) of a track. The accuracy lies here at approx. 300 µm. The
wires run perpendicular to the beam and surround it concentric.

Central jet chambers

The wires of CJC 1 and CJC 2 are situated parallel to the beam and the
drift chambers are radially tilted, causing the drift of ions to be more or less
parallel to high momentum tracks in the magnetic field. The main task is here
to make measurements in the r-φ plane. The accuracy here is approximately
170 µm.

Forward tracking detector

This second part of the tracking system consists of a series of drift chambers
and measures tracks with a polar angle 5◦ < θ < 25◦.

3.2.2 Calorimeter

The task of the calorimeter is to measure the energy of the particles and
to reconstruct the tracks of neutral hadrons and photons, which, electrically
neutral, cannot be detected in the tracking system. Due to the interaction
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Figure 3.4: The tracking system (front view)

with the calorimeter material the entire energy of the particles is absorbed.
Therefore all calorimeters of H1 contain absorbing (passive) layers and mea-
suring (active) layers.
The calorimeters comprise an electromagnetic part and a hadronic part.
In the electromagnetic part dense materials with high atomic number Z
(e.g. lead) are used as absorbers. The particles then interact electromagnet-
ically with the absorber material via bremsstrahlung (electrons) or pair-
production (photons). The result are showers of photons, electrons and
positrons.
In the hadronic part, high absorbing masses (e.g. steel) are used. Here strong
interaction takes place between the particles and the atoms of the absorber
material. Again, showers are produced. They are broader than the electro-
magnetic ones making them easily distinguishable from the latter.
Since, in both cases the intensity of the showers is proportional to the ab-
sorbed energy, the energy can be measured by measuring the intensity of the
showers.
The intensity is measured by the active material which registers and quanti-
fies the showers.
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The calorimeter consists of the liquid argon calorimeter (LAr) and spaghetti
calorimeter (SpaCal).
The LAr has liquid argon is the active material and covers a polar angle of
4◦ < θ < 154◦. A computer event display including the LAr is shown in
fig. 3.5.

Figure 3.5: Event in the liquid argon calorimeter (side view)

The SpaCal uses scintillation fibers (therefore the name spaghetti) as active
material and covers a polar angle of 153◦ < θ < 177.5◦. Within these fibers
the showers produce light proportional to their intensity. By total reflektion
this light can be transferred to a photomultiplier and there be transformed
into an amplified electric signal. The SpaCal is shown in fig. 3.6.

Figure 3.6: The spaghetti calorimeter (side view)
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3.2.3 Muon detector

The muon energy cannot be completely absorbed in the calorimeter, because
the muons simply leave the detector. This is why drift chambers are inserted
between the layers of the iron yoke, whose task is simply to detect the passage
of the muons.

3.3 Measurement of F2

In the HERA the DIS kinematics are determined either by the scattered lep-
ton, the hadronic final state or by a combination of both.

If the lepton is used, one speaks of the ”electron method”2. Here the kine-
matics are determined by the measured energy of the scattered lepton E ′

e

and its scattering angle relative to the z-axis3. With these quantities we get
([1]):

ye = 1 −
E ′

e

Ee
sin2

(
θe

2

)

Q2
e =

E ′
e
2sin2(θe)

1 − ye

(3.1)

The electron method becomes less accurate at low y ([1]). In this case
the hadronic final state can be used to determine the kinematics. Using the
so called ”Σ method” ([1]) gives the following variables:

yΣ =

∑

i(Ei − pi,z)
∑

i(Ei − pi,z) + E ′
e(1 − cos(θe))

sin2

(

θe

2

)

Q2
Σ =

E ′
e
2sin2(θe)

1 − yΣ

(3.2)

The relation (2.15) Q2 = sxy gives then - independent of the method - the
Bjorken x.

The scattering angle of the lepton is measured by the tracking system of
H1 and the lepton’s energy by the SpaCal.
The hadronic final state is reconstructed by the tracking system, the SpaCal
and the LAr.

2electron stands here for electron or positron
3The positive z axis in H1 is defined as the direction of the incident proton beam
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According to eq. (2.59) the cross section is related to the structure func-
tions via:

d2σ

dx dQ2
=

2πα2Y+

xQ4
· σr (3.3)

with the reduced cross section σr = F2(x, Q2) − y2

Y+
FL(x, Q2) and Y+ =

1 + (1 − y)2.
The longitudinal structure function FL enters here multiplied with y2. There-
fore its contribution is relevant only at high values of y and for most of the
kinematic region one can assume σr ≈ F2.
Thus F2(x, Q2) can be determined by measuring the cross section.

Some typical systematic errors in this measurement are ([1]):

• An electron beam energy calibration uncertainty of 1%.

• An electron polar angle uncertainty of 0.5 %.

• At lower angles y ≤ 0.1 the kinematics cannot be determined by elec-
tron variables only and the hadronic part is used to determine the
kinematics. Then, the uncertainty of the hadronic energy scale (2%)
has to be taken into account.

• There is a background of ≈ 5% due to photoproduction. Charged
particles, such as π− or e−, produced in a photoproduction event can
fake the scattered electron in the SpaCal.

• Beam background, caused by from electrons scattering from beam gas
atoms and not from protons, results in an uncertainty of max. 3 %.

• The uncertainty of the luminosity is approx. 1.7%.
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Chapter 4

Monte Carlo Event Generators

Simulations of high energy physics experiments have to take all particles en-
tering and leaving a particle collision as well as their correct kinematics into
account. Analytical calculations to describe all this would be too compli-
cated to find solutions to them.
Perturbative methods such as the DGLAP equations take radiative correc-
tions into account but usually do not treat the kinematics of the particles
accurately. For inclusive measurements (as are total cross sections and F2

measurements respectively) this poses no problem. But when it comes to
exclusive measurements (as are pt cross sections or jet measurements) the
exact kinematics of the final state particles are crucial.
A Monte Carlo event generation has as an output all particles participating
in an event as well as their proper kinematics. All stages are here taken into
account, from the initial state with the colliding particles, exchange bosons
and radiated gluons via the hard scattering to the final hadrons.
The basic principles of Monte Carlo event generators as well as the two gen-
erators used in this work will be introduced briefly in this chapter.
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4.1 Monte Carlo Event Generators

The processes involved in an event are complex, including many physical
aspects. Therefore, a description of a typical high energy physics process
should simulate several subprocesses.

e
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Figure 4.1: Schematic overview of the subprocesses in the generation of an event

The different stages that a full hadron level Monte Carlo event generator has
to simulate and include are schematically shown in fig. 4.1 and consist of the
following:

PDF: Initially two beam particles are flying towards each other. The mo-
mentum distributions of the incoming particles at a scale Q2 are given by
PDFs. In the case of the proton, for example, the PDFs (for valence quarks,
sea quarks and gluons) contain all information about the momentum distri-
bution of the partons in the proton at a scale Q2.
Initial state radiation: The perturbative part (accessible by perturbative
QCD) happens here. A shower initiator parton from each beam starts a
sequence of branchings. These emissions can, for example, be simulated by
the Parton Shower Method (see sec. 4.2) from a lower cut off Q2

0 ≈ 1 GeV
to an upper hardscale Q2 given by the hard interaction. The Parton Shower
Method makes it possible to evolve the PDFs perturbaltively and to treat
the kinematics of the particles accurately.
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Below the value of Q2
0, αs becomes too large to apply perturbative QCD and

everything that happens below that scale is included in the non-perturbative
part of the PDFs.
The transverse momentum distribution of the hard scattering is strongly in-
fluenced by the emission of gluons and photons in the initial (and final) state.
The radiation of partons determines the kinematics of the final state particles.

Hard scattering: From each beam one of the particles enters here. The
matrix element for the hard process is calculated. This is done according to
the Feynman rules. The hard process cross section resulting from the matrix
element can then, according the factorization theorem, be convoluted with
the evolved PDFs.

Final state radiation and resonances: Short-lived resonances may be
produced in the hard process which will then decay. Furthermore the outgo-
ing partons will radiate just like the incoming did.

Hadronization: In the parton showers and the hard scattering usually
many individual colored partons are produced. Due to QCD confinement
these fragment in the final state to colorless hadrons so that no single quarks
or gluons are directly observable. To describe this process phenomenological
models are used.

Beam remnant: Only one of the partons of the proton interacts in DIS. But
as it carries usually color, the rest, called beam remnant, is colored too.Thus,
it is related to the rest of the final state.

4.2 Parton showers

The Monte Carlo event generators used in this work use the Parton Shower
Method ([22, 24]), to describe the perturbative corrections introduced in
ch. 2.3.

The Parton Shower Method models the radiation of partons by splittings
a → bc of one parton a into two daughters b and c which continue to split.
In the Monte Carlo event generators used in this work the evolution of the
PDFs from the lower cut-off scale Q2

0 on is described by the DGLAP equa-
tions (2.58). But other than in a mere evolution of PDFs, the Monte Carlo



Monte Carlo Event Generators 38

event generator keeps track of the kinematics in each of the splittings. The
splitting variable z (see ch. 2.3) describes how a’s momentum pa is distributed
over b’s momentum pb = zpa and c’s momentum pc = (1 − z)pa. The value
of z is determined by one of the four splitting functions of ch. 2.3 Pqq, Pqg,
Pgq and Pgg. Each parton is characterized by a virtuality scale Q2 at which
the splitting happens.

In the initial state showers the virtuality Q2 is increased, as the hard in-
teraction is approached, until the upper scale Q2

max,i, given by the hard in-
teraction, is reached. The parton a entering the splitting a → bc and the
parton b, which stays on the branch leading to the hard interaction, are
spacelike, −Q2 = m2 = E2−p2 < 0. With each splitting a gains more space-
like virtuality. This is in contrast to a pure DGLAP evolution, where, due to
assumption of eq. (2.33), the virtuality gained at each splitting is neglected
in the next interaction. Exactly this difference will affect the value of x at
the hard scale as will become clear in ch. 9. The virtuality leads furthermore
to a transverse momentum k⊥ of the initially collinear struck parton.
The parton c which is not taking part in the hard interaction compensates
b’s increase in k⊥ and its virtuality is timelike. It will therefore produce a
timelike shower in the final state.

In the final state the partons that leave the hard interaction have a timelike
virtuality −Q2 = m2 = E2 − p2 ≥ 0. From an upper scale Q2

max,f of the
original parton the scale is evolved downwards until at some Q2 a branching
a → bc occurs. Each of these branchings decreases the virtuality until all
final state partons are on shell and no further splittings are allowed.

To summarize: in the final state there are only timelike particles coming
either from the hard scattering or from the timelike shower of the initial
state radiation.

4.3 Hadronization

QCD perturbation theory is valid at short distances, where strong interaction
can be treated as a weak perturbation. At long distances, the strong force
increases to a level at which perturbative QCD breaks down. In this regime
the colored partons turn into colorless hadrons. This is called hadronization
and forms the last stage of the process (apart from decay that still might
occur).
The hadronization mechanisms are not understood yet from first principles.
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This is why some phenomenological models were developed to describe the
process, such as the string model for hadronization and cluster hadroniza-
tion. The first one is used by the Monte Carlo event generators employed in
this work and so I will focus on the string model for hadronization.

In the Lund String Model two (color) charged objects are bound to each
other by a color field which is squeezed together to form a narrow tube
called string. This field is described by a Coulomb-like field plus a linear
string potential. The color field has therefore the form:

V (r) = −
4αs

3r
+ κ r (4.1)

where r is the spacial distance between the objects and κ is the energy den-
sity of the string (κ ≈ 1 GeV/fm).
The idea is now the following: due to the second term, the potential energy
increases as the two objects move apart. Therefore more and more energy
is stored in the string (as in a spring). This happens until it is energetically
more favorable to break up the string and create a quark-antiquark pair.
This process repeats until there is no sufficient energy left in the string to
create new quarks and the hadrons formed by that process remain stable.

The two Monte Carlo event genrators used in this work, Pythia and Rap-

gap, use the Lund String Model for hadronization.

4.4 The Monte Carlo event generators of this

work

In this work two Monte Carlo event generators, Rapgap and Pythia, were
used to calculate the structure function F2.

4.4.1 Pythia

Pythia 6.4 ([22]) is a multipurpose event generator that implements the
DGLAP evolution equations and the Lund String Model for hadronization.
It is well applicable for ep scattering and therefore for calculating F2. By
means of a switch it gives the possibility to exclude parton shower or to
include only initial state parton shower, only final state parton shower or the
combination of intial and final state parton shower.
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4.4.2 Rapgap

Rapgap 3.1 ([17]) is a multipurpose event generator as well. And like
Pythia it implements the DGLAP evolution equations and the Lund String
Model for hadronization and here as well the user has the possibility to
choose between no parton shower, initial state parton shower, final state par-
ton shower and initial + final state parton shower.
A major difference between the two generators is that in Rapgap a method is
implemented, that leaves the final kinematics Q2 and x of the hard interacting
parton unchanged by eventual parton showers. This method was proposed
in ([3]) and later also implemented into Rapgap and also in Lepto([15]).



Chapter 5

Fitting

5.1 General formalism

In ch. 2 the parton density functions (PDFs) fi(x, Q2) were introduced as a
parton number density. In leading order αs calculations the PDFs are Q2-
dependent and fi(x, Q2)dx gives the probability of finding a parton of flavour
i with momentum fraction x at a certain Q2.
From the DGLAP equations (2.58) the evolution of the PDFs with ln(Q2)
is known, but not their x-dependence at the starting scale of the evolution.
The analytic form of a PDF at some Q2 is not calculable from first principles,
but its evolution with Q2 can be calculated.

Therefore the PDF at a starting scale Q2
0 is guessed in a parametrized

form. The value of the starting scale Q2
0 can be arbitratry but should be

sufficiently large to assume αs(Q2) to be small enough in order to make per-
turbative calculations applicable.

The next step is evolving the PDFs with e.g. the DGLAP equations
(2.58) to some other value of Q2. The PDFs can then used to calculate
the structure functions (see eqns. (2.39) and (2.43)). The parameters of the
PDFs at the starting scale Q2

0 can then be adjusted such that the calculations
describe the data. This procedure is called fitting. The quality of the fit is
usually determined by the quantity χ2 which is described in ch. 6.

The parametrization of the PDFs at the starting scale Q2
0 usually has the

form:

xf(x, Q2
0) = Afx

−Bf (1 − x)Cf P (x, f) (5.1)

with P (x, f) being a polynomial in x or
√

x.
The two terms x−Bf and (1 − x)Cf describe the behaviour of the PDFs at
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x → 0 and x → 1.
Bf can be guessed from Regge theory ([8]).
The (x → 1)-behaviour is described by (1 − x)Cf for Cf /= 0. It reflects the
fact that the PDFs should tend to zero when x → 1, because then there
is no momentum left for the other partons than the struck one. The other
partons therefore become ”spectators”. The so called counting rules give a
rough estimate for the value of Cf . The prediction is Cf ≈ 2ns − 1, where
ns is the minimum number of spectators, e.g. for the 3 valence quarks (uds)
ns = 2 and so Cf ≈ 3 ([8]).

5.2 Minimization

To find the minimum of a function F (p) the requirement is:

F (p∗) < F (p) ∀p (5.2)

In practice the conditions used are often based on the derivatives. But they
require smooth functions, meaning differentiable and continuous. The con-
ditions then are:

• 1-dimensional case

dF (p)

dp
|p=p∗= 0 ∧

d2F (p)

dp2
|p=p∗> 0 (5.3)

• n-dimensional case

here one uses the n-dimensional gradient ∇ F (p) and the n×n Hessian
matrix

H =









∂2F (p)
∂p2

1

∂2F (p)
∂p1∂p2

. . . ∂2F (p)
∂p1∂pn

∂2F (p)
∂p2p1

∂2F (p)
∂p2

2

. . . ∂2F (p)
∂p2∂pn

...
. . .

...
∂2F (p)
∂pnp1

∂2F (p)
∂pn∂p2

. . . ∂2F (p)
∂p2

n









. (5.4)

The conditions for a minimum then are:

∇ F (p) = '0 ∧ H positive definite (5.5)
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5.3 The SIMPLEX method

In this work the MINUIT program ([16]) was used to perform the fits. MI-
NUIT offers different methods for minimization. The one used here was the
SIMPLEX method by Nelder and Mead1 as now briefly described.
Imagine a function containing n parameters pi that has to be fitted to e.g.
some data. Every combination of the parameters pi can be understood as a
point 'xj = (p1,j, p2,j, ..., pn,j) in an n-dimensional parameter space. For the
best parameter set given by some point 'xmin the condition (5.2) or some of
its alternative forms must be fulfilled. The SIMPLEX method searches in
the n-dimensional parameter space for a minimum by comparing points 'xi

with each other and is therefore a direct search algorithm. In other words: it
is not using derivatives to find the minimum but implements the condition
(5.2). Therefore it is well suited to optimize functions that are not differ-
entiable or are discontinuous and where it is difficult to find the derivatives
numerically with the clear advantage, that it is a fast method.
This makes it a good choice when fitting Monte Carlo predicitons to data,
because the former ones are usually not smooth functions and show statisti-
cal fluctuations. Not smooth means having no differentiable or discontinuous
points and thus making it impossible to determine a derivative at all.
However the SIMPLEX method has a major drawback: it has difficulties in
finding global minima. It is sensitive to mistaking local minima for global
ones. One has to interpret the results of a fit, although converging, therefore
very carefully.

5.3.1 The SIMPLEX algorithm

To optimize n parameters the SIMPLEX algorithm ([4]) examines in n-
dimensional parameter space at every cycle n + 1 points 'x1 to 'xn+1, where
'xi = (p(1)

i , . . . , p(n)
i ) gives a point in parameter space standing for one set of

parameter values.
n + 1 points are needed because a simplex (polyhedron) is spanned by the
points 'xi in n-dimensional parameter space (e.g. a triangle in 2D and a
tetrahedron in 3D). SIMPLEX works in cycles and moves in every cycle the
simplex away from the point 'xn+1 standing for the parameter set describing
the data worst for all n + 1 points.
Every cycle of the algorithm then contains the following steps (an example
in 2-dim. parameter space is shown in fig. 5.1 ):

1the method is not to be confused with the simplex algorithm of linear programing
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!x3

!x1

!x2

!xr

!xs

!c

p2

p1

Figure 5.1: SIMPLEX for 2 parameters: the three points in 2-D parameter space !x1, !x2

and !x3 form a simplex with the center of mass (the centroid) !c. Furthermore
two test points !xr and !xs are plotted.

1. Order the n + 1 points such that

F ('x1) < F ('x2) < · · · < F ('xn+1)

where F ('x) is the function to be optimized.

2. Calculate the center of mass of the n best points with lowest value
F ('xi)- the so called centroid,

'c =
1

n

n
∑

i=1

'xi

3. Create a test point 'xr by reflecting the point with the highest functional
value (the worst point) 'xn+1 through the centroid 'c via

'xr = 'c + α('c − 'xn+1)

with the constant factor α > 0.

4. The next step depends then on the functional value F ('xr):

(a) F ('x1) ≤ F ('xr) ≤ F ('xn)
'xr is not better than 'x1 and not worse than 'xn. Therefore: replace
'xn+1 by 'xr and go to step 1).
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(b) F ('xr) ≤ F ('x1)
The test point is the new best point. So continue in the search
direction and create a second test point 'xs = 'c + β('xr − 'c) with
β > 1. If now

• F ('xs) < F ('xr), replace 'xn+1 by 'xs and go to step 1)

• F ('xs) ≥ F ('xr), replace 'xn+1 by 'xr and go to step 1)

(c) F ('xr) > F ('xn) If F ('xr) < F ('xn+1) replace the worst point 'xn+1

by the reflected point 'xr else discard 'xr. Then make the simplex
smaller. Therefore create a new test point 'xs = 'c − γ('c − 'xn+1)
with 0 < γ < 1. If now

• F ('xs) < F ('xn+1), replace 'xn+1 by 'xs and go to step 1).

• F ('xs) ≥ F ('xn+1) replace all points but the best point 'x1 by
'xj = 'x1 + δ('xj − 'x1) with 0 < δ < 1 and go to step 1).

The criterion for convergence in the MINUIT version is given by either a
maximum number of iterations or an estimated distance to the minimum
(EDM) less than a set value.
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Chapter 6

Treatment of correlated

systematic uncertainties

To see how good a prediction {ti} describes a set of measured data {di} the
deviation of the ti from the di is compared to the uncertainties of both, pre-
diction and data.
On the experimental side there are for each data point statistical uncertain-
ties σstat

i and systematic uncertainties1 σsyst
i . But also the prediction can have

uncertainties, e.g. the statistical fluctuation of a Monte Carlo prediction σtheo
i

or systematic uncertainties such as model uncertainties or uncertainties from
the input.
Uncorrelated and correlated uncertainties have to be differentiated as well.
Two uncertainties are said to be uncorrelated if the value of one uncertainty
is independent of the value of the other. e.g. the uncertainty of a measure-
ment of the hight of Fujiyama and the uncertainty of a measurement of my
body temperature are uncorrelated.
On the other hand two uncertainties are said to be correlated if the value
of one uncertainty depends on the value of the other uncertainty. An ex-
ample would be the uncertainty of a measured room temperature and the
uncertainty of reading a ruler in that room. As the ruler expands due to
temperature, the total reading accuracy depends on the uncertainty of tem-
perature and both uncertainties are therefore correlated.
In the case of experiments, correlated uncertainties mean that fluctuations in
the single bins due to these uncertainties are not independent. For instance,

1A systematic uncertainty can be correlated or uncorreleted. An example for a cor-
related systematic uncertainty is the luminosity uncertainty. Here all data points are
affected in a similar manner. An example for a uncorrelated systematic uncertainty is
the measurement of the transverse energy of a particle. Here every data point is affected
individually.
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if a data point in one bin is influenced in a certain way by a correlated uncer-
tainty, then all others are influenced in the same way. If one looks in contrast
at the uncorrelated uncertainties, the influence of it on one bin can be totally
different from the influence on other bins.
Some typical correlated systematic uncertainties of an F2-measurement at
HERA are given in sec. 3.3:

In a classical ansatz the quantity χ2
0 is used to determine the quality of

a fit, e.g. of experimental data to their prediction.

χ2
0 =

Ndat∑

i=1

(di − ti)2

(σdat
i )2 + (σtheo

i )2
(6.1)

where Ndat is the number of data points used, di is the i-th data point and ti is
the corresponding i-th point of the prediction. (σdat

i )2 = (σstat
i )2 +

∑

(σsyst
i )2

is the quadratic sum of the statistical experimental uncertainty σstat
i and

the point-to-point systematic uncertainties σsyst
ki which can, assuming to be

uncorrelated, be added in quadrature.
As χ2 is the sum over the ratios of the quadratic deviation of prediction and
data over the standard deviation, one can use

χ2/(Ndat − npar) = χ2/ndf, (6.2)

where npar is the number of fitting parameters and Ndat − npar =: ndf is the
number of degrees of freedom, as a good measure for the quality of the fit.

If, as presented in this analysis, a Monte Carlo generator is used to pro-
duce predictions the total statistical uncertainty of the prediction σtheo

i must
be taken into account as well, as is done in (6.1).

Determining χ2
0 is a convenient method in the search for an optimal fit.

But as there are often many correlated systematic uncertainties present in a
measurement these need to be properly taken into account.
Fortunately methods were developed to assess the uncertainties properly. In
this analysis methods were used to include a full treatment of correlated sys-
tematic uncertainties.
To compare the impact of correlated systematic uncertainties on the fitting
procedure the classical χ2

0 as given in 6.1 was determined as well.
In the following three chapters the general ansatz to take correlated system-
atic uncertainties into account as well as two realizations will be described.
The first one follows an ansatz proposed by CTEQ ([7]) and will therefore be
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called CTEQ-like in the following. The second one is proposed by Pascaud
et al. ([6]) and will be referred to as Pascaud-like.

6.1 General ansatz

Most experiments provide now detailed information on the systematic un-
certainties of their measurements. There are for each data point a statistical
experimental uncertainty σdat

i , an uncorrelated systematic uncertainty usyst
i

and nsys correlated systematic uncertainties {βsyst
i1 , βsyst

i2 , ..., βsyst
insys

} (in the in-
terest of readability I will skip the superscript ”syst ” for u and β).
Including correlated systematic uncertainties properly into χ2 leads to the
formula:

χ2({a}, {r}) =
N

∑

i=1

(di − ti −
∑nsys

k=1 βikr′k
αi

)2
+

nsys
∑

k=1

r′k
2 (6.3)

where α2
i = (σdat

i )2 + u2
i is the combined uncorrelated uncertainty.

The ti depend on the parameters {a} and thus on χ2. Furthermore χ2 de-
pends on the random parameters {r} associated with the correlated system-
atic uncertainties.

Following [23] a brief derivation of the formula eq. (6.3) is scetched.
Assuming there is a set of true values of the observable {Oi} and also a pre-
diction, that describes these ”true” values perfectly so that {Oi}={ti}.
The measurements {di} will in general deviate from the set of ”true” values
{ti}. The deviation will be caused by various kinds of uncertainties. For
the i-th measurement there are the uncorrelated uncertainties, summed up
in quadrature yielding αi, and the nsys correlated systematic uncertainties
{βik}. Thus the measured value di equates as:

di = ti + riαi +

nsys
∑

k=1

r′kβik (6.4)

where the ri, r′k express the individual shifts of the data points by the uncer-
tainties (e.g. ri = 1 means a shift of the i-th datapoint by 1σ). They should
be of the order of 1 and follow a Gaussian distribution with width 1 ([19]),
e.g.

p(r) ∝ e−r2/2 (6.5)
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The probability distribution of the measurements therefore is,

dP =
(∫ ∫ N

∏

i=1

p(ri)dri

nsys
∏

k=1

p(r′k)dr′k

N
∏

i=1

δ
(

di − ti − riαi −
nsys
∑

k=1

r′iβik

)
)

dNd

(6.6)
with the differential dNd = d d1 · d d2 · ... · d dN

First integrate over the ri by using the delta distributions and (6.5):

∫ N
∏

i=1

p(ri)dri

N
∏

i=1

δ
(

di − ti − riαi −
nsys
∑

k=1

r′iβik

)

∝
N
∏

i

e
1
2
(

di−ti−
Pnsys

k=1
βikr′k

αi
)2

Using (6.5) again in the integral over the r′k gives

∫

dr′k

nsys
∏

k=1

p(r′k) ∝
∫

dr′ke
1
2

Pnsys
k=1

r′2k

Putting both results together gives:

dP = (

∫ nsys
∏

k=1

dr′kC1e
−χ2/2)dNd (6.7)

with the normalization constant C1 and

χ2({a}, {r}) =
N

∑

i=1

(di − ti −
∑nsys

k=1 βikr′k
αi

)2
+

nsys
∑

k=1

r′k
2 (6.8)

This is the expression of (6.3) which, in order to find a best fit, has to be
minimized with respect to {a} (the ones of actual interest) and {r}. The
total number of fitting parameters is given by the number of the {a} and {r}
and can become quite large (> 50). This can take a lot of computing time.
Thus, it is convenient to try to reduce the task to fitting only the {a}.
To do so, one first expands the quadratic term and rewrites χ2:

χ2 =
N

∑

i=1

1

α2
i

(

(di − ti)
2 + (

nsys
∑

k=1

βikr
′
k)

2 − 2(di − ti)

nsys
∑

k=1

βikr
′
k

)

+

nsys
∑

k=1

r′k
2

=
N

∑

i=1

(di − ti)2

α2
i

+

nsys
∑

k̃,k=1

(
N

∑

i=1

βikβik̃

α2
i

+ δkk̃

)

r′kr
′
k̃
−

nsys
∑

k=1

2
βik(di − ti)

α2
i

r′k

=
N

∑

i=1

(di − ti)2

α2
i

+

nsys
∑

k̃,k=1

Akk̃r
′
kr

′
k̃
−

nsys
∑

k=1

2Bkr
′
k

(6.9)
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where

Bk =
Ndat∑

i=1

βik(di − ti)

α2
i

and Akk̃ = δkk̃ +
Ndat∑

i=1

βikβik̃

α2
i

. (6.10)

χ2 is a quadratic polynomial of the r′k. Demanding

∂χ2

∂r′k
= 0, ∀ ∈ [1, nsys]

it can be minimized analytically with respect to the r′k. This minimization
leads to the best estimate for the systematic uncertainties

r′k({a}) =

nsys
∑

k′=1

(A−1)kk′Bk′ (6.11)

To get an r′k-independent expression for χ2 one inserts this result into (6.9)

χ2 =
Ndat∑

i=1

(di − ti)2

α2
i

−
nsys
∑

k,k′=1

2Bk (A−1)kk′Bk′

+

nsys
∑

kk̃

Akk̃

(
nsys
∑

k′′

(A−1)k̃k′′Bk′′

)(
nsys
∑

k′

(A−1)kk′Bk′

)

(6.12)

The last of the three terms can be transformed

nsys
∑

kk̃

Akk̃

(
nsys
∑

k′′

(A−1)k̃k′′Bk′′

)(
nsys
∑

k′

(A−1)kk′Bk′

)

=

nsys
∑

kk′′

(
nsys
∑

k̃

Akk̃(A
−1)k̃k′′

)

Bk′′

nsys
∑

k′

(A−1)kk′Bk′

=

nsys
∑

kk′′

δkk′′Bk′′

nsys
∑

k′

(A−1)kk′Bk′

=

nsys
∑

kk′

Bk(A
−1)kk′Bk′

In the second step I used the fact (A · A−1)kk′′ = 1kk′′ = δkk′′.
As a final expression one gets now:

χ2 =
Ndat∑

i=1

(di − ti)2

α2
i

−
nsys
∑

k,k′=1

Bk (A−1)kk′Bk′ (6.13)
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This is a simplified version of (6.3) and the the problem is reduced to the
irreducible task of fitting the parameters {a} only.

If a Monte Carlo event generator is used to make the predictions {ti} the
statistical uncertainty of the Monte Carlo event generator has to be taken
into account as well (as in (6.1)). This is done by including this uncertainty
in the uncorrelated uncertainties and redefining

α2
i = (σdat

i )2 + u2
i + (σtheo

i )2. (6.14)

In a nutshell, the difference of (6.3) from the simple form (6.1) is as follows:
in (6.3) the correlated systematic uncertainties βik are not simply added in
quadrature (which would require them to be uncorrelated and as done in
(6.1)) but treated separately from the uncorrelated uncertainties. The latter
ones can simply be added in quadrature and are included in αi. The idea is,
that there are fluctuations

∑nsys

k=1 rkβik due to systematics.
The two following chapters will now treat two main realizations of the ideas
developed in this chapter. The CTEQ-like method assumes, that the sys-
tematics shift the data points while the Pascaud-like ansatz follows the idea,
that the systematics shift the theory values.

6.2 CTEQ-like treatment of correlated sys-

tematic uncertainties

In the CTEQ-like ansatz it is assumed that the experimental data are shifted
by the systematics in the following way:

di = ti + riαi +

nsys
∑

k=1

r′iβik = ti + riαi +

nsys
∑

k=1

r′i(δikdi) (6.15)

where δik = βik

di
is the relative correlated systematic uncertainty.

Using βik = δikdi gives together with (6.3) the formula for χ2:

χ2({a}, {r}) =
N

∑

i=1

(di − ti −
∑nsys

k=1 (δikdi)r′k)

αi

)2
+

nsys
∑

k=1

r′k
2 (6.16)

or in the simplified form (6.13)

χ2 =
Ndat∑

i=1

(di − ti)2

α2
i

−
nsys
∑

k,k′=1

Bk (A−1)kk′Bk′
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6.3 Pascaud-like treatment of

correlated systematic uncertainties

with

r′k({a}) =

nsys
∑

k′=1

(A−1)kk′Bk′ (6.17)

and

Bk =
Ndat∑

i=1

δikdi(di − ti)

α2
i

and Akk′ = δkk′ +
Ndat∑

i=1

δikδik′d2
i

α2
i

(6.18)

6.3 Pascaud-like treatment of

correlated systematic uncertainties

In the Pascaud-like ansatz it is assumed that the theory values are shifted by
the systematics rather than by the experimental values (as in the CTEQ-like
ansatz). This assumes the relation:

di = ti + riαi +

nsys
∑

k=1

r′iβ
p
ik = ti + riαi +

nsys
∑

k=1

r′i(δikti) (6.19)

where δik = βik

di
is again the relative correlated systematic uncertainty.

But when now assuming that βp
ik = δikti = βik

di
ti (therefore the two β are

here distinguished by the superscript p). This yields together with (6.3) the
formula for χ2 as used in the Pascaud-like ansatz:

χ2({a}, {r}) =
N

∑

i=1

(di − ti −
∑nsys

k=1 (δikdi)r′k)

αi

)2
+

nsys
∑

k=1

r′k
2

=
N

∑

i=1

(di − ti(1 +
∑nsys

k=1 δikr′k)

αi

)2
+

nsys
∑

k=1

r′k
2

(6.20)

or again in the simplified form (6.13)

χ2 =
Ndat∑

i=1

(di − ti)2

α2
i

−
nsys
∑

k,k′=1

Bk (A−1)kk′Bk′

where

r′k({a}) =

nsys
∑

k′=1

(A−1)kk′Bk′ (6.21)

and

Bk =
Ndat∑

i=1

δikti(di − ti)

α2
i

and Akk′ = δkk′ +
Ndat∑

i=1

δikδik′t2
i

α2
i

(6.22)
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Chapter 7

Data, software and Monte

Carlo tuning

7.1 Dataset

The parton densities are related to the structure function F2(x, Q2) by eqns.
(2.39) and (2.43). Therefore paramterizations for the PDFs can be obtained
by fits of predictions for F2(x, Q2) to F2-data from DIS measurements. The
convention is to speak of data, when the data come from real measurements,
in contrast to Monte Carlo predictions. I will follow this convention in the
text and make explicit distinctions in the denomination only when necessary.

In this thesis the cross section measurement from [1] is used. This pa-
per describes cross section measurements for the neutral current process
e+p → e+X. The kinematic region coverd here is 1.5 ≤ Q2 ≤ 150 GeV2 and
3 · 10−5 ≤ x ≤ 0.2. In this thesis 104 data points with 5 ≤ Q2 ≤ 150 GeV2

were used. The measurements were obtained from data taken in the years
1996 and 1997. At that time1 the positron energy was Ee = 27.6 GeV and
the proton energy Ep = 820 GeV. This corresponds to a center of mass en-
ergy of

√
s = 300.9 GeV. More recent results were published in the meantime

but were not available when this thesis was being written.

1From 1998 on the protons energy was raised to Ep = 920 GeV. Compare ch. 3
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7.2 Tools

7.2.1 HzTool

To compare data to Monte Carlo predictions the HzTool package is used.
HzTool ([5]) is a collection of Fortran routines, that can be interfaced with
a Monte Carlo event generator. HzTool routines can be associated to a
publication of data and contains then the data of the publication. When the
routine is executed it writes these data into a histogram, reads the output of
the interfaced Monte Carlo event generator and writes the generator output
into a properly normalized2 histogram. In the form of histograms the data
and the predictions can be analyzed, compared to each other and/or plotted
in a convenient way.
In an HzTool routine a selection of events can be made by applying cuts
(e.g. events lying in some x-range given by the cuts xmin and xmax are
selected). Only these events are then written into a histogram. Cuts are
often defined by the limitations of the detector.
The typical structure of a HzTool routine is the following:

1. Initialization

The data is declared in the form of arrays, and the histograms for the
data and the Monte Carlo predictions are declared3, but yet to be filled.

2. Event generation

The Monte Carlo event generator then produces a number of events,
set by the user, and the result of every single event is written into the
corresponding prediction histogram. Cuts can be applied here, such
that only events satisfying the cuts are filled into a histogram.

3. Termination

The data histograms are then filled, and the prediction histograms filled
in step 2 normalized.

The HzTool-routine used in this case was hz00181 ([5]) and refers to [1].

7.2.2 The routine errortreat

Part of this work was to implement a routine that calculates χ2 with full
treatment of the systematic errors. It was realized in the Fortran routine

2Usually as described in ch. 7.3
3The convention is that data histograms are named by h n where n is a number, while

the according prediction is named without the underscore, hn .
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errortreat(chi2,ichi2,theo,etheo,dat,dtot,dst,dsyu,beta). It calculates the χ2

regarding to one of the three methods described in ch. 6 - the classical ansatz,
the Pascaud-like method or the CTEQ-like method. It thereby offers besides
the classical ansatz the possibility to determine the χ2 with full treatment of
systematic errors. The choice of the method to calculate χ2 is done by the
user via a switch.
The routine expects the following arguments:

chi2: this is simply the quantity χ2 which is to be calculated and is the
output of the routine.

ichi2: this is the switch, that determines the method of how χ2 is
calculated. 1: Pascaud-like, 2: CTEQ-like, 3: classical ansatz

theo: the predictions given in form of an array. The order must be the
same as the order of the according data (see dat).

etheo: the statistical errors of the predictions given in form of an array.

dat: the data given in form of an array.

dtot: the total errors of the data given in form of an array. The def-
inition of that error depends on the user. Here it was assumed to be
the quadratic sum of the statistical data error and the uncorrelated
systematic errors (s.f. ch. 6).

dst: the statistical errors of the data given in form of an array.

dsyu: the uncorrelated errors of the data given in form of an array.

beta: the correlated systematic errors of the data given in form of a
matrix beta(i, j). Thereby i gives the number of the data point and
j the number of the correlated systematic error. This is necessary as
there are usually a few correlated systematic errors for each data point.

All errors have to be given as absolute errors.

The routine errortreat is basically indepentend of how the data is presented
(as an HzTool routine or a text file etc.). The data in this specific case was
not given by a HzTool routine, but in form of a simple text file containing
the data in lines and columns.
The text file is then read in by a routine.
In the existing framework a routine f2 fit did the job. It reads in the data
including errors from the text file and the predictions including errors out of
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the histogram created by hz00181.
Nevertheless f2 fit was modified such that it prepares the data in the format
demanded by the routine errortreat. f2 fit then calls, after an optional ap-
plication of cuts, errortreat. The calculated χ2 is then passed on by f2 fit
to the fitting routine MINUIT.

7.3 Histograms, bins and the determination

of cross sections

Most high energy experiments and simulations involve counting the events.
In a measurement or physics simulation of an Monte Carlo event generator
the number of events N and the cross section are related by

N = Lσ (7.1)

where σ is the total cross section, L is the luminosity (number of beam
particles per second per unit area).
The number of events is usually plotted in histograms. The abscissa of a
histogram is divided into several segments, each standing for a certain range
of the abscissa’s variable. These ranges are called bins. The ordinate of a
histogram gives the total number of events or the cross section.
The relation of a differential cross section, say the double differential cross
section d2σ

dQ2dx , to the number of events ∆N in the bin of width ∆Q2∆x is
given by

∆Q2∆x
d2σ

dQ2dx
=

∆N

L
(7.2)

To give a simple example: at a luminosity of L = 100 GeV
pb and with Ni = 105

events in the pt-range of 20-30 GeV regarding to (7.2) the differential cross
section would be :

dσ

dpt
≈

Ni

∆ptL
=

105

100 GeV
pb · 10 GeV

= 100 pb

where ∆pt = 30 − 20 GeV = 10 GeV is the bin width of the pt bin.
This means that to obtain differential cross sections from the output of a
Monte Carlo event generator the number of events has to be normalized bin
per bin to the luminosity L and the bin width of the variable of interest (in
the example ∆pt).
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7.4 Tuning the Monte Carlo generators

Rapgap and Pythia

7.4 Tuning the Monte Carlo generators

Rapgap and Pythia

In this analysis the two Monte Carlo generators Rapgap and Pythia were
used. Monte Carlo events generators allow a variation of many kinematic
quantities such as cuts on x and/or Q2 or use of parton showers by the par-
ton shower method introduced in ch. 4. Tuning the used Monte Carlo event
generators was a crucial part of this work in order to get a good agreement
between data and prediciton.
The settings of the Monte Carlo event generator parameters used are given
in table 7.1 (Rapgap) and 7.2 (Pythia) (parameters not listed in the tables
have then their default values given in [17] and [22]).



Data, software and Monte Carlo tuning 60

parameter value meaning
XMIN 0.00001 xmin

XMAX 1.0 xmax

QMIN 1.0 Q2
min

QMAX 200.0 Q2
max

INTE 0 electromagnetic interaction
IPRO 12 process: eq → e′q′

NFQC 4 number of flavours in QCDC
NFRA 0 fragmentation off
IFPS 0, 1, 2 or 3 switch for parton shower

Table 7.1: Parameters for Rapgap

parameter value meaning
MSEL 1 generated process

MSTP(91) 0 or 1 switch for primordial k⊥
MSTP(21) 2 γ neutral current only
MSTP(11) 0 no electron pdf
CKIN(23) 0.0 xmin

CKIN(24) 1.0 xmax

CKIN(35) 1.0 Q2
min

CKIN(36) 200.0 Q2
max

MSTU(101) 0 fixed αem

MSTJ(41) 0 or 2 type of branching allowed in shower
MSTP(81) 0 multiple interaction off
PARP(82) 0 regularization scale p⊥0 of the transverse-momentum

spectrum for multiple interactions
MSTP(61) 0 or 1 switch for initial state parton shower
MSTP(71) 0 or 1 switch for final state parton shower
MSTJ(1) 0 fragmentation off
PARP(67) 1 multiplied with Q2, to define max. scale

for Q2-ordered parton shower
PARP(71) 1 multiplied with Q2, to define max.

virtualtity allowed in time-like showers

Table 7.2: Parameters for Pythia



Chapter 8

Determination of fitting

parameters

In this work the PDFs were interfaced using the Les Houches Accord PDF
(LHAPDF) interface ([14]). It is a library of PDF sets that can be interfaced
with a Monte Carlo event generator.
The PDFs obtained are compared to the PDF set CTEQ6L. This set is a
leading order (LO) PDF set, which means that the matrix element of the
hard process includes only the first significant process. This is the process
γ∗q→q.
Later in this thesis the next to leading order (NLO) set CTEQ6.1M is used
for comparison. There the matrix element contains in addition to the LO
matrix element O(αs) corrections, coming from radiation of partons.
The Monte Carlo event generators used in this work are, like CTEQ6L, of
leading order. Hence CTEQ6L is well suited for a comparison with the PDFs
obtained by fits using the Monte Carlo generators.

8.1 The CTEQ6L PDF set

The set includes the following PDFs:

• the up-valence quark density

xuv(x, Q2)

• the down-valence quark density

xdv(x, Q2)
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• the gluon density
xg(x, Q2)

• the ratio

x
ūs(x, Q2)

d̄s(x, Q2)

• the sum
x(ūs(x, Q2) + d̄s(x, Q2))

Only the ratio x ūs(x,Q2)
d̄s(x,Q2)

is parametrized in the functional form:

Afx
Bf (1 − x)Cf + (1 + Dfx)(1 − x)Ef

All others are parametrized in the functional form:

xf(x, Q2
0) = Afx

Bf (1 − x)Cf exDf (1 + eEf x)Ff (8.1)

8.2 Selection of the fitting parameters

Fitting procedures take a lot of computing time which increases with the
number of fitting parameters. Since computing time is a major limitation,
keeping the number of fitting parameters as small as possible is desirable.
This is why the sensitivity of the χ2 to the single parameters was investigated
before doing the fit by using so called scans.
In a scan only one parameter, the scan parameter, is varied within an inter-
val given by the user. The parameter is thereby changed in steps of fix size
(given by the user) from the minimum value to the maximum value of the
interval. After each step the χ2 is calculated. All other parameters remain
fixed.
If χ2 has a minimum in the scan, the corresponding value of the scan pa-
rameter gives a relatively quick estimate of the value that the parameter will
possibly have after doing the fit. How sensitive χ2 is to the scan parameter
(meaning how much influence the scanned parameter has on χ2) can be seen
in how much χ2 varies when the scan parameter changes.
The goal was to exclude parameters to which χ2 shows little or even no
sensitivity, in order to reduce the number of fitting parameters as much as
possible, and by that, to reduce the runtime.
Accordingly, scans for 17 parameters out of the 29 that are contained in the
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CTEQ6L set were carried out . The 12 parameters for the valence quark
PDFs remained fixed on their starting values during the fit. The reason for
this is that at low x the valence quarks play only a minor role and their
PDFs have only little influence at low x. In this regime the gluons dominate.
Therefore the gluon PDFs and the sea quark PDFs play a significant role here.

The results of the 17 scans will now be discussed.
Fig. 8.1 shows high sensitivity of χ2 on the gluon parameters and all six
parameters for the gluon density xg(x, Q2) are included in the fit. Fig. 8.3
implies that at least the parameters Aū+d̄, Bū+d̄ and Fū+d̄ lead to strong
variation of χ2. Parameters Cū+d̄, Dū+d̄ and Eū+d̄ play a less significant role.
Nevertheless all six parameters for the sum x(ūS(x, Q2) + d̄S(x, Q2)) are in-
cluded in the fit to have the sum completely parametrized. Fig. 8.2 on the
other hand shows a very small variation of χ2 if any at all. This is why all
parameters for the ratio x ūS(x,Q2)

d̄S(x,Q2)
remain fixed at their starting values in the

fit. All in all, 12 parameters are included in the fit. This corresponds to
ndf = 92 degerees of freedom (see ch. 5).
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Figure 8.1: Scans of the parameters for the gluon PDF xg(x, Q2). χ2 is plotted as a
function of the respective parameter value.
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Figure 8.2: Scans of the parameters for the ratio x ūS(x,Q2)
d̄S(x,Q2)

. χ2 is plotted as a function of

the respective parameter value.
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Figure 8.3: Scans of the parameters for the sum x(ūS(x, Q2) + d̄S(x, Q2)). χ2 is plotted
as a function of the respective parameter value.
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The predictions of the Monte Carlo event generators using the settings of
table 7.2 and 7.1 are shown in figs 8.4 and 8.5.
In fig. 8.4 the structure function F2(x, Q2) as a finction of x for different values
of Q2 is shown. The agreement between data and the Monte Carlo event
generators is very good with χ2/ndf = 0.84 for Rapgap and χ2/ndf = 0.96
for Pythia.
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In fig. 8.5 the structure function F2(Q2, x) is plotted as a function of Q2

for different values of x for (a) Rapgap and (b) Pythia. In the double
logarithmic plot the data are represented by dots and the predictions by a
full line. The slight waves in the lines come from the predictions being of
statistical nature.
One can see here the predicted scaling violation (see sec. 2.3), namely that
F2(Q2, x) is a function of x and Q2.
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(a) Rapgap and (b) Pythia. The dots represent the data, the full line the
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Chapter 9

The influence of parton showers

on PDFs

In the main process

γ∗

pq

p′q

4-momentum conservation gives (neglecting parton masses)

(q + pq)
2 = p′q

2

−Q2 + 2qpq = 0
(9.1)

where pq is the quark 4-momentum, which carries a fraction ξ of the protons
momentum p (pq = ξp). This gives then:

−Q2 + 2q · ξp = 0

⇒ ξ =
Q2

2qp
= xBj

(9.2)

which is eq. (2.13).

Using the Parton Shower Method described in ch. 4 in a Monte Carlo event
generator has the effect that the transversal momentum k⊥ and the virtuality
of the parton, arising in one branching are no longer neglected in the next
branching. Therefore, virtualities of the parton have now to be taken into
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account. The initial state parton showers lead to spacelike virtualities < 0
and final state parton showers to timelike virtualities > 0. But then

p2
q = −k2 (< 0) (9.3)

p′q
2 = m2 (> 0) (9.4)

Equivalently to the derivation of eq. (9.2) one gets:

(q + pq)
2 = p′q

2

−Q2 − k2 + 2qpq = m2

⇒ ξ =
Q2 + k2 + m2

2qp
/= xBj

(9.5)

where pq = ξp was used again.

σ̂

xparton = xBj = Q2

2pq xparton = ξ = Q2+p2+m2

2pq /= xBj

calculation of cross section adding parton shower

Figure 9.1: First the cross section is calculated and then parton shower added

To simulate a process, a Monte Carlo event generator calculates first the
total cross section σtot. The differential cross section is then calculated by:

dσ

dQ2dx
=

Nev(x, Q2)

Ntot
· σtot. (9.6)

Nev(x, Q2) is the number of events in a distinctive x- and Q2-bin. The Monte
Carlo event generator then adds parton shower in accordance to the Parton
Shower Method described in sec. 4.2. This changes the momentum fraction
of the parton xp given in eq. (9.2) to the one given in eq. 9.5 (see fig. 9.1).
As a consequence, events that are in a certain x-bin migrate to other x-bins,
when parton shower are added. This means, that the Nev(x, Q2) for the
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single x-bins change, which leads to a change of F2(x, Q2) ∝ Q4x d2σ
dQ2dx .

If the Monte Carlo event generator, running without parton shower, describes
F2(x, Q2) properly according to eq. (3.3), then

F2(x, Q2) ∝
( d2σ

dQ2dx

)no ps
. (9.7)

In this case, the description of the Monte Carlo event generator, running
with parton shower, must be corrected to:

F2(x, Q2) ∝
( d2σ

dQ2dx

)ps
·

(
d2σ

dQ2dx

)no ps

(
d2σ

dQ2dx

)ps . (9.8)

The ratio on the left side of the last equation corrects for the migration ef-
fects on x due to parton shower.
Since the x-dependent PDF enters the cross section, the correction can be
done by changing the PDF. To do so, one can try to obtain a PDF by a fit
of F2-data to predictions for F2(x, Q2), coming from a Monte Carlo event
generator, running with parton shower.
Monte Carlo event generators running with parton shower and employing
a PDF obtained without parton shower (like CTEQ6L), will not describe
data properly. Since parton shower are needed to describe exclusive mea-
surements, a correction e.g. in form of an optimized PDF set is desirable.

In all this the Monte Carlo event generators Rapgap and Lepto make
an exception. Here the splitting variables for the parton shower are selected
with the constraint, that xp = xBj for a given Q2. The inclusion of parton
shower will therefore not lead to a change of F2(Q2, x).

The influence of parton shower on the PDFs, obtained by fits of Monte Carlo
event generator predictions to F2-data, is investigated in this thesis. This is
done on the basis of three different scenarios:

1. Rapgap and Pythia without parton shower

PDFs are fitted using Rapgap and Pythia, both with parton showers
switched off. In Rapgap this is realized by the switch IFPS=0 and in
Pythia by the switches MSTP(61)=0, MSTP(71)=0 and MSTP(91)=0
(see tables 7.1 and 7.2).
These fits can then be compared to the LO PDF set CTEQ6L and with
each other. If it is at all possible to fit PDFs using Monte Carlo gener-
ators, all three PDFs should coincide, because without parton showers,
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the kinematics is left unchanged and the two generators should then
yield the same result as CTEQ6L.

2. Rapgap with parton shower

PDFs are fitted using Rapgap. Parton showers are included in the
generation process. This happens step by step by first including only
initial state parton shower, then only final state parton shower and
finally the combination of initial state and final state parton showers. In
Rapgap this is realized by the switch IFPS=1/2/3. By using a method
as described in [3], Rapgap does not change x, when parton shower are
included. Hence there should be no difference between parton shower
being switched on or off.

3. Pythia with parton shower

PDFs are fitted using Pythia. Parton showers are included in the
generation process and switched on stepwise. First only an intrinsic
k⊥ is included1. Then initial state parton shower, final state parton
shower and finally the combination of initial and final state parton
shower are switched on. In Pythia this is realized by the switches
MSTP(61)=0/1, MSTP(72)=0/1 and MSTP(91)=0/1.
Unlike Rapgap, Pythia changes x, when parton shower are included.
This means that in this case a change in the resulting PDFs is expected.

After that a comparison of the PDFs resulting from the fits with the PDF
set CTEQ6.1 M is made. Finally the χ2 values for Rapgap’s and Pythia’s
data description when using CTEQ6L are compared to the corresponding χ2

values obtained when using the fitted PDFs. For the sake of readability the
following terms are defined:

• nops-PDF: PDF obtained by a fit of Monte Carlo event generator-
predictions to F2-data using the Monte Carlo event generator without
parton shower

• ikt-PDF: PDF obtained by a fit of Monte Carlo event generator-predictions
to F2-data using the Monte Carlo event generator with intrinsic k⊥

• ips-PDF: PDF obtained by a fit of Monte Carlo event generator-predictions
to F2-data using the Monte Carlo event generator with initial state par-
ton shower

1Intrinsic (or primordial) k⊥ expresses the idea, that the partons contained in the
proton can, due to fermi motion, have a certain transversal momentum k⊥, while the
proton as such only carries longitudinal momentum (i.e. in beam direction). This k⊥ is
modeled as a Gaussian in k2

⊥
, having a width of 2 GeV/c.
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9.1 Rapgap and Pythia

excluding parton shower

• fps-PDF: PDF obtained by a fit of Monte Carlo event generator-predictions
to F2-data using the Monte Carlo event generator with final state par-
ton shower

• ifps-PDF: PDF obtained by a fit of Monte Carlo event generator-
predictions to F2-data using the Monte Carlo event generator with the
combination of initial and final state parton shower

9.1 Rapgap and Pythia

excluding parton shower

Fig. 9.2 shows the fitted PDF of the gluons, fig. 9.3 the up sea quarks2 and
fig. 9.4 the down sea quarks3 as a function of x obtained by a fit using Rap-

gap and the PDF set CTEQ6L for Q2 = 10, 100, 1000 and 10000 GeV2.
Fig. 9.5 shows the fitted PDF of the gluons, fig. 9.6 the up sea quarks and
fig. 9.7 the down sea quarks as a function of x obtained by a fit using Pythia

and the PDF set CTEQ6L.
In both cases the curve representing CTEQ6L and that representing the fit-
ted PDFs coincide, such that they are barely distiguishable in the plot.

Both generators show very good agreement with CTEQ6L (the curves are
barely distinguishable) and with each other over four orders of magnitude of
Q2.

The parameter values resulting from the fit are given in the tables B.1a
and B.3a.

Interpretation

The observed effects can be understood as follows. If parton showers are
absent, both Monte Carlo event generators simply use the evolved PDF at
the hard scale Q2. Hence the fits of the Monte Carlo generator, which use
LO matrix elements for the hard process, should coincide with the PDF set
CTEQ6L, that is obtained using the evolved PDF and LO matrix elements
as well. This is verified by the agreement between the PDFs resulting from
the fits and the CTEQ6L set.

2Up sea quark PDFs stands here for the sum of up sea quark and charm sea quark
PDFs

3Down sea quark PDFs stands here for the sum of down sea quark, strange sea quark
and bottom sea quark PDFs
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This shows, that PDF fits using Monte Carlo event generators lead to sensible
and consistent results and that the proposed method to fit PDFs using Monte
Carlo generators can be applied successfully.
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9.1 Rapgap and Pythia

excluding parton shower
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Figure 9.2: Gluon PDF as a function of x from CTEQ6L (black, full line) and from Rap-

gap (red, broken line), fitted with no parton showers, at Q2 = 10 GeV 2,
100 GeV 2, 1000 GeV 2 and 10000 GeV 2.
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Figure 9.3: Up sea quark PDF as a function of x from CTEQ6L (black, full line) and from
Rapgap (red, broken line), fitted with no parton showers, at Q2 = 10 GeV 2,
100 GeV 2, 1000 GeV 2 and 10000 GeV 2.
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9.1 Rapgap and Pythia

excluding parton shower

 log(x)

x
d

s
(x

,Q
2
)

 Q
2
 = 10 GeV

2

CTEQ6L

FIT RAPGAP no ps

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

-4 -3.5 -3 -2.5 -2 -1.5 -1 -0.5 0
 log(x)

x
d

s
(x

,Q
2
)

 Q
2
 = 100 GeV

2

CTEQ6L

FIT RAPGAP no ps

0

0.5

1

1.5

2

2.5

3

3.5

4

-4 -3.5 -3 -2.5 -2 -1.5 -1 -0.5 0

 log(x)

x
d

s
(x

,Q
2
)

 Q
2
 = 1000 GeV

2

CTEQ6L

FIT RAPGAP no ps

0

1

2

3

4

5

6

7

-4 -3.5 -3 -2.5 -2 -1.5 -1 -0.5 0
 log(x)

x
d

s
(x

,Q
2
)

 Q
2
 = 10000 GeV

2

CTEQ6L

FIT RAPGAP no ps

0

1

2

3

4

5

6

7

8

9

-4 -3.5 -3 -2.5 -2 -1.5 -1 -0.5 0

Figure 9.4: Down sea quark PDF as a function of x from CTEQ6L (black, full line) and
from Rapgap (red, broken line), fitted with no parton showers, at Q2 =
10 GeV 2, 100 GeV 2, 1000 GeV 2 and 10000 GeV 2.
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Figure 9.5: Gluon PDF as a function of x from CTEQ6L (black, full line) and from Pythia

(red, broken line), fitted with no parton showers, at Q2 = 10 GeV 2, 100 GeV 2,
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9.1 Rapgap and Pythia

excluding parton shower
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Figure 9.6: Up sea quark PDF as a function of x from CTEQ6L (black, full line) and from
Pythia (red, broken line), fitted with no parton showers, at Q2 = 10 GeV 2,
100 GeV 2, 1000 GeV 2 and 10000 GeV 2.
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Figure 9.7: Down sea quark PDF as a function of x from CTEQ6L (black, full line)
and from Pythia (red, broken line), fitted with no parton showers, at
Q2 = 10 GeV 2, 100 GeV 2, 1000 GeV 2 and 10000 GeV 2.
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9.2 Rapgap including parton showers

Next the influence of parton showers in Rapgap on the PDFs resulting from
the fit are investigated. First initial state parton shower, then final state
parton shower and finally the combination of initial and final state parton
showers were included in the fit.

Fig. 9.8 shows the gluon, fig. 9.9 the up sea quark and fig. 9.10 the down
sea quark PDFs as a function of x resulting from the fit using Rapgap for
Q2 = 10, 100, 1000 and 10000 GeV2.
For low Q2 the ips-PDFs of the up sea quarks and the down sea quarks are
slightly below the respective nops-PDFs at low and high x. The SIMPLEX
method gives no errors for the fitted parameters of the PDFs. Therefore the
significance of these deviations cannot be determined.
The ifps-PDFs coincide with the nops-PDFs for the gluon, the up sea quark
and the down sea quark at all values of Q2.

The parameter values resulting from the fit are given in the tables B.1.

Interpretation

Since in Rapgap x is not changed by parton showers, x has the same value
as in the case where parton shower are switched off. Hence the same ex-
planation as in sec. 9.1 can be given for the observed fact, that the PDFs
resulting from the fits including parton shower coincide with the nops-PDFs
(and regarding to sec. 9.1 therefore to CTEQ6L).
It shows that in Rapgap the kinematic variables x and Q2 are indeed inde-
pendent of the inclusion of parton showers in the generation process. This is
the first time that this characteristic of Rapgap is directly proven by a sys-
tematic investigation of the effect of parton showers on quantities sensitive
to the kinematics as are PDFs.
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Figure 9.8: Gluon PDF as a function of x from Rapgap, fitted with no parton shower,
initial state parton shower, final state parton shower and the combination of
initial and final state parton shower, at Q2 = 10 GeV 2, 100 GeV 2, 1000 GeV 2

and 10000 GeV 2.
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Figure 9.9: Up sea quark PDF as a function of x from Rapgap, fitted with no parton
shower, initial state parton shower, final state parton shower and the combi-
nation of initial and final state parton shower, at Q2 = 10 GeV 2, 100 GeV 2,
1000 GeV 2 and 10000 GeV 2.
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Figure 9.10: Down sea quark PDF as a function of x from Rapgap, fitted with no parton
shower, initial state parton shower, final state parton shower and the combi-
nation of initial and final state parton shower, at Q2 = 10 GeV 2, 100 GeV 2,
1000 GeV 2 and 10000 GeV 2.
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9.3 Pythia including parton showers

In Pythia there are two options to order the parton showers (see ch. 4) -
k⊥-ordered or Q2-ordered. The effects of both orderings are investigated in
the following.

9.3.1 k⊥-ordered parton showers

Fig. 9.11 shows the gluon, fig. 9.12 the up sea quark and fig. 9.13 the down
sea quark PDFs as a function of x resulting from the fit using Pythia for
Q2 = 10, 100, 1000 and 10000 GeV2. The parton shower were k⊥-ordered.
First only intrinsic k⊥ was taken into account, then in addition initial state
parton shower, then final state parton shower and at the end the combination
of initial and final state parton shower.

In the x region below 10−2 the ik⊥-PDFs, ips-PDFs, fps-PDFs and ifps-PDFs
of gluons, up sea quarks and down sea quarks decrease in comparison to the
respective nops-PDFs. The order (going from lowest decrease to highest de-
crease compared to the nops-PDF) is hereby ik⊥-PDFs, fps-PDFs, ips-PDFs
and ifps-PDFs. For x ≈ 10−4 and Q2 = 10 GeV2 the ips-PDF and the fps-
PDF of the up sea quark and the down sea quark cross.
In the x region above 10−2 the ik⊥-PDFs, ips-PDFs, fps-PDFs and ifps-PDFs
of gluons, up sea quarks and down sea quarks increase in comparison to the
respective nops-PDFs. The ik⊥-PDFs of the up sea quark and the down sea
quark show a slight decrease as compared to the respective nops-PDFs. The
ik⊥-PDF of the gluon coincides with the respective nops-PDF.
For increasing Q2, all PDFs show a clear reduction of the decrease observed
for the inclusion of parton showers and intrinsic k⊥.

The parameter values resulting from the fit are given in the tables B.2.

Interpretation

In Pythia, where no reconstruction of the kinematics is applied, parton
shower change x according to eq. (9.5) due to the virtualities of the particle
obtained by parton shower in the initial and final state.
The more parton showers are allowed and the more virtuality can be gained
by each shower, the stronger the change in x will be. The inclusion of an
intrinsic k⊥ in the event generation, which gives some k⊥ to the partons and
thereby some virtuality right from the start, leads to a first change when the
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Monte Carlo prediction is fitted to F2-data. When additionally initial state
and final state parton shower are switched on, even more virtuality is gained
by the parton shower. Hence x is changed even more as is evident from the
observed stepwise decrease of the PDFs at low x.

The decrease of the effects due to parton shower and intrinsic k⊥ for in-
creasing Q2 becomes clear in eq. (9.5). For sufficiently high Q2, k2

⊥ * Q2

and m2 * Q2 can be neglected, which leads back to eq. (9.2).
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Figure 9.11: Gluon PDF as a function of x from k⊥-ordered Pythia, fitted with no parton
shower, no parton shower + intrinsic k⊥, initial state parton shower, final
state parton shower and the combination of initial and final state parton
shower, at Q2 = 10 GeV 2, 100 GeV 2, 1000 GeV 2 and 10000 GeV 2.



The influence of parton showers on PDFs 88

 log(x)

x
u

s
(x

,Q
2
)

 Q
2
 = 10 GeV

2

FIT PYTHIA no ps

FIT PYTHIA  int kt

FIT PYTHIA  ips

FIT PYTHIA  fps

FIT PYTHIA  ifps

0

0.2

0.4

0.6

0.8

1

1.2

1.4

-4 -3.5 -3 -2.5 -2 -1.5 -1 -0.5 0
 log(x)

x
u

s
(x

,Q
2
)

 Q
2
 = 100 GeV

2

FIT PYTHIA no ps

FIT PYTHIA  int kt

FIT PYTHIA  ips

FIT PYTHIA  fps

FIT PYTHIA  ifps

0

0.5

1

1.5

2

2.5

3

-4 -3.5 -3 -2.5 -2 -1.5 -1 -0.5 0

 log(x)

x
u

s
(x

,Q
2
)

 Q
2
 = 1000 GeV

2

FIT PYTHIA no ps

FIT PYTHIA  int kt

FIT PYTHIA  ips

FIT PYTHIA  fps

FIT PYTHIA  ifps

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

-4 -3.5 -3 -2.5 -2 -1.5 -1 -0.5 0
 log(x)

x
u

s
(x

,Q
2
)

 Q
2
 = 10000 GeV

2

FIT PYTHIA no ps

FIT PYTHIA  int kt

FIT PYTHIA  ips

FIT PYTHIA  fps

FIT PYTHIA  ifps

0

1

2

3

4

5

6

7

-4 -3.5 -3 -2.5 -2 -1.5 -1 -0.5 0

Figure 9.12: Up sea quark PDF as a function of x from k⊥-ordered Pythia, fitted with no
parton shower, no parton shower + intrinsic k⊥, initial state parton shower,
final state parton shower and the combination of initial and final state parton
shower, at Q2 = 10 GeV 2, 100 GeV 2, 1000 GeV 2 and 10000 GeV 2.
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Figure 9.13: Down sea quark PDF as a function of x from k⊥-ordered Pythia, fitted
with no parton shower, no parton shower + intrinsic k⊥, initial state parton
shower, final state parton shower and the combination of initial and final state
parton shower, at Q2 = 10 GeV 2, 100 GeV 2, 1000 GeV 2 and 10000 GeV 2.
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9.3.2 Q2-ordered parton showers

Fig. 9.14 shows the gluon, fig. 9.15 the up sea quark and fig. 9.16 the down
sea quark PDFs as a function of x resulting from the fit using Pythia for
Q2 = 10, 100, 1000 and 10000 GeV2. The parton shower were Q2-ordered.

In the x region below 10−2 the ik⊥-PDFs, ips-PDFs, fps-PDFs and ifps-
PDFs of gluons, up sea quarks and down sea quarks decrease in comparison
to the respective nops-PDFs. The order (going from lowest decrease to high-
est decrease compared to the nops-PDFs) is hereby ips-PDFs, ik⊥-PDFs,
ifps-PDFs and fps-PDFs.

In the x region above 10−2 the fps-PDF increases in comparison to the nops-
PDF of the gluons, the up sea quarks and the down sea quarks. The ifps-
PDFs increase less than the fps-PDFs in comparison to the nops-PDFs. Even
smaller is the increase of the ips-PDFs compared to the nops-PDFs.
The order (going from highest increase to lowest increase compared to the
no parton shower PDF) is fps-PDFs, ifps-PDFs and ips-PDFs for gluons, up
sea quarks and down sea quarks.

For increasing Q2, all PDFs show a clear reduction of the decrease observed
for the inclusion of parton showers and intrinsic k⊥.

The parameter values resulting from the fit are given in the tables B.3.

Interpretation

As in sec. 9.3.1 the observed changes in the PDFs can be explained by the
change of x due to the virtualities gained in the parton shower.
The decrease at low x is stronger for PDFs obtained from fits with k⊥-ordered
parton shower than for PDFs obtained from fits with Q2-ordered parton
shower. Looking at this in more detail shows, that the PDFs obtained from
fits with k⊥-ordered parton shower and from fits with Q2-ordered parton
shower show a similar decrease of the fps-PDFs. However is the decrease
for ips-PDFs in case of k⊥-ordered parton showers stronger than that for the
fps-PDFs, while it is weaker than that for the fps-PDFs in case of Q2-ordered
parton shower.
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Figure 9.14: Gluon PDF as a function of x from Q2-ordered Pythia, fitted with no parton
shower, initial state parton shower, final state parton shower and the combi-
nation of initial and final state parton shower, at Q2 = 10 GeV 2, 100 GeV 2,
1000 GeV 2 and 10000 GeV 2.
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Figure 9.15: Up sea quark PDF as a function of x from Q2-ordered Pythia, fitted with
no parton shower, initial state parton shower, final state parton shower and
the combination of initial and final state parton shower, at Q2 = 10 GeV 2,
100 GeV 2, 1000 GeV 2 and 10000 GeV 2.
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Figure 9.16: Down sea quark PDF as a function of x from Q2-ordered Pythia, fitted with
no parton shower, initial state parton shower, final state parton shower and
the combination of initial and final state parton shower, at Q2 = 10 GeV 2,
100 GeV 2, 1000 GeV 2 and 10000 GeV 2.
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9.3.3 Comparison with NLO PDF set

Fig. 9.18 shows the gluon PDF as a function of x from the LO set CTEQ6L,
the NLO set CTE6.1M (+ error band) and the ones resulting form the fit
using Pythia with a Q2-ordered and with a k⊥-ordered combination of ini-
tial and final state parton shower for Q2 = 10, 100, 1000 and 10000 GeV2.

The highest PDF values are given by the CTEQ6L set. The next lower
values are given in the lower x region by the PDF from the Pythia fit with
Q2-ordered combination of initial and final state parton shower. Even lower
are the PDF values given by the PDF obtained by the Pythia fit with k⊥-
ordered combination of initial and final state parton shower. The lowest PDF
values are given by CTEQ6.1M.
At Q2 = 10 GeV 2 the k⊥-ordered PDF lies from x ≈ 3 · 10−3 on in the error
band of CTEQ6.1M. For Q2 = 100, 1000 and 10000 GeV2 it lies completely
outside the error band at all.
The Q2-ordered PDF lies outside the error band of CTEQ6.1M for all Q2.

The higher the Q2, the closer the PDFs resulting from a fit, using a Monte
Carlo event generator, come to the CTEQ6L PDF set.

Interpretation

In an NLO matrix element the first radiative correction is - other than in
an LO matrix element - included. By that, a radiation, that can reduce the
value of x and has in an LO calculation to be included in the PDF, is now
part of the matrix element (see fig. 9.17 ). This has the effect, that in an
NLO PDF less radiations are taken into account in the PDFs and therefore
the probability for low x is smaller, than in an LO calculation. This is why
CTEQ6.1M is lower at small x than CTEQ6L.

The plots show that the PDFs resulting from a fit, using a Monte Carlo event
generator, are closer to the NLO PDF CTEQ6.1 M, than to the CTEQ6L
PDF. PDFs resulting from a fit including k⊥-ordered parton shower are closer
to the NLO PDFs, than PDFs resulting from a fit including Q2-ordered par-
ton shower do.

The observation that the PDFs resulting from a fit using a Monte Carlo
event generator come closer to the CTEQ6L PDF with increasing Q2 can
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LO

NLO

Figure 9.17: In contrast to an LO matrix element, the NLO matrix element contains the
first radiation

again be explained by eq. (9.5). The higher Q2 is compared to p2 and m2

the less significant becomes the difference between eq. (9.2) and eq. (9.5).
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Figure 9.18: Gluon PDF as a function of x from Q2- and k⊥-ordered Pythia, fit-
ted with the combination of initial and final state parton shower, com-
pared to LO PDF set CTEQ6L and NLO PDF set CTEQ5M at Q2 =
10 GeV 2, 100 GeV 2, 1000 GeV 2 and 10000 GeV 2.
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9.3.4 Comparison of χ2

In table 9.1 the values of χ2 for the comparison of F2 data with the predic-
tions from Rapgap and Pythia running with different PDF sets are listed.
For each kind of parton shower and intrinsic k⊥ respectively, χ2 is given for
using the PDF set CTEQ6L and the PDF set obtained by the fits.
In all cases an improvement of χ2, and therefore the data description, re-
sulted from a fit.

A slight improvement of χ2 can be observed in Rapgap when the PDFs
resulting from a fit are used instead of CTEQ6L. The improvement is in all
cases comparable and the χ2 for the fitted PDFs is in all four cases a factor
of approx. 1.2-1.8 lower than the χ2 for CTEQ6L.

In the case of Pythia, there is a striking difference between the χ2 val-
ues for using CTEQ6L and the PDF resulting from the fit, when parton
shower are switched on.
In the k⊥-ordered case, with the combination of initial and final state parton
shower, the χ2 value for using the PDF from the fit is approx. a factor of 12
lower than the χ2 value for using CTEQ6L. This factor is approx. 7 when the
combination of initial and final state parton shower is used in Pythia with
Q2-ordered parton shower and only approx. 1.3 when this kind of parton
shower is used in Rapgap.
This indicates that the inclusion of parton shower in a Monte Carlo event
generator like Pythia requires modified PDFs to describe data properly.
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Chapter 10

Conclusions and Outlook

The parton showers, added in Monte Carlo event generators, change nor-
mally the x distribution of the hard interacting parton and therefore the
PDFs. Only the Monte Carlo event generators Rapgap and Lepto provide
an exception.
The influence of parton shower on the PDFs was investigated in this work.
Predictions from the Monte Carlo event generators Rapgap and Pythia

were fitted to F2 data as measured at HERA. The gluon and sea quark
PDFs were determined.
Three different scenarios were investigated: PDFs were fitted using Rapgap

and Pythia without parton shower, PDFs were fitted using Rapgap with
parton shower and PDFs were fitted using Pythia with a) k⊥-ordered and
b) Q2-ordered parton shower.
The PDFs resulting from the fits were compared with PDF sets, obtained by
other numerical methods.

The PDFs obtained using Rapgap and Pythia without parton shower agree
reasonably well with the reference PDFs. This shows the consistency of the
method, since Monte Carlo event generators without parton showers and the
semi-analytical methods used to determine the reference set proceed similar.

Using Rapgap with parton shower for the fit leads to PDFs that again
agree with the reference PDFs. This is consistent, since Rapgap does not
change the x distribution of the hard interacting parton and Q2 when parton
shower are used and thus there is no influence on the PDFs. This thesis
shows for the first time, that Rapgap works properly in this aspect.

The PDFs obtained using Pythia including k⊥-ordered parton shower show
significant changes of the resulting PDFs compared to the reference PDFs.
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The inclusion of parton shower in the generation process leads to a decrease
of the resulting PDFs in the lower x region and an increase in the higher x
region.
The PDFs obtained using Pythia including Q2-ordered parton shower show
similar but smaller effects.

It is interesting to note that after including parton shower, the PDFs ob-
tained by a fit using a Monte Carlo event generator become more similar to
the NLO PDFs.

We conclude: that the method of using Monte Carlo event generators in
fits to determine PDFs can be applied successfully, and that including par-
ton shower lead in general to significant changes of the PDFs.
A modified PDF set for Pythia (PDF4MC) was determined in this thesis.

After this proof of concept, one can now extend this study to include the
latest combined HERA data on inclusive structure functions, to obtain a
precise set of PDF4MC.
Since the details of the parton shower treatment are important, this study
has to be extended to determine PDF4MC also for Herwig and other Monte
Carlo event generators.

The PDF4MC will be a important input to the consistent physics simulation
at all high energy colliders and especially at the LHC.
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[21] Peter Schmüser. Feynman-Graphen und Eichtheorien für Experimental-
physiker. Springer, 1995.

[22] Torbjorn Sjostrand, Stephen Mrenna, and Peter Skands. PYTHIA 6.4,
Physics and Manual.



103 Bibliography

[23] D. Stump et al. Uncertainties of predictions from parton distribution
functions. 1. The Lagrange multiplier method. Phys. Rev., D65:014012,
2002.

[24] Deniz Sunar. Measurement of K∗±(892) Production in Deep Inelastic ep
Scattering with the H1 Detector at HERA. PhD thesis, UNIVERSITEIT
ANTWERPEN, 2009.



Bibliography 104



Appendix A

From the solution of the dirac

equation to the two-body cross

section

A.1 Perturbative solution of the Dirac equa-

tion

The dirac equation in an electromagnetic field is:

(iγµ∂µ − m)ψ(x) = −eγµAµ(x)ψ(x) (A.1)

with the the γ-matrices

γ0 =







1 0 0 0
0 1 0 0
0 0 −1 0
0 0 0 −1







, γ1 =







0 0 0 1
0 0 1 0
0 −1 0 0
−1 0 0 0







γ2 =







0 0 0 −i
0 0 i 0
0 i 0 0
−i 0 0 0







, γ3 =







0 0 1 0
0 0 0 −1
−1 0 0 0
0 1 0 0







,

the covariant derivative

∂µ = (
∂

∂t
,−

∂

∂x
,−

∂

∂y
,−

∂

∂z
) = (

∂

∂t
,−'∇), (A.2)

and the four vector potential

Aµ = (Φ, 'A) (A.3)



From the solution of the dirac equation to the two-body cross

section 106

A derivation of the Dirac equation and this specific form of it can be found
in [21] or [13].
To focus now on the solution of (A.1) using a Greens function one uses the
ansatz:

(iγµ∂µ − m)K(x, x′) = δ4(x − x′) (A.4)

where K(x, x′) is the desired Greens function. It is a 4x4 matrix and depends
only on the difference (x−x′). Once K(x, x′) is found, a solution of (A.1) is:

ψ(x) = −e

∫

d4x′ K(x − x′)γµAµ(x′)ψ(x′) (A.5)

since

(iγµ∂µ − m)ψ(x) = −e

∫

d4x′ (iγµ∂µ − m)K(x − x′)
︸ ︷︷ ︸

δ4(x−x′)

γµAµ(x
′)ψ(x′)

= −eγµAµ(x)ψ(x)

(A.6)

Any solution of the homogenous Dirac equation (that is a plane wave) can
then be added

(iγµ∂µ − m)Φ(x) = 0.

to obtain in the end an integral equation:

ψ(x) = Φ(x) − e

∫

d4x′ K(x − x′)γµAµ(x′)ψ(x′). (A.7)

In contrast to (A.1) this equation has the advantage to be solvable iteratively
by an expansion in the coupling constant αe (this is justified by the smallness
of αe ≈ 1

137). In this sense the second term of (A.7) is treated as a small
perturbation. In the 0th-order approximation one can then write:

ψ(0)(x) = Φ(x). (A.8)

Inserting this into (A.7) then gives then the 1st-order term

ψ(1)(x) = Φ(x) − e

∫

d4x′ K(x − x′)γµAµ(x′)ψ(0)(x′)

= Φ(x) − e

∫

d4x′ K(x − x′)γµAµ(x′)Φ(x′)
(A.9)

Inserting this term again into (A.7) then gives the 2nd-order term and so on.
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A.2 Electron propagator

The calculation of K(x− x′) is shown in ([21]) with two results. Firstly that
the Fourier transform of K(x − x′) is the electron propagator and secondly
that the time evolution of a solution of the Dirac equation is given by:

Φ(x) = Φ(t, 'x) = i

∫

d3x′ K(x − x′)γ0Φ(t′, 'x′)

Φ̄(x′) = Φ̄(t′, 'x′) = i

∫

d3x Φ̄(t, 'x)γ0K(x − x′)

= i

∫

d3x Φ†(t, 'x)K(x − x′)

(A.10)

for t′ < t and with Φ̄ := Φ†γ0.

A.3 Photon propagator

In the fermion-fermion or fermion-hadron scattering process the electro-
magnetic potential Aµ is present. Aµ can be obtained by solving the wave
equation:

!Aµ(x) =
( ∂2

∂t2
−∇2

)

Aµ(x) = ejµ(x) (A.11)

where ejµ(x) = eψ̄f (x)γµψi(x) is the four-vector current produced by the
target and Aµ satifies the Lorentz condition ∂µAµ = 0.
One solves this equation again by using a Greens function satisfying:

!Dµν(x − x′) = gµνδ4(x − x′). (A.12)

Then

Aµ(x) = e

∫

d4x′Dµν(x − x′)jν(x
′) (A.13)

To find Dµν(x−x′) one calculates its fourier transform and applies the Laplace
operator to it.

!Dµν(x − x′) = !

∫
d4q

(2π)4
D̃µν(q)e−iq(x−x′)

=

∫
d4q

(2π)4
D̃µν(q)(−q2)e−iq(x−x′) !

= gµνδ4(x − x′)

(A.14)

Recalling that δ4(x − x′) =
∫

d4q
(2π)4 e

−iq(x−x′) yields:

D̃µν(q) =
−gµν

q2 + iε
(A.15)
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The ε is added to avoid divergencies and can be set to zero later. D̃µν(q) is
the photon propagator.

A.4 Transition matrix

In an experimental setup as shown in fig. A.1 the incoming particle is de-
scribed by a wave packet of momentum 'pi.

θ

"pf

t = t1 t = t′

t = t2

potential

scattered wave

"pi

detector

Figure A.1: Scattering of a wave packet from a potential

The wave packet can be replaced by a plane wave Φi, which is allowed, as-
suming that the electromagnetic potential is in a limited time-space-volume.
At time t = t1 the particle has yet to experience a potential. At time t = t′ it
reaches the target and a spherical outgoing scattered wave ψscat is produced,
which reaches the detector at t = t2.
The detector is located at an angle θ to the trajectory of the incoming par-
ticle and covers a piece of solid angle ∆Ω. Therefore only the part of the
scattered wave in the direction of the detector (parallel to momentum vector
'pf) is measured. Mathematically this means, that the scattered wave has to
be expanded in plane waves and projeced onto the wave Φf with momentum
'pf .
To calculate a matrix element for the transition Φi → Φf the transition
matrix S is defined as:

ψscat = S · Φi. (A.16)

The transition Φi → Φf is then given by

Sif = 〈Φf |S|Φi〉 =

∫

d3x2Φ
†
fSΦi =

∫

d3x2Φ
†
fψscat (A.17)



109 A.5 Fermion-fermion scattering

The 1st-order scattered wave can be rewritten according to (A.9) and inserted
in (A.17), to give the 1st-order transition matrix:

S(1)
if = −e

∫

d4x′
∫

d3x2Φ
†
f (x2)K(x2 − x′)

︸ ︷︷ ︸

(A.10)⇒Φ̄f (x′)

γµAµ(x
′)Φi(x

′). (A.18)

This leads to the important result:

S(1)
if = ie

∫

d4xΦ̄f (x
′)γµAµ(x′)Φi(x

′) (A.19)

A.5 Fermion-fermion scattering

One is now in the position to calculate the matrix element for a fermion-
fermion transition (fig. A.2) which will be used extensively later. With

p1

p2 p4

p3

γ

Figure A.2: Fermion-fermion scattering

ψi(x) = u(p2)e
−ip2x and ψf (x ) = u(p4 )e−ip4 x

one gets
ejµ(x) = eū(p4)γ

µu(p2)e
i(p4−p2)x (A.20)

This and the photon propagator (A.15) are now inserted into (A.13) to yield:

Aµ(x) = e

∫

d4x′
∫

d4q

(2π)4

−gµν

q2 + iε
ei(p4−p2+q)x′

e−iqxū(p4)γνu(p2) (A.21)

where
q2 = (p3 − p1)

2

is the photon’s four momentum.
Integrating over x′ gives a deltafunction δ4(p4 − p2 + q). To then obtain the
matrix element we have to calculate (A.19) using

Φi(x) = u(p1)e
−ip1x and Φf (x ) = u(p3 )e−ip3 x .
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The x-integration in (A.19) gives again a deltafunction (2π)4δ4(p3 − p1 − q)
resulting in:

S(1)
if =ie2

∫

d4qδ4(p4 − p2 + q)δ4(p3 − p1 − q)(2π)4

· ū(p3)γ
µu(p1)

−gµν

q2 + iε
ū(p4)γνu(p2)

(A.22)

This is the matrix element for fermion-fermion scattering (from now on I
will leave the superscript ”(1)”). One can directly write it down, using the
Feynman rules (see sec. 2.1).
Integrating over the photons four momentum q then yields:

Sfi = M · (2π)4δ4(p3 + p4 − p1 − p2) (A.23)

with

M := −ie2ū(p3)γµu(p1) ·
1

q2
· ū(p4)γ

µu(p2). (A.24)

A.6 Two-body cross section

The differential cross section of a two-body scattering process is calculated
in the center of mass system (CMS). Then:

p1 = (E1, 'p), p2 = (E2,−'p), p3 = (E3, 'p′), p4 = (E4,−'p′)

and

s = (p1 + p2)
2 (A.25)

Starting with eq. (2.6) an integration over all quantities that are not observed
has to be carried out. For the p4-dependent part in dLips the delta function
can be used
∫

d3p4δ
3('p3 + 'p4 −'p1 − 'p2

︸ ︷︷ ︸

=0 in CMS

)
δ(E3 + E4 − E1 − E2)

E4
=

δ(E3 + E4 − E1 − E2)

E4

where now

E3 =
√

|'p′|2 + m2
3, E4 =

√

|'p′|2 + m2
4

This can be used to rewrite d3p3

E3
in dLips. Since now dE3

dE4
= 1

2
1

E3

d|-p′|2
dE4

and

|'p′|2 = E2
4 −m2

4 it is clear that E3dE3 = E4dE4. By defining s′ = (E3 + E4)2
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one can write dE3 = E4√
s′
d
√

s′. Using further spherical coordinates one can
write:

d3p3 = |'p′|2d|'p′|dΩ = |'p′|E3dE3dΩ ⇒
d3p3

E3
= |'p′|dE3dΩ = |'p′|E4

d
√

s′√
s′

dΩ

which then gives:

dLips = (2π)4δ(
√

s −
√

s′)
1

4(2π)6

|'p′|√
s′

d
√

s′dΩ (A.26)

Using eq. (2.4) the flux factor in the CMS takes the form

flux factor = 4(|'p|E1 + |'p|E2) = 4|'p|
√

s (A.27)

The integrated cross section can then be written

dσ = |M|2
∫

dLips

flux factor

=

∫
1

4
√

s′|'p|
|M|2(2π)4δ(

√
s −

√
s′)

1

4(2π)6

|'p′|√
s′

d
√

s′dΩ

Integrating over
√

s′ then produces the differential cross section in the CMS:

dσ

dΩ
=

1

(8π)2s

|'p′|
|'p|

|M|2 (A.28)

By assuming massless particles (which gives p2
1 = p2

2 = 0 and therefore
|'p|2 = E2

1 = E2
2) one gets

s = (p1 + p2)
2 = 4|'p|2. (A.29)

Using this and

Q2 = −q2

⇒ dQ2 = −dq2 = 2|'p||'p′|d(−cosθ) =
|'p||'p′|

π
dΩ

one can rewrite A.28 as

dσ

dQ2
=

1

16πs2
|M|2 (A.30)
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parameter fitresult
Ag 3.2839
Bg -0.067018
Cg 7.3155
Dg 4.4233
Eg 1.5341
Fg -1.5565

Aū+d̄ 0.11115
Bū+d̄ -0.25538
Cū+d̄ 8.8384
Dū+d̄ 2.6179
Eū+d̄ 3.2633
Fū+d̄ 0.61680

(a)

parameter fitresult
Ag 3.4889
Bg -0.046194
Cg 7.4079
Dg 4.5011
Eg 1.5927
Fg -1.1885

Aū+d̄ 0.13077
Bū+d̄ -0.23656
Cū+d̄ 9.4767
Dū+d̄ 2.6531
Eū+d̄ 3.2818
Fū+d̄ 0.34017

(b)

parameter fitresult
Ag 3.3832
Bg -0.057657
Cg 7.3339
Dg 4.4615
Eg 1.5707
Fg -1.3853

Aū+d̄ 0.13093
Bū+d̄ -0.23633
Cū+d̄ 8.8443
Dū+d̄ 2.8067
Eū+d̄ 3.2807
Fū+d̄ 0.54130

(c)

parameter fitresult
Ag 3.3171
Bg -0.060359
Cg 7.3311
Dg 4.4401
Eg 1.5456
Fg -1.5331

Aū+d̄ 0.11856
Bū+d̄ -0.25159
Cū+d̄ 8.8692
Dū+d̄ 2.6820
Eū+d̄ 3.2544
Fū+d̄ 0.61406

(d)

Table B.1: Parameters resulting from Rapgap-fit to F2 data with no parton shower
(B.1a), initial state parton shower (B.1b), final state parton shower (B.1c),
combination of initial and final state parton shower (B.1d)

.
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parameter fitresult
Ag 3.3598
Bg -0.064154
Cg 7.3119
Dg 4.4325
Eg 1.5201
Fg -1.5090

Aū+d̄ 0.12249
Bū+d̄ -0.24418
Cū+d̄ 8.9656
Dū+d̄ 2.6463
Eū+d̄ 3.2626
Fū+d̄ 0.61009

(a)

parameter fitresult
Ag 3.1576
Bg -0.054406
Cg 7.3274
Dg 4.4414
Eg 1.5526
Fg -1.1929

Aū+d̄ 0.14136
Bū+d̄ -0.22473
Cū+d̄ 12.665
Dū+d̄ 3.1397
Eū+d̄ 3.3422
Fū+d̄ 0.57039

(b)

parameter fitresult
Ag 2.7635
Bg -0.032760
Cg 4.4053
Dg 7.2568
Eg 1.7199
Fg -1.4004

Aū+d̄ 0.11551
Bū+d̄ -0.25040
Cū+d̄ 8.9459
Dū+d̄ 2.6658
Eū+d̄ 3.2631
Fū+d̄ 0.61747

(c)

parameter fitresult
Ag 3.1556
Bg -0.017320
Cg 7.9125
Dg 8.2652
Eg 2.0625
Fg -1.1173

Aū+d̄ 0.20710
Bū+d̄ -0.16073
Cū+d̄ 13.361
Dū+d̄ 3.4031
Eū+d̄ 3.5453
Fū+d̄ 0.89884

(d)

parameter fitresult
Ag 1.6289
Bg -0.0036833
Cg 7.9146
Dg 13.882
Eg 2.0677
Fg -1.1393

Aū+d̄ 0.15044
Bū+d̄ -0.20945
Cū+d̄ 9.2984
Dū+d̄ 7.8029
Eū+d̄ 3.3656
Fū+d̄ 0.59902

(e)

Table B.2: Parameters resulting from Pythia-fit to F2 data with k⊥-ordered no parton
shower (B.2a), intrinsic k⊥ (B.2b), initial state parton shower (B.2c), final
state parton shower (B.2d), combination of initial and final state parton shower
(B.2e)
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parameter fitresult
Ag 3.3547
Bg -0.060047
Cg 7.3303
Dg 4.4328
Eg 1.5458
Fg -1.4425

Aū+d̄ 0.11745
Bū+d̄ -0.24792
Cū+d̄ 8.8514
Dū+d̄ 2.6425
Eū+d̄ 3.2720
Fū+d̄ 0.62133

(a)

parameter fitresult
Ag 3.3992
Bg -0.043116
Cg 7.7987
Dg 4.7065
Eg 0.91859
Fg -1.3448

Aū+d̄ 0.11615
Bū+d̄ -0.24348
Cū+d̄ 8.8760
Dū+d̄ 2.6438
Eū+d̄ 3.2759
Fū+d̄ 0.57173

(b)

parameter fitresult
Ag 3.1527
Bg -0.019139
Cg 7.8689
Dg 8.4510
Eg 2.3052
Fg -0.94060

Aū+d̄ 0.16136
Bū+d̄ -0.19058
Cū+d̄ 11.716
Dū+d̄ 9.0130
Eū+d̄ 3.4104
Fū+d̄ 0.79989

(c)

parameter fitresult
Ag 3.5461
Bg -0.0041712
Cg 7.5625
Dg 6.9383
Eg 1.8212
Fg -1.1046

Aū+d̄ 0.16237
Bū+d̄ -0.18806
Cū+d̄ 12.529
Dū+d̄ 5.5388
Eū+d̄ 3.5246
Fū+d̄ 0.99711

(d)

Table B.3: Parameters resulting from Pythia-fit to F2 data with Q2-ordered no parton
shower (B.3a), initial state parton shower (B.3b), final state parton shower
(B.3c), combination of initial and final state parton shower (B.3d)

.
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Geduld und seine Unterstützung bei dieser Arbeit. Prof. Fumagalli und Prof.
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