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Abstract

A Monte Carlo at next-to-leading order (MC@NLO) has been constructed for the pro-
duction of heavy quark flavours in photoproduction. As such, it is the first Monte Carlo
event generator with next-to-leading order (NLO) accuracy for a process in lepton hadron
scattering.

In order to construct such an MC@NLO, the matrix element for the process has to be
calculated at NLO and then be matched with a parton shower. When doing this, it is
important that none of the parton configurations produced are doubly counted.

In this thesis, the concept of a Monte Carlo event generator will be explained, with em-
phasis on the HERWIG parton shower. Also, different techniques of calculating matrix
elements at NLO accuracy will be explained. It will then be shown how the NLO calcu-
lation can be matched with the HERWIG parton shower in an MC@NLO without double
counting, producing unweighted events at NLO-accuracy.

Many comparisons are made between the MC@NLO here constructed, the HERWIG
Monte Carlo and the FMNR NLO calculation. Also many comparisons are made to
HERA data from the H1 and ZEUS experiments. It is shown that all HERA data with
heavy quarks produced in photoproduction can be described by the MC@NLO program
constructed in this thesis.

Kurzfassung

Es wurde ein Monte-Carlo-Ereignisgenerator in nächstführender Ordnung (MC@NLO)
für die Photoproduktion schwerer Quarks erstellt. Als solches ist es der erste Ereignisgen-
erator für Lepton-Hadron-Streuung in nächstführender Ordnung (next-to-leading order,
NLO). Für die Konstruktion eines MC@NLO muss das Matrixelement für die entsprechen-
den Prozesse zur NLO berechnet werden und mit Partonschauer in Übereinstimmung
gebracht werden. Dabei muss darauf geachtet werden, dass keine Partonkonfiguration
doppelt gezählt wird.

In dieser Arbeit wird das Konzept eines MC@NLO dargestellt, wobei der Schwerpunkt
auf dem Partonschauer des Ereignisgenerators HERWIG liegt. Verschiedene Techniken
für die Berechnung von Matrixelementen in nächstührender Ordnung werden erklärt. Da-
raufhin wird gezeigt, wie die NLO-Berechnungen mit dem Partonschauer aus HERWIG
in übereinstimmung gebracht werden können, ohne dass Partonkonfigurationen doppelt
gezählt werden. Daraus resultieren ungewichtete Ereignisse mit NLO-Präzision.

Vergleiche zwischen dem in dieser Arbeit konstruierten MC@NLO, dem Ereignisgenera-
tor HERWIG und der NLO Berechnung FMNR werden präsentiert. Ein Vergleich mit
Schwerquarkdaten der HERA-Experimente H1 und ZEUS zeigt, dass dieser MC@NLO
die Messungen in Photoproduktion beschreiben kann.
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Chapter 1

Introduction to Quantum Chromo

Dynamics

Figure 1.1: Question: What is a proton made of? Answer: It depends on how you look
at it.

At the particle accelerator HERA, located at the DESY site in Hamburg, protons are
made to collide with electrons at high energies. The central question to be answered
measuring these collisions is: What is a proton? To answer this question, a detailed
knowledge of the theory of the forces involved is needed. But it can be useful to first have
a picture of what goes on in the interaction, to have an intuitive understanding of what
a proton is.

It is known that the proton gets many of its characteristics from three particles, two
up-quarks and one down-quark. These are called valence quarks. The up-quarks have an
electric charge of +2/3 and the down-quark, of −1/3. From these three quarks the proton
gets for example its electric charge of +1. But the quarks are held together in the proton
by the strong force, and the strong force field consists of virtual gluons, which means that
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Figure 1.2: An example of a virtual partonic chain in a proton. A valence quark emits
a virtual gluon and reabsorbs it later. This virtual gluon splits into a virtual gluon pair.
One of the gluons in this pair splits into a virtual sea-quark pair. The sea-quark pair
is then recombined, as is the gluon pair. The remainder of the virtual chain is then
reabsorbed by the valence quark.

the proton also contains gluons.

Measurements show that approximately half of the proton’s momentum is carried by
gluons. The proton may therefore be viewed as the three valence quarks surrounded by a
cloud of virtual gluons. That the gluons are virtual means they borrow the energy for their
existence in accordance with Heisenberg’s uncertainty principle. The time a gluon can
exist in this way is proportional to its wavelength. A virtual gluon with a large wavelength
may therefore exist long enough to split into a pair of other virtual gluons with shorter
wavelengths. These gluons may in their turn split into yet other pairs of gluons with even
shorter wavelengths. This means that however large or small a region one looks at inside
the proton, one will always find gluons within that region. In this sense, the gluon field
is self-similar at different scales. But there is a non-linear factor that makes the proton
loose this self similarity: the gluons can split up into quark anti-quark pairs as well as
into gluons. These quarks and anti-quarks are called sea quarks. The energy needed to
create such a pair depends on the quark mass, and the masses are extremely different for
different quarks. This means that only gluons with wavelengths shorter than twice the
seaquark mass can split up into a sea quark-antiquark pair. The seaquarks, gluons and
valence quarks go by the common name of partons.

Each given gluon or sea quark belongs in this way to a parton chain of radiations. They
all are radiated by a parton with larger wavelength which in its turn was radiated by a
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Figure 1.3: When a photon interacts with a quark in the virtual parton chain at a time
t0 in fig. 1.2, this chain may become real. If the quark gets a hard enough kick by the
photon, the whole chain may be kicked out of the proton. On the way out, the now real
quark, antiquark and gluon will radiate bremsstrahlung resulting in three jets. In this
picture, the radiations are automatically ordered in virtuality V , such that V1 < V2 < V3.

parton of even larger wavelength up until the valence quark. Each parton also belongs to
a chain of other partons of ever smaller wavelengths. At each moment many such parton
chains exists in the proton, and they keep fluctuating in and out of existence. In fig. 1.2,
one example of such a parton chain is illustrated.

The next question is: how can one look into a proton and see these parton chains? To
do this, one needs a probe which can interact with the partons. At HERA, electrons
were made to collide with the proton, which then interacted electro-magnetically via the
exchange of a virtual photon, which acts as a probe. This photon probe can only inter-
act with partons which carry electric charge, and will therefore only interact with either
valence or sea-quarks. However, in order for the photon to resolve the electric charge of
a quark or an antiquark, its wavelength need to be small enough to resolve the quark-
antiquark pair. If the distance between the quark and its antiquark is much smaller than
the photon’s wavelength, the charge of the antiquark will screen the charge of the quark,
which means the photon cannot interact with any of them. Therefore, the smaller the
wavelength of the photon, the more partons it can resolve. If the photon interacts with
a virtual sea-quark, this sea-quark can become real. The seaquark comes from a chain of
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radiations of partons at larger scales, which means that this whole chain becomes real,
while all the other possible chains of radiations do not contribute to the interaction. This
can be compared with the collapse of the wave function in classical quantum mechanics,
where out of all possible outcomes of a measurement, only one eigenstate of the mea-
surement is realised. In fig. 1.3, the chain in fig. 1.2 becomes real by interacting with a
photon, producing three real partons.

If the struck quark gains enough energy by the probe it will be kicked out of the proton,
together with its parton chain, resulting in a cascade of partons. It will still be connected
to the left-behind proton remnant by the strong force, and while decelerating in this
force-field, it will radiate gluon bremsstrahlung, as will the partons contained in the
parton chain. The struck quark and all the radiated partons cannot exist as free particle
and they will become confined in hadrons, which may then be measured by the detectors
surrounding the collision points in the accelerator.

The virtual photon may also split up into a quark anti-quark pair, which may also radiate
gluons, hence sometimes, when one wants to probe the proton with a virtual photon, one
ends up probing the photon as well 1. Also, the proton structure may be much more
complicated than has been described here. In fig. 1.4 one example of a more complicated
structure is shown.

This is the principal behind all high energy measurements in particle accelerators: the
more energetic the probe, the closer one looks and the greater the structure revealed, a
structure manifested in the different kinds of hadrons reaching the detectors.

Structure of the Theses

The goal of this chapter is to give a mathematical description of the proton structure in
the pictures shown in figures 1.2 and 1.3, which goes by the name of DGLAP-evolution.
The techniques of Monte Carlo integration and parton showers, used to solve the emerging
equations and to simulate the events, will be described in chapter 2. The following two
chapters will describe a way to improve these calculations, first with next-to-leading order
calculations described in chapter 3 and then how that is combined with parton showers in
an MC@NLO in chapter 4. The construction of such an MC@NLO is the purpose of this
thesis. In chapter 5, the results from the new MC@NLO are shown at the parton-level
and in chapter 6, comparisons are made with HERA measurements.

To give a mathematical description of the proton, the starting point will be classical
mechanics.

1This may be compared to the concept of Wittgenstein’s ruler in philosophy: if you want to measure
a table with a ruler your result will depend on how well you know the length of the ruler. If the length
of the ruler is unknown you will measure the length of the ruler with the table as much as vice versa
(or rather, when a student of physics tries to explain concepts in philosophy he risks showing his lack of
knowledge in the subject as much as explaining the concept).
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Figure 1.4: An example of a more complicated proton structure than that shown in
fig. 1.2.

Hamilton’s Principle of Least Action

The basis for all modern physics are derived from classical mechanics. In classical physics
Hamilton’s principle states that the motion of a system between times t1 and t2 is described
as the minimum of the action

S =

∫ t2

t1

L(q1, ..., qn, q̇1, ..., q̇n, t)dt, (1.1)

where L is called the Lagrangian of the system, qi are the generalized coordinates and q̇i

their time derivative. The Lagrangian is the difference between the kinetic and potential
energy of the system

L = T − V. (1.2)

Finding an extreme to the action is equivalent to solving the following equations called
the Euler-Lagrange equations

n
∑

i=1

(

d

dt

∂L

∂q̇i
− ∂L

∂qi

)

= 0. (1.3)

In classical mechanics the equations of motions for any system can in principle be obtained
by solving these equations. In reality most systems are too complicated, so even if the
equations by which the system is described are known, there is no possibility to solve those
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equations. A famous historical example is the three-body problem, which is a system with
three bodies interacting with a 1/r force. The problem is still not analytically solved.

Here a classical system is defined as being both non-relativistic and non-quantum mechan-
ical. But Hamilton’s principle is applicable far beyond these classical limits. In special
relativity the action becomes

S = −
∫

C

Ldτ = −mc2
∫ t2

t1

√

1 − v2

c2
dt, (1.4)

for a single free particle with mass m. The speed of light c will from now on be set equal
to 1. This action gives the Euler-Lagrange equation

0 = γmv̇ = γmẍ, (1.5)

where γ = 1/
√

1 − v2. This tells us that a free particle moves in straight lines in space-
time. Also in General Relativity, Einsteins theory of gravity, the main equations can be
derived using Hamilton’s principle, with the Einstein-Hilbert action.

An equivalent formulation of action is to use Lagrangian densities L, integrated over
space-time, instead of Lagrangians, such that

S =

∫ t2

t1

Ldt =

∫

V

Ld4x, (1.6)

where x is a space-time four-vector. In the following the density L will also be referred to
as the Lagrangian. In quantum mechanics the action gets a more significant role, since
the particles are now described by wave functions describing the probability distribution
in space-time to find the particle (or the system of particles) in a specific state. Here, the
wave function Ψ is given directly from the action as follows

Ψ(x) = A(x)ei S
~ , (1.7)

where A(x) is a normalization such that the total probability is equal to unity, and ~ is
Dirac’s constant, which is Planck’s constant h divided by 2π. ~ can be interpreted in
quantum mechanics as the unit action, since it has the same units and dimensionality as
the action. In the following ~ will be set to unity.

Example: Classical Electro Dynamics

Maxwell’s theory of electro magnetics is classical in the sense that it is non-quantum
mechanical. It is, however, relativistic. The Maxwell equations read:

∇ · E = ρ (Gauss′s Law) (1.8)

∇ · B = 0 (No magnetic monopoles) (1.9)

∇× B = J +
∂E

∂t
(Modified Ampere′s law) (1.10)

∇× E = −∂B
∂t

(Faraday′s and Lenz′s law) (1.11)
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Here E is the electric field, B the magnetic field, ρ the charge density and J the charge
current.

This can be reformulated into a Lagrangian theory. Define a vector potential A and a
scalar potential φ. These can be combined into a four-vector:

Aµ = (φ,A). (1.12)

Also the current and charge density can be combined into a four-vector:

Jµ = (ρ,J) (1.13)

A Lagrangian may then be defined as

LEM =
1

2
(E2 − B2) − ρφ+ J · A, (1.14)

the Euler-Lagrange equations coming from this Lagrangian then gives back the Maxwell’s
equations. Defining an antisymmetric tensor:

F µν = ∂µAν − ∂νAµ, (1.15)

the Lagrangian can be rewritten as

LEM = −1

4
FµνF

µν − JµA
µ. (1.16)

Here the first term on the r.h.s. is the kinetic energy of the electro-magnetic field, while
the second term contains the interactions and is hence the potential energy. In order to
turn this into a modern quantum field theory of electro-magnetism, the field has to be
quantized.

Lagrangians and Gauge Symmetries

In relativistic quantum mechanics, the Lagrangian density for a free fermion field is de-
scribed by the Dirac Lagrangian

L0 = ψ†(x)(iγσ∂σ −m)ψ(x), (1.17)

where ψ is the fermion field. There is a freedom in the solutions of the resulting kinematic
equations in the choice of phase in the field, i.e. one can transform the field thus:

ψ(x) → ψ′(x) = exp(iQθ)ψ(x) (1.18)

Since only the absolute square of the function ψ(x) bares any physical meaning, this
transformation, which is called a global gauge transformation, must leave all equations
unchanged. However, if one allows the phase transformation to depend on the space-time
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coordinate the free Lagrangian is no longer invariant. The phase redefinition θ → θ(x),
gives by use of the chain rule:

∂µψ(x) → exp(iQθ(x))(∂µ + iQ∂µθ(x))ψ(x). (1.19)

Therefore, if one phase convention has been chosen by an observer at one point in space-
time, the same convention needs to be taken by all observers in any space-time point in
order for them to agree on any observation. This does not seem very natural. The “Gauge
Principle” states that the local gauge transformation should leave the theory, as defined
by the Lagrangian, invariant. This is only possible if one adds some additional piece to
the Lagrangian, transforming it in such a way as to cancel the ∂µθ(x) term in eq. (1.19).
This can be obtained by introducing a new field Aµ(x) which transforms as:

Aµ → A′
µ(x) = Aµ(x) +

1

e
∂µθ (1.20)

and adding it to the differential operator and turning it into a so called covariant derivative
∂µ → Dµ, where

Dµψ(x) = [∂µ − ieQAµ(x)]ψ(x). (1.21)

The covariant derivative transforms like the field itself:

Dµψ(x) → (Dµψ)′(x) = exp [iQθ(x)]Dµψ(x). (1.22)

The Lagrangian then becomes

L = iψ†(x)γµDµψ(x) −mψ†(x)ψ(x) = L0 + eQAµ(x)ψ†(x)γµψ(x) (1.23)

and is unchanged under local gauge transformations. The local gauge transformation can
be described as transformation between elements in the group U(1). Just by invoking the
gauge principle, there is now a term in the Lagrangian describing interactions between
the fermion fields and the gauge field Aµ, which is a spin-1 field. The interaction term is
nothing but the QED vertex and the electromagnetic charge eQ is completely arbitrary,
and works as a parameter in the theory which needs to be measured. In order for the field
Aµ to be a real propagating field, one also needs to add a gauge invariant kinetic term to
the Lagrangian:

LKin = −1

4
FµνF

µν (1.24)

where Fµν is defined in eq. (1.15). It is easy to show that a mass-term for the gauge
field 1

2
m2AµAµ would violate gauge invariance and is therefore forbidden. Therefore the

photon field is predicted to be massless. The symmetry U(1) here described has been
extremely successful in describing electro-magnetic phenomena. However it turns out not
to be sufficient to describe any phenomena produced by the weak and strong forces. Those
forces turns out to be gauge invariant under SU(2) and SU(3) symmetries respectively.



1.1 Quantum Chromo Dynamics 9

The forces describing all interactions in the standard model are thus symmetric under the
symmetry group:

U(1) × SU(2) × SU(3) (1.25)

giving the following covariant derivative:

Dµ = δµ − ig1
Y

2
Aµ − ig2

τi
2
W µ

i − ig3
λa

2
Gµ

a . (1.26)

Here Aµ is the electro magnetic (photon) field, Y is the U(1) generator and is just a
number. τi are the Pauli matrices generating SU(2) and Wi are the three weak boson
fields (the W+, W− and Z). Similarly λa are the 8 matrices generating SU(3) and Ga are
the 8 gluon fields. Substituting this covariant derivative into eq. (1.17) gives the standard
model Lagrangian with all the interaction particles, the bosons.

What is still missing in the standard model are the fermions, which are the three families
of leptons:

(

νe

e

)(

νµ

µ

)(

ντ

τ

)

(1.27)

and quarks:
(

u
d

)(

c
s

)(

t
b

)

(1.28)

That is the whole standard model in a nut-shell (except for the Higgs mechanism). In the
theory there are 15 masses and three coupling constants which all have to be measured
(as well as some parameters related to the Higgs mechanism and CP-violation etc.).

1.1 Quantum Chromo Dynamics

For probing the proton, the SU(3) part of the Lagrangian is the most important. This is
the Quantum Chromo Dynamics part of the theory. The QCD effective Lagrangian can
be separated into three part:

LQCD
eff

(

ψf (x), ψ̄f (x), A(x), c(x), c̄(x) : g,mf

)

= Lclassical + Lgauge fixing + Lghost. (1.29)

It is a function of three kinds of fields: fermion quark fields ψ(x), boson gluon fields
A(x) and ghost fields c(x). It also has a dependence upon two kinds of parameters: the
strong coupling g and the quark masses mf , where f label a distinct quark field (flavour).
The classical density Lclassical is invariant under local SU(3) gauge transformations. The
classical Lagrangian is:

Lclassical =
∑

f

ψ̄f (iD[A] −mf )ψf − 1

4
FA

αβF
αβ
A (1.30)
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where

FA
αβ =

[

∂AA
β − ∂βAA

α − gfABCAB
αA

C
β

]

. (1.31)

When comparing to eq. (1.15) one sees that it is the third term that distinguishes QCD
from QED. This term is non-abelian.

1.1.1 Feynman Diagrams and Renormalization

The electro-magnetic part of the standard model, the Quantum Electro Dynamics (QED)
has been the most successful theory ever. The success depends on some properties of the
calculation of the theory called the sum of paths, or Feynman diagrams. The question
usually being asked is: given an initial and a final state, what is the probability that
something will happen. In QED the answer is: the probability of a certain final state
to come from a certain initial state is the absolute squared of the sum of all possible
intermediate states, i.e.:

P(Final state given initial state) =
∣

∣

∣

∑

A(All possible intermediate states)
∣

∣

∣

2

.

Where P denotes probability and A denotes probability amplitude. If the initial state
is a photon at position A and the final state is a photon at position B and the rest of
the universe is empty, this principle states that the photon will travel all possible paths
between points A and B. One of these paths will be a straight line, another will deviate
from the straight line in one direction, and yet another just as much in another direction.
In the end all deviations from the straight line will cancel and the classical result of light
traveling in straight lines is obtained.

Another type of the same kind of problem is the 2 → 2 process, where two particles in
the initial state interacts leaving two particles in the final state. One example is when the
initial state is an electron and a positron and the final state is a muon and an anti-muon.
To solve this problem, Feynman diagrams are useful. These are diagrams with time on the
horizontal and space on the vertical axis. This problem would then look like fig. 1.5, where
the gray blob represents all possible intermediate states. These are infinitely many, since
the leptons in both the initial and final states may radiate and reabsorb any number of
virtual photons. A photon radiation is however not for free, its probability is proportional
to the electromagnetic coupling strength and this turns out to be small. Therefore there
is a way of ordering the possibilities of the blob in order of relevance, i.e. in order of how
many times the electromagnetic coupling has to be used. In fig. 1.6 the most important
diagrams contributing to this process are shown.

These diagrams can be used to calculate the cross-sections of different processes at a given
order in the coupling with the Feynman rules. These rules are derived from the Lagrangian
of the theory and are of two types: propagators and vertices. The propagators corresponds
to a particle propagating between two points and is derived from the kinematic part
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Figure 1.5: The 2 → 2 process. The blob represent all possible intermediate states.

= + + + ...

Figure 1.6: The 2 → 2 process unblobbed and ordered in the coupling.

of the Lagrangian, while the vertices are connection between different particle lines in
space-time and correspond to the interactions in the Lagrangian. A diagram is then
calculated convoluting the different vertices and propagators in the diagram. In figure 1.7
the Feynman rules for propagators in QCD are shown and the rules for QCD vertices are
shown in fig. 1.8.

The ordering of the diagrams in orders of the coupling α = g2/2π depends on the weakness
of α. The coupling is however not a constant but depends on at which scale one looks at a
vertex. To understand why, it is useful to think of an electromagnetic charge in vacuum.
It is surrounded by a field which consists of virtual photons. These photons may fluctuate
into charge-anticharge pairs, which forms virtual dipoles. These dipoles will be arranged
in a way such that the anti-charge of the dipole will be closer to the original charge more
often than the charge, in this way effectively screening the original charge. The larger the
scale of the vertex, the smaller a distance is resolved and the less of the original charge
is being screened. Therefore is the strength of the electro-magnetic coupling expected to
increase with the scale.

To see this from the Feynman diagrams, one has to consider the loops on the propagators
created by the pair-creation of charges. The measured electric charge e depends on the
bare charge e0 as shown in fig. 1.9. The contribution coming from one loop is given by
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i
δij

k2−m2+iε
[k +m]βαβ, jα, i

i δba

k2−m2+iε

[

−gµν + kµnν+nµkν

n·k
−−n2 kµkν

(n·k)2

]

µ, b ν, a

i δba

k2+iεba

Figure 1.7: Feynman rules for the propagators in QCD. On top a quark-line, in the
middle a gluon line and on the bottom a ghost line [1].

the calculation of the Feynman diagram for a loop resulting in [2]:

I(q2) =
αEM

3π
log

(

µ2
R

q2

)

(1.32)

where µ2
R is a large cut-off scale and q2 the scale of the interaction. The right hand side

of fig. 1.9 then becomes:

e2 = e20

[

1 − I(q2) +
(

I(q2)
)2 −

(

I(q2)
)3

+ ...
]

= e20
1

1 + I(q2)
(1.33)

Replacing α
(0)
EM with αEM(µ2

R) one then obtains for the coupling:

αEM(Q2) =
αEM(µ2

R)

1 − αEM(µ2
R

)

3π
log
(

Q2

µ2
R

) (1.34)

Here one can see that when the probing scale Q2 increases the electromagnetic coupling
does indeed increase. A technique to calculate loop integals is presented in appendix A.

For QCD the situation is more complicated, since there are more possible vertices. The
self-interaction of the gluons makes it possible for the gluon propagator to split up into
gluon loops. The result for the running coupling in this case is [1]:

αs(Q
2) =

12π

(33 − 2nf ) log Q2

Λ2
QCD

(1.35)

where

Λ2
QCD = µ2

R exp

( −12π

(33 − 2nf)αs(µ2
R)

)

(1.36)

and nf is the number of active quark flavours. Here it can be seen that αs is decreasing
with the scale. This means that for small scales the coupling strength becomes larger and



1.1 Quantum Chromo Dynamics 13

−ig
[

T
(F )
C

]

ji
[γµ]βα

gCabck
′
α

−gCa1a2a3

[

gν1ν2(p1 − p2)
ν3

+gν2ν3(p2 − p3)
ν1 + gν3ν1(p3 − p1)

ν2
]

−ig2
[

Cea1a2
Cea3a4

(gν1ν3gν2ν4 + gν1ν4gν2ν3)

+Cea1a3
Cea4a2

(gν1ν4gν3ν2 + gν1ν2gν3ν4)
+Cea1a4

Cea2a3
(gν1ν2gν4ν3 + gν1ν3gν4ν2)

]

Figure 1.8: Feynman rules for the vertices in QCD.[1]
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Figure 1.9: The observable electric charge e is different from the bare charge e0.

e−

P

γ q

xP

Figure 1.10: Inelastic e−P → e−X scattering.

for some scale Q2 ' Λ2
QCD, it becomes so large that the ordering of the Feynman diagrams

by orders in the coupling breaks down. In this case the truncation of the perturbative
expansion becomes unreliable and the interpretation that every possible intermediate
state occurs weighted with a coupling is no longer valid for QCD. This means that when
the separation between a colour and its anticolour becomes larger than a certain scale
the perturbative approach breaks down. For these large length scales so-called colour
confinement occur, where the colour-field between the colour and the anticolour is confined
into a tube. This effect comes from the self-interaction of the gluon field.

On the other hand, for smaller length scales, i.e. for Q2 � Λ2
QCD, the coupling becomes

small and the perturbative expansion approach becomes very good. This procedure to give
the coupling an energy dependence is called normalization and µR is the renormalization
scale. The scale-parameter µ2

R is a free variable and no observable should depend on it.

1.1.2 Lepton Hadron Scattering in the Quark Parton Model

In figure 1.10 an inelastic scattering between an electron and a proton is shown. Using
the four-momenta of the incoming proton P , the incoming electron k and the scattered
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lepton k′, the following Lorentz invariant variables can be defined:

s = (k + P )2 (1.37)

Q2 = −q2 = −(k − k′)2 (1.38)

x =
Q2

2Pq
(1.39)

y =
Pq

Pk
. (1.40)

Here s is the center of mass energy squared, and since the beam particles are highly
relativistic the center of mass energy is

√
s = 2

√
EPEe GeV. The variable Q2 is the

negative square of the photon four-momentum. It is the transfer of four-momentum from
the electron to the proton. In the case of a photon exchange this corresponds to the
virtuality of the photon. For Q2 � M2

W ≈ 6400GeV2 the exchange of massive bosons
is suppressed and can be safely ignored. The variables x and y can be interpreted as
the momentum fractions of the proton and the electron taking part in the interaction
respectively. Only three of these variables are independent and in the relativistic limit,
where masses can be neglected, the following relation hold

Q2 = xys (1.41)

(1.42)

In the restframe of the proton, the energy the electron loses (or gains) in the interaction
is

ν =
pq

MP
= (Ee − E ′

e)

∣

∣

∣

∣

Rest

(1.43)

The general form of the eP scattering can be obtained from the leptonic and hadronic
tensors [3]:

Lµν
e =

1

2
Tr((k′ +m)γµ(k +m)γν) (1.44)

W µν = −W1g
µν +

W2

M2
pµpν +

W4

M2
qµqν +

W5

M2
(pµqν + qµqν + qµqν) (1.45)

such that

d2σ

dxdy
∝ Le

µνW
µν (1.46)

where the hadronic tensor W µν serves to parametrize our total ignorance of the structure
of the proton. It can be shown, by conservation of current, that only two of the Wi are
independent. These are called structure functions. The differential cross section as a
function of these two structure functions is then [2]:

d2σ

dxdy
=

4παEMs

Q4
[xy2F1 + (1 − y)F2] (1.47)
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where the structure functions F1 and F2 are defined as:

F1 = MPW1

F2 = νW2

These structure functions have to be measured. With a point-like proton the scattering
would be elastic and they would become:

F1(Q
2, ν) =

Q2

4MP
δ

(

ν − Q2

2MP

)

, (1.48)

F2(Q
2, ν) = νδ

(

ν − Q2

2MP

)

. (1.49)

However, the proton is not a point particle, and for large values of Q2 it in fact has many
constituents.

To make a more realistic model of the proton, one can assume that it consists of pointlike
spin 1/2 particles, called partons. Each parton carries a fraction ξi of the proton mo-
mentum such that pµ

i = ξiP
µ. This means that the partons are collinear to the proton,

i.e. they lack any momentum transverse to the proton direction. This model is called
the quark parton model (QPM). The photon probe interacts with the parton i elastically
which generates the following contribution to the structure functions:

F
(i)
1 (Q2, ν) =

e2iQ
2MP

4m2
i

δ

(

ν − Q2

2mi

)

=
e2i
2
δ(ξi − x) (1.50)

F
(i)
2 (Q2, ν) = νe2

i δ

(

ν − Q2

2mi

)

= e2ixδ(ξi − x) (1.51)

where in the last step the relation mi = ξiMP is used and x is defined above. In terms of
ν, x = Q2/(2νMP ). This means that the structure functions only depends on the variable
x, which also fixes the momentum fractions ξi. The proton structure functions can be
estimated from a sum of the parton ones in eq. (1.51). Denoting fi(ξi) the probability to
find a parton i in the proton with momentum fraction ξi. These functions are called parton
density functions (PDFs). Integrating the PDFs over ξi and adding the contributions from
different quark types i gives:

F1(Q
2, ν) = MP

∑

i

∫ 1

0

dξifi(ξi)F
(i)
1 (Q2, ν) =

1

2

∑

i

e2i fi(x) ≡ F1(x) (1.52)

F2(Q
2, ν) = ν

∑

i

∫ 1

0

dξifi(ξi)F
(i)
2 (Q2, ν) = x

∑

i

e2i fi(x) ≡ F2(x) (1.53)

This simple description implies so called Bjorken scaling, the structure functions only
depend on the kinematic variable x. Moreover, one gets the Callan-Gross relation:

F2(x) = 2xF1(x) (1.54)
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The combination F2(x) − 2xF1(x) is usually called the longitudinal structure function
FL(x). In the QPM FL(x) = 0.

The structure function F2 in the QPM is:

F2(x)

x
=
∑

i

e2i fi(x) (1.55)

The DIS cross section in the quark parton model, eq. (1.47), can now be expressed such
that it only depends on F2(x) and not on F1(x). Using dy2 = dQ2xs gives:

d2σ

dxdQ2
=

4πα2
EM

Q4

[

y2F1(x) +
(1 − y)

x
F2(x)

]

=
4πα2

EM

Q4

[

(1 + (1 − y)2)F1(x) +
1 − y

x
(F2(x) − 2xF1(x))

]

=
2πα2

EM

Q4

[

(1 + (1 − y)2)
F2(x)

x
− y2

x
FL(x)

]

. (1.56)

Putting FL(x) = 0, this can be rewritten in the following way:

dσ

dxdQ2
=
αEM

2π

1

Q2
(1 + (1 − y)2) × 4π2αEM

Q2

F2(x)

x
(1.57)

The first half on the r.h.s. is a function only of y and the second half is a function only
of x, which means that the first part may be associated with the electron side of the
collision while the second half by the proton side, or with the leptonic and hadronic part
respectively. This defines the so called Weizsäcker-Williams function [4, 5]:

yf e
γ(y,Q

2) =
αEM

2π

1

Q2
(1 + (1 − y)2) (1.58)

which describes the flux of photons coming from the electrons. In analogy with the
parton density functions, it can be said to be the probability of finding a photon inside
the electron with momentum fraction y at a scale Q2. With this separation it is clear that
it is F2 that carries the information about the proton.

Properties of the Parton Density Functions

The parton density functions fi(x) has the following properties: the number of partons
of type i in the proton Ni can be obtained by

Ni =

∫ 1

0

dξifi(ξi) (1.59)

and the momentum fraction carried by partons of type i is given by

〈pi〉
P

=

∫ 1

0

dξi ξifi(ξi). (1.60)
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a)

p

xp

b)

p

σ̂
ξp

Figure 1.11: In a) the QPM picture is shown while in b) the QCD improved parton
model is depicted, where σ̂ symbolically means any QCD process.

It is known from that the proton consists of three valence quarks, two of which are up
quarks and one which is a down quark. This leads to the flavour sum rules of the proton
[3]:

∫ 1

0

dx fuV
(x) = 2 (1.61)

∫ 1

0

dx fdV
(x) = 1 (1.62)

(1.63)

The sum of the momenta of all quarks turns out experimentally to be

∑

q/q̄

∫ 1

0

dx xfq(x) ∼ 0.477 (1.64)

This implies that less than half of the proton momentum can be explained by valence and
sea quarks. Something else is needed, namely gluons, which means QCD has to be added
to the DIS cross-section.

1.1.3 Adding QCD to the DIS Cross-Section

So far the inelastic scattering between an electron and a proton has been treated as a
QED process. However, the valence quarks in the proton are known to interact strongly,
which means that the proton also contains a gluon field. Therefore also QCD must be
considered in the scope of the electron proton scattering. In fig. 1.11 a) the zeroth order
QPM process is shown, which is what has been treated so far. In fig. 1.11 b) a generic
QCD process is shown where one or more gluonic interaction can occur both before and
after the photon interacts with a quark. The cross section σ̂ is calculable with perturbative
QCD.
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a) b) c) d)

Figure 1.12: Order O(αEMαs) contributions to F2. In a) and b) initial and final state
QCD Compton radiations are shown and in c) and d) Boson Gluon Fusion are shown.

k

q

pi

p4

p3

a)

k

q

pi

p4

p3

b)

Figure 1.13: The definition of the kinematic variables for a) QCD Compton and b)
boson gluon fusion.
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The processes contributing to F2 at order O(αEMαs) are depicted in fig. 1.12. When a
parton is radiated by the incoming parton before the radiation, the incoming parton’s
momentum will be altered in the branching. In fig. 1.12 a) and b) the so called QCD
Compton (QCDC) radiation processes are shown and in fig. 1.12 c) and d) the so called
Boson Gluon Fusion (BGF) processes are shown. In the QCDC processes the incoming
parton is a quark which interacts with the photon as before, but in the BGF processes
the incoming parton is a gluon which splits up into a quark anti-quark pair which then
interacts with the photon.

A parton with momentum pi = ξP is coming into the interaction from the proton. Define
z = Q2/(2piq) = x/ξ which is the momentum fraction of the incoming parton taken by
the parton which interacts with the photon. If fi(ξ) is the probability to find parton i
inside the proton with a momentum fraction ξ, the overall photon-proton cross section is
a convolution of fi(ξ) and σ̂ :

σ(x,Q2) =
∑

i

∫ 1

0

dz

∫ 1

0

dξfi(ξ)δ(x− zξ)σ̂(z, Q2). (1.65)

Adding the QCD Compton Process

The first addition to go beyond the QPM cross section is the QCD Compton process in
figs. 1.12 a) and b). For those diagrams the parton level cross-section is [2]:

σ̂QCDC =

∫

dΩ
2

3

e2iαEMαs

ŝ

[

− t̂

ŝ
− ŝ

t̂
+

2ûQ2

ŝt̂

]

(1.66)

where ŝ, t̂ and û are the so-called Mandelstam variables defined by

ŝ = (pi + q)2 = Q2 1 − z

z
(1.67)

t̂ = k2 = (q − p3)
2 (1.68)

û = (q − p4)
2 (1.69)

where the four-momenta are defined in figure 1.13 and z ≡ Q2

2piq
. It should be noted that

ŝ+ t̂+ û = −3Q2 + 2q(pi − p′ − q′) = −Q2. In the processes in fig. 1.12 there is a virtual
propagator present, with four-momentum k. The term ∝ t̂/ŝ in eq. (1.66) comes from the
diagram in fig. 1.12 b), the term ∝ ŝ/t̂ comes from the diagram fig. 1.12 a) and the third
term in eq. (1.66) is the interference term between the two diagrams.

In the limit where t̂ � ŝ, i.e. the resonance where k2 → 0, the expression in square
brackets in eq. (1.66) becomes:

− t̂

ŝ
− ŝ

t̂
+

2ûQ2

ŝt̂
≈ −1

t̂

(

ŝ+
2(Q2 + ŝ)Q2

ŝ

)

= −Q
2

t̂

1 + z2

z(1 − z)
=
Q2

k2
⊥

1 + z2

z
(1.70)
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here k⊥ is the transverse momentum of the propagator and k2
⊥ = − ŝt̂

ŝ+Q2 = −t(1 − z). In

the same approximation dΩ ' (4π/ŝ)dk⊥. The partonic cross-section then becomes:

σ̂QCDC(z, Q2)

σ̂0

=
e2iαs

2π

4

3

1 + z2

1 − z

∫

dk2
⊥

k2
⊥

≡ e2iαs

2π
Pqq(z)

∫

dk2
⊥

k2
⊥

(1.71)

where σ̂0 = 4π2αEM

ŝ
and in the last step the so called splitting function Pqq(z) = 4/3(1 +

z2)/(1 − z) is defined. This function is interpreted as the probability for a quark to split
into a quark and a gluon where the energy fraction z is taken by the produced quark.
Integrating over k2

⊥, with a lower cut-off k2
⊥,min = κ2 and the upper scale ŝ = Q2(1− z)/z

gives:

σ̂QCDC(z, Q2)

σ̂0
=

e2iαs

2π
Pqq(z)

∫ Q2(1−z)/z

κ2

dk2
⊥

k2
⊥

=
e2iαs

2π
Pqq(z) ln

(

Q2

κ2

1 − z

z

)

=
e2iαs

2π

[

Pqq(z) ln

(

Q2

κ2

)

+ C(z)

]

(1.72)

where C(z) include all the terms left over from the leading αs ln(Q2/κ2) term. The
partonic cross section from QCDC can now be added to the QPM expression of F2,
eq. (1.55) to give:

F2(x,Q
2)

x
=

∑

i

∫ 1

0

dz

∫

dξfi(ξ)δ(x− zξ)

[

e2i δ(1 − z) +
σ̂QCDC(z, Q2)

σ̂0

]

=
∑

i

e2i

∫ 1

x

dξ

ξ
fi(ξ)

[

δ

(

1 − x

ξ

)

+
αs

2π
Pqq

(

x

ξ

)

ln

(

Q2

κ2

)

+ ...

]

(1.73)

where only the leading term in αs ln(Q2/κ2) is kept.

This equation can be interpreted as a redefinition of the quark densities fi(x) in the QPM
such that

fi(x,Q
2) = fQPM

i (x) + fQCDC
i (x,Q2), (1.74)

where

fQCDC
i (x,Q2) =

αs

2π

∫ 1

z

dξ

ξ
Pqq

(

x

ξ

)

ln

(

Q2

κ2

)

. (1.75)

In this formulation the parton densities depend strongly on an arbitrary cut-off κ2. This
cut-off has to do with the collinear singularity in the partonic cross-section. It’s easy to
understand that a cut-off is needed, since small k2

⊥ corresponds to large wave-length, and
the wave-length of the interacting partons should not be much longer than the size of the
proton. The solution is similar to that of renormalization. The quark distribution fi(x)
is the bare distribution which includes scales which are not measurable. By introducing a
new scale µ2

F � κ2 the soft non-perturbative physics gets absorbed into the renormalized
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scale dependent parton density fi(x, µ
2
F ). This is the collinear factorization scale at which

the collinear singularity is absorbed into the parton density, such that

ln

(

Q2

κ2

)

= ln

(

Q2

µ2
F

)

+ ln

(

µ2
F

κ2

)

(1.76)

The parton density then becomes:

fi(x, µ
2
F ) = fQPM

i (x) +
αs

2π

∫ 1

z

dξ

ξ
fQPM

i (x)Pqq

(

x

ξ

)

ln

(

Q2

κ2

)

(1.77)

Then F2 becomes:

F2(Q
2, µ2

F , x)

x
=

∑

i

e2i

∫ 1

x

dξ

ξ
fi(ξ, µ

2
F ) ×

[

δ

(

1 − x

ξ

)

+
αs

2π
Pqq

(

x

ξ

)

ln

(

Q2

µ2
F

)

+
αs

2π
C

(

x

ξ

)]

(1.78)

If one chooses as factorization scale µ2
F = Q2 and let the terms C(z) be absorbed into

the definition of the renormalized parton density (which is a procedure called the DIS
factorization scheme), then this expression reduces to

FDIS
2 (x,Q2) =

∑

i

e2ixf
DIS
i (x,Q2) (1.79)

which is the same as the QPM result eq. (1.55) but with a dependence on Q2. Another
choice would be to absorb as little as possible of the C(z) into the parton densities, such
that:

F M̄S
2 (x,Q2) = x

∑

e2i

∫

dξ

ξ
f M̄S

i (x,Q2)

[

δ

(

1 − x

ξ

)

+
αs

2π
CM̄S

(

x

ξ

)

+ ...

]

(1.80)

which is called the Minimum Subtraction (M̄S) scheme. The scheme one choses is ar-
bitrary, but once a scheme is chosen the same scheme has to be kept throughout the
calculation.

Adding the Boson Gluon Fusion Process

The next addition which can be made to the QPM cross-section is that of Boson Gluon
Fusion depicted in figs. 1.12 c) and d). BGF is added to the QPM in a similar way as the
QCDC. The partonic cross-section for these processes is [2]:

σ̂BGF =

∫

dΩ
1

4

e2iαEMαs

ŝ

[

û

t̂
+
t̂

û
− 2ŝQ2

t̂û

]

(1.81)
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where the term proportional to û/t̂ comes from the diagram in fig. 1.12 c), the term
proportional to t̂/û comes from fig. 1.12 d) and the third term comes from the interference
between the two diagrams. As for QCDC, taking the small t̂ limit and expressing the
cross-section as a function of k2

⊥ one gets:

σ̂BGF (z, Q2)

σ̂0
=
e2iαs

2π

1

2

[

z2 + (1 − z)2
]

∫

dk2
⊥

k2
⊥

(1.82)

Defining the splitting function Pqg(z) as the probability of a gluon splitting into a quark
anti-quark pair where one of the produced partons take the momentum fraction z as

Pqg =
1

2

[

z2 + (1 − z)2
]

. (1.83)

Also, as before for QCDC, introduce a soft cut-off κ2 for small k2
⊥ and a gluon distribution

in the proton, fg(x), then introducing a collinear factorization scale µ2
F one obtains for

F2:

F g
2 (x,Q2)

x
=
∑

i

∫ 1

x

dξ

ξ
e2i fg(ξ)

[

αs

2π
Pqg

(

x

ξ

)

ln

(

Q2

µ2
F

)

+
αs

2π
D

(

x

ξ

)]

(1.84)

which is a piece that should be added to the F2 of QPM and QCDC. It should be noted
that with the splitting of the gluon into a quark-antiquark pair, the BGF processes are
also contributing to the quark densities fi(x,Q

2), such that

fi(x, µ
2
F ) = fQPM

i (x) +
αs

2π

∫ 1

z

dξ

ξ

[

fQPM
i (x)Pqq

(

x

ξ

)

+ fg(x, µ
2
F )Pqg

(

x

ξ

)]

ln

(

Q2

µ2
F

)

(1.85)

1.1.4 The DGLAP equations

The benefit of introducing the collinear factorization scale µ2
F is that it is an effective

way to get rid of the collinear singularities, and also in a natural way take away the
dependence on the very soft scale κ. But µ2

F is still not a physical quantity, and the total
cross-section, or F2 should not depend upon any unphysical scales. Therefore should the
following hold:

∂F2(x, µ
2
F )

∂ lnµ2
F

= 0. (1.86)

To perform this derivative, one needs to derivate the parton density functions which
leads to a set of coupled differential equations of the quark and gluon densities. These
equations are called the DGLAP evolution equations after the physicists that developed
them: Dokshitzer, Gribov, Lipatov, Altarelli and Parisi [6, 7, 8, 9]. The equations become:

∂fi(x, µ
2
F )

∂ lnµ2
F

=
αs

2π

∑

i

∫ 1

x

dξ

ξ

[

fi(ξ, µ
2
F )Pqq

(

x

ξ

)

+ fg(ξ, µ
2
F )Pqg

(

x

ξ

)]

(1.87)

∂fg(x, µ
2
F )

∂ lnµ2
F

=
αs

2π

∑

i

∫ 1

x

dξ

ξ

[

fi(ξ, µ
2
F )Pgq

(

x

ξ

)

+ fg(ξ, µ
2
F )Pgg

(

x

ξ

)]

(1.88)
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These equations provide the mathematical formalism for the pictorial view of the proton
given in the introduction of this chapter. Before the interaction, the (not yet) struck
quark or anti-quark is surrounded by a cloud of virtual partons constantly being emitted
and re-absorbed. These particles may in their turn emit and absorb particles. The larger
the scale Q2 of the interaction, the more of these partons may be resolved. Therefore the
probability of interacting with a parton i changes with the scale Q2. It is this evolution
which is shown in eqs. (1.87) and (1.88). At low values of Q2 not many partons can
be resolved and the proton is expected to consist mostly of the valence quarks. These
are then expected to carry large fractions of the proton’s momentum x ∼ 1/3. As Q2

increases more and more particles may be resolved and the momentum of the proton is
spread over more particles via parton branchings which are represented by the splitting
functions in the DGLAP equations. Therefore the small x part of the PDFs are expected
to grow with Q2. Many of these small x partons are expected to be gluons originating
mainly from g → gg branchings and sea-quarks coming from g → qq̄ branchings. During
this process it is important to respect the momentum sum rule:

1 =

∫ 1

0

dxx

[

fg(x) +
∑

i

fi(x)

]

. (1.89)

How to calculate the evolution from a small scale µ0 ∼ ΛQCD to a large scale µF ∼ Q2

is shown in eqs. (1.87) and (1.88). However, these equations need an input in the form
of initial parton densities f(x, µ0). These are non-perturbative and cannot be calculated.
Instead they have to be guessed. They are usually obtained by a parametrized form and
are then evolved through eqs. (1.87) and (1.88) and fitted to experimental data taken at
different x and Q2. These are then treated as universal, i.e. they can be used in any
calculation using the DGLAP equations with protons.

How to solve the DGLAP equations in detail, using Sudakov form factors will be explained
in chapter 2. This is one of many ways to solve the equations.

Properties of the DGLAP Splitting Functions

Some comments on the properties of the DGLAP splitting functions are needed. The
splitting functions are [3]:

Pqq(z) =
4

3

1 + z2

1 − z
Pgq(z) = Pqq(1 − z)

Pqg(z) =
1

2

(

z2 + (1 − z)2
)

Pgg(z) = 6

(

1 − z

z
+

z

1 − z
+ z(1 − z)

)

(1.90)

The splitting functions are interpreted as probability distribution functions, such that the
function Pji(z) gives the probability of finding parton j inside parton i with momentum
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fraction z. However, some of these are not regular for all values of z. To still be able
to interpret the splitting functions as a distribution the so called plus-prescription is
introduced for the splitting functions with a 1/(1 − z) pole, defined by:

∫ 1

0

dz
f(z)

(1 − z)+
=

∫ 1

0

dz
f(z) − f(1)

1 − z
(1.91)

The splitting functions do by unity include virtual contributions. This can be understood
since the splitting functions should not affect the total cross-section. The probability of
finding a quark inside of a quark should be equal to 1. Therefore the extra contribu-
tion coming from the radiation of an extra parton must be compensated by a virtual
contribution in the splitting. Hence, the one loop splitting functions are given by:

P (z) → P (z) +Kijδ(1 − z) (1.92)

where the delta function represents the probability of leaving the splitting parton un-
changed. Kij is a constant which can be determined by the rules for conservation of
flavour:

0 =

∫ 1

0

Pqq(z)dz =

∫ 1

0

(

4

3

1 + z2

(1 − z)+
+Kqqδ(1 − z)

)

dz

=

∫ 1

0

4

3

z2 − 1

1 − z
dz +Kqq = Kqq − 2 (1.93)

Hence is the factor Kqq = 2. Similarly, for Pgg(z):

0 =

∫ 1

0

Pgg(z)dz =

∫ 1

0

6

(

1 − z

z
+

z

(1 − z)+

+ z(1 − z)

)

+Kggδ(1 − z) (1.94)

gives Kgg = (33 − 2nf)/6 where nf is the number of active quark flavours. The one-loop
splitting functions then are:

P (1)
qq (z) =

4

3

1 + z2

(1 − z)+
+ 2δ(1 − z) (1.95)

P (1)
gg (z) = 6

[

z

(1 − z)+

+
1 − z

z
+ z(1 − z)

]

+
33 − 2nl

6
δ(1 − z)

1.1.5 Heavy Quarks in Photoproduction

So far in this chapter all partons has been treated in the relativistic limit where their
masses become negligible, or rather when 4m2 � ŝ such that the velocity function

β =

√

1 − 4m2

ŝ
≈ 1. (1.96)



1.1 Quantum Chromo Dynamics 26

k

q

pi

pQ

pQ̄

Figure 1.14: In photoproduction heavy quarks are produced by photon gluon fusion.

At HERA energies, this is mostly true for up, down and strange quarks but not necessarily
true for charm, beauty and top quarks. Since the heavy quarks are not valence quarks in
the proton is is assumed that the PDFs fulfill fQ(x,Q2) = fQ̄(x,Q2) where the subscript
Q denotes any heavy quark. There are several approaches to include heavy quarks in the
DGLAP framwork. Three of them are:

1. The Zero Mass Variable Flavour Scheme (ZM-VFS), where the heavy quark density
fQ(x,Q2) = 0 for Q2 < µ2

Q and the number of quark flavours are nl + θ(Q2 −
µ2

Q) where nl denotes the number of quark flavours with masses smaller than mQ.
Here the threshold m2

Q < µ2
Q < 4m2

Q is a parameter which has to be fitted to
measurements. The advantage of this scheme is that it provides a minimal alteration
of the DGLAP approach, where the heavy quarks may be produced in a splitting
during the evolution. The disadvantage is that the physical threshold ŝ ≥ 4m2

Q is
not treated correctly.

2. The Fixed Flavour Number Scheme (FFNS), where all the heavy quarks are pro-
duced dynamically, at leading order in the boson gluon fusion process. In the FFNS
fQ(x,Q2) = 0 for all Q2. The physical threshold is treated correctly in the FFNS
but to the price of large ln(Q2/m2

Q) terms in the evolution.

3. The Variable Flavour Number Scheme (VFNS), which is an interpolation between
the FFNS at low Q2 and the ZM-VFNS at large Q2. In this approach the physical
threshold is treated correctly with the possibility of finite heavy quark PDFs at
large Q2.

In eq. (1.56) it is seen that the eP cross-section is ∝ 1/Q4. It is therefore dominated
by small Q2. The kinematic regime where the incoming photon is quasi real, i.e. when
Q2 ' 0 is called photoproduction. In photoproduction the FFNS is the natural choice to
include heavy quarks into the DGLAP formalism. The BGF cross-section in eq. (1.81)
has to be altered to include the mass of the heavy quark and the quasi real photon. It is
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convenient to modify the Mandelstam variables for heavy quarks in the following way:

ũ = û−m2
Q

t̃ = t̂−m2
Q (1.97)

such that ŝ + t̃ + ũ = 0. The partonic cross-section for BGF producing heavy quarks in
photoproduction then becomes [10]:

σ̂FFNS

σ̂0

=

∫

dΩ
e2iαs

2π

1

t̃ũ

[

ũ2 + t̃2 + 4m2
Qŝ

(

1 − m2ŝ

t̃ũ

)]

≈
∫

dΩ
e2iαs

2π

[

1 − (1 − β2)

(

1 +
m2

Q

4t̃

)]

≈ 2e2iαs

π
(1 − z)

∫ ŝ

0

dk2
⊥

(k2
⊥ +m2

Q)

[

1 − (1 − β2)

(

1 +
m2

Q

4t̃

)]

(1.98)

Here t̃ = −(m2
Q +k2

⊥)(1−z) and β is the velocity of the heavy quark defined in eq. (1.96).

In the first step the small t̃ limit has been taken, which corresponds to k2 = m2
Q being

the mass resonance of the propagator. In the second step dΩ ≈ (4π/ŝ)dk⊥. The mass
term in the denominator in the last step means that the partonic cross-section does not
diverge for k2

⊥ → 0, but rather peaks at k2
⊥ = m2

Q and no cut-off κ is needed. The upper
scale is still given by ŝ = xys.



Chapter 2

Monte Carlo Techniques and the

HERWIG Event Generator

When an electron and a proton collide in an accelerator, the collision can produce tens or
even hundreds of particles, some of which are measured in the detectors surrounding the
beam-pipe at the interaction point. At HERA there are two such experiments, H1 and
ZEUS. In order to make sense of the large quantities of data from the detectors one needs
a detailed theoretical understanding of the interactions. However, using theory from first
principle, to explain the measurements leads to highly nonlinear equation systems, which
are impossible to solve analytically. Also, only the perturbative part of the theory is even
in principle calculable from first principle, the non-perturbative part is not. Instead it is
necessary to make approximations and to build models that describe the physics at hand.
These models then have to be compared to the data. If they manage to describe some of
the data it means that at least a part of the measurement is understood. Also, no model
is perfect, they always contain parameters, and these parameters have to be adjusted and
fitted to measured data, which means that the theoretical prediction always comes with
an uncertainty band. However, there are no perfect measurements either, and they too
come with experimental uncertainties. This implies that the theoretical understanding
should be at a similar level as the experimental understanding of the measured data.

When an electron and a proton collide in the detector, the event enters two phases of tran-
sition, a perturbative and a hadronization phase, as depicted in fig. 2.1. The perturbative
phase is governed by short distances, up to roughly the size of the proton, which means
that most of this phase takes place inside the proton that takes part in the interaction. In
the perturbative phase all partons are treated as free particles, which is possible through
asymptotic freedom. The hadronization phase is governed by longer distances, which
is where the asymptotic freedom breaks down. The partons can no longer be treated
as free particles and must instead somehow get trapped in colour-singlet states, i.e. in
hadrons. The end result of a realistic simulation of high energy physics events are always
hadrons, leptons and electroweak bosons, since these are the only particles detected in
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Figure 2.1: When an electron and a proton collide at HERA, many hadrons are created.
The intermediate states may be divided into a perturbative phase and a soft hadronization
phase.

the experiments.

In order to simulate these events, all the applicable phenomenological models available are
collected in computer programs called Monte Carlo (MC) event generators. The purpose
of this chapter is to describe how MC event generator works. In chapter 1, the structure
of the proton, when probed by a virtual photon, was described. This was illustrated
in fig. 1.3. In fig. 2.2, the same picture is shown, but with the different parts of an
MC simulation included. Instead of starting with the proton, and evolving to the hard
interaction, an MC program starts with the hard interaction, by calculating a matrix
element (ME) from first principle in perturbative QCD, as indicated in the figure. From
these particles, the initial state radiations are simulated backwards in time in the initial
state partons shower, down to a cut-off virtuality close to ΛQCD. The parton propagator
left at this scale has to be taken from the proton PDF at the cut-off scale. The parton
showers will be described in section 2.2. It is performed with splitting functions, describing
the probability of one particle splitting into two particles (or in some parton showers the
probability of two particles splitting into three). Then, all produced partons are made
to radiate bremsstrahlung in the final state parton shower, until another cut-off scale is
reached. At this scale, the partons enter the hadronization phase of transition, where
they are confined in hadrons. How this is modeled will be explained in section 2.4. The
distributions of energies, momenta and other properties of these hadrons may then be
filled in histograms which can be compared to measurements. One ingredient in the
calculation which is not depicted in fig. 2.2 is the inclusion of unstable particles. There
are partons which decay before they can hadronize, such as the top quark, and there are
hadrons that decay before they can be detected, such as B-hadrons. These decays must
also be modeled and included into the calculation.

All of the elements in fig.2.2 are modeled in different ways, and in order to receive an
answer from the calculation which makes sense, all the different parts have to be well
fitted together, they have to be matched.

In fig. 2.2, one of the main approximations made is that most of the quantum interference
effects are ignored. Instead of adding probability amplitudes, probabilities are added.
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Figure 2.2: The same figure as in fig. 1.2, but with the different parts of a Monte Carlo
event generator also in it, as explained in the text.
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This is acceptable, if the errors it leads to are small enough, compared to the experimental
uncertainties. But, the longer new data is collected, the better will the statistical precision
1 of the measurement become which raises the demands on the theoretical predictions and
models. This thesis is about improving the precision in one Monte Carlo event generator,
namely HERWIG, by inclusion of more interference effects in the matrix element part of
the calculation by the technique of MC@NLO. How this is done will be explained in later
chapters.

In this chapter, before going through all the elements depicted in fig. 2.2, what is meant
by the Monte Carlo method of integration will first be explained in section 2.1. In section
2.2 it will be described how the theory of DGLAP evolution in chapter 1 is implemented in
a Monte Carlo event generator. Also the models of hadronization will be briefly described
in section 2.4. In section 2.3 the HERWIG Monte Carlo event generator will be described.

2.1 Monte Carlo Integration

When calculating a high energy physics event, e.g. the one depicted in fig. 2.2, the
expectation value for an observable O is the evaluation of the integral:

〈O〉 =
∑

nk,Qq

∫

d4nqq|Mnq
(Qq,q)|2φnq

(q)

×
[

∑

nk,Qk

∫

d4nkkPS(Qq,q, ;Qk,k)

×
[

∑

np,Qp

∫

d4nppH(Qk,k;Qp,p)Onp
(Qp,p)

]]

, (2.1)

where M stands for the matrix element which produces nq partons, φ is the invariant
phase space, PS is the parton shower, which produces additionally nk partons and H
is the hadronization which brings the partons into an hadronic final state containing
np hadrons, which are observable. As seen in eq. (2.1) each particle adds another four
dimensions to the integration, which means that this integral can have a large number of
dimensions. Also, the integrated functions can be very complicated. In general it is not
possible to compute the integral in eq. (2.1) analytically. Also, to simulate the events in
the accelerator one needs to be able to generate random events one by one.

The most commonly used method to compute the integral eq. (2.1) is the so called Monte
Carlo method of integration. It is a method that uses random numbers and probability
distributions which makes it very well suited for generating physics events, since quantum
mechanics includes in itself randomness and what is measured in experiments are distri-
butions. The purpose of using random numbers is two-fold. For one, random numbers

1At some point systematical uncertainties become more important than the statistical ones.
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are used to estimate an integral, for example the total rate of a process, but it is also used
to generate events one at a time.

Averaged Sums

A straight forward approach to evaluate an integral is to use an averaged sum. An estimate
of the integral

I =

∫ b

a

dxf(x) (2.2)

may be obtained by

I =

∫ b

a

dxf(x) ≈
N
∑

i

f(xi)∆x = (b− a)
1

N

N
∑

i

f(xi). (2.3)

Here the xi’s have to be uniformly distributed. They may be chosen randomly according
to a distribution, but this is not necessary, since it would also work to chose them e.g. at
fixed intervals. When N → ∞ this is an exact solution by the law of large numbers. This
can be generalized for any dimension

I =

∫

Ω

dmxf(x) =

∫ b1

a1

...

∫ bm

am

dx1...dxmf(x1, ..., xm)

≈ (b1 − a1)...(bm − am)

Nm

N
∑

k1=1

...
N
∑

km=1

f(x1k1
, ..., xmkm

) (2.4)

For this estimate to be good N has to be a very large number in general. One may
choose the numbers x in any way such that they are uniformly distributed. A convenient
way to do this is to choose the numbers randomly from a uniform distribution. This has
several advantages as will be seen later, but an obvious advantage is that one can estimate
the integral with a certain number of randomly chosen x values and if the result is not
satisfactory good one can simply produce more randomly chosen x values to improve the
estimate. To do this one needs to be able to generate random numbers. In each Monte
Carlo program there is a routine that generates pseudo random numbers R such that:

pR(r) = 1, when 0 ≤ r ≤ 1

pR(r) = 0, otherwise (2.5)

These are called pseudo random numbers, since the numbers are not absolutely uncor-
related. Given a value R generated from pR(r) a value x may be uniformly distributed
on a range [x1, x2] by x = R(x2 − x1). For a random number generator to be good the
produced numbers have to be uniformly distributed and uncorrelated. It will be assumed
that a sufficiently good such generator is available in the following.
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Importance Sampling

When the integrand varies rapidly over the integration range the method in eq. (2.4) is
very inefficient, in the sense that N then has to be a very large number for the integral
to be reasonably well estimated. In this case a more efficient way to estimate the integral
is so called importance sampling. Assume that it is possible to generate variables xi on
Ω according to a probability distribution function p(x). The integral can then be written
as:

I =

∫

Ω

dmxf(x) =

∫

Ω

dmx
f(x)

p(x)
p(x) ≡

〈

f(x)

p(x)

〉

(2.6)

where in the last step the definition of an expectation value has been used, where the
function p(x) is interpreted as a probability density function. This is a generalization of
eq. (2.3) which is the case when p(x) is a flat distribution in one dimension.

The law of large numbers says that the estimate of the integral approaches the correct
value as the number N approaches infinity [11], but it does not give a hint of how close
to the true value an estimate is for finite N . The central limit theorem states that the
sum of a large number of independent random variables will have a Gaussian distribution.
This means that the error one gets with such an estimation is given by [11]:

δ ≈
σ
(

f(x)
p(x)

)

√
N

(2.7)

where the variance σ is given by:

σ2

(

f(x)

p(x)

)

=

〈

(

f(x)

p(x)

)2
〉

−
〈(

f(x)

p(x)

)〉2

(2.8)

The task then becomes finding an appropriate function p(x) such that the error in the
estimate becomes as small as possible. It is clear that a choice p(x) = c|f(x)| for a
constant c gives the smallest possible error, but then the estimate of the integral becomes
just as hard to compute as the integral itself. When an appropriate function p(x) is found
one can evaluate the integral by the following steps:

1. Find a function p(x) which is similar to f(x).

2. Rewrite the integrand f(x)dmx = f(x)
p(x)

p(x)dmx.

3. Perform a variable substitution dmy = p(x)dmx.

4. Set h(y) = f(x)/p(x) such that f(x)dmx = h(y)dmy.
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If p is a good approximation of f , then the function h will not vary much over the interval
Ω and the integral can be estimated with good precision using eq. (2.4).

As a simple example, consider the function f(x) = 1/x0.7 as the function to be estimated
on the interval [ε : 1] where 0 < ε� 1. Then the steps above become:

1. Choose p(x) = 1
x
.

2. f(x)dx = f(x)
p(x)

p(x)dx = x0.3
(

1
x
dx
)

.

3. Substitute dy = 1
x
dx = d ln(x), such that x = ey.

4. Set h(y) = f(x)/p(x) = x0.3 = e0.3y such that f(x)dx = e0.3ydy.

Where the function f(x) varies rapidly for small x the function h(y) does not.

2.1.1 Selection From a Distribution

Often one wants to generate a set of variables x according to the distribution f(x) as
well as evaluating the integral of f(x). For example f(x) could be the matrix element
Mnq

(Qqq) in eq. (2.1) and one would like to generate the p⊥ distribution of the radiated
partons as well as estimate the full integral. It is possible to obtain values x from f using
a pseudo random number generator. To make the notation simpler, the one dimensional
case will be considered, but it is easily generalized to any number of dimensions. To
generate a value x according to f(x) one can use uniformly and randomly distributed
numbers R ∈ [0 : 1] and solve the following equation for x:

∫ x

xmin

f(x̂)dx̂ = R

∫ xmax

xmin

f(x̂)dx̂, (2.9)

this means that a fraction R of the total area under f(x) should be to the left of x. The
solution is:

x = F−1 (F (xmin) +R(F (xmax) − F (xmin))) . (2.10)

To solve this equation one needs to know both the primitive function F (x) and its inverse
F−1(x), which is a very rare scenario.

If these properties of f(x) are not known, a so called hit and miss scheme may be adopted
instead. If f has a known maximum fmax ≥ f(x) in the considered x range, then one can
generate x according to f(x) by the following scheme:

1. Select an x value with an uniform probability over the range, i.e.
x = xmin +R1(xmax − xmin)
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2. Compare another random number R2 with the ratio f(x)/fmax.

If f(x)
fmax

≤ R2 reject the x value and return to 1.
Otherwise, the most recent value is kept as the generated x

It is easy to see that this gives the correct distribution, since the probability that f(x)/fmax >
R2 is proportional to f(x). The efficiency of this method, i.e. the average probability
that an x value will be kept is

∫

f(x)dx

fmax · (xmax − xmin)
(2.11)

which is only large when f does not vary much over the interval. Often, this is not the case
however, f(x) may have narrow spikes or even singularities just outside the range. Then
the hit and miss method may be refined by using importance sampling. To do this one
needs to find a function g(x) with the properties that g(x) ≥ f(x) over the interval and
G(x) and G−1(x) are known. Then one can obtain a value x from f(x) in the following
way:

1. Select a value x from g(x) using eq. (2.10)

2. Compare a random number R with the ratio f(x)/g(x),

If f(x)
g(x)

≤ R reject the x value and return to 1.
Otherwise, the most recent value is kept as the generated x

In the first step, an x is selected with the probability g(x)dx, and in the second step
this is kept with the probability f(x)/g(x) such that the total probability of keeping the
generated x value is f(x)dx. This scheme will be efficient as long as f(x)/g(x) does not
vary too much over the interval.

2.2 Generating Parton Showers

The purpose of a parton shower is to generate real exclusive events on parton level down
to an almost non-perturbative scale. In section 2.2.2 it will be shown that the parton
shower approach will reproduce the DGLAP equations described in chapter 1.1.4. There
are other approaches towards generating multi parton final states. One example is tree-
level generators, but those will only produce events to a given order. Also NLO generators
may give exclusive events, but those will only give a few extra partons.

The tree-level matrix element for an n-parton state can be approximated by a product
of splitting functions, which corresponds to a sequence of one-parton emissions from the
zeroth order state. In fig. 2.2 there is not entirely clear which happens when, i.e. which
element in the picture happens first, and then next and so on. In principle many of these
radiations could occur simultaneously in a given Lorentz frame. When simulating parton
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showers in a computer program, two emissions cannot be simulated simultaneously due to
the linearity of the code. Instead some sort of ’time’ ordering is necessary, by which the
subsequent emissions are simulated in the code. The choice of a time scale t is somewhat
arbitrary and different Monte Carlo event generators adopt different choices. It should
be noted that in an event generator there are two kinds of ordering. What has been
described here is the order in which partons are radiated within the algorithm. For the
parton dynamics however, it is more interesting how the radiated partons are ordered
in colour. Often these two orderings coincide in MC event generation, but this is not
always the case. For example in the Colour Dipole Model as implemented in ARIADNE[12]
the radiations are generated ordered in their transverse momentum (p⊥), but the colour
ordering is uncorrelated with the p⊥ ordering, whereas in PYTHIA [13] the partons are
both generated in a p⊥ order and are also colour ordered in p⊥. A good choice of time
will leave the colour-ordering of the emission unchanged under a Lorentz transformation.

As a simple example, the choice of ’time’ parameter may be

t = ln

(

p2
⊥

p2
⊥,min

)

(2.12)

such that

dt = d ln(p2
⊥) =

dp2
⊥

p2
⊥

(2.13)

where p⊥ is the transverse momentum of the emitting parton when it radiates. This can
be seen as similar to a real concept of time ordering, since the harder radiations typically
occur during shorter time scales, but it should be noted that it is just a choice of in which
order the radiations are simulated. In the following t will not be further specified, and
could in principle mean any ordering.

In each radiation in the parton shower a mother particle a will branch into two particles
b and c. Particle b takes an energy-momentum fraction z from the mother particle a and
particle c takes a fraction 1 − z. In terms of the two variable t and z, the differential
probability of having such a branching of particle a is:

dPa =
∑

b

αs

2π
Pba(z)dtdz (2.14)

where the sum runs over all allowed branchings, e.g. for a quark q → qg. The DGLAP
splitting functions are given in eqs. (1.90), but may be summarized once more:

P̂gg(z) = 6

[

1 − z

z
+

z

1 − z
+ z(1 − z)

]

P̂qg(z) =
1

2

[

z2 + (1 − z)2
]

P̂qq(z) =
4

3

1 + z2

1 − z
. (2.15)
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These are the unregularized splitting functions and they have to be regularized by an
appropriate cut-off in z. However, an individual particle does not run through a range
of t values, in the end each branching is associated with a fixed t value, and the task of
the parton shower evolution is to pick that value. For a given t value, the integral of the
branching probability over all allowed z values is:

Iba(t) =

∫ zmax(t)

zmin(t)

dz
αs

2π
P̂ba(z) (2.16)

The probability that a branching occurs in a small range of t values δt is given by
∑

b Iba(t)δt, where the sum is over the possible radiated partons. Therefore the prob-
ability of no emission in that range is 1 −

∑

b Iba(t)δt. If the evolution of parton a starts
at a time t0, then the probability that it has not yet branched at a later time t > t0 is given
by the product of the probabilities that it did not branch in any of the small intervals
of size δt between t0 and t. If δt → 0, the no-branching probability exponentiates and
becomes:

Pno−branching(t0, t) = exp

[

−
∫ t

t0

dt̂
∑

b

Iba(t̂)

]

≡ Sa(t). (2.17)

which defines the so-called Sudakov formfactor Sa(t). If a particle has already branched
at a time t′ < t, it can no longer branch at t. Therefore, the probability that particle a
branches at time t is the product of the no-branching probability between times t0 and t,
multiplied by the probability of branching at t:

Pa(t) = −dPno−branching(t0, t)

dt
=

(

∑

b

Iba(t)

)

exp

(

−
∫ t

t0

dt̂
∑

b

Iba(t̂)

)

(2.18)

This equation is very similar to that for radioactive decay. The ordering in t above is
treated differently for initial and final state parton showers. For the latter t is decreasing
from a tmax set by the hard interaction to a lower cut-off t0 where the shower stops,
while for initial state parton showers t is increasing from a lower scale t′0 to tmax. Also,
if a parton a is created in a branching at time ti and branches at a time ti+1, then the
non-branching probability between times ti and ti+1 becomes Sa(ti+1)/Sa(ti).

To generate the ordering parameter t according to the Sudakov form-factor one may use
the so called veto algorithm [14], which is described in appendix B. This is similar to
the method of importance sampling described in section 2.1 with the difference that the
generated values t are ordered in size.

2.2.1 Initial State Parton Showers

For incoming hadrons, the evolution of the parton densities, described in chapter 1, has to
be considered. In the DGLAP evolution for the parton densities (eqs. (1.87) and (1.88)),
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with t = logµ2/Λ2 they are:

dfb(x, t)

dt
=
∑

a

∫

dx̂

x̂
fa(x̂, t)

αs

2π
P̂ba

(x

x̂

)

(2.19)

This equation can be interpreted as the probability for parton a with momentum fraction x̂
to become resolved into partons b and c carrying momentum fractions x = zx̂ and (1−z)x̂
respectively, when t is increased by dt. However, it turns out that a backwards evolution
scenario is often more efficient. This is due to the fact that in the event generator, the
hard interaction is generated first and in order to match the parton shower to the matrix
element it is more convenient to use the matrix element as a starting point also for the
initial state parton shower, and evolve it backwards to the proton. In such a scenario,
the starting scale tmax is therefore given by the hard interaction. Backwards evolution
can be said as a way to undo the evolution of the PDFs. The evolution gives the relative
probability for the parton a to become unresolved into parton c during a small decrease
in the scale by dt:

dPa =
dfa(xa, t)

fa(xa, t)
= |dt|

∑

c

∫

dx̂

x̂

fc(x̂, t)

fa(xa, t)

αs

2π
P̂ac

(xa

x̂

)

(2.20)

Defining in a similar way as in eq. 2.16:

Iac(t) =

∫ zmax(t)

zmin(t)

∫

dz
dx̂

x̂

fc(x̂, t)

fa(xa, t)

αs

2π
Pac(z)

(xa

x̂

)

δ(xa − zx̂)

=

∫ zmax(t)

zmin(t)

dz

z

αs

2π
Pac(z)

fc(xa/z, t)

fa(xa, t)
(2.21)

and using the same reasoning leading up to eq. (2.17), constructing the no-branching
probability will lead to a Sudakov formfactor for the backwards evolution:

Sa(xa, tmax, t) = exp

(

−
∫ tmax

t

dt̂
∑

c

Iac(t̂)

)

(2.22)

This yields the probability of the first backwards initial state splitting:

dPa =

(

∑

c

Ica(t)

)

exp

(

−
∫ tmax

t

dt̂
∑

c

Iac(t̂)

)

(2.23)

This can then be evolved down to a cut-off scale using the veto algorithm.

2.2.2 Parton Showers are Solutions to the DGLAP Equations

In the parton shower picture described here, one can derive an expression for the par-
ton density functions. Consider for example the case of initial state radiation where an
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incoming quark only radiates gluons. The Sudakov form factor in this parton shower is
then

Sq(t) = exp

(

−
∫ t

t0

dt̂

t̂

∫

dz
αs

2π
P̂qq(z)

)

(2.24)

The probability of finding the quark carrying a momentum fraction x at the scale t is
f(x, t). There are however several ways in which a quark may end up in the phase space
point (x, t), it may have been extracted with these values directly from the proton, or it
may have started at a point with x̂ > x and t̂ < t and radiated any amount of gluons to
end up in (x, t). The probability for the first case to happen is given by

f(x, t)no emitted gluons = Sq(t)f(x, t0). (2.25)

which is the probability density function for a quark at (x, t0) multiplied by the probability
that it does not radiate between the scales t0 and t. For the second case, all possible ways
the quark may radiate gluons has to be considered and integrated over:

f(x, t)any emitted gluon =

∫ t

t0

dt̂

t̂

Sq(t)

Sq(t̂)

∫

dx̂dz
αs

2π
P̂qq(z)f(x̂, t̂)δ(x− zx̂)

=

∫ t

t0

dt̂

t̂

Sq(t)

Sq(t̂)

∫

dz

z

αs

2π
P̂qq(z)f(x/z, t̂) (2.26)

where, as mentioned above, the ratio Sq(t)/Sq(t̂) gives the no-branching probability when
evolving between scales t̂ and t. The delta function comes from the fact that after a
branching the momentum fraction is changed from x̂ to x = zx̂ by energy momentum
conservation. The parton-shower expression for the parton density is thus:

f(x, t) = Sq(t)f(x, t0) +

∫ t

t0

dt̂

t̂

Sq(t)

Sq(t̂)

∫

dz

z

αs

2π
P̂qq(z)f(x/z, t̂) (2.27)

Reorganizing the terms it becomes:

f(x, t)

Sq(t)
= f(x, t0) +

∫ t

t0

dt̂

t̂

∫

dz

z

αs

2π
P̂qq(z)

f(x/z, t̂)

Sq(t̂)
(2.28)

By taking the derivative of both sides with respect to t one obtains:

t
∂

∂t

f(x, t)

Sq(t)
=

1

Sq(t)

∫

dz

z

αs

2π
P̂qq(z)f(x/z, t) (2.29)

Comparing this expression with the DGLAP equation for quark densities, eq. (1.87), one
sees that they are very similar, except that f is replaced by f/Sq and the regularized
splitting function is replaced by the unregularized one. If multiplied by the Sudakov, the
l.h.s. of eq. (2.29) can be rewritten as:

Sq(t) · t
∂

∂t

f(x, t)

Sq(t)
= t

∂

∂t
f(x, t) − f(x, t)

Sq(t)
t
∂

∂t
Sq(t) (2.30)



2.2 Generating Parton Showers 40

Total

=

No emission

+

Resolvable emission

−

Virtual

+

Unresolvable emissions

+ ...

Figure 2.3: A pictorial view of how the unitarity of the parton shower leads to inclusion
of virtual contributions to all orders, or: {Resolvable emissions}={Virtual contribution -
Unresolvable emissions}

where the last term is:

f(x, t)

Sqt
t
∂

∂t
Sq(t) = −f(x, t)

∫

dz
αs

2π
P̂qq(z) (2.31)

from the defintion of Sq(t). Substituting this into equation (2.29) yields:

t
∂f(x, t)

∂t
=

∫

dz
αs

2π
P̂qq(z)

(

1

z
f(x/z, t) − f(x, t)

)

(2.32)

Using the plus prescription, eq. (1.91), Pqq(z) = P̂qq(z)+ this becomes

t
∂

∂t
f(x, t) =

∫

dz

z

αs

2π
P (z)f(x/z, t) (2.33)

which now is exactly the DGLAP equation for a quark. It is easy to show that using
Sudakov form factors allowing for any splitting will exactly reproduce the DGLAP equa-
tions, eqs. (1.87) and (1.88). The DGLAP equations are often referred to as evolution
equations, since they describe how a parton from the proton evolves by radiating partons
before it is resolved in the hard interaction.

Since the unregularized splitting functions are used in the Sudakov form factor, they have
an infra red singularity at z = 1 which needs to be removed in order for the term to
be defined. In chapter 1.1.4 this has been done by use of the plus prescription, but in
the Sudakov form factor an explicit infra-red cut-off z < 1 − ε(t) is needed. Branchings
with z larger than this are classified as unresolvable, they involve the emission of an
undetectable soft parton. The Sudakov form factor then gives the probability of evolving
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Figure 2.4: A diagram of the coherence term not taken into account in the DGLAP
splitting probabilities.

2

+

2

Figure 2.5: When restricting parton branchings to an angular ordered region many
coherence effect are taken into account.

from t0 to t without any resolvable branching. The Sudakov form factors also sums virtual
(parton loop) corrections to all orders since they are included in the splitting functions.
The virtual corrections affect the no-branching probability and are included via unitarity,
which means that the sum of branching and no-branching probabilities must be unity.
This is pictorially shown in fig. 2.3 for the case of final state radiation. The resolvable
branching probability then tells us via unitarity the sum of virtual and unresolvable real
contributions. These two kinds of contributions are both divergent but their sum is finite
and hence consistently included in eq. (2.27).

2.3 The HERWIG Parton Shower

HERWIG (Hadron Emission Reactions With Interfering Gluons (including supersymmet-
ric processes)) [15] is a mulitpurpose Monte Carlo event generator. It includes a wide
range of hard interaction physics processes, calculated at leading order in αs and also
many kinds of colliding particles, e.g. hadron-hadron, lepton-hadron. In HERWIG the
parton shower is restricted to an angular ordered region. The reason for angular order-
ing may be understood from coherent branchings. In fig. 2.4 it is shown how a green
quark is radiating a gluon wich is green-antiblue and thus changing colour to blue. The
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blue colour-line then radiates a blue-antired gluon which gives a final state with a red
quark, an antired-blue gluon and an antiblue-green gluon. This final state may also be
achieved if the first radiated gluon is green-antired and then radiates another gluon which
is antired-blue. Hence, these two diagrams should interfere, and it is not possible to
tell which parton radiated the second gluon. Therefore, this radiation may be viewed as
coming from a colour dipole. After the second gluon is radiated there are instead two
dipoles, one between the red-antired colours and one between the blue-antiblue colours,
and these will then radiate softer radiations independently. In the direction further away
from the red-antired dipole, the radiations coming from the red-antired colourcharges will
interfere destructively. In these directions, the radiations corresponds to emissions from
a blue-antiblue dipole. Therefore, the radiations from within the blue-antiblue dipole
becomes ordered in angle, as for the red-antired dipole. This interference effect can be
approximated by radiations from each dipole independently but ordered in angle, which
is illustrated in fig. 2.5.

To simulate this angular order in a parton shower, one may chose as a time variable

ξ =
pb · pc

EbEc
' 1 − cos θba ' θ2

ba

2
(2.34)

for a branching of particle a into particles b and c. Here pi is the four-momentum of
particle i and Ei its energy and the opening angle θba the angle between particles b and a.
The second step is exact for relativistic partons and the last step holds for small angles.
It should be noted that this quantity is not Lorentz invariant. Imposing an ordering such
that ξi < ξi−1, where ξi and ξi−1 refers to successive branchings, corresponds to an angular
ordering θi < θi−1 for small angles. The propagator factor dt in equation (2.18) is replaces
by dξ/ξ. It may be noted that at small angles

dξ

ξ
' 2

dθ

θ
= 2d ln θ ∝ dη (2.35)

where η is the (pseudo) rapidity, such that the angular order is similar to an order in
rapidity. As in eq. (2.14), the probability of a branching a→ bc becomes:

dPa =
∑

b

αs

2π
Pba(z)

dξ

ξ
dz (2.36)

An angular cut-off ξ0 is needed where the parton shower terminates. This is a somewhat
arbitrary choice, since how the cut-off is chosen depends on at which angles a radiation
can be considered resolvable. In HERWIG the following choice is adopted:

ξ0 =
Q2

0

E2
(2.37)

for a parton with energy E, where Q0 is then a mass scale which has to be tuned. With
this cut-off prescription, the most natural choice of evolution parameter is not ξ itself,
but rather

Q = E
√

ξ ≥ Q0. (2.38)
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For small angles, this becomes:

Q =
p⊥

2(1 − z)
(2.39)

where p⊥ is the transverse momentum of the radiated parton. For small z, the HERWIG
radiations are therefore also ordered in p⊥, but for large z, they are not.

Keeping the angular condition that ξb, ξc < ξa, this translates into

Qb = Eb

√

ξb = zEa

√

ξb < zEa

√

ξa = zQa,

Qc = Ec

√

ξc = (1 − z)Ea

√

ξc < (1 − z)Ea

√

ξa = (1 − z)Qa (2.40)

where z = Eb/Ea as before. This gives a cut-off condition on z:

Q0

Qa

< z < 1 − Q0

Qa

(2.41)

Then the Sudakov formfactor for the HERWIG final state parton shower becomes:

∆a→bc(Qa) = exp

(

−
∫ Q2

a

4Q2
0

dQ2

Q2

∫ 1−
Q0
Q

Q0
Q

dz
αs(z

2(1 − z)2Q2)

2π
P̂ba(z)

)

(2.42)

For initial state radiation the backwards evolution is used, which means that the Sudakov
is modified as before to also include the density functions of the partons in the branchings.
It proceeds from the hard scattering at a scale Q set by the colour coherence, down to a
hadron scale Q0, set by a parameter.

2.3.1 The Angular Ordered Phase-space for Heavy Quarks

When heavy quarks are created in the hard interaction, the angular ordered phase-space
of radiation from the quarks is modified. For a heavy quarks a splitting into another
heavy quark b and a light particle c, the variable ξ becomes:

ξ =
pbpc

EbEc
= 1 − |pb|

Eb
cos θba = 1 −

√

1 − m2

E2
b

cos θba = 1 − β cos θba. (2.43)

where β is the velocity of the radiated heavy quark. However, the soft radiation in the
direction of the heavy quark is suppressed dynamically within an angle such that [16]:

ξ >
m2

E2
b

. (2.44)

This region is called a “dead cone” and has been observed in experiments, e.g. in [17].
As seen in fig. 2.5, the radiations are also confined within a cone. The region outside this
cone is called a “dead zone”. For final and initial state radiation it is given by:

ξ < 1 Final state (2.45)

ξ < z2 Initial state. (2.46)
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For mass-less partons this corresponds to radiation in angles θ < π/2. The factor z2 in
initial state radiation comes from the backwards evolution, where now z = Ea/Eb. The z
values with heavy quarks are restricted by:

m

Eb

√
ξ
< z < 1 (2.47)

2.4 Hadronization

After the final state parton shower terminates it has produced a set of particles with a
virtuality of the order of the cut-off scale t0. These particles then enter the hadronization
phase of transition described in fig. 2.1, where long distance non-perturbative effects
are important. In this phase the particles have to be transformed into hadrons. Here,
perturbative QCD cannot be used. Instead, to describe the hadronization, one must rely
on phenomenological models. Some of these models will be described in this section. In
principle, the parameter t0 is arbitrary and not connected to hadronization. Hadronization
is expected to occur at a scale close to ΛQCD. However, the cut-off could be treated like a
hadronization parameter. This comes from the fact that a particle with higher virtuality
is expected to produce more hadrons. Therefore, in a perfect hadronization model, it
should be possible to choose a value of t0 such that the number of hadrons produced do
not depend upon it. In practice this does not happen, since the hadronization models
never match the parton shower perfectly. In these models, t0 is therefore treated as a
parameter, which has to be fitted to measurements. The favoured value tends to be
rather small, a few times ΛQCD, which may imply that an extrapolation of perturbative
theory is more reliable on these scales than the hadronization models. This observation,
that perturbation theory seems to be important down to very small scales, leads to the
hypothesis of local parton hadron duality [18]. This hypothesis states that the flow of
momentum and quantum numbers at the hadron level follow those at the parton level.
Also, as a consequence of this hypothesis, the fragmentation of a parton can be described
by a fragmentation function DH

p (z), which is the probability of finding a hadron H with
momentum fraction z inside a parton p. This can be seen as the inverse of a parton
density funtion of the hadron. The flavour of a quark producing a jet should als be found
close to the jet-axis. The deviation from the parton-hadron duality reflects how large the
hadronization effects are at scales close to ΛQCD.

2.4.1 Independent Fragmentation

The simplest approach to generating hadrons from the partons produced by the parton
shower or by the hard interaction, is to assume that each particle fragments independently.
One such approach is the so called Field Feynman scheme [19, 20] shown in fig. 2.6. Here
the fragmenting quark is combined with an antiquark from a qq̄ pair created out of the
vacuum, to give a meson with energy fraction z of the original quark. The leftover
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Figure 2.6: In independent fragmentation a quark is picking up an antiquark from a qq̄
pair created from vacuum to create a meson. The leftover quark is then also picking up
an antiquark in the same way and so on until a cut-off is reached.

quark, with energy fraction (1 − z), is fragmented in the same way until the leftover
energy falls under a cut-off scale. This scheme is easy to implement in a recursive Monte
Carlo algorithm. The relative transverse momenta of the created qq̄ pairs are given by
a Gaussian distribution. For gluon fragmentation, the gluon is first split into a qq̄ pair,
assigning the gluon’s momenta to one of the created particles according to the DGLAP
splitting function. Baryon are formed by the creation of qq-q̄q̄ pairs from the vacuum.

This model only includes a few parameters: the width of the transverse momentum dis-
tribution, the ratio of creation of different flavours and the ratio of vector to pseudoscalar
mesons. It still manages to describe many features of two- and three-jet final states in
e+e− annihilation at moderate energies. A weakness of this model is that it depends on
the energy of the parton rather than the virtuality, which makes it frame dependent. This
typically leads to violation of momentum conservation which has to be corrected after the
hadronization is completed. Another weakness is the leftover colour and flavour from the
leftover parton, which need to be neutralized.

Peterson Fragmentation

For the independent fragmentation of a heavy quark, the so called Peterson fragmentation
[21] is often used. This model is similar to the Field-Feynman scheme above with the
difference that the heavy quark momentum will only be slightly altered when attaching
a light anti-quark to it in the fragmentation process. Therefore the heavy quark and the
produced hadron should carry almost the same energy and the hypothesis of local parton
hadron duality is expected to be especially true here. The hadron containing the heavy
quark take a fraction z of the heavy quark energy, while the leftover light quark takes the
energy fraction (1 − z). The Peterson fragmentation function is:

DH
Q (z) =

NH

z
(

1 − 1
z
− εQ

1
1−z

)2 , (2.48)
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Figure 2.7: Clusters form between colour connected quarks in the cluster model. Gluons
are made to split up into qq̄ pairs which then can form clusters.

where N is the normalization, which is fixed by demanding that the sum over all possible
hadrons containing the heavy quark is unity. Here εQ is a parameter which should be of
the order of the ratio of the light quark mass to that of the heavy quark, m2

q/m
2
Q, but it has

to be fitted to experimental data. The function peaks at z ' 1 − 2εQ with a width ∼ εQ.
This means that the larger mQ is, the more of the heavy quarks momentum will be taken
by the produced hadron. The light quark created may then fragment according to the
Field Feynman scheme described above. When implemented in a computer program, the z
values of the created hadrons are generated according to eq. (2.48) to create distributions
of the kinematics of the created hadrons, which then can be put into histograms. These
distributions then have to be weighted with the probability of creating the specific hadron,
i.e. the value to the normalization NH by which the hadron contributes.

2.4.2 Cluster Fragmentation

At larger distances, of the order ΛQCD, the force between the partons is expected to be
significant. This is not taken into account in the independent fragmentation models where
each parton is treated separately. A relatively straight forward approach to take the inter-
action between the produced partons into account are the cluster fragmentation models.
The bases of these models is the pre-confinement properties, proven in perturbative QCD
[22, 23, 24]. Pre-confinement implies that, at the end of a parton shower, the mass and
spatial distributions of colour singlet quark anti-quark pairs have a universal distribu-
tion. These colour singlet pairs are called clusters, and they do not yet represent any
real hadrons. In practice, any gluons remaining at the cut-off scale t0 are forced to split
into a light qq̄ pair. The distribution of the cluster masses falls rapidly at high masses
and is very weakly dependent on Q2 [25]. The universal properties of these colour singlet
clusters, which appear naturally at the end of the parton shower, makes it a useful bases
for a hadronization model.

The clusters once formed, are assumed to decay into real hadrons independently. Most
clusters Cl are assumed to decay into two hadrons h1 and h2. These hadrons are subject
only to flavour conservation, such that if h1 is a qx̄ hadron, then h2 is a q̄x hadron where
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Figure 2.8: a) Two opposite charges in one dimension, with the field drawn as a thick
line with an arrow indicating the direction of the force flux. b) When one of the particles
get a kick and the pair get separated, the energy in the field between them increases.
The figure is drawn in the CM-system of the particles and the thin arrows indicates the
velocities of the particles. c) Eventually another pair of oppositely charged particles can
be created, by the energy stored in the string, and the string breaks.

x is either a quark or diquark. The invariant mass of the cluster is thus used to create
either one or two qq̄-pairs. The probability for a given pair of hadrons to be created is
assumed to be proportional to its available phase space:

P(Cl → h1 + h2) ∝ (2Jh1
+ 1)(2Jh2

+ 1)p(mCl, mh1
, mh2

)Θ(mCl −mh1 −mh2) (2.49)

where Jh are the angular momenta of the hadrons, p is the three-momentum in the two-
body decay in the center of mass frame and the Θ function ensures that the decay is
allowed, i.e. that mCl > mh1

+ mh2
. The decay is also assumed to be isotropic in the

cluster’s rest frame.

There are two special cases where this scheme doesn’t work. Some clusters will be too light
to decay into two hadrons. Such clusters are transformed into one hadron with the excess
momenta distributed amongst neighbouring clusters. In the tail of the mass-spectrum
there are also some very heavy clusters. Here isotropic two-body decays would yield
hadrons with unnaturally large momenta. By introducing light qq̄ pairs these clusters are
forced to split into lighter daughter clusters whose direction of motion are aligned with
the original q − q̄ axis. The selection of which clusters are considered heavy enough for
this type of decay requires extra parameters, which need to be tuned. This scheme of
letting a cluster decay into daughter clusters is similar to the Lund colour string model,
which is the subject of the next section.

2.4.3 Lund String Fragmentation

In the Lund string fragmentation model [26, 27, 28], the underlying assumption is more
complex than for independent or cluster fragmentations. Here, the confining colour force
field between a quark and an antiquark is believed to collapse into a colour flux tube of
uniform energy density per unit length. This tube is approximated by a colour string with
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Figure 2.9: a) A quark and an antiquark in their CM-system. When separated they
oscillate through each other in a so called yo-yo mode. b) If the separation becomes large
enough the string breaks, creating a new quark-antiquark pair. It may even break in
many places, creating several such pairs. All quark-antiquark pairs bound in yo-yo modes
in the end represent a meson.

tension κ ' 1GeV/fm. This string is classical, massless and relativistic. The potential
energy stored in the string is:

V (r) ∝ κr (2.50)

where r is the length of the string. When a quark and an antiquark, e.g. created in e−e+

annihilation, are separated the energy stored in the string is therefore proportional to
the separation of the quarks. When separated, the kinetic energy of the endpoint quark
and anti-quark is transformed into potential energy stored in the string between them. If
the quarks get enough separated, there will be sufficient energy stored in the string for
another qq̄ pair to be created. When this happens, the string breaks, as is depicted in
fig. 2.8.

If the initial kinetic energy of the quarks is smaller than what is needed to create another
qq̄ pair, the end point particles will turn and accelerate towards each other again. This
movement is called a yo-yo mode. For the simplest case of massless particles it is depicted
in fig. 2.9 a).

All qq̄ pairs bound in yo-yo modes represent a hadron. In fig. 2.9 b), the hadronization
of a qq̄ initial state is shown. The invariant mass available for hadron production is
proportional to the area A under underneath the breaking points in the picture. Hadrons
are created by the Lund symmetric fragmentation function:

f(z) =
N

z
(1 − z)ae−b

m2
⊥

z (2.51)
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Figure 2.10: a) The string segment between a quark and an antiquark get a kink. This
kink acts as a gluon. b) The string fragments into hadrons, the kink gets embedded into
one of the hadrons. If the gluon is hard enough it give rise to a third jet. c) A gluon is
emitted close to one of the quarks. d) When hadronizing the collinear gluon does not give
rise to a jet.

where z is the light-cone momentum fraction taken by the hadron with transverse mass
m⊥. Here N is normalization and a is a parameter. The mass of the hadron is proportional
to the space-time area spanned by one cycle in the yo-yo mode. The hadronization
proceeds from both ends of the string simultaneously. Therefore, and since it is only
possible to create a limited number of hadrons, it is necessary to have some special
treatment of the central region, both for quantum number conservation and for momentum
conservation.

Gluons are in the Lund model treated as kinks on the string segment naturally making
gluons colour octets, since each kink will be connected to both a quark and an antiquark.
The gluon hadronizes when the string breaks on both sides of the kink giving a hadron
going in the direction of the gluon. This is depicted in fig. 2.10 a) and b). This treatment
of gluons makes the model automatically infrared safe, since a soft gluon will not have
enough energy to break the string. When this happens the only contribution is a small
p⊥ broadening of the quark jets. The model is also collinear safe, since when the kink is
close to one of the end points the string will only break on the other side of the gluon and
what is obtained is a quark-jet containing the whole string piece between the kink and
the quark as depicted in fig. 2.10 c) and d).

2.5 Other Parton Evolutions

In this chapter it has been described how a parton shower can be used to find exclusive
final states according to the DGLAP equations. This evolution is ordered in transverse
momentum of the radiated emissions. A parton enter the hard interaction after radiating
one or many partons i, losing an energy fraction 1−zi in each branching. The momentum
fraction of the interacting incoming parton is given as a product of all zi values in the
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branchings, such that

xBj =
∏

i

zix0. (2.52)

If the incoming parton is a quark radiating gluons, the splitting function has a term
proportional to 1/(1 − z), which means that radiations with large z will dominate these
branching. Thus xBj may be large in this case. Also, in this case, the radiations will be
ordered in transverse momenta.

If the incoming parton is a gluon, there is two divergent pieces in the splitting function, a
1/(1−z) piece and also a 1/z piece, which means that the gluon may radiate many gluons
with small z values. In this case xBj may be small. A small value of xBj corresponds
intuitively to a scenario where the momentum of the proton is distributed over many
partons. Therefore, in order to resolve these partons, Q2 should be large. With a large
value of Q2, the value of xBj may be arbitrary small in the DGLAP picture, and the
radiations are still ordered in virtuality of the links.

If, on the other hand, one looks at a region of phase-space where xBj is small and Q2 is
also small, the phase-space for virtuality ordered chains becomes decreased. In this region
of phase-space, many radiations are expected since xBj is small and at the same time, the
order in virtuality in the links is suppressed by the small scale. Therefore is the DGLAP
picture not expected to hold in this region of phase-space.

An evolution for small xBj, where the virtuality of the link is a random walk is called
BFKL evolution after the physicists Balitsky, Fadin, Kuraev and Lipatov [29, 30, 31].
This kind of evolution is still not implemented in an event generator, even though some
recent progress looks promising, e.g. [32].

An evolution including evolution both at small and at large values of xBj is called a CCFM-
evolution after the physicists Catani, Ciafaloni, Fiorani and Marchesini [33, 34, 35, 36]
and has been implemented in the multi purpose event genereator CASCADE [37] for a
gluon ladder, and in the LDC MC [38] in a modified form. The 1/(1 − z) branchings
becomes colour ordered in q⊥, in the chain, while the non-eikonal current gives a random
walk in q⊥. The CCFM evolution becomes strictly ordered in angle, similarly to the order
in Q in the HERWIG parton shower. The CCFM is possible to implement with so-called
non-Sudakov formfactors.



Chapter 3

Next-to-leading Order Calculations

In this chapter, the QCD cross-section for heavy quark produced in photoproduction
will be described at next-to-leading order. There are two parts of this calculation: the
hadronic part and the pointlike part, which has to be added in order to describe real
physical observables. The hadronic part has been calculated in [39]. In this chapter, the
pointlike part of the calculation will be described. Here, the massive fixed flavour number
scheme, described in chapter 1.1.5, is used in the calculation.

At leading order the cross-section for this interaction is of order O(αEMαs). This is the
lowest order by which the process is calculable and is called the Born term. The two
diagrams relevant for the Born term are shown in fig. 3.1. Next-to-leading order (NLO)
is then defined as one higher order in αs, i.e. O(αEMα

2
s ). At NLO, two kinds of terms

have to be taken into account. Firstly, the real emissions, where one of the four particles
in the interaction emits a real gluon or light quark, which are of order O(αEMα

2
s). These

diagrams are shown in figs.3.2 and 3.3. The second kind of diagrams are the virtual
contributions, shown in fig. 3.4, which are of order O(αEMα

4
s). This is of higher order

than NLO, but these terms still play a role in the NLO calculation since they give the
same final state as the Born term and therefore interfere with the LO contribution. These
interference term are of order O(αEMα

2
s), which is NLO.

Q

Q̄

γ

g

Q̄

Q

γ

g

Figure 3.1: The two diagrams contributing to the Born-term
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Figure 3.2: The real emission diagrams corresponding to the γg → QQ̄g process. The
charge conjugated diagrams are implied. These diagrams are depicting O(αEMα

2
s ) contri-

butions.
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Figure 3.3: The real emission diagrams corresponding to the γq → QQ̄q process. The
charge conjugated diagrams are implied. These diagrams are depicting O(αEMα

2
s ) contri-

butions.
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Figure 3.4: Virtual diagrams which contributes to the NLO cross section. These dia-
grams are of order O(αEMα

4
s ) but the interference with the Born terms gives an order

O(αEMα
2) contribution. Charge conjugated diagrams are implied.
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Figure 3.5: Virtual diagrams which do not take part of the next-to-leading order cal-
culation. Instead diagrams of this type are absorbed in the definition of the coupling αs

through the renormalization procedure. Charge conjugated diagrams are implied.
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Schematically the matrix element squared at NLO is given by:

|A2|2 = B∗B + (B∗V + V ∗B) (3.1)

|A3|2 = R∗R, (3.2)

where B, V and R stands for the amplitudes of the Born term, the virtual terms and the
real terms respectively. The subscripts denote the number of partons in the final state.
With the notation

dσ(b) ∝ B∗B

dσ(v) ∝ B∗V + V ∗B

dσ(r) ∝ R∗R (3.3)

calculating the cross-section at next-to-leading order means computing the integrals:

σNLO =

∫

3

dφ3

(

dσReal
)

+

∫

2

dφ2

(

dσBorn + dσVirtual
)

. (3.4)

where the integration is over a phase-space dφn which depends on how many particles
are produced in the final state n = 2, 3. Each order in the perturbative expansion of
the cross-section is finite, which means that the sum of the integrals in eq. (3.4) is finite.
However, both integrals are separately divergent. This implies that the divergencies in the
first integral exactly compensate those in the second integral. One way to deal with these
intermediate divergencies is to regulate them by working in d = 4− 2ε dimensions, where
they are replaced by singularities in 1/ε. The principle behind dimensional regularization
is explained in appendix A.

The purpose of this chapter is to explain how the NLO cross-section in eq. (3.4) can be
calculated. In section 3.1 this will be illustrated in a simpler form, by a toy model. In
section 3.2.2 it will be explained in general how the factorization theorem can be used
to cancel the intermediate divergencies. In section 3.3, the calculation of the NLO cross-
section for heavy flavour photoproduction will be described.

3.1 A Toy Model of a Next-to-Leading Order Cross-

section Calculation

In this section a Toy Model is presented, which puts the key feature of the NLO calculation
in a simpler form than the full QCD case [40]. This Toy Model will also be a good tool
to present the key features of MC@NLO in a later chapter. In this model a system can
radiate massless particles, called photons. The system has the energy xs and the radiated
photon is given the energy x such that 0 ≤ x ≤ xs ≤ 1. After the emission the energy of
the system becomes x′s = xs − x. The system may undergo a series of emissions but the
photons will not emit further.
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a) b) c)

Figure 3.6: Simple pictures of the contributions to the toy model NLO calculation. a)
shows the Born contribution, b) shows a virtual contribtuion and c) shows a real emission
diagram.

To calculate the NLO cross-section for this system, the Born, virtual and real emission
terms have to be defined. These are depicted in figure 3.6. In the Born term, no extra
photon is radiated as seen in fig. 3.6 a). This is the leading order diagram. In the virtual
corrections depicted in fig. 3.6 b), a virtual photon is radiated and reabsorbed by the
system. This gives a contribution of the order O(a2), where a is the coupling in the
model. This is higher than NLO, but interference of the Born and virtual terms is of
order O(a), which is NLO. In the real contribution shown in fig. 3.6 c), a real photon is
radiated taking an energy x. This process is also of order O(a).

The total NLO cross section is

dσNLO

dx
=

(

dσ

dx

)

B

+

(

dσ

dx

)

V

+

(

dσ

dx

)

R

(3.5)

where
(

dσ

dx

)

B

= Bδ(x), (3.6)

(

dσ

dx

)

V

= a

(

B

2ε
+ V

)

δ(x), (3.7)

(

dσ

dx

)

R

= a
R(x)

x
. (3.8)

Here, B and V do not depend on x, and

lim
x→0

R(x) = B. (3.9)

The delta-functions in eqs. (3.6) and (3.7) come from the fact that for the Born and
virtual terms, no photon is radiated and hence x = 0. The parameter ε is entering the
dimensional regularization in 4 − 2ε dimensions. All singularities are then expressed as
poles in ε.

The total NLO cross-section is then:

σNLO =

∫ 1

0

dx

[(

dσ

dx

)

B

+

(

dσ

dx

)

V

+

(

dσ

dx

)

R

]

(3.10)
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The pole in ε in the virtual contribution has to be canceled by that extracted from the
real contribution. There are different ways to do this. In the following, two methods will
be described: the phase space slicing method and the subtraction method.

3.1.1 The Phase Space Slicing Method

The pole in ε is present in the virtual part of the calculation. In order to cancel this
singularity, the real part of the calculation may be modified. In the phase space slicing
method, a small parameter δ is introduced into the real contribution in the following way:

σR =

∫ 1

0

dx

(

dσ

dx

)

R

=

∫ δ

0

dx

(

dσ

dx

)

R

+

∫ 1

δ

dx

(

dσ

dx

)

R

= a

∫ δ

0

dx
R(x)

x
+ a

∫ 1

δ

dx
R(x)

x
(3.11)

The second term on the r.h.s. of this equation does not contain any singularity, while the
first term still does. Here, R(x) may be expanded in a Taylor series around x = 0, only
keeping the first term:

R(x) = R(0) + O(x) = B + O(x) (3.12)

The first integral in the r.h.s. of eq. 3.11 then becomes:

aB

∫ δ

0

dx

x
+ O(δ) = aB

∫ δ

0

x−2ε dx

x
+ O(δ) = aB

δ−2ε

−2ε
+ O(δ) (3.13)

= a

(

1

−2ε
+ ln δ

)

B + O(ε) + O(δ)

where dimensional regularization has been used in a similar way as described in eq. (A.6),
and in the last step δ−2ε is Taylor expanded in ε such that δ−2ε = 1− ln δ ·2ε+O(ε2). The
factor −aB

2ε
will exactly cancel the pole in ε present in the virtual contribution, which can

be seen when eqs. (3.14) and (3.11) are substituted into eq. (3.10):

σslice
NLO =

∫ 1

0

dx

[(

dσ

dx

)

B

+

(

dσ

dx

)

V

+

(

dσ

dx

)

R

]

= a

(

− 1

2ε
+ lnδ

)

B +

∫ δ

0

dx δ(x)

[

B + a

(

B

2ε
+ V

)]

+

∫ 1

δ

dx

[

Bδ(x) + a

(

B

2ε
+ V

)

δ(x) + a
R(x)

x

]

+ O(δ)

= B + a

[

(Blnδ + V ) +

∫ 1

δ

dx
R(x)

x

]

+ O(δ). (3.14)
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This is the NLO prediction of the cross-section according to the phase space slicing
method. Here δ act as a phenomenological parameter. The terms O(δ) cannot be com-
puted and one has to check that they are numerically small by plotting 〈O〉Slice versus δ
in a suitable range in δ.

3.1.2 The Subtraction Method

In the subtraction method no approximation is performed, instead one term is added and
subtracted from the real contribution in order to cancel the pole in the virtual contribu-
tion. The addition and subtraction of

aB

x
(3.15)

in the real contribution yields:

σR = a

∫ 1

0

dx

[

R(x)

x
+
aB

x
− aB

x

]

= aB

∫ 1

0

dx

x
+ a

∫ 1

0

dx
R(x) − B

x

= −aB
2ε

+ a

∫ 1

0

dx
R(x) −B

x
, (3.16)

where dimensional regularization has been used similarly as in eq. 3.14 in the last step.
As before, in the phase space slicing method, there is a term −a B

2ε
present here, which is

what is needed to cancel the divergency in ε present in the virtual contribution. This is
seen by substituting eq. (3.16) into eq. (3.10), which gives:

σsub
NLO = B + aV + a

∫ 1

0

dx
R(x) −B

x
, (3.17)

which is the NLO prediction of the cross-section as given by the subtraction method. The
expectation value of an IR-safe1 observable O(x) is given by:

〈O〉sub =

∫ 1

0

O(x)Bδ(x)dx + a

∫ 1

0

O(x)V δ(x)dx + a

∫ 1

0

O(x)
R(x) −B

x
dx(3.18)

= BO(0) + aV O(0) + a

∫ 1

0

O(x)
R(x) −B

x
dx

such that the term aBO(x)/x is being added and subtracted.

1IR-safe observables are also called jet-observables.
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3.2 The Subtraction Method in QCD

In the subtraction method, the QCD NLO cross-section eq. 3.4 becomes:

σNLO =

∫

3

dφ3

(

dσReal − dσSub
)

+

∫

2

dφ2

(

dσBorn + dσVirtual
)

+

∫

3

dφ3

(

dσSub
)

. (3.19)

The cross-section dσSub, which is subtracted and added should fulfill two main properties:

1. Firstly, it must exactly match the singular behaviour in d dimensions of the real
contribution dσReal. Therefore it acts as a local counter term for dσReal and one can
safely perform the limit ε→ 0 in the first integral in eq. (3.19).

2. Secondly, dσSub must be analytically integrable in d dimensions over the one-parton
subspace leading to the divergencies, such that the NLO cross-section can be written
as:

σsub
NLO =

∫

3

dφ3

(

dσReal − dσSub
3

)

∣

∣

∣

∣

ε=0

+

∫

2

dφ2

(

dσVirtual +

∫

1

dσSub
3

)
∣

∣

∣

∣

ε=0

+

∫

2

dφ2dσ
Born

(3.20)
where the subscript of the subtraction term is indicating over which phase-space it
is integrated.

After integration, the subtraction terms cancel exactly by construction. The task then
becomes to construct such subtraction terms.

3.2.1 Soft and Collinear Limits

The real cross-section contribution has the following structure [41]:

dσReal = dΦm+1|Mm+1({kk})|2F (m+1)
J ({kk}) (3.21)

where dΦm+1 and the tree level matrix element Mm+1({kk}) are process dependent and

F
(3)
J depends on which observables are calculated.

The subtraction terms may be found by use of the soft and collinear factorization theo-
rems. The tree-level matrix element Mm+1(k1, · · · , km+1) is a function of the m+ 1 final
state particle momenta ki. Its soft and collinear singular behaviour in d dimensions can
be obtained by means of soft and collinear factorization formulas. In the soft limit, when
the parton momentum kj vanishes there is the following structure:

|Mm+1(k1, · · · , kj, · · · , km+1)|2 → |Mm(k1, · · · , km+1)|2 ⊗c
~J2(kj). (3.22)
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Figure 3.7: A pictorial view of a) the LO and b) the NLO contributions from the
expansion of eq. (3.24).

Here, the r.h.s. contains the m final-state particle tree-level matrix-element, symbolically
convoluted with the eikonal current ~J2(k) for the emission of the soft particle kj. Similarly,
in the collinear limit, where the parton momenta ki and kj become parallel:

|Mm+1(k1, · · · , ki, kj, · · · , km+1)|2 → |Mm(k1, · · · , kj + ki, · · · , km+1)|2 ⊗h Pij (3.23)

where Pij is the DGLAP splitting function for finding particle i in particle j. The eikonal
current and the splitting functions are universal factors which do not depend on the
process. They do however depend on the kinematics of the tree-level Mm produced,
and the eikonal current depends on the colour charges of the emitting partons, while the
splitting function depends on their helicities. Equations (3.22) and (3.23) can now be used
to find the subtraction term dσSub

3 . Away from the soft and singular regions, one has to
to make sure that momentum conservation is properly treated. Also, in the overlapping
region, when k is both soft and collinear, one has to avoid to double count the subtraction.

3.2.2 Collinear Factorization at NLO

The short distance partonic cross section at NLO, dσ̂ab, can be expressed in the following
way:

dσij(p1, p2) =
∑

ab

∫

dz1dz2φi/a(z1)φj/b(z2)dσ̂ab(z1p1, z2p2), (3.24)

where p1,2 = x1,2P1,2. The functions φi/j describe the content of parton j within parton
i and are called partonic PDFs. The terms on both sides in eq. (3.24) expanded in αs
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gives:

dσij =

∞
∑

n=1

(αs

π

)n

dσ
(n)
ij (3.25)

dσ̂ab =
∞
∑

n=1

(αs

π

)

dσ̂
(n)
ab (3.26)

φi/a(z) =
∞
∑

n=0

(αs

π

)

φ
(n)
i/a = δiaδ(1 − z) − αs

2π

(

1

ε̄
P

(1)
ia (z) +Qia(z)

)

+ O(α2
s ) (3.27)

where the delta-function in the partonic PDFs comes from the fact that at O(α0
s ) the

incoming parton a does not change. The functions Qij(x) are completely arbitrary and
different choices corresponds to different subtraction schemes. In the following, the M̄S
scheme will be adopted in which Qij(x) is absorbed by the definition of the parton densities
and therefore put to 0 here. In this scheme, the pole part ε̄ becomes:

1

ε̄
=

1

ε
+ ln 4π − γE. (3.28)

where the Euler number γE is defined in appendix A. The functions P
(1)
ij (x) are the one

loop DGLAP splitting functions for the probability of finding parton i in parton j in 4−2ε
dimensions. They are [42]:

P (1)
gg (z) = 6

[

z

(1 − z)+

+
1 − z

z
+ z(1 − z)

]

+
33 − 2nl

6
δ(1 − z) (3.29)

P (1)
qq (z) =

4

3

1 + z2

(1 − z)+

+ 2δ(1 − z) (3.30)

P (1)
gq (z) =

4

3

1 + (1 − z)2 − εz2

z
(3.31)

P (1)
qg (z) =

1

2

[

z2 + (1 − z)2 − 2z(1 − z)ε
]

(3.32)

P (1)
qγ (z) = 6P (1)

qg (z) (3.33)

which may be compared to eq. (1.90) and (1.96). The number of light flavours is nl = 3
for charm production and nl = 4 for beauty production.

The Born term is by definition the result to lowest order αs. How to combine the different
terms in eqs. (3.25)-(3.27) to reach this result is schematically shown in figure 3.7 a). The
Born term is then:

dσ
(1)
ij (p1, p2) =

∑

ab

∫

dz1dz2φ
(0)
i/a(z1)φ

(0)
j/b(z2)dσ̂

(1)
ab (z1p1, z2p2)

=
∑

ab

∫

dz1dz2δiaδ(1 − z1)δjbδ(1 − z2)dσ̂
(1)
ab (z1p1, z2p2)

= dσ̂
(1)
ij (p1, p2) ≡ dσ

(b)
ij (p1, p2) (3.34)
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l

H

b

a
x1

x2

dσ̂ab

f l
a

fH
b

Figure 3.8: A pictorial view of the factorization described in eq. (3.36).

where in the last step (b) stands for the Born term. Similarly, the O(α2
s ) term is obtained

by combining the terms as is schematically shown in fig. 3.7 b):

dσ
(2)
ij (p1, p2) =

∑

ab

∫

dz1dz2
[

φ
(0)
i/a(z1)φ

(0)(z2)dσ̂
(2)
ab (z1p1, z2p2)

+φ
(1)
i/a(z1)φ

(0)(z2)dσ
(1)
ab (z1p1, z2p2)

+φ
(0)
i/a(z1)φ

(1)(z2)dσ
(1)
ab (z1p1, z2p2)

]

=
∑

ab

∫

dz1dz2
[

δiaδ(1 − z1)δjbδ(1 − z2)dσ̂
(2)
ab (z1p1, z2p2)

−αs

2π

1

ε
P

(1)
ia (z1)δjbδ(1 − z2)dσ

(1)
ab (z1p1, z2p2)

−δiaδ(1 − z1)
αs

2π

1

ε
P

(1)
jb (z2)dσ

(1)
ab (z1p1, z2p2)

]

= dσ̂
(2)
ij (p1, p2)

−αs

2π

1

ε

∑

a

∫

dz1P
(1)
ia (z1)dσ

(1)
aj (z1p1, p2)

−αs

2π

1

ε

∑

b

∫

dz2P
(1)
jb (z2)dσ

(1)
bi (p1, z2p2). (3.35)

3.3 eP Cross-Sections

In this section the cross-section for the diagrams in figs.3.1-3.3 will be given. Detailed
descriptions of the calculations are given in [43, 44, 39]. Here, the focus will be on the
singularities in the calculations and how they are regularized [42].

For electron-proton scattering, the total cross-section is:

dσeP (P1, P2) =
∑

ab

∫

dx1dx2f
e
a(x1)f

P
b (x2)dσ̂ab(x1P1, x2P2), (3.36)
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where P1 and P2 are the momenta of the electron and proton respectively. The function
f e

γ (x1) describes the photon flux from the electron, when the photon takes a fraction x1

from the electron’s momentum. Similarily fP
b (x2) describes the flux of flavour b when it

takes a fraction x2 from the proton’s momentum. The sum runs over the parton flavours,
which give a contribution to the partonic subprocess, σ̂ab at NLO.

For heavy quarks produced in pointlike photoproduction there is the following 2 → 2
process, which is depicted in figs.3.1 and 3.4:

γg → QQ̄ (3.37)

and the following 2 → 3 processes, depicted in figs. 3.2 and 3.3:

γg → QQ̄g (3.38)

γq → QQ̄q (3.39)

γq̄ → QQ̄q̄ (3.40)

Kinematics for the 2 → 2 Process

For the two-body interaction, the notation with barred symbols is used. The incoming
massless momenta are p̄1 and p̄2, and the outgoing heavy quark momenta are k̄1 and k̄2,
such that the process may be written p̄1 + p̄2 → k̄1 + k̄2. The momentum fractions of the
incoming partons are x̄1 and x̄2, such that:

p̄1,2 = x̄1,2P1,2 (3.41)

where P1,2 are the beam momenta. The two-body invariants are, as in eq. (1.97) the
modified Mandelstam variables:

s̄ = (p̄1 + p̄2)
2 = 2p̄1p̄2

t̄ = (p̄1 − k̄1)
2 −m2 = −2p̄1k̄1

ū = (p̄1 − k̄2)2 −m2 = −2p̄1k̄2. (3.42)

Here m is the heavy quark mass. Then s̄+ t̄+ ū = 0 and s̄ = x̄1x̄2S, where S = (P1 +P2)
2

is the overall center of mass energy squared. In the center of mass frame of the 2 → 2
process, the four-momenta can be written as:

p̄1,2 = Ē(1, 0, 0,±1)

k̄1,2 = (Ē,±k̄T , 0,±k̄L) (3.43)

and

s̄ = Ē2

t̄ = −2Ē(Ē − k̄L)

ū = −2Ē(Ē + k̄L). (3.44)



3.3 eP Cross-Sections 63

The heavy quark velocity β̄ is:

β̄ =

√

1 − 4m2

s̄
. (3.45)

In this system the scattering angle θ̄ is also defined. Then

t̄ = −1

2
s̄(1 − β̄ cos θ̄)

ū = −1

2
s̄(1 + β̄ cos θ̄) (3.46)

Kinematics for the 2 → 3 Processes

For the 2 → 3 processes unbarred symbols are used. The incoming momenta are p1

and p2 and the outgoing heavy quark and antiquark momenta are k1 and k2 respectively,
while the outgoing light parton has momentum k, such that p1 + p2 → k1 + k2 + k. The
momentum fractions of the incoming partons are denoted x1 and x2 such that

p1,2 = x1,2P1,2. (3.47)

For the three-body processes there are five independent invariants:

s = 2p1p2

t1 = (p1 − k1)
2 −m2 = −2p1k1

t2 = (p2 − k2)
2 −m2 = −2p2k2

u1 = (p1 − k2)
2 −m2 = −2p1k2

u2 = (p2 − k1)
2 −m2 = −2p2k1. (3.48)

Then s = x1x2S. It is also convenient to define

v1 = −2p1k

v2 = −2p2k (3.49)

and

w1 = 2k1k

w2 = 2k2k (3.50)

These variables are not independent, since

s+ t1 + u1 + v1 = s + t2 + u2 + v2 = 0,

s+ t1 + u2 − w2 = s+ t2 + u1 − w1 = 0. (3.51)
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3.3.1 A Description of the Calculation

In order to perform the calculation of the diagrams in figs.3.1-3.3 all singularities have
to be dealt with. There are two types of singularities present, ultra-violet (UV) and
infra-red (IR). The UV singularities are present in the diagrams in fig. 3.5 and the IR
singularities are present in both the virtual diagrams in fig. 3.4 and in the real emission
diagrams in figs.3.2 and 3.3. To make the cross-section UV safe, the poles are canceled by
renormalizing the coupling αs and the masses of the light parton in the loop, as described
in section 1.1.1 and appendix A. The UV-singularities will not be considered in the
following. The IR divergencies come in two types: soft and collinear. When computing
the diagrams with dimensional regularization in n = 4−2ε dimensions all IR divergencies
appear as 1/ε poles. All diagrams with an emitted gluon (real or virtual) give rise to a
soft singularity when the gluon energy becomes zero. Also, for the real diagrams with
emissions from the incoming particles there are collinear singularities when the emitted
parton is at an angle θ such that y ≡ cos θ = ±1.

The γg → QQ̄g processes

For the real emission diagrams for the γg → QQ̄g process (fig. 3.2) the cross-section is
given by [42]:

dσ(r)
γg = M(r)

γg (s, v1, v2, t1, t2)dφ3. (3.52)

The three-body phase-space dφ3 can be expressed in terms of the two-body phase-space
dφ2(s) as:

dφ3 =

(

1 − π2

3
ε2
)

(4π)ε−2Γ(1 + ε)
s1−ε

2π
(1 − x)1−2ε(1 − y2)−εdy sin2ε θ2dθ2dφ2(xs) (3.53)

where Γ(n) is Euler’s gamma function described in appendix A.

The leading soft singularity in the invariant cross section, eq. (3.52), behaves as 1/(1−x)2

and the collinear singularity for y = −1 behaves as 1/(1 − y2). Therefore is the function

fγg(x, y, θ1, θ2) = s2(1 − x)2(1 − y2)M(r)
γg (s, v1, v2, t1, t2) (3.54)

regular for y = −1 and x = 0. When substituting eqs. (3.53) and (3.54) into eq. (3.52),
the real emission cross section becomes:

dσ(r)
γg =

(

1 − π2

3
ε2
)

(4π)ε−2Γ(1 + ε)
s−1−ε

2π
(1 − x)−1−2ε(1 − y2)−1−ε

× dy sin2ε θ2dθ2dφ2(xs)fγg(x, y, θ1, θ2). (3.55)
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This expression can be expanded in ε, using

(1 − x)−1−2ε = − β̃
−4ε

2ε
δ(1 − x) +

(

1

1 − x

)

ρ̃

− 2ε

(

log(1 − x)

1 − x

)

ρ̃

+ O(ε2) (3.56)

(1 − y2)−1−ε = −[δ(1 + y) + δ(1 − y)]
(2ω)−ε

2ε

+
1

2

[(

1

1 − y

)

ω

+

(

1

1 + y

)

ω

]

+ O(ε), (3.57)

where the distributions in round brackets are defined according to the prescriptions:
∫ 1

ρ̃

h(x)

(

1

1 − x

)

ρ̃

dx =

∫

ρ̃

h(x) − h(1)

1 − x
dx

∫ 1

ρ̃

h(x)

(

log(1 − x)

1 − x

)

ρ̃

dx =

∫

ρ̃

[h(x) − h(1)]
log(1 − x)

1 − x
dx

∫ 1

1−ω

h(y)

(

1

1 − y

)

ω

dy =

∫

1−ω

h(y) − h(1)

1 − y
dy

∫ −1+ω

−1

(

1

1 + y

)

ω

dy =

∫ −1+ω

−1

h(y) − h(−1)

1 + y
dy (3.58)

for any test function h(x). Here β̃ =
√

1 − ρ̃ and ρ̃ and ω are parameters which should
be chose within the ranges

4m2

s
≤ ρ̃ < 1, 0 < ω ≤ 2. (3.59)

When substituting eqs. (3.56) and (3.57) into eq. (3.55), the soft and collinear singular
pieces and the regular piece in the real cross section may be separated. The real cross
section then becomes:

dσ(r)
γg = d(s)

γg + dσ(c−)
γg + dσ(f)

γg . (3.60)

where (s) denotes the soft piece, (c−) denotes the collinear piece for y = −1 and (f)
denotes the regular piece.

Here the collinear part is:

dσ(c−)
γg = (4π)−2+εΓ(1 + ε)dφ2(xs)

s−1−ε

2π
dy sin−2ε θ2dθ2

[

(

1

1 − x

)

ρ̃

− ε

(

log(1 − x)

1 − x

)

ρ̃

]

×
[

−(2ω)−ε

2ε
δ(1 + y)

]

fγg(x, y, θ1, θ2). (3.61)

In the collinear limit y = −1, it has been shown that fγg(x,−1, θ1, θ2) may be expressed
as [39]:

fγg(x,−1, θ1, θ2) = f (c−)
γg (x, θ1) + f̃ (c−)

γg (x, θ1, θ2) (3.62)
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where f̃
(c−)
γg (x, θ1, θ2) has the property that

∫ π

0

f̃ (c−)
γg (x, θ1, θ2) sin−2ε θ2dθ2 = 0. (3.63)

The function f
(c−)
γg is given by

f (c−)
γg (x, θ1) = 64π3α(b)

s s(1 − x)

[

x

1 − x
+

1 − x

x
+ x(1 − x)

]

M(b)
γg (xs, t1) (3.64)

The term in the square bracket is the DGLAP splitting function Pgg(x), defined in eq. 1.90.
Substituting eqs. (3.62) and (3.64) into eq. (3.61) and performing the y and θ2 integration,

such that f̃
(c−)
γg (x, θ1, θ2) drops out, the collinear piece become:

dσ(c−)
γg = −s

ε̄

(

2

ω

)ε
3α

(b)
s

π

[

(

1

1 − x

)

ρ̃

− 2ε

(

log(1 − x)

1 − x

)

ρ̃

]

× (1 − x)Pgg(x)M(b)
γg (xs, t1)dφ2(xs) (3.65)

which comes from the small ε limit of the Γ(1 + ε) term. Here, M(b)
γg (xs, t1)dφ2(xs) is the

Born term in eq. (3.34), expressed in 2 → 3 variables.

In eq. (3.65) there is a 1/ε̄ pole which has to be regularized. From eq. (3.35), the total
short distance cross-section for the process γg → QQ̄g at NLO then becomes

dσ̂γg(p1, p2) = dσ̂(1)
γg + dσ̂(2)

γg (p1, p2)

= dσ(b)
γg + dσ(2)

γg +
αs

2π

1

ε̄
dz2P

(1)
gg (z2)M(b)

γg (z2s, t)dφ2(x)

= dσ(b)
γg + dσ(v)

γg + dσ(r)
γg +

αs

2π

1

ε̄
dz2P

(1)
gg (z2)M(b)

γg (z2s, t)dφ2(x)

= dσ(b)
γg + dσ(v)

γg + dσ(s)
γg + dσ(c−)

γg + dσ(f)
γg

+
αs

2π

1

ε̄
dz2P

(1)
gg (z2)M(b)

γg (z2s, t)dφ2(x) (3.66)

where eq. (3.60) has been used in the last step. The collinear singularities in eq. (3.65)
are now canceled by the 1/ε̄ pole explicitly present here. Therefore, the last term here
has the properties needed for a subtraction term: it cancels the singularities locally and
it is integrated over the 1 parton subspace. The remaining soft singularities in dσ̂

(s)
γg are

canceled by the singularities in the virtual contribution dσ
(v)
γg , such that the term

dσ(sv)
γg = dσ̂(s)

γg + dσ(v)
γg (3.67)

is finite for ε→ 0.
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The γq̄ → QQ̄q̄ Processes

For the process γq(q̄) → QQ̄q(q̄), the diagrams contributing to the calculation are the
diagrams in fig. 3.3. The calculation of these diagrams is performed in the same steps as
for the γg → QQ̄g, described above. The difference is that in this process, there are no
soft singular piece, since there is no gluon emission present. On the other hand, there is
a collinear singular piece associated with the incoming photon, where y = 1, not present
in the previously described process. Following the same steps in going from eq. (3.52) to
eq. (3.60), this cross section can be expressed as

dσ(r)
γq = dσ(c+)

γq + dσ(c−)
γq + dσ(f)

γq . (3.68)

Here, the collinear pieces becomes

dσ(c±)
γq = (4π)−2+εΓ(1 + ε)

s−1−ε

4ε

(

2

ω

)ε
[

(

1

1 − x

)

ρ̃

− 2ε

(

log(1 − x)

1 − x

)

ρ̃

]

× f (c±)
γq (x, θ1)dφ2(xs) (3.69)

where the functions f
(c±)
γq (x, θ1) are given by

f (c+)
γq (x, θ1) = 32παEMe

2
qs(1 − x)Pqγ(x)M(b)

qq̄ (xs, t2) (3.70)

f (c−)
γq (x, θ1) = 32παss(1 − x)Pgq(x)M(b)

γg (xs, t1). (3.71)

Here eq is the charge of the emitted light quark and M(b)
qq̄ (s, t) is the Born invariant cross

section for qq̄ → Qq̄. The 1/ε singularity in eq. (3.69) has to be regularized.

The γq → QQ̄q cross-section in eq. (3.35) is:

dσ(2)
γq (p1, p2) = dσ̂(2)

γq (p1, p2) −
αs

2π

1

ε̄

∫

dz1P
(1)
qγ (z1)M(b)

qq̄ (z1p1, p2)dφ2(z1s)

−αs

2π

1

ε̄

∫

dz2P
(1)
gq (z2)M(b)

γg (p1, z2p2)dφ2(z2s) (3.72)

For γq̄ → QQ̄q̄, the contributions are equivalent, with the substitution q ↔ q̄.

The total short distance cross section for this process then becomes:

dσ̂γq(p1, p2) = dσ̂(2)
γq (p1, p2)

= dσ(2)
γq (p1, p2) +

αs

2π

1

ε̄

∫

dz1P
(1)
qγ (z1)M(b)

qq̄ (z1p1, p2)dφ2(z1s)

+
αs

2π

1

ε̄

∫

dz2P
(1)
gq (z2)M(b)

γg (p1, z2p2)dφ2(z2s)dσ
(2)
γq (p1, p2)

= dσ(c+)
γq + dσ(c−)

γq + dσ(f)
γq

+
αs

2π

1

ε̄

∫

dz1P
(1)
qγ (z1)M(b)

qq̄ (z1p1, p2)dφ2(z1s)

+
αs

2π

1

ε̄

∫

dz2P
(1)
gq (z2)M(b)

γg (p1, z2p2)dφ2(z2s) (3.73)
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The collinear singularities for y = ±1 are canceled by the first and second integral respec-
tively, which are used as the subtraction terms.

3.4 Calculating Total and Differential Cross-sections

at NLO

In order to evaluate the integral 3.20 numerically, the Monte Carlos methods described
in chapter 2 cannot be used. The reason for this is that in the MC method, the integral
being evaluated is treated as a probability distribution. In the NLO cross-section the
function being integrated over is not positive everywhere. Therefore it cannot be treated
as a probability distribution.

To numerically compute both the total NLO cross-section and also differential cross-
sections, a method using weights may be used. Writing the integral symbolically as:

σsub
NLO =

∫

m+1

dφm+1Rsub(φm+1) +

∫

m

dφmVsub(φm) +

∫

m

dφmB(φm) (3.74)

where the integrands are functions of sets of phase-space variables φi for m and m + 1
parton final states. To evaluate the integral, the phase-space coordinates are randomly
and uniformly sampled over their whole range. Each sampled point φ

(i)
m+1 or φ

(j)
m is then

given a weight w(i) = Rsub(φ
(i)
m+1) or w

(j)
V = Vsub(φ

(j)
m ) and w

(j)
B = B(φ

(j)
m ). The weights

w
(j)
V are in general negative, while the other weights are positive. The estimate of the

total cross-section then becomes a weighted sum over all the sampled points in respective
phase-space:

σsub
NLO '

∑

Sampled points i

Rsub(φ
(i)
m+1) +

∑

Sampled points j

(

Vsub(φ
(j)
m ) + B(φ(j)

m )
)

(3.75)

=
∑

i

w(i) +
∑

j

(

w
(j)
V + w

(j)
B

)

The differential distributions may then be obtained by filling histograms which are binned
in phase-space, with the weights w(i), w

(j)
V and w

(j)
B .

3.5 Dipole Subtraction

Another way of finding subtraction terms is the so called Catani-Seymour subtraction [41].
Instead of using the forms in eq. (3.22) and (3.23), one may use the dipole factorization
formula:

|Mm+1(k1, · · · , km+1)|2 → |Mm(k̃1, · · · , k̃m)|2 ⊗ Vij + non singular terms (3.76)
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where the non singular terms are regular for ki · kj → 0. As for the collinear splitting
functions, the dipole splitting functions are universal, i.e. process independent. These
dipole splitting functions describe the probability of two particles splitting into three,
and include an emitter, an emitted particle and a spectator. The parton momenta k̃i are
defined by:

k̃2
i = 0 (3.77)

k̃1 + · · · + k̃m = k1 + · · ·+ km+1

The first condition demands that the outgoing partons are on mass-shell (it has to be
modified for heavy quarks), and the second condition conserves four-momentum.

The subtraction terms may then be written:

∫

m+1

dσSub
m+1 =

∑

dipoles ij

∫

m

dφmdσBorn ×
∫

1

dVij (3.78)

where the sum goes over all dipoles in the m + 1 final state. In a 2 → 1 process there is
one dipole, in a 2 → 2 process there are 2 dipoles etc.



Chapter 4

Monte Carlo at Next-to-leading

Order

In this chapter, the next-to-leading order (NLO) calculation described in chapter 3, will
be supplemented with a parton shower to all orders in αs. In chapter 3 it is described how
the intermediate divergencies in the NLO calculation are regulated with the subtraction
method. The resulting cross-section may be written in the form:

σsub
NLO =

∫

m+1

dφm+1Rsub(φm+1) +

∫

m

dφmVsub(φm) +

∫

m

dφmB(φm) (4.1)

where Rsub and Vsub denote the real emissions and virtual contribution respectively, both
with the all IR divergencies subtracted, and B denotes the Born term. Here, dΦ(i) denotes
the phase-space for i final state partons.

When adding a parton shower to this NLO calculation, some m + 1 particle final state
configurations will also be generated by the m particle final state configuration, together
with the first branching in the parton shower. If not done properly, these configurations
will then be doubly counted. In this chapter it will be explained how the subtraction
method may be modified when adding a parton shower to the NLO-calculation. This
will lead to the need to construct so called Monte Carlo subtraction terms, which will
be used to cancel any intermediate IR divergencies, as well as the double counting of
some configurations. The concepts of modified subtraction will be introduced in the
framework of the toy model presented in chapter 3.1. The NLO matrix-element combined
with a parton shower is called an MC@NLO. The goal of this chapter is to find the
Monte Carlo subtraction terms needed to combine the process of heavy quarks produced
in photoproduction, with the HERWIG parton shower, which was described in chapter
2.3. The construction of an MC@NLO for this process is the topic of this thesis. As such,
it will be the first MC@NLO for a process in electron proton scattering.
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4.1 A Toy Monte Carlo at Next-to-leading Order

In this section the toy model introduced in chapter 3.1 will be supplied by a parton shower,
based on the Monte Carlo methods described in chapter 2. The NLO cross-section in the
toy model, is given by:

σNLO = B + a

(

B

2ε
+ V

)

+ a

∫ 1

0

R(x)

x
dx (4.2)

The system may undergo any number of further emissions in a parton shower, with
emission probabilities controlled by the Sudakov formfactor. For this toy model, it is
defined as:

∆(x1, x2) = exp

[

−a
∫ x2

x1

dzPγ(z)

]

, (4.3)

where Pγ(z) is a splitting function giving the probability that a particle emits a photon
taking a fraction z of the particle’s energy. The Sudakov formfactor gives the probability
of having no emission between the energies x1 and x2. The function zPγ(z) is monotonic
and has the following properties:

0 ≤ zPγ(z) ≤ 1, lim
z→0

zPγ(z) = 1, lim
z→1

zPγ(z) = 0. (4.4)

The third condition means that no further emission is possible if the photon takes the
full energy of the emitting particle, and the second condition implies that the emission
becomes very likely for small z. As before, a has the meaning of a coupling, and when
a→ 0 the Sudakov formfactor tends to 1, i.e. the probability for a branching tends to 0.
When a→ ∞ then ∆(x1, x2) → 0, which means a branching becomes inevitable.

The conditions in eq. (4.4) mean that the function G(z) = 1/z is larger than, or equal
to Pγ(z), which means that this function can be used in the veto algorithm, described in
appendix B, to generate a final state parton-shower. To do this the maximum energy xM

available for the first branching has to be defined as well as a cut-off scale x0. In this way,
the emissions are ordered in x.

Matching the NLO-Matrix Element and the Parton Shower

When generating Monte Carlo events in a parton shower, one needs a starting scale as
well as a well defined initial parton configuration. In conventional Monte Carlos, with
a leading order matrix element, this is always the case. In the NLO cross-section, there
is no well defined parton configuration, nor a well defined starting scale xmax. This
comes from the fact that two different configurations are calculated. In the toy-model,
the real emission part gives a 2 parton configuration from which the parton-shower then
begins with an xmax < 1, while the Born and virtual parts of the calculation gives a
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a)

xM = 1 − x

x

1

b)

×
xM = 1 1

x

1 − x

Figure 4.1: A pictorial view of double counting. a) shows the real emission matrix
element contributions. Some of those contributions can also be produced by the virtual
or, as shown in b), the Born contribution supplemented by one emitted photon in the
parton shower. Therefore some of these configuration risk to be doubly counted. The
maximum energy available for photon radiation in the parton shower is in a) xmax(x) < 1
and in b) xmax = 1. How to deal with double counting is explained in the text.

1 parton configuration, with xmax = 1, as is the case for the LO MC. If one just adds
the parton shower onto the NLO-configuration produced, one risks to double count some
configurations, since some of the 2 particle configurations coming from the real emissions
may also be produced by the 1 particle configurations combined with the first emission
from the parton shower. This is illustrated in fig.4.1.

For a leading order Monte Carlo, the probability of having the two particle configuration
is given by the Born term times the parton-shower at the first order in the coupling a:

P(First branching)MC@LO(x) = B ⊗ P(Branching at x) = aBPγ(x)∆(xmax, x)

= aBPγ(x) + O(a2), (4.5)

where, in the toy model, xmax = 1. Here, the Sudakov formfactor has been expanded in
the coupling, such that

∆(x1, x2) = 1 − a

∫ x2

x1

Pγ(z)dz + O(a2) (4.6)

and only the first term has been kept.

At NLO, in order to provide a well defined parton state for the parton shower to begin
from, the subtraction method described in chapter 3.1 may be modified, such that the
first emission in the parton shower is subtracted from the real emissions:

σmsub
R = a

∫ 1

0

(

R(x)

x
−BPγ(x)

)

dx (4.7)

This integral is regular by the second condition in eq. (4.4). Here, aBPγ(x) is called a
Monte Carlo subtraction term and it should be added to the virtual part to cancel the
divergencies there:

σmsub
V =

∫ 1

0

(

a
B

2ε
+ V

)

δ(x)dx +

∫ 1

0

aBPγ(x)dx = a

(

B

2ε
+ V

)

+ aB

∫ 1

0

Pγ(x)dx

= aV + aB

(

1

2ε
+

∫ 1

0

Pγ(x)dx

)

= aV + aB

∫ 1

0

(

Pγ(x) −
1

x

)

dx (4.8)
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which is regular. In the last step, dimensional regularization, described in appendix A,
has been used backwards. The total NLO cross-section, given by modified subtraction is
then:

σmsub
NLO = a

∫ 1

0

(

R(x)

x
− BPγ(x)

)

dx (4.9)

+

∫ 1

0

(

(B + aV )δ(x) + aB

(

Pγ(x) −
1

x

))

dx.

A subtle, but important, difference between the modified subtraction method and the
normal subtraction method, is emerging when the expectation value of an observable be-
fore the parton shower is applied, is taken into account. In Monte Carlo event generators,
the expectation value of many observables will be dependent on the parton shower. The
parton-shower is dependent on its starting scale xmax as well as its cut-off scale x0. This
means that in general, the expectation value of an observable O is dependent upon these
scales as well. In modified subtraction, the expectation value of an observable O(x, xmax),
before the parton shower, is thus:

〈O(x, xmax)〉 = a

∫ 1

0

O(x, xmax(x))

(

R(x)

x
− BPγ(x)

)

dx (4.10)

+

∫ 1

0

O(x, 1)

(

(B + aV )δ(x) + aB

(

Pγ(x) −
1

x

))

dx

The dependence on the starting scale xmax of the observables is what makes modified
subtraction different from normal subtraction. In the toy model, what is subtracted from
the real emission is aO(x, xmax(x))BPγ(x), where xmax(x) < 1, and what is added to
the real part is aO(x, 1)BPγ(x), which is not necessarily equal. This difference will not
contribute to the total NLO cross-section, since it only depends on the parton shower,
which does not alter the total cross-section. The difference between these two terms is
then compensated in the parton shower evolution, by later branchings.

In the modified subtraction, the subtraction term used is directly dependent upon the
parton shower, which means that if they are combined with another parton shower, con-
figurations will be doubly counted. Also, only the parts of phase-space which are actively
filled by the parton shower should be subtracted. If, for example, the parton shower
contains a dead region, xdead ≤ x ≤ 1, where no emissions are allowed, the real emissions
should not be modified in this region. The Monte Carlo subtraction term then becomes:

BPγ(x)θ(x− xdead). (4.11)

4.2 MC@NLO for eP scattering

In order to construct an MC@NLO for electron proton scattering, the Monte Carlo sub-
traction terms has to be found. These terms are dependent both on which process they
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are used for and the parton shower. In this section, the NLO calculation presented in
chapter 3 will be modified such that it can be matched with the HERWIG parton shower,
described in chapter 2.3. In order to construct the Monte Carlo subtraction terms in
QCD, some further subtleties not present in the toy model, has to be considered.

Not only real emissions are doubly counted in the parton shower. The DGLAP splitting
functions also contain virtual resummation to all orders in αs, and the one loop contri-
bution will therefore reproduce the NLO virtual contribution when the parton shower is
attached to the Born term. These are therefore also subtracted.

For technical reasons, two kinds of variable transformations are needed. The HERWIG
parton shower is defined in the showering variables ξ and z, while the NLO matrix element
is defined in the kinematic variables described in chapter 3.3. In order to subtract the
first parton shower branching from the real emissions, the HERWIG showering variables
therefore need to be expressed in terms of the real emission 2 → 3 configuration invariants.

These terms are then added back to the virtual contribution. Therefore, the invariants for
the 2 → 2 configuration also need to be expressed in terms of 2 → 3 invariants. In general,
there is no unique projection of the 2 → 2 variables onto the 2 → 3 ones. However, one
subtlety of the parton shower fixes this projection. When the outgoing partons radiate
in the final state parton shower, they get pushed off mass-shell, by recoils. At the end of
the parton shower, the momentum of all partons are reshuffled in a way such that four
momenta are conserved. In HERWIG there are two ways of doing this, one which keeps
longitudinal momentum of the QQ̄ pair fixed and one which keeps the rapidity of the pair
fixed. This extra constraint fixes the projection of the 2 → 2 variables onto the 2 → 3
ones.

In the HERWIG parton shower there are both dead zones and dead regions as defined in
chapter 2.3.1. In these kinematic regions, the parton shower does not branch and they
should therefore not be subtracted from the matrix element. As in the toy-model these
regions are taken out of the MC subtraction by θ-functions.

The MC subtraction terms will have a similar form as the NLO subtraction terms found
in the collinear factorization in chapter 3.2.2 (and as in the toy model). For each possible
branching by the parton shower they will include a DGLAP splitting function for the
branching, multiplied by a Born cross-section for the process without branching. To this
the θ-functions for the dead regions are attached.

In the following subsection, item number 3 above will be addressed, by defining the 2 → 2
kinematic variables in terms of the 2 → 3 ones. Also, the momentum reshuffling will
be considered there. Then, in section 4.2.2, the HERWIG variables will be expressed in
terms of the 2 → 3 variables. In section 4.2.3 the MC subtraction terms for heavy quarks
produced in photoproduction will be written down.
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Figure 4.2: An over view of some of the notations used in this chapter. The electron-side
is denoted +. From there particle 1 is coming. The proton side is denoted − and there
particle 2 is radiating. When the +-side is interacting with the colour-line connected
with the heavy quark it is a t-channel process, and when it interacts with the colour-line
associated with the heavy antiquark it is a u channel process.

4.2.1 Projecting the 2 → 2 configuration onto the 2 → 3 config-

uration

The partonic subprocesses relevant for heavy quarks produced in photoproduction at
next-to-leading order (O(αEMαs) are the two body process

γg → QQ̄ (4.12)

and the three-body subprocesses

γg → QQ̄g

γq → QQ̄q (4.13)

A Monte Carlo parton shower generates arbitrarily complicated multi-parton configura-
tions starting from the external colour lines of a hard subprocess. After showering, each
external parton line in the hard process has become a jet. The parton momenta have to be
replaced by the jet momenta in such a way that energy-momentum is conserved, without
seriously affecting the dynamics. This process is called momentum reshuffling. This pro-
cess comes from the Monte Carlo event generator and has to be taken into account when
the MC is to be matched with an NLO calculation. In collinear factorization, the partons
described by the hard subprocess are on mass-shell initially, but the parton shower may
drive them off mass-shell by momentum reshuffling. The momenta of the partons in the
hard interaction are changed by the parton shower and the over all kinematics must be
adjusted to restore energy-momentum conservation.

The details of the relation between 2 → 2 and 2 → 3 kinematics depends upon the
particular form of the momentum reshuffling. In the HERWIG generator, initial and
final state radiation is treated differently in the reshuffling, which means that the event
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projection is different depending on if the radiation is coming from an incoming or an
outgoing parton. Further, there are also two different reshuffling schemes implemented
in HERWIG, one which conserves the longitudinal momentum of the QQ̄ pair (the p-
scheme), and one that conserves the rapidity of the QQ̄ pair (the y-scheme). Only the
incoming momentum fractions x1 and x2 are affected by the momentum reshuffling, and
therefore it is only important for initial state radiation, since final state radiation does
not alter these variables.

The event projection amounts to expressing the 2 → 2 process invariants s̄, t̄ and ū and
momentum fractions x̄1,2 in terms of the 2 → 3 invariants s, t1,2 and u1,2 and momentum
fractions x1,2. In terms of the center of mass variables in eq. (3.43) this means finding
x̄1,2, Ē and k̄L. The kinematic variables associated with the invariants in this section are
defined in chapter 3.3. In fig. 4.2, some of the notation used throughout this chapter, is
shown.

Final State Radiation

If a gluon is emitted from the heavy quark, this gluon ends up in a jet also containing
the heavy quark. The final state then consists of this jet and the heavy antiquark. The
three-momenta of the heavy antiquark and of the heavy quark jet are then rescaled by mo-
mentum reshuffling. In the center of mass frame of the hard process, the heavy antiquark
gets the momentum:

k2 = (
√

m2 + α2k̄2,−αk̄T , 0, αk̄L) (4.14)

where k̄2 = k̄2
T + k̄2

L = Ē2−m2 and α is a rescaling factor given by the energy conservation
constraint

2Ē =
√

m2 + (αk̄)2 +
√

(k + k1)2 + (αk̄)2. (4.15)

In the case of radiation from the heavy quark, this gives:

Ē =
1

2

√
s

k̄L = Ē

(

t2 − u1

s− w1

)

β̄

β2

, (4.16)

where β2 is the velocity of the heavy antiquark in the center of mass frame of the heavy
quark-antiquark pair:

β2 =

√

1 − 4sm2

(s− w1)2
(4.17)

For emission from the heavy antiquark, the labels 1 and 2 are interchanged. This means
that the relation between 2 → 2 and 2 → 3 invariants depends upon which outgoing leg
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is the emitter. Therefore, the 2 → 2 invariants need a label for which outgoing leg is
emitting. The relevant relations are then:

s̄Q = s̄Q̄ = s

t̄Q = −1

2
s

[

1 −
(

t2 − u1

s− w1

)

β̄

β2

]

t̄Q̄ = −1

2
s

[

1 −
(

t1 − u2

s− w2

)

β̄

β1

]

ūQ = −s− t̄Q

ūQ̄ = −s− t̄Q̄ (4.18)

In the soft limit, when w1,2 → 0, t1,2 → t̄ and u1,2 → ū, there t̄Q,Q̄ → t̄ and ūQ,Q̄ → ū as
expected.

The incoming partons are not affected by the final state radiation, so p̄1 = p1, p̄2 = p2.
Therefore s̄Q,Q̄ = s above. Also, the incoming momentum fractions are then unchanged
for final state radiation.

Initial State Radiation

In the case of emission from the incoming partons, the invariant mass of the heavy quark
pair is unchanged by momentum reshuffling, and since in the 2 → 2 system s̄ = (p̄1+p̄2)

2 =
(k̄1 + k̄2)

2:

s̄ = (k1 + k2)
2 = s+ v1 + v2 (4.19)

However, the pair receives longitudinal and transverse boosts. To relate the other vari-
ables it is convenient to consider the momentum difference between the heavy quark and
antiquark. In the 2 → 2 center of mass frame it is:

k̄1 − k̄2 = 2(0, k̄T , 0, k̄L) (4.20)

This does not contain an energy component, and therefore the longitudinal boost is simply
rescaling the longitudinal component by the boost factor

γL =

√

1 +
(k1 + k2)2

L

(k1 + k2)2
(4.21)

The transverse boost does not affect the longitudinal component, meaning

(k1 − k2)L = γL(k̄1 − k̄2)L = 2γLk̄L (4.22)

The longitudinal components can be extracted with the use of the following combination:

x2p1 − x1p2√
x1x2s

= (0, 0, 0, 1) (4.23)
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Multipying this quantity with the momentum difference yields:

k̄L = −(x2p1 − x1p2)(k1 − k2)

2γL
√
x1x2s

(4.24)

and

γL =

√

1 +
[(x2p1 − x1p2)(k1 + k2)]2

x1x2s(k1 + k2)2
=

√

1 +
(x2p1 − x1p2)2

x1x2s
(4.25)

Expressing everything in terms of invariants then gives:

Ē =
1

2

√
s+ v1 + v2

k̄L = Ē
x2(t1 − u1) + x1(t2 − u2)

2s
√

x2
+ − x1x2v1v2

s2

(4.26)

where

x± =
1

2

(

s+ v2

s
x1 ±

s+ v2

s
x2

)

(4.27)

These results are independent on which incoming parton is radiating. For consistency,
however, the labels t̄ = t̄+ or t̄− depending on if the parton 1 or 2 is radiating. The 2 → 2
invariants expressed in the 2 → 3 invariants are then:

s̄± = s+ v1 + v2

t̄± = −1

2
(s+ v1 + v2)



1 − x2(t1 − u1) + x1(t2 − u2)

2s
√

x2
+ − x1x2v1v2

s2





ū± = −s̄± − t̄± (4.28)

As before, in the soft limit where v1,2 → 0, t1,2 → t̄ and u1,2 → ū then t̄± → t̄ and u± → ū
as expected. In the case of collinear emission from leg 1 where v1 → 0, t2 → t̄, u2 → ū,
t1 + w1 → t̄ and u1 + w2 → ū, then t̄± → t̄ and ū± → ū. The same holds for collinear
emission from leg 2.

The momentum fraction carried by the incoming partons are affected by initial state
radiation. From the first equation in eq. (4.28) it can be concluded that the sum of the
momentum fractions has to be rescaled, thus

x̄1ix̄2i =
s+ v1 + v2

s
x1x2 (4.29)

The values of x̄1i and x̄2i separately depends on the momentum reshuffling scheme.
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In the p-scheme, the longitudinal momentum of the heavy quark pair is preserved, which
means that

x̄1i − x̄2i =
s+ v2

s
x1 −

s+ v1

s
x2 (4.30)

and therefore

x̄1i = x− +

√

x2
+ − x1x2v1v2

s2

x̄2i = x̄1i − 2x− (4.31)

In the y-scheme the rapidity of the heavy quark pair is preserved, which implies that

x̄1i

x̄2i
=
x1(s+ v2)

x2(s+ v1)
(4.32)

giving:

x̄1i = x1

√

(s+ v1 + v2)(s+ v2)

s(s+ v1)

x̄2i = x2

√

(s+ v1 + v2)(s+ v1)

s(s+ v2)
(4.33)

Now, all 2 → 2 kinematic variables are expressed in terms of the 2 → 3 ones. The next
step is to also express the HERWIG showering variables in the same variables.

4.2.2 HERWIG Showering Variables in the Form of 2 → 3 in-

variants

Also when HERWIG shower variables are to be related to the 2 → 3 invariants, the
momentum reshuffling has to be considered.

Final-state Radiation

For emission of a gluon from the heavy Quark, the HERWIG variables are the angular
variable

ξ =
k · k1

k0k0
1

(4.34)

and the energy fraction

z =
k0

1

E0
= 1 − k0

E0
(4.35)
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where all energies are being evaluated in the showering frame where E2
0 = −t̄/2 or E2

0 =
−ū/2, depending on the colour flow as shown in fig. 4.2. The invariant quantities are the
jet virtuality

(k1 + k)2 −m2 = w1 = 2z(1 − z)ξE2
0 (4.36)

and the ’+’ momentum fraction of the gluon with respect to the jet axis,

ζ1 ≡
k · n2

(k1 + k) · n2

= (1 − z)
1 + (1 − zξ)/β̃1

1 + β̃1

(4.37)

where β̃1 is heavy-quark jet velocity in the showering frame

β̃1 =

√

1 − w1 +m2

E2
0

(4.38)

and n2 is a light-like vector which goes along the direction of the heavy antiquark in the
heavy quark-antiquark center of mass frame:

n2 = k2 −
s− w1

2s
(1 − β2)(p1 + p2), (4.39)

where β2 is defined as above in eq. (4.17). Inserting eq. (4.39) into eq. (4.37), gives

ζ1 =
(s+ w1)w2 + (s− w1)[(w1 + w2)β2 − w1]

(s− w1)β2[(s+ w1) + (s− w1)β2]
. (4.40)

The variables z
(t)
Q and ξ

(t)
Q , corresponding to the emission from the heavy quark with the

t-flow colour structure, can be obtained by solving eqs. (4.36), (4.37) and (4.40) for z and
ξ with E2

0 = −t̄Q/2 as given in eq. (4.18). Similarly, solving with E2
0 = −ūQ/2, for the

u-colour flow, gives z
(u)
Q and ξ

(u)
Q . The result is

z
(l)
Q = 1 − β̃1ζ1 −

w1

(1 + β̃1)|l̄Q|
ξ

(l)
Q =

w1

z
(l)
Q (1 − z

(l)
Q )|l̄Q|

(4.41)

where l = t, u. Interchanging the labels 1 and 2 and using l̄Q̄ instead of l̄Q gives z
(t,u)

Q̄
and

ξ
(t,u)

Q̄
, corresponding to emissions from the heavy antiquark. Thereby are the HERWIG

showering variables expressed in therms of the 2 → 3 invariants for the final state.

The transverse momentum of the emitted gluon, relative to the jet axis is

k2
T = ζ1

[

(1 − ζ1)w1 − ζ1m
2
]

. (4.42)

For small values of ξ and m2/E2
0 it becomes

kT '
√

2z(1 − zQ) (4.43)

where Q = E0

√
ξ is the HERWIG evolution variable.
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Initial State Radiation

The case of initial state radiation is somewhat simpler than radiation from the final state,
since the jet axis coincides with the beam axis. For emission from parton 1, the jet
virtuality is

(p1 − k)2 = v1 = −2
1 − z

z2
ξE2

0 , (4.44)

and the ’+’ component of the gluon momentum is

k · p2

p1 · p2
= −v2

s
=

1

2
(1 − z)(2 − ξ). (4.45)

Solving eqs. (4.44) and (4.45) for z and ξ with E2
0 = −t̄+/2 or E2

0 = −ū+/2 as given in

eq. (4.28), the variables z
(t,u)
+ and ξ

(t,u)
+ are obtained 1. These variables corresponds to

radiation from the incoming parton 1. The solutions are:

z
(l)
+ =

|l̄+|
v1

[

1 −
√

1 − 2
v1

|l̄+|
(

1 +
v2

s

)

]

ξ
(l)
+ = 2

[

1 +
v2

s(1 − z
(l)
+ )

]

(4.46)

where l̄+ = t̄+, ū+.

For radiation from the incoming parton 2, the variable v1 and v2 are interchanged. Then
the solution is denoted by z

(l)
− and ξ

(l)
− .

4.2.3 The Monte Carlo Subtraction Terms for γ∗P → QQ̄

In this section, the cross-section in HERWIG for the first branching, giving a 2 → 3
configuration, will be found. This is what will be subtracted from the real emission part
of the NLO calculation, i.e. this is the Monte Carlo subtraction term. Schematically, the
first branching in HERWIG may be written in the following way:

dσ
∣

∣

MC
= dσBorn ⊗ dP(First branching) ⊗ Θ(Dead regions)Θ(Dead zones) (4.47)

where dσBorn denotes the total Born cross-section, and dP(First branching) denotes the
probability of the first branching according to the parton shower. For final state radiation
in HERWIG it is given by (as in eq. (2.36)):

dPa(ξ, z) =
αs

2π
Pba(z)

dξ

ξ
dz (4.48)

1In principle, if both incoming partons are gluons, there is also the possibility that E2
0 = s̄+/2,

and the corresponding variables are denoted z
(s)
+ and ξ

(s)
+ . However, this is never the case in pointlike

photoproduction.
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Figure 4.3: Diagrams depicting the non-vanishing contributions in the Monte Carlo
subtraction terms. Diagrams a), b) and c) depict the γg initial state, diagrams d) and e)
and the γq initial state and diagram f) the γq̄ initial state.
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for a particular branching a→ bc, and for the initial state it is (as in eq. (2.21)):

dPa(ξ, z) =
αs

2π
Pac(z)

fc(x/z)

fa(x)

dξ

ξ

dz

z
(4.49)

where the parton density functions f(x) come from the backward evolution. The total
Born cross-section can be written in the factorized form:

dσBorn = fa(x1)fb(x2)dσ̂ab

∣

∣

Born
dx1dx2 (4.50)

where dσ̂ab

∣

∣

Born
is the partonic cross-section at Born level for incoming partons a and b.

The dead regions and dead zones in eq. (4.47) are defined in chapter 2.3.1. Equations
(4.47)-(4.50) give the general structure of the Monte Carlo subtraction term. In order to
construct the actual MC subtraction term, each possible branching needs to be added and
all variables ξ, z and xi has to be expressed in the invariants of the 2 → 3 configuration
found in the previous subsections.

The resulting MC subtraction term dσ
∣

∣

MC
is therefore the sums:

dσ
∣

∣

MC
=
∑

p

∑

L

∑

l

dσ(L,l)
γp

∣

∣

MC
, (4.51)

where the first sum p runs over the incoming partons from the proton side. This is either
a gluon or a light quark. The index L runs over the emitting legs and assumes the values
+,−,Q and Q̄, as shown in fig. 4.2. The index l runs over the colour structures and takes
the values t and u.

The terms dσ
(L,l)
γp

∣

∣

MC
may then be written [45]:

dσ(+,l)
γp

∣

∣

MC
=

1

z
(l)
+

f e
γ (x̄1i/z

(l)
+ )fP

p (x̄2i)dσ̂
(+,l)
γp

∣

∣

MC
dx̄1idx̄2i, (4.52)

dσ(−,l)
γp

∣

∣

MC
=

1

z
(l)
−

f e
γ (x̄1i)f

P
p (x̄2i/z

(l)
− )dσ̂(−,l)

γp

∣

∣

MC
dx̄1idx̄2i, (4.53)

dσ(Q,l)
γp

∣

∣

MC
= f e

γ (x̄1f )f
P
p (x̄2f )dσ̂

(Q,l)
γp

∣

∣

MC
dx̄1fdx̄2f , (4.54)

dσ(Q̄,l)
γp

∣

∣

MC
= f e

γ (x̄lf)f
P
p (x̄2f )dσ̂(Q̄,l)

γp

∣

∣

MC
dx̄lfdx̄2f , (4.55)

The functions f e
γ(x̄) is the photon flux coming from the electron and fP

p (x) is the PDF for

parton p in the proton. Here, dσ̂
(L,l)
γp |MC denotes the branching probabilies in equations

(4.48) and (4.49), not including the PDFs in the initial state radiation. All variables in
eq. (4.55) are defined in terms of the 2 → 3 invariants.
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ab γg → QQ̄ γq → QQ̄ γq̄ → QQ̄

γg −(t), −(u), Q(u), Q̄(t) −(t), −(u) −(t), −(u)
qq̄ +(t)

Table 4.1: Short-distance contributions to MC subtraction terms, from Born processes
γg → QQ̄, γq → QQ̄ and γq̄ → QQ̄. Each entry lists the emitting legs (+,−, Q, Q̄). For
each emitting leg, the information about the contributions l, according to the possible
colour flows (corresponding to E2

0 = |l̄|/2) is given in parentheses.

The parton shower branchings contributing to dσ̂
(L,l)
γp |MC are shown in fig. 4.3 and listed

in table 4.1. These give,

1. for γg initial state, shown in figs. 4.3 a), b) and c):

dσ̂(−,t)
γg

∣

∣

MC
=

αs

4π

dξ
(t)
−

ξ
(t)
−

dz
(t)
− Pgg(z

(t)
− )dσ̂(t)

γg

∣

∣

Born
Θ
(

(z
(t)
− )2 − ξ

(t)
−

)

(4.56)

dσ̂(Q,u)
γg

∣

∣

MC
=

αs

2π

dξ
(u)
Q

ξ
(u)
Q

dz
(u)
Q Pqq(z

(u)
Q )dσ̂(u)

γg

∣

∣

Born
Θ
(

1 − ξ
(u)
Q

)

Θ

(

(z
(u)
Q )2 − 2m2

|ūQ|ξ(t)
Q

)

dσ̂(Q̄,t)
γg

∣

∣

MC
=

αs

2π

dξ
(t)

Q̄

ξ
(t)

Q̄

dz
(t)

Q̄
Pgg(z

(t)
− )dσ̂(t)

γg

∣

∣

Born
Θ
(

1 − ξ
(t)

Q̄

)

Θ

(

(z
(t)

Q̄
)2 − 2m2

|t̄Q̄|ξ(t)

Q̄

)

,

2. for γq initial state, shown in fig. 4.3 d) and e):

dσ̂(−,t)
γq

∣

∣

MC
=

αs

4π

dξ
(t)
−

ξ
(t)
−

dz
(t)
− Pgq(z

(t)
− )dσ̂(t)

γg

∣

∣

Born
Θ
(

(z
(t)
− )2 − ξ

(t)
−

)

(4.57)

dσ̂(−,u)
γq

∣

∣

MC
=

αs

4π

dξ
(u)
−

ξ
(u)
−

dz
(u)
− Pgq(z

(u)
− )dσ̂(u)

γg

∣

∣

Born
Θ
(

(z
(u)
− )2 − ξ

(u)
−

)

,

3. and for γq̄ initial state, depicted in fig. 4.3 f):

dσ̂(+,t)
γq

∣

∣

MC
=

αs

2π

dξ
(t)
+

ξ
(t)
+

dz
(t)
+ Pγ→qq̄(z

(t)
+ )dσ̂

(t)
qq̄

∣

∣

Born
Θ
(

(z
(t)
+ )2 − ξ

(t)
+

)

. (4.58)

The colour indices t and u are defined in fig. 4.4. If the emitting parton is a gluon,
it is colour connected to both the heavy quark and antiquark and the result is then a
superposition of equal parts t and u flow, which gives the extra factor 1/2 in those terms.
Here Pγ→qq̄ denotes the splitting probability of a photon into a quark-antiquark pair.
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Q

Q̄

a)

Q

Q̄

b)

Figure 4.4: a) A diagram depicting the colour flow in the diagrams a) through e) in
figure 4.3. In the large NC limit the two colourlines representing the gluon are connected
to the heavy quark and antiquark respectively. b) A diagram depicting the colourflow in
diagram f) in fig. 4.3. The t colour flow is defined as emissions from the full line connecting
the gluon with the heavy quark, and a u flow is defined as en emission from the dashed
colour line.

4.2.4 Local Cancellation of IR Singularities

The subtraction terms given above makes sure that no configurations get doubly counted
when the HERWIG parton shower is attached to the NLO matrix element. However,
the MC subtraction term also has to act as a local counter term, canceling all soft and
collinear singularities in the real emission integral. As is shown in section A.5 of reference
[40], this is not the case in the limit of soft gluon emissions. To remedy this, the MC
subtraction term is modified in the following way:

dσ
∣

∣

MC
→ G(x)dσ

∣

∣

MC
+ (1 − G(x))M(soft)

γg (4.59)

where M(soft)
γg denotes the real matrix element in the soft limit, which is only present

for the γg process. Here G(x) is a function that controls the transition between the
subtraction of the parton shower branching and the soft part of the real matrix element.
This function must smoothly approach zero in the soft limit:

lim
x→1

G(x) = 0 (4.60)

where 1−x is the energy fraction taken by the gluon in the splitting. The function G(x) is
then parametrized in such a way that no IR safe observable in the Monte Carlo is affected
by it.

To test that the MC subtraction terms cancel the IR singularities in the real part of the
matrix element, the ratio

R(x, y) =
G(x)dσ

∣

∣

MC
+ (1 − G(x))M(soft)

γg

M(real)
γp (x, y)

, (4.61)
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Figure 4.5: The MC subtraction terms approaching the soft (left) and collinear (right)
limits for the γg-processes.

is defined. Here M(real)
γp denotes the real part of the matrix element. As was described

in chapter 3.3.1, the soft pole is at x = 1 and the collinear poles are at y = ±1. To test
the behaviour of R(x, y) close to the poles, it is taken at different values of xn and yn

according to:

xn = 1 − 10−n (4.62)

y(−)
n = −1 + 10−n

y(+)
n = 1 − 10(n)

where n is an integer.

In fig. 4.5 the ratio R(xn, yn) is plotted as a function of n for the γg processes with a
heavy quark mass of 5 GeV. It is plotted for the soft limits present in figs. 4.3 a), b) and
c) to the left and for the collinear limits present in fig. 4.3 a) to the right. There it is
seen that the MC subtraction terms is smoothly approaching the matrix element in these
limits.

In fig. 4.6 the ratio R is plotted for the γq processes, for the collinear limits present in
figs. 4.3 d) and e) to the left and the one in fig. 4.3 f) to the right. There it is also seen that
the MC subtraction terms is smoothly approaching the matrix element in these limits.

4.3 Generating MC@NLO Events

The MC@NLO cross-section, before the parton shower, may be written on the form

σmsub
NLO = IR + IBV =

∫

3

Rmsub(φ3)dφ3 +

∫

2

(Vmsub(φ2) + B(φ2))dφ2 (4.63)

In order to generate Monte Carlo events according to this, the two types of events, in the
two integrals, has to be generated separately. This is done in a similar way as for the
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Figure 4.6: The MC subtraction terms approaching the collinear limits for the γq/q̄-
processes. On the left for radiation collinear to the proton and on the right to the photon.

NLO-calculation, which was explained in chapter 3.4. This will produce configurations
φ

(i)
3 with weights Ri(φ

(i)
3 ) and φ

(j)
2 with weights Vi(φ

(j)
2 ) +Bi(φ

(j)
2 ). Some of these weights

are negative. In order to feed these weighted configurations into the Monte Carlo event
generator, they have to be unweighted. To do this, the integrals

JR =

∫

3

∣

∣Rmsub(φ3)
∣

∣dφ3 (4.64)

JBV =

∫

2

∣

∣Vmsub(φ2) + B(φ2)
∣

∣dφ2

are also computed. Then, if one wants to generate Ntot events, a number NR of these
will be generated from the distribution R(φ3) and a number NBV from the distribution

Vi(φ
(j)
2 ) + Bi(φ

(j)
2 ). These numbers are given by:

NR = Ntot
JR

JBV + JR
(4.65)

NBV = Ntot
JBV

JBV + JR

This results in Ntot events distributed according to eq. (4.63). The sign of the weight for
each configuration are kept track of, such that some of the resulting events will have a
weight of −1. These events are then written onto a file, which is used as input by the
Monte Carlo event generator.

A complication to this procedure is emerging for those diagrams in the calculation where
one of the incoming partons is a light quark. In order to chose the flavour of the light
quark, the evaluation of the integrals are repeated for all possible flavours. The flavour
of the light quark is then selected for each event by its relative contribution to the cross-
section.
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4.4 Other Matching Schemes of NLO-Matrix Element

and Parton Showers

There are other methods than the one presented here to combine a matrix element at NLO
with a parton shower. Two such methods are the POWHEG method and the CKKW(-L)
method.

In the POWHEG method (Postive Weight Hardest Emission Generator)[46, 47], the
matching with the parton shower is performed by expressing the real emission proba-
bility in the NLO matrix element with a Sudakov formfactor. The probabilty is then on
the form of a Born cross-section times a Sudakov form factor. The NLO matrix element
can be written:

dσ = B(p1, · · · , pm)dφm + V (p1, · · · , pm)dφm (4.66)

+

(

R(p1, · · · , pm+1dφm+1 −
∑

i

Ci(p1, · · · , pm+1)dφm+1Pi

)

where the Born and Virtual terms generate m final state partons, and the real emissions
generate m + 1 partons, weighted with R and with counter terms Ci. Pi is a projection
of the m + 1 parton phase-space onto the m parton one. The counter terms works as
subtraction terms with the projection in a similar way as in eqs. (3.22), (3.23) and (3.76).
Assume that the Born state is described by variables (v) = (v1, · · · , vl), and that the
final state with a real emission is described by (v, r) = (v1, · · · , vl, r1, r2, r3) where the
variables ri are associated with the radiated parton. If one assumes that the projection
of the phase-space is dφm+1 → dφvdφr, where dφv is the Born phase-space and dφr is the
product Πidri of ri. The NLO cross-section may then be rewritten as:

dσ = B(v)dφv + V (v)dφv + (R(v, r)dφvdφr − C(v, r)dφvdφrP) (4.67)

=
(

V (v) + (R(v, r) − C(v, r))dφrP
)

+B(v)dφv

(

1 +
R(v, r)

B(v)
(1 − P)dφr

)

Defing the Sudakov formfactor:

∆
(NLO)
R (p⊥) ≡ exp

(

−
∫

dφr
R(v, r)

B(v)
θ(k⊥(v, r) − p⊥)

)

(4.68)

and the “Born” term:

B̄(v) ≡ B(v) + V (v) +

∫

(R(v, r) − C(v, r))dφr (4.69)

the probability of the first (hardest) emission can be written as:

dσ = B̄(v)dφv

(

∆
(NLO)
R (0) + ∆

(NLO)
R (p⊥)

R(v, r)

B(v)
dφr

)

(4.70)
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expanding the Sudakov here to first order in the coupling (or in R) gives the exact NLO
prediction. One can interpret this as first is a Born configuration generated according to
B̄(v), and then the first emission is generated according to the Sudakov formfactor. The
subsequent emissions may then be generated by a parton shower where all other emissions
are softer than the first one. This is the case either in a p⊥ ordered parton shower, like the
one in Pythia, or in a shower with a p⊥ veto on the first emission, which is implemented
e.g. in HERWIG. This method is guaranteed to only give events with positive weight (as
long as the Born term is larger than the absolute value of the virtual contribution).

In the CKKW or CKKW-L methods [48, 49], tree-level matrix elements are matched
with the parton shower by expanding the Sudakov formfactor of the parton shower in
orders of αs. The principle is that one has a matrix element generator which generates
a Born-level process with n extra final state partons (jets) according to the exact tree-
level matrix element. Onto these configurations is then the parton shower added. The
main difference between the matrix element generator and the parton shower, is that the
former produces inclusive states at a fixed value of αs, while the latter produces exclusive
states with a running αs. The matrix element is regulated with a cut-off scale ρMS, at
which the merging with the parton shower takes place. To get a consistent matching at
this scale, the matrix element configurations are analyzed as if they were produced by
the parton shower with a running coupling, and are then reweighted with Sudakov form
factors with the running αs. In principle, the same procedure may be used for matching
with matrix elements at any order in the coupling. To do this, both αs and the Sudakov
form factors has to be expanded in the coupling, in order for the reweighting of the scales
to be performed. This method has been implemented with the ARIADNE parton shower
for electron-positron scattering.



Chapter 5

Phenomenological Comparisons at

Parton-level

In this chapter, some parton level results will be shown from the new MC@NLO program
presented in chapter 4. This MC@NLO simulates heavy quarks produced in photoproduc-
tion. It will be compared to the fixed order next-to-leading (NLO) calculation, described
in chapter 3, and the leading-order calculation (LO). These calculations are implemented
in the FMNR program [42]. Comparisons will also be made to the HERWIG [15] event
generator, described in chapter 2, which contains a LO matrix element calculation sup-
plemented with parton showers radiating to all orders. MC@NLO is the NLO-calculation
matched with the HERWIG parton shower.

There are mainly two reasons to describe perturbative QCD at higher orders. Firstly, the
hard parton dynamics are expected to be better described at higher orders, which will be
shown in section 5.1. At LO, only the two outgoing heavy quarks will be present in the
final state. By momentum conservation they will always be back-to-back in the transverse
plane. At NLO, there may also be a third particle present in the final state, a light quark
or a gluon. Also, in a Monte Carlo, the parton shower gives rise to a multi-parton final
state. The impact of events with negative weights in MC@NLO will be investigated in
section 5.1.1. When calculating the matrix element at NLO, the dependency on quark
distributions within the photon is smaller. This will be investigated in section 5.1.2.

Secondly, when calculating the matrix element at higher orders, the dependencies on non-
physical scales in the strong coupling and in the parton density functions are expected
to be smaller. This is a statement from perturbative QCD, that when the scale is large
enough, the next term in the perturbative expansion should be smaller than the previous
one. How this works for beauty and charm production at parton level will be shown in
section 5.2.

The parameter settings used in all distributions in this chapter is summarized in table
5.1.
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mb 4.75 GeV
mc 1.5 GeV

Fact. Scale 1
2
(m⊥(Q) +m⊥(Q̄))

Ren. Scale m⊥(Q) +m⊥(Q̄)
Proton PDF Cteq6.6
Photon PDF GRV

Table 5.1: Parameter settings used for the partonic cross-sections.

MC@NLO Pointlike Hadronic Total
Beauty[pb] 4931±8 1507±2 6438±8
Charm [nb] 634.3±0.7 176.5±0.4 810.8±0.8

FMNR
Beauty 4930±2 1505± 2 6435±3
Charm 633.4±0.4 176.2±0.4 809.6±0.6

HERWIG
Beauty 3634±2 1456.±0.7 5090±2
Charm 474.8±0.2 246.8±0.1 721.6±0.2

LO
Beauty 3622±0.04 - -
Charm 548.8±0.1 - -

Table 5.2: Total Cross-sections for MC@NLO, FMNR and HERWIG and the Born cross-
section (LO). The difference in the latter two comes from different definitions of αs, where
HERWIG is using two loop αs and LO is using one loop.

5.1 Parton Dynamics

When looking at parton dynamics resulting from different types of calculations, it is
interesting to look both at the behaviour of individual particles as well as at the correlated
behaviour of two partons.

For the first category, plots of transverse momentum and pseudo rapidity of the produced
heavy quarks are shown in figs. 5.1 and 5.2, for beauty and charm production respectively.
The pseudo-rapidity is defined as:

η = − ln

[

tan

(

θ

2

)]

, (5.1)

where θ is the particle’s angle relative to the proton beam-axis. Here, the interval
−1 < η < 1 is called the central region, η > 1 is called the forward region, and η < −1
is called the backwards region. The proton remnant end up in the very forward region
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Figure 5.1: The spectra of the transverse momentum and the rapidity of the produced
b-quarks in MC@NLO, in FMNR (NLO) and in HERWIG (MC).
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Figure 5.2: The spectra of the transverse momentum and the rapidity of the produced
c-quarks in MC@NLO, in FMNR (NLO) and in HERWIG (MC).
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Figure 5.3: The p⊥-distribution of the bb̄-pair.

while the scattered electron ends up in the very backwards region. In figs. 5.1 and 5.2
the p⊥ distributions of the heavy quarks are similar in all three programs. The η distri-
bution of the b-quarks is also similar, HERWIG has a slightly larger cross-section in the
backwards region and a slightly smaller one in the forward region. For charm production
this difference is more pronounced.

One observable of correlations between partons is the combined transverse momentum
of the heavy quarks. Conservation of transverse momentum means that the transverse
momentum of the heavy quark-antiquark system must be balanced by higher order radia-
tions. For leading order such radiations are not present, the heavy quark and its antiquark
are back-to-back and their combined p⊥ is always zero. At next-to-leading order some-
times a light parton is also radiated (in the real emission part), which has a p⊥ > 0.
However, at p⊥(QQ̄) = 0 no real emission is possible. Here the virtual contributions will
dominate, resulting in a negative cross-section for p⊥(QQ̄) = 0, which is seen on the left
hand side of fig. 5.3. When the LO matrix element is supplemented by a parton shower
radiating partons to all orders, the p⊥ of the QQ̄ system is balanced by this radiation.
The parton shower is however ordered in p⊥ such that radiation harder than the heavy
quark mass are suppressed, something which is not the case for the real emission by the
NLO calculation which is only limited by the total available energy. However, while the
NLO-calculation is rising steeply for smaller p⊥(QQ̄), the all loop resummation in the
Sudakov formfactor in the parton shower produces a turnover in the p⊥-spectrum. The
same turnover is expected by MC@NLO, since it also produces higher order radiation with
the same parton shower as the Monte Carlo, but it is also expected to be able to produce
radiations by the real emissions in the matrix element which fills out the full phase space.
This can be seen in the right hand side plot of figure 5.3 for beauty production and in
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Figure 5.4: The p⊥-distribution of the cc̄-pair.

fig. 5.4 for charm production. Here also the p⊥(QQ̄) spectrum of the subtracted NLO
matrix element in MC@NLO is shown, before the parton showers is added. It can be seen
that it fills out exactly the parts of phase-space where the LO MC does not. The difference
in the distributions from NLO and MC@NLO, before the parton shower, demonstrates
the difference between NLO subtraction and modified subtraction, since pt(QQ̄) clearly
depend strongly on the parton shower.

Another observable of interest for higher order radiation is the azimuthal angle between
the heavy quark and the hardest other parton, which is shown in fig. 5.5. Again, in leading
order there are only two partons in the final state: the heavy quark and its antiquark, and
they are always back-to-back, i.e. at ∆φ = 180◦. For the NLO calculation other angles
are possible when a light particle is radiated. It is however not kinematically allowed for
∆φ to be smaller than 90◦ in the three-particle scenario. If the angle between two of the
partons is less 90◦ the third parton must be harder than one of the other two. Therefore,
even at NLO no radiation is allowed such that ∆φ < 90◦. With a parton shower many
more than three particles can be produced in the final state such that the hardest other
parton may be at any azimuthal angle relative to the heavy quark.

5.1.1 Influence of Events with Negative Weights

One big difference between MC@NLO and conventional Monte Carlo event generators, is
that in the former, some events have a negative weight −1. This is explained in chapter
4.3. The presence of negative weights has an impact on the relative statistical error within
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Figure 5.5: The distribution in difference in azimuthal angle between the produced
heavy quark and the hardest other parton. For beauty production in the left plot and for
charm production in the right.

MC@NLO Negative events [%]
Beauty 25.3
Charm 36.5

Table 5.3: The fraction of events with negative weight in MC@NLO for Beauty and
Charm production respectively.



5.1 Parton Dynamics 96

(b) [GeV]
t

p
0 2 4 6 8 10 12 14 16 18 20

R

0

0.1

0.2

0.3

0.4

0.5

(b)η
-4 -2 0 2 4 6

R
0

0.1

0.2

0.3

0.4

0.5

0.6

Figure 5.6: The MC@NLO distributions of events with negative weights divided by the
distributions of events with positive weights as functions of p⊥ and η of the produced
beauty quarks.
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Figure 5.7: The MC@NLO distributions of events with negative weights divided by the
distributions of events with positive weights as functions of p⊥ and η of the produced
charm quarks.
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a given histogram bin. It is:

Relative Statistical Error =

√
N+ +N−

N+ −N
(5.2)

where N+ and N are the numbers of entries with positive and negative weights respec-
tively. If for example N− = 0.9N+ in a given bin, the relative error in the bin become
∼ 14/

√
N+ ' 13/

√
N , with N = N+ − N being the total number of entries in the bin.

This relative error is thus more than 10 times larger than it would be with all weights
positive.

In table 5.3 the total fraction of negative events for different MC@NLO calculations are
listed. In fig. 5.6 the p⊥ and η distributions of events with negative weights are divided
with the distributions with positive weights for beauty production. In other words, the
distribution in the ratio R, defined as:

R =

∣

∣

∣

∣

∣

dσ
dp⊥

(b)
∣

∣

positive weight

dσ
dp⊥

(b)
∣

∣

negative weight

∣

∣

∣

∣

∣

(5.3)

for the p⊥ distribution and similarly for the distribution in η. Here, one can see that
the negative weights are around 50% for small p⊥(b) but their fraction is then decreasing
to about 20% for larger p⊥(b). In the distribution of η(b) the negative events are most
important in the backwards region η(b) ' −4 where they lie around 55%, whereas in the
forward region η(b) > 0 they are around 30% of the positive events.

In fig. 5.7 the same distributions are shown for charm production. Here, the shapes are
similar to that for beauty production but the fraction of negative to positive events is
as large as 90% in the very backwards region where η(c) ' −4. This means that in
this region the resulting cross-section is much smaller than the separate distributions of
positive and negative events, which could lead to precision problems if one does not use
enough events.

5.1.2 Influence of the Photon

When calculating the matrix element at NLO, the dependency on quark distributions
within the photon is smaller. The so-called quark excitations are namely included in the
point-like calculation of the NLO matrix element, while they are included in the resolved
part of the LO matrix element calculation. These notations are illustrated in fig. 5.8 and
explained in the caption. Since the perturbative part of the resolved photon is included
in the part with the pointlike photon in the NLO-calculation, it will be less dependent
on the photon structure than the LO calculations. The photon PDFs are in general not
very well known.

As can be seen in table 5.2, the contribution by the hadronic part of the calculation to the
total cross-section in MC@NLO is ∼ 23% and ∼ 22% for beauty and charm production
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Figure 5.8: An illustration of the different components of the calculations. To the left
is the photon directly interacting with the gluon, in the middle, it is split into a qq̄ pair
before the interaction and to the right, it is becoming a hadron, from which a parton
may interact with the gluon coming from the proton. The left diagram is called “direct”,
the left and the middle diagrams are together called “point-like”, the middle and the
right diagrams are together called “resolved” and the right diagram by itself is called
“hadronic”. In LO calculations, the direct and resolved parts are calculated separately,
while in NLO calculations, the pointlike and hadronic parts are calculated separately.
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Figure 5.9: The ratio of the hadronic contribution to the total cross-section in MC@NLO
(full red curve) and of the resolved contribution to the total cross-section in HERWIG
(dashed black curve). The right hand figure show the distribution of b-quarks, and the
left hand figure the distribution of c-quarks
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Ren. Scale Factor Fact. Scale Factor MC@NLO CS[pb] LO CS[pb]
2 2 4431±3 3015±0.6
2 1 4292±3 2745±0.03
1 2 4934±4 3622±0.04
1 0.5 5578±5 2778±0.03

0.5 1 4635±3 4159±0.05
0.5 0.5 5547±4 3499±0.04

Table 5.4: The result for different scale choices in beauty production. The scale factors
represent the number which multiplies the default scale 1/2(m⊥(Q) +m⊥(Q̄)).

respectively. For HERWIG, the resolved part contributes ∼ 29% and ∼ 34% respectively.
The resolved and hadronic calculations are expected to move the heavy quarks closer
to the proton in rapidity than in the direct and pointlike calculations respectively. In
fig. 5.9 the ratio of the hadronic part of MC@NLO, to the total distribution, is shown
as a function of rapidity of the heavy quark. There, one can see that for MC@NLO the
hadronic contribution is only ∼ 5% in the backwards region while it raises to ∼ 55%
in the forward region for charm production and to ∼ 65% for beauty production. The
resolved part for the HERWIG distribution dominates the cross-section with around 80%
in both the forward and backward regions, while it contributes 20 − 40% in the central
regions of the η spectrum of the heavy quark.

5.2 Scale Variations

To investigate how the cross-sections depend on the factorization scale µF in the PDFs
and the renormalization scale µR in the definition of αs, both scales have been varied
independently. The variation is a factor of 2 up and down relative to the nominal value,
which is:

µ =
1

2

(

m⊥(Q) +m⊥(Q̄)
)

. (5.4)

This is the average transverse mass of the produced heavy quarks. The relative size of
the scales lie in the interval 0.5 ≤ µF/µR ≤ 2. This variation results in six independent
calculations for each process. In tables 5.4 and 5.5 the resulting total cross-sections from
MC@NLO and LO are shown. Here, one can see that the charm production cross-section
has a stronger dependence on the scale choice than beauty-production. For the former
case the difference between the largest and smallest cross-sections is a factor 2.2, while
for beauty-production it is a factor 1.3. This is expected, since the mass of the b-quark
is much larger than the mass of the c-quark, hence yielding larger scales. It is also shown
that the scale dependence does get smaller at NLO than at LO. For charm production
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Ren. Scale Factor Fact. Scale Factor MC@NLO CS[nb] LO CS[nb]
2 2 561.1±0.6 407.8±0.05
2 1 631.4±1.0 250.8±0.05
1 2 445.1±0.4 548.8±0.1
1 0.5 748.9±1.0 200.6±0.04

0.5 1 542.7±0.4 537.1±0.1
0.5 0.5 991.8±1.0 322.5±0.06

Table 5.5: The result for different scale choices in charm production. The scale factors
represent the number which multiplies the default scale 1/2(m⊥(Q) +m⊥(Q̄)).

the largest to smallest LO cross-section differ by a factor 2.7, while for beauty production
the factor is 1.5.

To see the difference between going from LO to NLO in more detail, one can look at the
p⊥ and η distributions of the produced heavy quarks and vary the scales. In figure 5.10,
the LO and NLO cross-sections are shown as distributions of p⊥ and η of the produced
charmquarks. All six scale variations are included in the distributions and the resulting
largest and smallest value in each bin is shown in the figure. In fig. 5.10 the ratio of the
smallest value in each bin has been divided by the largest value, such that a large scale
variation will yield a small ratio. In fig. 5.10 one can see that for large values of p⊥(c), the
LO has a smaller scale dependence than the NLO calculation. This can be understood if
one considers the scale choice. In the NLO calculation the average transverse mass of the
heavy quark and anti-quark defines the scale. Event hough the heavy quark has a large
transverse momentum the heavy antiquark may have a small p⊥ such that the scale is still
relatively small. In the LO calculation the p⊥ of the heavy quark and antiquark are the
same, which means that the scale in the LO calculation is always large for large values of
p⊥(c). This does not mean that the LO calculation is more accurate for these values. In
fig. 5.10 one can also see that the LO calculation is more dependent on the scale choice
than the NLO calculation for η(c) < 2 while the dependecny is similar for η(c) > 2.

In figs. 5.12 and 5.11 similar comparisons between HERWIG and MC@NLO are shown.
Here one can see the scale dependency is quite similar in the two programs for beauty
production, while for charm production the difference is larger due to the small charm
mass. Also here one can see that the LO MC calculation varies less for larger p⊥ of
the heavy quark, especially in charm production. The MC@NLO prediction is less scale
dependent over the whole η distributions of the heavy quarks.
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Figure 5.10: The p⊥ and η distribution of charmquarks with the FMNR program (NLO)
and the Born approximation (LO). The scales are varied as described in the text. In the
lower distributions, the smallest result in each bin has been divided by the largest. Thus,
a small value corresponds to a large scale variation.
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Figure 5.11: The distributions of p⊥ and η of b-quarks including six scale variations.
The largest and smallest resulting value in each bin for both MC@NLO and HERWIG
(MC) are shown. In the lower distributions, the smallest result in each bin has been
divided by the largest. Thus, a small value corresponds to a large scale variation.
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Figure 5.12: The distributions of p⊥ and η of c-quarks including six scale variations.
The largest and smallest resulting value in each bin for both MC@NLO and HERWIG
(MC) are shown. In the lower distributions, the smallest result in each bin has been
divided by the largest. Thus, a small value corresponds to a large scale variation.



Chapter 6

Comparisons to Measurements of

Heavy Quarks at HERA

When heavy-quarks are produced at HERA they hadronize before reaching the detectors
H1 and ZEUS. Therefore, measuring heavy-quarks means measuring hadrons containing
heavy valence quarks. In this chapter MC@NLO will be compared to measurements
of the decay products of D∗± mesons, which contain a valence charm-quark and of B
mesons, which contain a valence beauty-quark. The MC@NLO prediction come with a
full independent variation of the factorization and renormalization scales, as described in
chapter 5. Comparisons are also made with the fixed order NLO-calculation FMNR [42]
and HERWIG [15]. In this chapter, a selection of comparisons with measurements will be
presented. The parameter settings of MC@NLO are described in chapter 5, table 5.1.

6.1 Comparisons to Measurements of D∗± Mesons

The D∗± mesons are detected through the so-called golden decay channel [50]:

D∗± → D0π±
slow → K∓π±π±

slow. (6.1)

Here the D∗± meson decays strongly into a D0 and a π±. The small mass difference
between the D0 and D∗± results in a pion created close to its mass-threshold. This pion
will therefore be slow in the D∗± center-of-mass system where it will have a speed of
vπ ∼ 0.36c. The D0 is then decaying weakly into a K∓ meson and into another π±. The
branching ratio for the golden decay channel is ∼ 2.6% [51], which is comparatively low,
but the advantage of this channel is that all the final state particles carry an electric
charge, resulting in three charged tracks in the detectors. The three final-state mesons
are then combined into D∗± candidates and the signal is extracted.

The branching ratio of charm-quarks decaying into D∗ mesons has in measurements been
found to be Γ(c → D∗) = 0.235 ± 0.007 [52, 53]. These numbers are mainly extracted
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Figure 6.1: The branching ratio for c→ D∗ as a function of
√
ŝ in HERWIG. Here the

charm mass is mc = 1.5 GeV.

from LEP data where electrons and positrons were colliding far from threshold energies for
charm production. At HERA, where charm is produced by partonic interactions, heavy
quarks are in general produced near the threshold, where ŝ ' 4m2

c . Measurements of this
branching ratio at HERA are however consistent with the LEP results, albeit with larger
uncertainties.

In figure 6.1 the branching ratio Γ(c → D∗) in HERWIG is plotted as a function of ŝ
with a charm mass of mc = 1.5 GeV. There it can be seen, when going from low to
high ŝ, that the branching ratio peaks at the mass resonance around twice the D∗ mass
mD∗ = 4.02 GeV, then goes down around the mass resonances of D1 and D∗

2 at 4.84-2.52
GeV, to finally level out around a branching ratio of ∼ 0.195. To get the total branching
ratio of c → D∗ in MC@NLO, the Γ(c → D∗) distribution has to be convoluted with
the ŝ distribution and then integrated. This results in an integrated branching ratio of
∼ 0.175 in MC@NLO, which is considerably smaller than the experimental one of 0.235.
To compensate for this, all cross-sections from MC@NLO in this chapter has been scaled
by a factor 1.34 ' 0.235/0.175 1.

In this section MC@NLO will be compared to three D∗± measurements. Two of these
measurements are of inclusive D∗, and two of them include measurements of D∗ mesons
in jets. The three measurements are:

1. “Measurement of Inclusive and DiJet D∗-Meson Photoproduction at the H1 Exper-
iment at HERA”, preliminary results by the H1 collaboration [50],

1The alternative to this rescaling would be a complete retuning of all decays in the generator, which
is outside the scope of this thesis.
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Analysis H1-09 [50] H1-06 [54] ZEUS-05[55]√
s 318 GeV 318 GeV 318 GeV

Q2 < 2 GeV2 < 0.01 GeV2 < 1 GeV2

yJB 0.1 − 0.8 0.29 − 0.65 0.19 − 0.87
pt(D

∗) > 1.8 GeV > 2 GeV > 3 GeV
η(D∗) -1.5 − 1.5 -1.5 − 1.5 -1.5 − 1.5
η(jet) -1.5 − 1.5 -1.5 − 2.4
pt(jet1,2) 4,3 GeV

Table 6.1: A summary of the cuts in the D∗ meson measurements in this chapter.

Visible C-S [nb] Measured MC@NLO
H1-09 38.60 ± 4.72 27.40 ± 3.13

H1-06 inclusive D∗ 6.45 ± 0.83 6.45 ± 0.78
H1-06 D∗+jets 3.01 ± 0.44 2.88 ± 0.29

ZEUS-05 6.80 ± 0.26 5.77 ± 0.42

Table 6.2: The resulting visible cross-sections from the cuts listed in table 6.1, for the
different measurements as well for the MC@NLO predictions.

2. “Inclusive D∗-Meson Cross Sections and D*-Jet Correlations in Photoproduction at
HERA” by the H1 collaboration [54],

3. and “Inclusive jet cross sections and dijet correlations in D∗± photoproduction at
HERA” by the ZEUS collaboration [55].

To simplify the notation, these will be referred to as H1-09, H1-06 and ZEUS-05 respec-
tively, after the year of their respective publication. The experimental cuts made for
the D∗ analyses are summarized in table 6.1. These cuts result in visible cross-sections
listed in table 6.2, together with the theoretical predictions. There it can be seen that
MC@NLO describe the H1-06 measurements very well and is slightly below the data in
the other two.

To quantify the comparisons made in this chapter, χ2/ndf has been calculated for each
distribution shown. It is defined by:

χ2 =
∑

bins

(σtheory − σdata)
2

δ2
theory + δ2

data

(6.2)

where σ is the cross-section (central value) and δ is the uncertainty in each bin. This
is then divided by the number of bins. If the theory prediction is within one standard
deviation of the data, χ2/ndf < 1. This is summarized in table 6.3 for each distribution.
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H1-09 MC@NLO
pt(D

∗) 1.32
η(D∗) 1.86

η(D∗)
∣

∣pt(D
∗) > 4.5 GeV 0.97

H1-06 inclusive MC@NLO
pt(D

∗) 1.41
η(D∗) 0.46

η(D∗)
∣

∣pt(D
∗) > 4.5 GeV 1.67

H1-06 D∗+jet MC@NLO
pt(D

∗) 2.49
η(D∗) 0.52
xobs

γ 1.94

∆φ(D∗, jet) 0.67
∆η(D∗, jet) 0.28

ZEUS-05 MC@NLO
pt(D

∗) 0.94
xobs

γ 1.05

∆φ(D∗, jet) 1.37
pt(jj) 1.01
Mjj 1.42

η(untagged jet)
∣

∣pt(jet) > 9 GeV 0.78

Table 6.3: The χ2/ndf for all distributions in D∗±-measurements shown in this chapter.
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Figure 6.2: Distributions of pt(D
∗) of inclusive D∗ measurements from H1-09 (left) and

H1-06 (right). The MC@NLO band includes full independent scale variations.

Comparisons to Inclusive Measurements of D∗±-mesons.

In fig. 6.2 the pt(D
∗) spectra are shown for inclusive D∗ measurements. There it can

be seen that MC@NLO describes both measurements well, within the scale variations.
When looking at the distributions in pseudo-rapidity of the D∗ mesons in fig. 6.3, one
sees that the MC@NLO prediction is a bit below the data in the H1-09 measurement. This
distribution still gives a χ2/ndf = 1.86, which means that the description is reasonable.
The H1-06 measurement is well described. However, it can be seen in these distributions
that the scale uncertainties in the MC@NLO prediction are rather large in comparison
with the experimental uncertainties. In the pt(D

∗) distributions, it can be seen that these
scale uncertainties are reduced for larger pt(D

∗). In this region the scales are larger, and
therefore the dependence upon them are expected to be smaller.

In fig. 6.4 the η(D∗) distribution is therefore shown for pt(D
∗) > 4.5 GeV. In this region the

scales uncertainties in MC@NLO are at the same level as the experimental uncertainties.
Here, both distributions are well described except for in one bin in the H1-06 measurement.

Comparisons to Measurements of D∗±-mesons and Jets.

When demanding the existence of a hard jet, as well as a D∗± meson, the scale de-
pendencies in MC@NLO are expected to be smaller. In fig. 6.5, the pt(D

∗) and η(D∗)
distributions from the H1-06 measurements are shown, when events with a hard jet with
pt(jet) > 4 GeV are chosen. As can be seen, the scale dependence is indeed reduced.
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The data are still well described, even though the pt(D
∗) spectrum is a bit harder in

MC@NLO than in the data. In fig. 6.6, the pt(D
∗) spectrum from the ZEUS-05 measure-

ment is shown 2. There the opposite is observed, that the MC@NLO prediction is slightly
below the data for small pt(D

∗), but describing the rest of the spectrum well.

Also, correlations between D∗ mesons and jets have been measured in H1-06 and ZEUS-05.
The relation:

xobs
γ (jet1, jet2) =

P−(jet)1 + P−(jet2)
∑

All hadrons i P−(i)
(6.3)

is the fraction of total measured P− taken by the two leading jets. All P− in the collision
is coming from the electron, and at LO the fraction xobs

γ corresponds to the fraction of
the virtual photon’s energy which goes into the hard interaction. Therefore, the hadronic
part of the calculation is expected to be more important for small values of xobs

γ . In
fig. 6.7, distributions in xobs

γ are shown from H1-06 and ZEUS-05. There one can see that
the contribution by the hadronic part of MC@NLO is larger in the H1-06 measurement,
because of a stricter cut in Q2 in this measurement. However, MC@NLO is slightly above
the data for large xobs

γ in this measurement, while the whole spectrum is well described
in the ZEUS-05 measurement.

In chapter 5, some observables which are sensitive to higher order effects were described.
One of these observables is the difference in azimuthal angle between the c-quark and the
hardest other parton, which was shown in fig. 6.8. This corresponds to the difference in

2This distribution is not present in [55], but is a compilation of other distributions binned in pt(D
∗).
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Figure 6.8: Distributions of ∆φ from H1-06 (left) and ZEUS-05 (right). The MC@NLO
band includes full independent scale variations.

azimuthal angle between the D∗ meson and the hardest jet not containing the D∗ in H1-
06, or between the two hardest jets in ZEUS-05. These distributions are shown in fig. 6.8.
There one can see that MC@NLO describes the data over the whole ∆φ spectrum for
both analyses.

Another observable which is sensitive to higher order effects at parton level is the combined
pt of the heavy quark antiquark pair, which was shown in fig. 5.4. At hadron level this
corresponds to the combined pt of the two leading jets, which was measured in ZEUS-05,
as shown in fig. 6.9. In this figure, the distribution of the invariant mass of the two jets is
also shown, defined by Mjj =

√

(p(jet1) + p(jet2))
2. At leading order this corresponds to

the center of mass energy of the hard interaction. MC@NLO is shown to describe both
these observables well.

Also, the difference in pseudo-rapidity between theD∗ and the hardest other jet is sensitive
to higher order radiations. At partonlevel, the two hardest emissions will more often
be close to each other in rapidity in HERWIG than in NLO-calculations. As can be
see in fig. 6.10, MC@NLO is describing the spectrum in ∆η(D∗, jet) very well, with
χ2/ndf = 0.28.
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Figure 6.11: The branching ratio for b → µ as a function of
√
ŝ in HERWIG. Here the

beauty mass is mb = 4.75 GeV.

6.2 Comparisons to Beauty Measurements

When a beauty-quark is extracted from the proton, a jet is produced which is highly
correlated in energy and momentum with the original quark, due to the large mass of the
b-quark. The b-quark decays before it reaches the detector and is detected by its decay
products. The b-quark decays weakly to lighter quarks, and the produced W ± boson
may decay into muons. These muons will in general have a large momentum transverse
to the jet-axis, so called prel.

t . Also, the vertex from which these muons are radiated
will be displaced relative to the hard interaction of the event, and this displacement is
proportional to the lifetime of the b-quark. Often, only the transverse component δ of
this displacement is used in the b-tagging. These two methods of tagging the b-quarks
may also be combined to further enhance the signal.

In fig. 6.11, the branching ratio Γ(b→ µ) in HERWIG is plotted as a function of ŝ with a
beauty mass of mb = 4.75 GeV. The threshold for bb̄-production is at ŝ = 9.5 GeV, while
the threshold for B-hadron production is at ŝ = 10.6 GeV, above which the branching
ratio is Γ(b→ µ) ∼ 0.20. When convoluting this with the MC@NLO calculation, one gets
Γ(b → µ) ∼ 0.148. The measured value is Γ(b → µ) ∼ 0.2205 [51]. To compensate for
this difference, all MC@NLO distributions in this section which depend on this branching
ratio have been multiplied by a factor of 1.5.

In this section, comparisons will be made with three measurements at HERA. They are
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Analysis ZEUS-08 H1-05 ZEUS-03√
s 318 GeV 318 GeV 318 GeV

Q2 < 1 GeV2 < 1 GeV2 < 1 GeV2

yJB 0.2 − 0.8 0.2 − 0.8 0.2 − 0.8
pt(µ) > 2.5 GeV > 2.5 GeV > 2.5 GeV
η(µ) -1.6 − 1.3 -0.55 − 1.1 -1.48 − 2.3

pt(jet1,2) 7, 6 7, 6 7, 6
η(jet) -2.5 − 2.5 -2.5 − 2.5 -2.5 − 2.5

Table 6.4: A summary of the cuts in the beauty analyses in this chapter.

Visible C-S [pb] Measured MC@NLO
ZEUS-08 38.6+5.78

−6.02 42.08 ± 4.91
H1-05 38.4 ± 6.38 33.71 ± 2.89

ZEUS-03 50.25 ± 6.45 48.39 ± 3.87

Table 6.5: The resulting visible cross-sections from the cuts listed in table 6.4, for the
different measurements as well as for the MC@NLO predictions.

1. “Measurement of beauty photoproduction using decays into muons in dijet events
at HERA”, by the ZEUS collaboration [56],

2. “Measurement of beauty production at HERA using events with muons and jets”,
by the H1 collaboration [57],

3. and “Bottom photoproduction measured using decays into muons in dijet events in
ep collisions at

√
s = 318 GeV”, by the ZEUS collaboration [58].

These will be referred to as ZEUS-08, H1-05 and ZEUS-03 respectively. The first two uses
the combined method of both prel

t and δ in the tagging of the b-quarks while in ZEUS-03
only prel

t is used. The experimental cuts made for the beauty analyses are summarized in
table 6.4. These cuts result in the visible cross-sections listed in table 6.5, as well as the
different theory predictions. There it can be seen that MC@NLO gives good predictions
for all three visible cross-sections.

In fig. 6.12 the transverse momentum spectra of the selected muons is shown. There it can
be seen that MC@NLO is describing all three data-sets well. Also, the scale variations are
significantly smaller here, than for the comparisons with D∗ mesons, due to the larger scale
provided by the b-quark. Also, the experimental uncertainties are larger here. This means
that the uncertainties from MC@NLO are at the same level as those of the measurements,
or smaller. Also the rapidity distributions of the muons are well described by MC@NLO
in all three data sets, as can be seen in fig. 6.13.
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Figure 6.12: Distributions of pt(µ) from the measurements ZEUS-08 (upper left), H1-05
(upper right) and ZEUS-03 (bottom). The MC@NLO band includes full independent
scale variations.
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Figure 6.13: Distributions of η(µ) from the measurements ZEUS-08 (upper left), H1-05
(upper right) and ZEUS-03 (bottom). The MC@NLO band includes full independent
scale variations.
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ZEUS-08 MC@NLO
pt(µ) 0.18
η(µ) 0.05

xγ(jets) 0.59
∆φ(jets) 1.22

∆φ(jets)|xobs
γ < 0.75 0.52

H1-05 MC@NLO
pt(µ) 0.89
η(µ) 0.11

xγ(jets) 0.48

ZEUS-03 MC@NLO
pt(µ) 0.78
η(µ) 0.34

pt(b− jet) 0.09
pt(b) 0.65

xγ(jets) 0.17

Table 6.6: The χ2/ndf for all distributions in the beauty measurements shown in this
chapter.

In fig. 6.14 the pt of the jet containing the b-quark is shown, as measured by ZEUS-03.
This spectrum is then used to reconstruct the pt spectrum of the b-quarks, with FMNR.
As can be seen, both distributions are well described by MC@NLO. The pt(b) spectrum
is not dependent upon the branching ratio Γ(b→ µ), described above.

Two types of correlations has been measured for beauty production. One is the xobs
γ

distributions of the leading two jets in the measurements, which are shown in fig. 6.15.
MC@NLO are describing all these distributions well. As can be seen, the hadronic part
of the calculation becomes significant for xobs

γ < 0.75.

In fig. 6.16 the difference in azimuthal angle between the leading jets is shown from the
ZEUS-08 measurement. MC@NLO is describing this distribution well. This observable
has also been binned in large and small xobs

γ . There it can be seen that for small ∆φ,
MC@NLO is slightly below the data in the small xobs

γ bin, which is compensated for large
xobs

γ .
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Figure 6.14: Distributions of pt(b− jet) and pt(b) from the measurement ZEUS-03. The
MC@NLO band includes full independent scale variations.
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Figure 6.15: Distributions of xobs
γ from the measurements ZEUS-08 (upper left), H1-05

(upper right) and ZEUS-03 (bottom). The MC@NLO band includes full independent
scale variations.
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MC@NLO band includes full independent scale variations.
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Figure 6.17: Distributions of ∆φ from H1-06 [54] and from ZEUS-05 [55] as compared
to the NLO calculation in the FMNR program.

6.3 Comparisons with Other Calculations

In fig. 6.17 it is again shown the ∆Φ distributions from the H1-06 and the ZEUS-05
measurements. This time they have been compared with the FMNR program, which has
been attached to the Lund string fragmentation model to provide hadrons. There it can
be seen that for this observable, which were well described by MC@NLO in fig. 6.8 cannot
be described by the FMNR program for small azimuthal separations between the D∗ and
the jet or between the jets. Sometimes, the a hard parton ends up in a hadron outside
of the visible region, which makes it possible for FMNR to have a small value of ∆Φ. As
can be seen in the plots, these are suppressed compared to the data.

6.4 Conclusions

In this chapter, MC@NLO has been compared to six measurements, three of D∗ mesons
and three of beauty production. All data has been shown to be described within one
sigma by MC@NLO. However, the distributions from the program need large factors to
compensate for wrong branching ratios. That both the pt(b− jet), which is compensated
by this factor, and pt(b), which is not, are well described by MC@NLO indicates that this
approach is acceptable.

For inclusive measurements of D∗ mesons the uncertainties in MC@NLO are found to be
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large, compared to the experimental uncertainties. These uncertainties are reduced for
large pt(D

∗) or when a hard jet is required in the measurement.

For beauty production, the uncertainties given by MC@NLO are at most at the same
level as the experimental uncertainties, and often much smaller.



Chapter 7

Summary and Outlook

In chapter 6 it is shown that the MC@NLO program constructed in this thesis is able
to describe all available data of heavy flavours produced in photoproduction at HERA,
including some observables which the FMNR NLO program is not able to describe. Also,
in chapter 5, the uncertainty due to scale variations has been shown to be smaller in
MC@NLO than in HERWIG, and it comes will a full fragmentation package well fitted
with the parton shower, something which is not the case for FMNR.

The program needs large factors to compensate for threshold effects in the fragmentation
functions implemented in HERWIG. For the branching ratio Γ(c→ D∗) the cross-sections
need a scaling factor of 1.34 and for Γ(b→ µ) the factor is 1.5. To remedy this problem,
a tuning of HERWIG fragmentation parameters to HERA data would be desirable. Such
a tuning has been outside the scope of this thesis.

So far, MC@NLO has only been implemented with matching to the HERWIG par-
ton shower. The same techniques could also be implemented in a matching with the
Pythia parton shower. The wide use of the Pythia event generator makes it a project
which would be both very useful for the community and achievable in the near future.
If implementing the process described in this thesis, namely heavy quarks produced in
photoproduction, Monte Carlo subtraction terms would have to be calculated both for
the pointlike and the hadronic parts of the calculation. The hadronic part of the photon
is in principle only different from other hadrons by different PDF sets. Therefore, an
implementation of this process in Pythia would also be able to describe heavy flavours
produced in any hadron-hadron scattering, for example at the Large Hadron Collider
(LHC), which will start to collide protons within the next couple of months.

In chapter 2.5, it is briefly described why the DGLAP evolution is expected to be invalid
for small xBj and Q2, where the ordered parton chains are expected to be suppressed.
Typically there are on the order of 1 emission in a parton chain per unit of rapidity. The
MC@NLO presented in this thesis calculate the first emission exactly, and the rest of
the parton evolution is then calculated by the parton shower. This approach has been
shown to be sufficient to describe all HERA data of heavy flavour photoproduction. The
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Figure 7.1: The detectable phase-space in x and Q2 for the LHC experiments (within
the blue lines). Lines of constant rapidity are included in the plot. Also compared with
other existing experiments, including the ones at HERA (H1 yellow full and ZEUS red
vertical lines)[59]
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Figure 7.2: The detectable phase-space in x and Q2 for the LHeC project (dark blue,
checked). Also compared with other existing experiments, including the ones at HERA
(yellow full) [60].
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available phase-space at HERA for non-DGLAP evolution is however rather restricted.
The detectors measure radiations from parton chains with a rapidity difference of ∆y ' 4.

In fig. 7.1 the expected phase-space for the LHC is drawn as well as the one for HERA.
There it is seen that the HERA phase-space extends much further in the direction of
small Q2 than the LHC, but on the other hand, the LHC experiment can offer a much
larger rapidity coverage, of around 11 units, which will provide a possibility to test the
limits of the DGLAP approach at small x. To further test these limits a new electron-
hadron collider would be needed. One such suggestion is the large hadron electron collider
(LHeC). An estimate of the phase space of LHeC is shown in fig. 7.2. Since it will use
parts of the LHC, the angular coverage may be similar as for the LHC but the phase-space
extends further for small Q2. If the LHeC is constructed, it will provide an important
testing ground for perturbative QCD and the MC@NLO presented in this thesis may be
a valuable tool for these tests.

Hamburg, the 27th of October 2009.



Appendix A

Dimensional Regularization

In quantum field theory there are two kinds of divergencies present in the calculations:
ultra-violet divergencies, which are present in loop-integrals and correspond to large mass
scales, and infra-red divergencies, corresponding to soft or collinear radiations. These
cases are depicted in fig. A.1. There exist several methods to regularize these divergencies,
but the most widely used is dimensional regularization [61]. The goal in dimensional
regularization is to either transform all IR-divergencies appearing in the calculation into
poles in an arbitrary complex number ε, or to regularize UV-divergencies with an effective
cut-off scale µ, which gets absorbed into the definitions of the couplings and masses.

The idea behind dimensional regularization is to change the dimensionality of an integral
from an integer number into a non-integer, or even complex, number. This is a very
abstract concept which only works for quantities which are allowed to have non integer
dimensions. One example on how such generalization can occur is to observe that the
volume of a d-sphere, i.e. a sphere in d dimensions, can be written in a form with Euler’s
gamma-functions:

Γ(z) =

∫ ∞

0

tz−1e−tdt (A.1)

such that

Vd =
1

d

2πd/2

Γ (d/2)
. (A.2)

For d =1, 2 and 3 the result is 2, π and 4π/3 respectively. The Euler gamma functions
are however not only defined for integers, but for all complex numbers z with real part
Re(z) > 0. In this way, the volume of a sphere may be defined in non-integer and even
complex dimensions.

To dimensional regularize a d-dimensional integral, the following steps have to be taken:

1. The integral is transformed from being d-dimensional into being of arbitrary dimen-
sion n. The integral is still expected to describe the same physics, however. In this
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step the unit of the integral may change, which then has to be compensated by a
suitable arbitrary parameter µd−n, where µ has the same dimension as the original
integration variable.

2. A variable substitution is performed into n− 1 dimensional polar coordinates, such
that 2dnx = dΩnx

n−1dx.

3. The arbitrary dimension n is allowed to become non-integer by the transformation
n = d− 2ε, where ε is a complex number with Re(ε) > 0.

4. The integration is performed.

5. The limit ε→ 0 is taken where possible.

Regulating an IR-divergency

As an example where for an IR divergency with d = 1, consider the integral in eq. (1.71),
which was regularized by a soft cut-off κ for small k⊥:

σ̂QCDC(z, Q2)

σ̂0

=
e2iαs

2π
Pqq(z)

∫ ŝ

0

dk2
⊥

k2
⊥

(A.3)

Instead, using dimensional regularization, taking the steps above, it becomes:
∫ ŝ

0

dk2
⊥

k2
⊥

→
∫ ŝ

0

dnk2
⊥

k2
⊥

(µ2)1−n =
(µ2)1−n

2

∫ ŝ

0

dΩn

∫ ŝ

0

(k2
⊥)

n−1

k2
⊥

dk2
⊥ (A.4)

= (µ2)1−n πn/2

Γ (n/2)

∫ ŝ

0

dk2
⊥

(k2
⊥)

2−n

where eq. (A.2) has been used in the last step. Letting n = 1 − 2ε this becomes:

(µ2)2ε π
1−2ε

2

Γ
(

1−2ε
2

)

∫ ŝ

0

dk2
⊥

(k2
⊥)1+2ε

= (µ2)2ε π
1−2ε

2

Γ
(

1−2ε
2

)

1

−2ε

[

(k2
⊥)−2ε

]ŝ

0
(A.5)

= (µ2)2ε π
1−2ε

2

Γ
(

1−2ε
2

)

1

−2ε

(

ŝ

µ2

)2ε

=
1

−2ε
+ ln

(

ŝ

µ2

)

+ O(ε)

where the limit ε → 0 has been taken where possible, and the equality Γ(1/2) =
√
π has

been used. Here it is seen that what was previously a soft divergency for small k⊥ has
now been transformed into a 1/ε pole. Also, with ŝ = Q2(1 − z)/z and µ2 = µ2

F being
the factorization scale, the same result is obtained as in chapter 1.1.3. The final result
for the integral in eq. (A.3) is:

∫ ŝ

0

dk2
⊥

k2
⊥

= ln

(

Q2

µ2
F

)

+
1

−2ε
+ ln

(

1 − z

z

)

(A.6)
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Figure A.1: To the left: the radiation of a gluon is IR singluar when the energy of the
gluon is 0 or if the gluon becomes collinear with the radiating quark. To the right: a
one-loop diagram, which is UV singular for large momenta in the loop.

where, the pole in epsilon is absorbed by the definition of the PDF, either in the DIS or
the M̄S subtraction scheme.

Regulating a UV-divergency

An example of a UV-divergent integral is the scalar one-loop self energy integral, which is
the integral one gets by applying the Feynman rules on a one-loop diagram, such as the
one in fig. A.1 [1]:

G(2)(p) = i

∫

d4k

(2π)4

1

(k2 −m2 + iε)((p− k)2 −m2 + iε)
(A.7)

This integral is UV-divergent as k → ∞. This is however only the case when the dimen-
sionality, n, of the integral is n ≥ 4. To simplify the example, the integral will be taken
in four-dimensional Euklidian space, such that the iε factors in the denominator can be
set to 0. Before beginning the steps above, the integral may be rewritten further, with a
Feynman-parametrization:

1

AB
=

∫

dx

(xA + (1 − x)B)2
(A.8)

Using this for the denominator in the integral G(2)(p), it becomes in n dimensions:

G(2)(p, n) = iµ4−n

∫

dnk

(2π)n

∫ 1

0

dx

(k2 − 2xp · k + xp2 −m2)2 (A.9)

= iµ4−n

∫

dnl

(2π)n

∫ 1

0

dx

(l2 + x(1 − x)p2 −m2)2

where the variable substitution l = k − xp has been used in the last step. In this form it
is easy to change variables into polar coordinates:

G(2)(p, n) = iµ4−n Ωn

(2π)n

∫ 1

0

dx

∫ ∞

0

dl ln−1

(l2 + x(1 − x)p2 −m2)2 (A.10)
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To compute the integral over l one may use some properties of Euler’s gamma-function
[1]:

Γ(n) = (n− 1)! For integers n ≥ 1 (A.11)

Γ(z − 1) =
Γ(z)

(z − 1)
For all z, Re(z) > 1

∫ ∞

0

dy
yw−1

(y + 1)w+z
=

Γ(w)Γ(z)

Γ(w + z)

1

Γ(z)
= z + γEz

2 +

(

γ2

2
− π2

12

)

z3 + · · ·

where the last equation is a Taylor expansion around z = 0 with γE being the Euler
constant. Rewriting the integral and using this yields:

G(2)(p, n) = iµ4−n Ωn

(2π)n

∫ 1

0

dx
(

x(1 − x)p2 −m2
)

n
2
−2
∫ ∞

0

dl
ln−1

(l2 + 1)2
(A.12)

=
iµ4−n

(4π)n/2

Γ(n)Γ(2 − n)

Γ(n/2)Γ(2)

∫ 1

0

dx
(

x(1 − x)p2 −m2
)

n
2
−2

=
iµ4−n

(4π)n/2
Γ
(

2 − n

2

)

(p2)n/2−2

=
i

(4π)2
Γ(−ε)

(

p2

µ2

)−ε

where in the last step, n = 4 − 2ε. Letting ε → 0− and Taylor expanding around ε = 0
finally give:

G(2)(p) =
i

(4π)2

(

1

ε
+ ln

(

p2

µ2

)

+ O(ε)

)

(A.13)

Here µ is the same renormalization scale which appeared in section 1.1.1. For QCD, the
UV-regulated theory is defined by a Lagrangian of the form of the QCD Lagrangian, but
with all couplings g replace as g → gµε.



Appendix B

Generating a Parton Shower by use

of the Veto Algorithm

The parton showers described in chapter 2.2, depend on a shower time t. The task of
the parton shower is to generate the t values in the shower for a given event according to
the distribution

∑

b Iba(t). For notational purposes, define f(t) =
∑

b Iba(t), where I is
defined in eq.(2.16). If the primitive function F (t) and its inverse F−1(t) are known, it is
easy to select a correct t value:

1 − exp

(

−
∫ t

0

f(t̂)dt̂

)

= 1 −R (B.1)

where R is a random number generated according to eq. (2.5). The solution is:

F (0) − F (t) = lnR ⇒ t = F−1(F (0) − lnR) (B.2)

However, the primitive function and its inverse of f(t) are rarely known. As in chapter
2.1.1, one may instead try to find another function g(t) such that g(t) ≥ f(t) over the
interval and where G(x) and G−1(x) are known. Here, the hit and miss scenario described
in chapter 2.1.1 does not work, due to the exponential term. Instead one may use the
so-called veto algorithm. Consider a particle a being created in a parton shower at a
’time’ t = t0. The parton shower also has a cut-off at t = tmax after which no further
branchings are allowed. The veto algorithm is then:

1. Start with i = 0 and some appropriate t0 where the particle a is created.

2. Add 1 to i, such as i → i + 1, and select ti = G−1(G(ti−1) − lnR1), i.e. according
to g(t) such that ti > ti−1

3. If ti > tmax exit the algorithm, a has not branched.

4. If ti < tmax compare another random number R2 with the ratio f(ti)/g(ti).

If f(ti)
g(ti)

≤ R2 return to 2
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Otherwise, the most recent value is kept as the generated t where a branching
a→ bc has occurred .

5. For the next branching change b→ a and start at 1 with t0 = t

The main difference from the importance sampling (chapter 2.1) is in the last step, which
makes sure that the generated t values are ordered. To understand why this works, the
various ways in which a specific t value is chosen may be considered. The probability that
a value t is chosen in the first try, i.e. that t = t1, is given by the probability that no
intermediate t value is rejected. It is then the branching probability at ’time’ t1 according
to g(t) (eq. (2.18)) times the acceptance probability f(t)/g(t):

Pa0(t) = g(t) exp

(

−
∫ t1

0

g(t̂)dt̂

)

f(t)

g(t)
= f(t) exp

(

−
∫ t1

0

g(t̂)dt̂

)

. (B.3)

Now consider the case where one value t1 is rejected and the following value kept such
that t = t2. Then the probability of choosing t1 has to be multiplied by the probability
1−f(t)/g(t) of rejecting it times the probability of choosing t2 when starting at the value
t1 and again multiplied by the acceptance probability f(t)/g(t):

Pa1(t) =

∫ t

0

dt1g(t1) exp

(

−
∫ t1

0

g(t̂)dt̂

)

·
[

1 − f(t1)

g(t1)

]

·g(t) exp

(

−
∫ t

t1

g(t̂)dt̂

)

· f(t)

g(t)
(B.4)

As can be seen, the whole r.h.s. is integrated over all possible choices of t1. The exponen-
tials together gives an integral over the range 0 to t, just as in eq. (B.3), and the factor
for the final step being accepted is also the same. Therefore

Pa1(t) = Pa0(t)

∫ t

0

dt1(g(t1) − f(t1)) (B.5)

In a similar way, the probability that t = t3, i.e. that exactly two intermediate values are
rejected then becomes:

Pa2(t) = Pa0(t)

∫ t

0

dt1(g(t1) − f(t1))

∫ t

t1

dt2(g(t2) − f(t2))

= Pa0(t)
1

2

(
∫ t

0

dt̂(g(t̂) − f(t̂))

)2

. (B.6)
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Here the last step can be understood, with h(t) = g(t) − f(t), from:

∫ t

0

dt1h(t1)

∫ t

t1

dt2h(t2) =

∫ t

0

∫ t

0

dt2dt1h(t1)h(t2)Θ(t2 − t1)

=

∫ t

0

∫ t

0

dt1dt2h(t2)h(t1)Θ(t1 − t2)

=
1

2

(
∫ t

0

∫ t

0

dt2dt1h(t1)h(t2)
(

Θ(t2 − t1) + Θ(t1 − t2)
)

)

=
1

2

(
∫ t

0

dt̂h(t̂)

)2

(B.7)

The second equality comes from symmetry of t1 and t2, the third equality comes from
the fact that if A = B = C then A = 1/2(B + C) and in the last step the sum of the
Θ functions is unity. For the general case, the i intermediate steps may be ordered in i!
different ways. The total probability for accepting t in any step is therefore:

Pa(t) =

∞
∑

i=0

Pia = P0a

∞
∑

i=0

1

i!

(
∫ t

0

dt̂(g(t̂) − f(t̂)

)i

= f(t) exp

(

−
∫ t

0

dt̂g(t̂)

)

exp

(
∫ t

0

dt̂(g(t̂) − f(t̂))

)

= f(t) exp

(

−
∫ t

0

dt̂f(t̂)

)

(B.8)

which is exactly the distribution desired. In each branching also the kinematics of the
created particles have to be generated. It is easy to generalize this parton shower algorithm
such that g(t) is the integral of g(t, z) over z. Each time a ti is selected, a zi is also picked
according to g(ti, z)dz and the point (t, z) is accepted with probability f(ti, zi)/g(ti, zi).
Other variables may be generated in the same fashion. In this way, one can create a
parton shower, ordered in t where in each branching the four-momenta, colour information,
flavour etc. is kept track of. For final state radiation, the same algorithm is used but with
ti < ti−1.
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