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Abstract

A measurement of the longitudinal diffractive structure function FD
L using the H1

detector at HERA is presented. The structure function is extracted from first mea-
surements of the diffractive cross section ep → eXY at centre of mass energies

√
s of

225 and 252 GeV at high values of inelasticity y, together with a new measurement
at

√
s of 319 GeV, using data taken in 2006 and 2007. Previous H1 data at

√
s of

301 GeV complete the kinematic coverage needed to extract FD
L in the range of photon

virtualities 2.5 < Q2 < 100 GeV2 and fractional proton longitudinal momentum loss
10−4 < xIP < 10−2. The measured FD

L is compared with leading twist predictions
based on diffractive parton densities extracted in NLO QCD fits to previous diffractive
DIS data and to a model which additionally includes a higher twist contribution de-
rived from a colour dipole approach. The photoabsorption ratio for diffraction RD is
extracted for Q2 > 7 GeV2 and compared to the analogous quantity for inclusive DIS.
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Chapter 1

Introduction

The observation that a significant subset of Deep-Inelastic Scattering (DIS) events at
HERA contains a large gap in activity in the forward region [9], signifying a colour
singlet exchange, prompted much theoretical and experimental activity. Since then,
HERA has proved to be a rich playground for the study of diffraction. In particu-
lar, the study of inclusive and exclusive diffractive DIS (DDIS) events has provided a
wealth of experimental data with a hard scale provided by the virtual photon, stimu-
lating theoretical hopes of understanding diffraction in terms of perturbative quantum
chromodynamics (QCD). Descriptions of DDIS where the photon fluctuates into a
colour dipole which subsequently scatters elastically from the proton have also been
shown to be successful [10].

It has been shown by Collins [11] that, among other processes, the NC DDIS process
ep → eXp at HERA obeys the QCD factorisation theorem. While such a proof allows
for a description of DDIS in terms of parton densities convoluted with hard scattering
matrix elements, these diffractive parton density functions (DPDFs) depend on four
kinematic variables. In order to proceed in this picture, an additional approximation
is often made whereby the proton vertex dynamics factorise from the hard scattering
- proton vertex factorisation. While this factorisation has no sound basis in theory,
measurements of the diffractive cross section from both H1 and ZEUS [12, 13, 14] show
that it holds well enough such that meaningful next-to-leading order (NLO) QCD fits
can be made to the data [12, 15, 16].

Measurements of the dijet cross section in DDIS allow tests of the DPDFs extracted
in fits to inclusive DDIS data. This process, which is known to be dominated by boson-
gluon fusion, is particularly sensitive to the gluon DPDF at large fractional momenta
zIP , and has been successfully used to distinguish between different gluon DPDFs [17].
DDIS events containing charm particles in the final state have similarly been used to
test the gluon DPDF [18], although these data have less sensitivity to large fractional
momenta.

By analogy with the inclusive DIS case, the cross section for DDIS can be expressed
in terms of a linear combination of structure functions, FD

2 and FD
L . While FD

2 de-
scribes the total photon-proton cross section, FD

L is only sensitive to the longitudinally
polarised photon contribution. As for its inclusive counterpart, FD

L is thus zero in the
quark-parton model, but may acquire a non-zero value, 0 < FD

L < FD
2 in QCD, with

leading twist contributions dependent on both the diffractive quark and gluon densities
at leading twist [19]. The dominant role played by gluons in the diffractive parton den-

1



2 CHAPTER 1. INTRODUCTION

sities [12, 15] implies that the leading twist FD
L should be approximately proportional

to the diffractive gluon density and should be correspondingly large. A measurement of
FD
L to even modest precision would provide a powerful independent tool to verify our

understanding of the underlying dynamics and to test the gluon DPDF. In particular,
the jet and D∗ data are not able to determine the gluon density at lowest x values
where novel effects such as parton saturation [20] or non-DGLAP dynamics [21, 22]
could be important.

In this analysis, positron-proton collision data taken with the H1 detector at HERA
in 2006 and 2007 are used to measure the reduced cross-section at large inelasticity,
y, using datasets with different proton beam energies, leading to an extraction of FD

L .
Dedicated low and medium energy data with proton beam energies of Ep = 460 and
575 GeV, together with data at the nominal beam energy of 920 GeV are analysed.
The 920 GeV data are limited to Q2 > 7 GeV2, while the 460 and 575 data extend
down to Q2 = 2.5 GeV2. Previously published data at 820 GeV [12] are therefore
used in addition. FD

L is extracted using data in the ranges 2.5 < Q2 < 100 GeV2 and
10−4 < xIP < 10−2. The ratio of FD

L to the inclusive longitudinal structure function
FL is measured for Q2 > 7 GeV2 and 10−3 < xIP < 10−2.



Chapter 2

DIS at HERA

2.1 Deep Inelastic Scattering

2.1.1 Kinematics

This section introduces kinematical quantities for any process, elastic as well as inelas-
tic, where a lepton of any kind scatters on a proton

l(k) + p(p) → l(k′) + X. (2.1)

Here, X denotes any final state allowed by conservation laws and k, p, k′ denote the
four-momenta of the corresponding particles. Depending on the charge of the lepton,
the processes are referred to as either neutral current or charged current processes.
Diagrams of these processes are shown in Fig. 2.1.

The following set of Lorentz invariant variables is introduced to describe the kine-
matics of a process:

s = (k + p)2, (2.2)

Q2 = −q2 = −(k − k′)2, (2.3)

y =
qp

kp
=

Elab −E ′
lab

Elab

, (2.4)

x =
Q2

2pq
, (2.5)

W 2 = (q + p)2, (2.6)

where Elab and E ′
lab are the energies of the initial and the scattered lepton in the

laboratory frame. The interpretation of s as the squared energy in the central mass
system, and Q2 as the squared momentum transfer is straightforward. The variable y,
expressed in the laboratory frame, describes the relative loss of energy of the scattered
lepton and is interpreted as a measure of inelasticity of the process. The interpretation
of x as a fraction of the proton momentum carried by a struck parton is explained in
Section 2.1.4. The variable W is the invariant mass of the hadronic system X .

An inelastic scattering process is fully described by any two kinematic variables
from Q2, x, y. In other words, only two of the kinematic variables from the list are
independent. In case of an elastic process, the full kinematics is described by a single
kinematic variable.

3



4 CHAPTER 2. DIS AT HERA

}
(a)

}
(b)

Figure 2.1: Standard Model diagrams for a neutral current (a) and charged current (b)
deep-inelastic scattering processes.

2.1.2 Elastic Scattering of an Electron on a Pointlike Fermion

or Boson

In the lowest order quantum electrodynamics, the process of scattering an electron on
another fermion or boson particle is described by one photon exchange diagram. [23]
In case of a spin 1

2
fermion, the cross section of such process reads

dσ

dQ2
=

2πα2

Q4

[

1 + (1 − y)2 − M2y

kp

]

, (2.7)

where the electron mass is neglected and M is the mass of the other fermion. The
elastic scattering of an electron and a spin 0 boson of mass M is described by the cross
section

dσ

dQ2
=

2πα2

Q4

[

(1 − y) − M2y

kp

]

. (2.8)

The two equations above lead to the following observation. To see a difference between
the scattering on fermions and bosons requires large inelasticity y.

2.1.3 Deep Inelastic Scattering of Electrons
on Protons

The inelastic scattering of unpolarised electrons on unpolarised protons is uniquely
specified by two independent kinematical variables. In terms of Q2 and x, the deep
inelastic cross section in its general form reads

d2σ

dxdQ2
=

4πα2

xQ4

[(

1 − y −
M2

pxy

s

)

F2(x,Q
2) + y22xF1(x,Q

2)

]

, (2.9)

where F1(x,Q
2) and F2(x,Q

2) are the structure functions of the proton. The form
of Eq. 2.9 follows from the fundamental properties of electromagnetic interactions:
Lorentz invariance, unitarity, gauge invariance and parity conservation. [23]
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2.1.4 Quark Parton Model

The concept of partons as constituents of the proton emerged from Feynman’s idea that
the deep inelastic scattering cross section can be expressed as a sum of elastic cross
sections of the electron on partons. In deep inelastic scattering, which is characterised
by Q2 ≫ M2

p , the proton can be viewed in the infinite momentum frame where the
transverse momenta of constituent partons can be safely neglected with respect to the
longitudinal momentum of the proton. The parton four-momentum can be expressed
as p = ξP , where 0 < ξ < 1. The momentum conservation in the elastic scattering of
the parton and the exchanged photon gives

(p′)2 = (p + q)2 = p2 −Q2 + 2pq. (2.10)

Neglecting the parton mass in this equation leads to the following prescription

ξ =
Q2

2pq
. (2.11)

Therefore, the variable ξ can be identified with x which can be interpreted as a proton
momentum fraction carried by the interacting parton.

The deep inelastic cross section given in Eq. 2.9 in a limit s → ∞ reduces to

d2σ

dxdQ2
=

4πα2

xQ4

F2(x,Q
2)

x
(2.12)

where only one structure function is involved. In the same limit, both elastic cross
sections given in Eq. 2.7 and 2.8 transform into

dσ

dQ2
=

4πα2e2p
Q4

. (2.13)

The similarity of these two equations together with the concept of partons lead to the
following definition of the structure function

F2(x) = x
∑

i

e2i di(x) (2.14)

where di(x) describes the probability of finding a parton with fraction x of the proton
momentum and electric charge ei.

Choosing the structure function F1 so that

F2(x) = 2xF1(x) (2.15)

directly transforms the deep inelastic scattering cross section in Eq. 2.9 into

d2σ

dxdQ2
=

2πα2

xQ4

[

1 + (1 − y)2
]

· F2(x). (2.16)

The form of the structure function F2 in Eq. 2.14 and the cross section for the elastic
scattering of electrons and fermions in Eq. 2.7 lead to the following conclusion. If the
so-called Callan–Gross relation [24] in Eq. 2.15 holds then the constituent partons
are spin 1

2
particles. The SLAC experiment proved that the Callan–Gross relation
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is correct [23]. Partons were identified with quarks, and the quark parton model
was born. However, it is important to stress that originally, the concepts of quarks and
partons are not identical.

The structure function F2 in the quark parton model can be written in terms of
quark and anti-quark distribution functions, q(x) and q̄(x), as

F2(x,Q
2) = x

∑

i

e2i [qi(x) + q̄i(x)] . (2.17)

Both quark and anti-quark distribution functions behave roughly as 1/x for x → ∞
causing the integrals

∫ 1

0
q(x)dx to diverge. This implies that the number of partons in

the proton is finite. However, there is a class of distribution functions, called valence,
that lead to finite integrals that are consistent with the prediction of the additive quark
model. They are defined as

qvalence(x) = q(x) − q̄(x). (2.18)

All the remaining quarks emerge from a gluon radiation and production of virtual
quark anti-quark pairs. These are described by the sea distributions

qsea(x) = q̄sea(x). (2.19)

2.1.5 Quantum Chromodynamics

Interactions of quarks are described by a field theory of strong interactions, Quantum
Chromodinamics (QCD) [25]. It is a non-Abelian gauge theory based on the SU(3)
gauge group, and has the following characteristics

• Each quark is ascribed a new quantum number called colour. There are three
colours, R, G, B, and corresponding anti-colours.

• The gauge bosons of the strong interactions are eight massless gluons with no
electric charge. As a consequence of the non-Abelian nature of QCD, gluons carry
colour charges and are therefore able to self-interact, producing three-gluon as
well as four-gluon vertices.

• The strong interaction is characterised by a strong coupling constant αs .

• All physically observable objects are colour singlets. They are either the qq̄ states
called mesons, or qqq states called baryons. Quarks and gluons carry colour
charge and therefore do not appear as free particles. This behaviour is known as
colour confinement.

Running Coupling Constant and Asymptotic Freedom

The colour confinement together with the QPM assumption of quasi-free partons is re-
flected in the form of the strong potential. The coupling strength of the interaction is
small at short distances (high momentum transfer regime) and large at long distances.
This leads to the confinement of quarks in hadrons. To account for these changes,
the coupling strength should vary with the momentum transfer (running coupling con-
stant).
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Due to the gluon self-interactions the higher order contributions to the gluon prop-
agator lead to infinities. These infinities are removed by a renormalisation procedure
which introduces a renormalisation scheme µ2 at which the ultraviolet loop divergences
are subtracted. This leads to a dependence of the renormalised coupling constant αs

on the renormalisation scale µ2. However, physical observables R(Q2/µ2, αs) when
computed up to all orders of perturbation theory should not depend on an arbitrary
renormalisation scale. Any explicit dependence of R on µ2 should therefore be can-
celled by the dependence of αs on µ2. This is mathematically expressed in the so-called
renormalisation group equation

µ2 ∂R

∂µ2
+ µ2∂α2

∂µ2

∂R

∂αs
= 0. (2.20)

In a one-loop approximation, the solution for the dependence of the strong coupling
constant αs on the renormalisation scale µ2 can be written as

αs(µ
2=Q2) =

αs(µ
2
0)

1 + αs(µ2
0)β0 ln(Q

2

µ2
0

)
(2.21)

where µ2
0 is a chosen reference scale and β0 = 33−2nf . At small distances, large energy

scale µ2 → ∞, the coupling between quarks and gluons becomes small, αs → 0, and
the quarks inside a proton can be treated as quasi-free particles. This behaviour is
called asymptotic freedom. This property is unique to non-Abelian gauge theories.
For µ2 → 0, the coupling is seen to diverge. This can be viewed as a reason for the
confinement of quarks and gluons inside hadrons. [23]

DGLAP Evolution Equations

The parton distribution functions (PDF) cannot be calculated from first principles.
However, the Q2 dependence of PDF’s can be calculated within perturbative QCD using
the DGLAP (Dokshitzer-Gribov-Lipatov-Altarelli-Parisi) evolution equations [26, 27,
28, 29]:

dqi(x,M)

d lnM
=

αs(M)

π

[
∫ 1

x

dy

y
Pqq(

x

y
)qi(y,M) +

∫ 1

x

dy

y
Pqg(

x

y
)g(y,M)

]

(2.22)

dgi(x,M)

d lnM
=

αs(M)

π

[
∫ 1

x

dy

y
Pgq(

x

y
)qi(y,M) +

∫ 1

x

dy

y
Pgg(

x

y
)g(y,M)

]

(2.23)

where M = ln(Q2/µ2
0) and Pij(

x
y
) are the splitting functions which represent the prob-

ability of finding a parton i with momentum x originating from a parton j with mo-
mentum y. The splitting functions are schematically shown in Fig. 2.2.

QCD Hard Scattering Factorisation

The concept of QCD hard scattering factorisation [30] introduces a factorisation scale
µ2
f that separates soft and hard processes. For momentum transfers Q2 > µ2

f , αs is
taken to be small and perturbation theory is applicable. This is the ’hard’ regime of
short range, high momentum transfer interactions. Processes belonging to the ’soft’
regime, Q2 < µ2

f , lead to the so-called infrared divergences. They are absorbed in the
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(a) (b)

(c) (d)

Figure 2.2: Diagrams showing the quark (a), (b) and gluon (c), (d) splitting functions.

renormalised parton distribution functions which depend on the factorisation scale µ2
f .

The proton structure function F2 is given by

F2(x,Q
2) =

∑

i

∫ i

x

σ(
x

x′
, Q2, µ2

F )
[

qi(x
′, µ2

F ) + q̄i(x
′, µ2

F )
]

. (2.24)

2.1.6 Cross Sections

The inclusive deep inelastic electron-proton scattering cross section at low Q2 is given
by

d2σ

dxdQ2
=

2πα2Y +

Q4x

[

F2(x,Q
2) − y2

Y +
FL(x,Q2)

]

(2.25)

where
Y + = 1 + (1 − y)2. (2.26)

Eq. 2.9 uses the structure functions F1 and F2 instead. Considering the polarization
of the virtual photon exchanged in deep inelastic scattering, the cross section can be
written as a sum of transversal and longitudinal component

σγ∗p = σT + σL (2.27)

where each component involves its own proton structure function FT and FL. These
are related to the structure functions F1 and F2 in the following way

2xF1 = FT , (2.28)

F2 = FT + FL. (2.29)
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It is also useful to define a ratio of the longitudinal and transverse structure functions

R =
FL

FT

=
FL

F2 − FL

. (2.30)

2.1.7 Longitudinal Proton Structure Function

In the quark parton model, the longitudinal proton structure function FL is zero
since longitudinally photons do not couple to spin 1

2
quarks. In the lowest order of

the DGLAP approximation of perturbative QCD, the longitudinal structure function
is given by [24]

FL(x) =
αs

4π
x2

∫ 1

x

dz

z3

[

16

3
F2(z) + 8

∑

e2q(1 − x

z
)zg(z)

]

(2.31)

where both quarks and gluon contribute. At low x, FL thus essentially determines
the gluon distribution xg(x,Q2) as can be illustrated by solving this equation approx-
imately [31]

xg(x) = 1.8

[

3π

2αs
FL(0.4x) − F2(0.8x)

]

≃ 8.3

αs
FL(0.4x). (2.32)

The gluon distribution at low x can be constrained indirectly by the Q2 evolution of
F2. However, this relies on the DGLAP theory assumption which becomes questionable
at low x [32]. The FL measurement described in the following chapters represents a
direct measure of the gluon density and thus provides an important cross check of the
whole understanding of low x physics.

2.2 Diffraction

2.2.1 Regge Theory

The Regge theory [33, 34] investigates the dynamics of hadrons by studying the two
particle scattering A + B → C + D. It relates the spin J and the mass M of particles
with the same quantum numbers. When such particles are plotted in the so-called
Chew-Frautschi plane (J vs. M2) [35, 36] they all seem to lie on the same line called
the Regge trajectory. Figure 2.3 shows such plot for low mass mesons.

The Regge theory predicts that the high energy behaviour of all processes, where
the same quantum numbers are exchanged, should be similar. The early description of
two body interactions was based on the picture of one pion exchange. However, there
is a serious shortcoming of this model since some processes cannot be described by
the exchange of a single pion due to quantum number conservation laws. The Regge
theory solves such problems by introducing an exchange of whole Regge trajectories
instead of just one particle. One talks about a Reggeon exchange which is equivalent
to the exchange of many particles with different spins.

In the so-called Regge limit, where s ≫ |t|, the scattering amplitude of the two
body interaction can be written as

A(s, t) ∼ sα(t), (2.33)
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Figure 2.3: The Chew-Frautschi plot for low mass mesons. [37]

where
α(t) = α(0) + α′t. (2.34)

It can be shown that in the Regge limit the total cross section can be related to s via

σtot ∼ s(α(0)−1). (2.35)

s and t are the standard Mandelstam variables1.

2.2.2 The Pomeron

Since all known trajectories of existing particles have α(0) < 1, the Eq. 2.35 predicts
that σtot should decrease with rising s. However, the experimental data did not support
this conclusion. In order to keep the Regge picture consistent with the experimental
data a trajectory with an intercept of α(0) ≃ 1 has to be introduced. It is called the
Pomeron trajectory and it is referred to as a diffractive exchange that is charac-
terised by the exchange of vacuum quantum numbers.

The pp and pp̄ cross sections were seen experimentally to rise at large s as s increases,
as shown in Fig. 2.4. Donnachie and Landshoff [38] successfully attempted a global fit
to all existing σtot data where they took the total cross section as a sum of two terms

σtot = AsαIP (0)−1 + BsαIR(0)−1 (2.36)

representing the Pomeron and Reggeon trajectories.

1 Mandelstam variables describe two-body to two-body processes A + B → C + D. They are
s = (pa + pb)

2, t = (pa − pc)
2 and u = (pa − pd)

2, where pa, pb, pc, pd are the corresponding
four-momenta of the particles.
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Figure 2.4: The total cross sections of pp and pp̄ interactions as a function of
√
s

compared with the parametrisation of Donnachie and Landshoff. [37]

2.3 Diffractive DIS at HERA

The early studies of the DIS processes at H1 revealed that a substantial portion, roughly
10%, of them do not show any forward activity (in the direction of the proton beam).
These are called the diffractive processes. Standard DIS and diffractive processes are
compared in Fig 2.5. The lack of activity in the forward region is phenomenologically
explained by the exchange of a colourless object emerging directly from the proton
which remains intact. Due to the vacuum quantum numbers of the exchanged object,
there is no colour string between the final state proton and the remaining hadronic final
state that could hadronize. The exchanged object was successfully identified with the
Pomeron and the Regge picture plays an important role in description of the diffractive
DIS processes.

Fig. 2.6 shows a distribution of the polar position of the most forward cluster in
the DIS processes as seen in the H1 detector. The difference between diffractive and
standard DIS processes is clearly visible in the simulation.

2.3.1 Diffractive Kinematics

Fig. 2.7 shows the diagram for the generic diffractive DIS process at HERA. In addition
to the kinematic variables defined in Section 2.1.1 there are two more variables, β and
xIP , introduced to describe a diffractive interaction. These reflect the slightly more
complicated structure of diffractive processes, compared to the standard DIS processes,
due to the assumed presence of a colourless object. The variable xIP describes the



12 CHAPTER 2. DIS AT HERA

1
Figure 2.5: Comparison of the standard DIS process (top) and the diffractive DIS
process (bottom) which is characterised by the lack of activity in the forward region.
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Figure 2.6: The variable ηmax describes the polar position of the most forward cluster.
Pseudorapidity η is defined as η = − ln tan(θ/2). The full DIS data (points) is well
described by the sum of simulations of the standard DIS processes (yellow) and the
diffractive processes (magenta). The diffractive processes do not show any activity in
the forward region (high η).
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Figure 2.7: A schematic diagram of the diffractive DIS process at HERA.

fractional momentum of the Pomeron with respect to the proton, and β is the fractional
momentum of the struck parton with respect to the Pomeron. They are defined as

β =
Q2

Q2 + M2
X − t

, (2.37)

xIP =
Q2 + M2

X − t

Q2 + W 2 −M2
p

=
x

β
(2.38)

where MX is the mass of the hadronic final system X and Mp is the mass of the proton.

2.3.2 Diffractive Cross-Sections

Following the same formalism as described in Section 2.1.6 for the DIS processes, the
differential cross section for diffractive DIS as a function of three measured kinematic
variables can be written as

d3σep→eXp

dβdQ2dxIP

=
2πα2Y +

βQ4
σD(3)
r (β,Q2, xIP ) (2.39)

where σ
D(3)
r (β,Q2, xIP ) is the diffractive reduced cross section. The number in brackets

denotes the number of variables that are used to define the reduced cross section. The
reduced cross section can be related to the structure functions by

σD(3)
r = F

D(3)
2 (β,Q2, xIP ) − y2

Y +
F

D(3)
L (β,Q2, xIP ). (2.40)
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Figure 2.8: Sketch of Regge factorisation. The diffractive exchange is viewed in two
parts: a long time scale flux component, and a short time scale hard scattering process.

2.3.3 QCD Hard Scattering Factorisation

It has been proven by Collins [11] that the diffractive γ∗p cross section can be written in
terms of diffractive parton distribution functions (DPDF’s) fD

i (x,Q2, xIP , t) convoluted
with the hard-scattering cross section σ̂γ∗i

σγ∗p→Xp(x,Q2, xIP , t) =
∑

i

fD
i (x,Q2, xIP , t) ⊗ σ̂γ∗i(x,Q

2) (2.41)

The DPDF’s here depend on four kinematic variables. At fixed xIP and t, they evolve
in exactly the same way as the proton PDF’s in Eq 2.22. This makes it possible to
perform a full QCD fit to the diffractive data without any additional assumptions. The
partonic cross sections are the same as for inclusive DIS.

2.3.4 Regge Factorisation and the Resolved Pomeron Model

The Regge factorisation makes the extra assumption that the diffractive PDF’s do not
depend (other than in normalisation) on xIP and t. This leads to a formalism where
the Pomeron flux and the hard scatter of the photon with the Pomeron are described
separately. The first one involves the xIP and t variables, the latter one is described by
β and Q2 only. The Regge factorisation scheme is illustrated in Fig. 2.8 and can we
written as

fD
i (x,Q2, xIP , t) = fIP/p(xIP , t) · fi/IP (β = x/xIP , Q

2), (2.42)

where fIP/p is the Pomeron flux and fi/IP represents the Pomeron PDF’s, i.e. the
probability of finding a parton i with a momentum fraction β at a given Q2 in the
Pomeron. The Pomeron flux gives the probability that a Pomeron with particular
values xIP and t couples to the proton.

The time scales for the two processes described by the two terms are different. At
the proton vertex, the relevant scale is t which is small in the diffractive limit. Any
dynamics occurring here will appear frozen when viewed from the hard scatter vertex
where the relevant scale is Q2.

2.3.5 Dipole and Saturation Models

The basic concept of saturation [20] in Deep Inelastic Scattering (DIS) is related to the
transition from high to low Q2 which can be observed in the total γ∗p cross section.
This type of saturation occurs when the photon wavelength 1/Q becomes comparable
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to the size of the proton. Another form of saturation is related to DIS at small x. In
this regime, the partons in the proton form a dense system with mutual interaction and
recombination which also leads to the saturation of the total cross section [20]. Both
aspects of saturation are closely linked to confinement and unitarity. The first one is
genuinely nonperturbative, while the latter one can be approached perturbatively [39].

Tha basic concept of the dipole picture [10] is the photon that splits into a quark-
antiquark pair (dipole) which then scatters on the proton. The mechanism leading
to the dissociation of the photon and the subsequent scattering can be factorized and
written in terms of a photon wave function convoluted with a quark-antiquark cross
section σ̂, so called dipole cross section.

The total γ∗p cross section for transversely (T) or longitudinally (L) polarized
virtual photon (emitted by the incident electron) can be written as

σL,T (x,Q2) =

∫

d2r

∫ 1

0

dz|ΨL,T (r, z, Q2)|2σ̂(r, x) (2.43)

where ΨL,T is the wave function for the splitting of the virtual photon into a qq̄ pair
(dipole), and σ̂ is the imaginary part of the forward scattering amplitude of the qq̄
dipole on the proton, the dipole cross section, that describes the interaction of the
dipole with the proton. The variable r defines the transverse separation of the quarks
in the qq̄ pair, and z is the light-cone momentum fraction of the photon carried by the
quark (or antiquark) [40]. The standard DIS proton structure functions are related to
sigmaL,T by

FT,L(x,Q2) =
Q2

4π2αem
σL,T (x,Q2). (2.44)

The main assumption of the saturation model is the saturation property of the
dipole cross section which can be incorporated as

σ̂(r, x) = σ0g

(

r

R0(x)

)

. (2.45)

The function R0(x) is called saturation radius and decreases with decreasing x.

When (̂r) ≡ r/R0(x) → ∞ the function g(r̂) saturates to 1. The parameter σ0 is
a normalisation constant. The realisation [10] of the saturation uses the following
definitions

g(r̂) = 1 − exp(−r̂2/4) (2.46)

R0(x) =
1

Q0

(

x

x0

)λ/2

(2.47)

where the parameters Q0, x0 and λ > 0 have to be obtained from the fits to inclusive
data.

The diffractive data are successfully described by a picture where the diffractive
system is formed by the quark-antiquark (qq̄) and quark-antiquark-gluon (qq̄g) systems
(see Fig. 2.9 and 2.10) [10], as the smallest color singlet that can be exchanged consists
of two gluons.
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Figure 2.9: Diffractive production of a qq̄-pair (left) and the emission of an additional
gluon (right).
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Figure 2.10: The diffractive structure function xIPF
D
2 (xIP , β, Q

2) for xIP = 0.0042 as
a function of β. The dashed lines show the qq̄ contribution for transverse photons,
the dot-dashed lines correspond to the contribution from longitudinal photons and the
dotted lines illustrate the gq̄q component. The solid line is the total contribution and
the data are from ZEUS. [10]



Chapter 3

Motivation and Recent Results

3.1 QCD Fits

3.1.1 QCD Fit to the Inclusive DIS Data

In [41], a measurement of the inclusive deep inelastic neutral current ep scattering cross
section is presented in the region of four-momentum transfer squared, 12 GeV2 < Q2 <
150 GeV2, and Bjorken x, 2 · 10−4 < x < 0.1. The results are based on the analysis of
data collected by the H1 Collaboration at positron energy Ee = 27.6 GeV and proton
energy Ep = 920 GeV. In order to ensure high accuracy of the measurement, the
data are also combined with previously published data taken at Ep = 820 GeV [42].
The combined measurement leads to an accuracy typically in the range 1.3 − 2%. A
QCD analysis at next-to-leading order is performed in order to determine the parton
distributions in the proton (see Fig. 3.1) from the data in the Q2 region starting at a
few GeV2 up to about 150 GeV2.

The DGLAP evolution equations determine the derivative (∂F2/∂ lnQ2)x taken at
fixed x, and show a dominant contribution at low x coming from gluon splitting into a
quark-antiquark pair. The measurement of this derivative gives a powerful constraint
on the gluon distribution xg(x) as well as on the strong coupling constant αs [43]. The
results are shown in Fig. 3.2 for different x values as a function of Q2. The dependence
of the derivative on Q2 is well reproduced by the QCD fit. Measuring the gluon density
in this way, from the so-called scaling violations, is indirect as it is determined from
the structure function F2, which is directly sensitive only to quarks. Therefore, a direct
measurement of the structure function FL that probes gluons is welcome, and would
give an important cross check of our understanding of the proton structure.

The observed rise of the structure function F2(x,Q
2) towards low x can be quantified

by the derivative

λ = −(∂ lnF2/∂ ln x)Q2 . (3.1)

H1 shows that within the uncertainty of the data, the derivative is constant at small
x < 0.01, i.e. F2 for fixed Q2 is consistent with power law F2 ∝ x−λ The value of λ
increases from about 0.1 to 0.3 in the Q2 region from about 1 to 100 GeV2 [41].

A new QCD analysis, referred to as H1 PDF 2009, is performed, which supersedes
the previous H1 PDF 2000 fit [44], as it relies on the more accurate new data. The QCD
fit is performed with the evolution starting at Q2

0 = 1.9 GeV2, and a parametrisation

19
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Figure 3.1: Measurement of the structure function F2 at fixed Q2 as a function of
x. The data of this measurement (closed circles) are complemented by the previously
published data at low Q2 (open circles) [42] and high Q2 (open boxes) [45]. The error
bars represent the total measurement uncertainties. The curve represents the H1 PDF
2009 fit. [41]

of xq(x) = AxB(1−x)C and xg(x) = AxB(1−x)C [1 +Dx] for the quark and the gluon
densities, respectively (see Fig. 3.3).

3.1.2 The λ Fit

In a separate analysis [46], the H1 data from 1995-1997 at Ep = 820 GeV and the
data taken in 1999-2000 at Ep = 920 GeV are studied in order to test the following
assumption. Assuming a power law in x of the proton structure function F2, and
constant R = FL

FT
the reduced cross section can be fitted in the following way

σr = cx−λ

[

1 − y2

1 + (1 − y)2
· R

1 + R

]

. (3.2)

The fit is referred to as the λ fit and involves three parameters: normalisation factor
c, power λ and the ratio R. The reduced cross sections are fitted in separate Q2 bins
and the assumption of constant R is made only within a particular bin. Fig. 3.4 shows
the fitted data. The turnover in σr at low x is due to R > 0 in this model.
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Figure 3.2: Logarithmic Q2 derivative of the structure function F2 as a function of Q2

at various values of x. The data of this measurement (closed circles) are complemented
with the published data at lower Q2 (open circles) [42]. The error bars represent
the total measurement uncertainties. The solid curve represents the prediction of the
QCD fit for Q2 ≥ 3.5 GeV2, which is also shown extrapolated down to Q2 = 1.5 GeV2

(dashed). [41]
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Figure 3.3: Parton distributions as determined by the H1PDF 2009 QCD fit at Q2 =
4 GeV2. Shown are the combined up and down quark distributions, xU = x(u + c)
and xD = x(d + s), their anti-quark counter parts, xŪ and xD̄, the valence quark
distributions, xuv and xdv , the total total sea distribution xS = 2x(Ū + D̄), and the
gluon distribution, xg. The inner error bands show the experimental uncertainty, the
middle error bands include the theoretical model uncertainties of the fit assumptions,
and the outer error band represents the total uncertainty including the parameterisation
uncertainty. [41]
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Figure 3.4: The λ fit to the H1 data. Reduced cross sections from data (points) are
fitted with the λ fit prescription (solid line) in bins of Q2. A fit holding the parameter
R = 0 fixed is also shown (dashed line). The turn-over at low x in the reduced cross
section comes from the contribution of the longitudinal structure function (R > 0).
[46]
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(a) (b) (c)

Figure 3.5: Results of the λ fit in separate Q2 bins. The coefficient c (a) is approx-
imately constant, while the coefficient λ (b) shows a linear rise for Q2 > 2 GeV2, as
expected from perturbative QCD. The parameter R (c) is constant and consistent with
R = 0.5. [46]

Fig. 3.5 shows the results of the fit. The coefficient λ(Q2) shows a linear rise, as
expected from perturbative QCD. The coefficient R is constant and consistent with
R = 0.5.

3.1.3 QCD Fit to the Diffractive Data

The DPDF’s are not known from first principles, but can be determined from fits to the
data using the DGLAP evolution equations. The framework of the QCD hard factori-
sation and the Regge factorisation is applied when the full QCD fit to the diffractive
data in H1 is performed. The H1 data at wide Q2 range starting at Q2 = 3.5 GeV2 are
analysed in [12].

The DPDF’s are parametrised in terms of a light flavour singlet distributions Σ(z),
consisting of u, d and s quarks and anti-quarks with u = d = s = ū = d̄ = s̄, and a
gluon distribution g(z). Here, z is the longitudinal momentum fraction of the parton
entering the hard sub-process with respect to the diffractive exchange. For the lowest
order quark-parton model process z = β, whereas it is found in the range 0 < z < β
for higher order processes. The quark singlet and gluon distributions are parametrised
at Q2

0 such that the most general form is

zfi/IP (y,Q2
0) = Aiz

Bi(1 − z)Ci . (3.3)

The xIP dependence is parametrised using a flux factor based on Regge theory

fIP/p(xIP , t) =
eBIP t

x
2αIP (t)−1
IP

(3.4)

where the Pomeron trajectory is assumed to be linear, αIP (t) = αIP (0) + α′
IP t, and

the parameters BIP and α′
IP are obtained experimentally, from fits to H1 FPS data.

Analogously, a Reggeon exchange is considered as well in the fit.
The input parameters describing the DPDF’s at a starting scale Q2

0 are adjusted to
obtain the best description of the data using the NLO DGLAP evolution at Q2 > Q2

0.
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Two results are obtained using different Q2
0 for the DGLAP evolution. The fit referred

to as ’H1 2006 DPDF Fit A’ uses Q2
0 = 1.75 GeV2, and the fit called ’H1 2006 DPDF

Fit B’ uses Q2
0 = 2.5 GeV2. Fit B also uses simpler parametrisation for the gluon

density than Fit A.
A significant sensitivity of the fit result to the choice of the minimum Q2 value of

the data included in the fit is observed. Whereas the quark distributions remain stable,
the gluon distribution changes by ∼ 40% as the minimum Q2 varies between 3.5 GeV2

and 8.5 GeV2. Therefore, only data at Q2 > 8.5 GeV2 are included in the fit. Data at
MX < 2 GeV or β > 0.8 are also excluded because of the low mass resonances.

3.1.4 Diffractive Parton Distributions

from the Analysis with Higher Twist

In this section, a fit of the diffractive parton distributions to diffractive data from the
H1 and ZEUS collaborations at HERA is described. K. Golec-Biernat and A.  Luszczak
also consider the twist-4 contribution in addition to the standard twist-2 formulae [51].
The higher twist dominates in the region of large β. This contribution comes from the
diffractive production of the qq̄ pair by the longitudinally polarised virtual photons.
The effect of the twist-4 contribution on the diffractive structure functions is shown
in Fig. 3.8 and 3.9. The twist-4 contribution leads to the gluon distribution which is
peaked stronger at β ≈ 1 than in the case without twist-4. The main result of the
analysis is a prediction for the longitudinal diffractive structure function FD

L . The
twist-4 term significantly enhances FD

L in the region of large β.

3.2 Testing the Diffractive Gluon Densities

If QCD factorization is fulfilled, NLO QCD calculations based on the diffractive par-
ton density functions should be able to predict the production rates of more exclusive
diffractive processes like dijet and open charm production in shape and normalization.
Fig. 3.10 shows the leading order diagrams for both processes and indicate their sensi-
tivity to gluon densities. The diagrams also introduce a variable zIP which has a similar
meaning as β in the inclusive processes and describes the fractional momentum of the
parton entering the hard process with respect to the diffractive exchange.

3.2.1 Diffractive Open Charm Production in DIS

In the collinear factorization approach, diffractive open charm production at HERA is
expected to occur mainly via boson gluon fusion (BGF), as illustrated in Fig 3.10(a). In
the BGF process a charm quark anti-quark pair cc̄ is produced. One of them couples to
the photon with virtuality Q2 and the other to a gluon that is emitted by the pomeron.
Therefore, it is directly sensitive to the gluon content of the diffractive exchange, which
can be only determined indirectly from the scaling violations in inclusive diffractive
scattering for low momentum fractions zIP .

Fig. 3.11 displays the xIP σ̃
cc̄
D cross section measurement by H1 and ZEUS collabo-

rations [18]. H1 probes the kinematic range of 2 < Q2 < 100 GeV2 , 0.05 < y < 0.7,
xIP < 0.04, ZEUS measurements are interpolated to the same kinematic domain. Both
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Figure 3.6: The β and Q2 dependences of the diffractive reduced cross section, multiplied by xIP , at xIP = 0.003. In (a), the quantity
y2/Y+ ·FL is also shown, as extracted from the ‘H1 2006 DPDF Fit A’. Adding this quantity to the reduced cross section yields F2. In
(b) the data are multiplied by a further factor of 3i for visibility, with i as indicated. The inner and outer error bars on the data points
represent the statistical and total uncertainties, respectively. Normalisation uncertainties are not shown. The data are compared with
the reduced cross section at Ep = 820 GeV derived from the results of ‘H1 2006 DPDF Fit A’, which is shown as a shaded error band
(experimental uncertainties only) in kinematic regions which are included in the fit and as a pair of dashed lines in regions which are
excluded from the fit. [12]
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Figure 3.7: Comparison on a linear z scale between the total quark singlet and gluon
distributions obtained from the ‘H1 2006 DPDF Fit A’ and the ‘H1 2006 DPDF Fit
B’. These two fits differ in the parameterisation chosen for the gluon density at the
starting scale for QCD evolution. The DPDFs are shown at four different values of Q2

for the range 0.0043 < z < 0.8, corresponding approximately to that of the measure-
ment. For ‘Fit A’, the central result is shown as a light coloured central line, which
is surrounded by inner error bands corresponding to the experimental uncertainties
and outer error bands corresponding to the experimental and theoretical uncertainties
added in quadrature. For ‘Fit B’, only the total uncertainty is shown. [12]
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Figure 3.8: Three contributions to FD
2 from: qq̄ and qq̄g from transverse (T) and

longitudinal (L) photons for xIP = 0.003. The twist-4 contribution Lqq̄ is indicated by
the yellow band. Old ZEUS data points are shown. [51]
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Figure 3.9: Diffractive structure functions F
D(3)
2 (left) and F

D(3)
L (right) from the fits to

H1 data for xIP = 0.001. The yellow band shows the effect of the twist-4 contribution
on the prediction for F

D(3)
L . [51]
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Figure 3.10: Leading order diagram for diffractive open charm production (a) and
diffractive dijet production in DIS (b).

experiments give consistent results that are in agreement with the NLO DPDF predic-
tions.

3.2.2 Diffractive Dijets in DIS

Measurements of diffractive dijet production can directly constrain the diffractive gluon
density at high momentum fractions, extending the kinematic range of reliably deter-
mined diffractive parton densities.

H1 measures dijets in the kinematic range of 4 < Q2 < 80 GeV2, 0.1 < y < 0.7 and
xIP < 0.03 [17], and compares the cross section with the predictions from two sets of
parton densities, H1 2006 DPDF Fit A and Fit B, which differ in the parametrisation
of the gluon density. Both DPDF sets provide a good description of the inclusive data.
However, as displayed in Fig. 3.12, H1 2006 DPDF Fit A does not succeed to describe
the dijet data. The large difference between the two predictions at high zIP reflects the
large uncertainty on the gluon density in this range as determined from inclusive data
alone.

In order to improve the gluon density parametrisation, a combined fit to diffractive
inclusive and dijet data is performed, ’H1 2007 Jets DPDF Fit’, using NLO QCD
calculations based on QCD factorisation and DGLAP evolution. Both data sets are
described well by the fit. Including the dijet data in the fit allows to simultaneously
determine both the diffractive gluon and the singlet quark distribution with good and
comparable accuracy in the range 0.05 < zIP < 0.9. It is the first reliable determination
of the diffractive gluon density up to large momentum fractions.
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Figure 3.11: The measured reduced cross section xIP σ̃
cc̄
D shown as a function of β for two

different values of xIP . The inner error bars of the data points represent the statistical
error, while the outer error bars represent the statistical and systematic uncertainties
added in quadrature. The measurements obtained from D∗ mesons from H1 and ZEUS
are also shown. Measurements at the same values of β are displaced for visibility. The
measurements are compared with NLO predictions based on two alternative sets of
diffractive parton density functions (Fit A and Fit B) extracted by H1. [18]
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Figure 3.12: Cross section for diffractive dijets, differential in zIP compared to NLO
predictions based on the parton densities from the H1 2006 DPDF fits. The data are
shown as black points with the inner and outer error bars denoting the statistical and
quadratically added uncorrelated systematic uncertainties, respectively. The hatched
band indicates the correlated systematic uncertainty. In the left panel the data are
compared to the NLO QCD prediction based on the H1 2006 DPDF fit A (dotted line)
and in the right panel to the prediction based on the H1 2006 DPDF fit B (dashed
line). The lines are surrounded by a dark shaded band indicating the parton density
and hadronisation uncertainties. In the light shaded band the scale uncertainty is added
quadratically to the parton density and hadronisation uncertainties. The prediction
for zIP > 0.9 is not shown since the hadronisation corrections for this bin cannot be
determined reliably. [17]
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3.2.3 Diffractive Longitudinal Proton Structure
Function

The diffractive DIS cross section can be expressed in terms of linear combination of
structure functions FD

2 and FD
L . While FD

2 is sensitive to the total photon-proton
cross section, FD

L is only sensitive to the longitudinally polarised photon contribution.
Similarly as for its inclusive counterpart, the diffractive longitudinal structure function
is thus zero in the quark-parton model, but may acquire a non-zero value in QCD, with
contributions dependent on both the diffractive quark and gluon densities at leading
twist [19]. The dominant role played by gluons in the diffractive parton densities
[12, 15] implies that the leading twist FD

L should be approximately proportional to
the diffractive gluon density and should be correspondingly large. A measurement
of FD

L would provide a powerful independent tool to verify our understanding of the
underlying dynamics and to test the gluon density extracted indirectly in QCD fits
from the scaling violations of FD

2 . This is particularly important at the lowest x
values, where direct information on the gluon density cannot be obtained from jet or
D∗ data due to kinematic limitations and where novel effects such as parton saturation
or non-DGLAP dynamics are most likely to become important.

A previous attempt to measure FD
L [47] exploited the azimuthal decorrelation be-

tween the proton and electron scattering planes caused by interference between the
transverse and longitudinal photon contributions [48]. However, due to the relatively
poor statistical precision available with proton-tagged data, the results were consistent
with zero. The H1 collaboration has recently published measurements of the inclusive
longitudinal structure function, FL(x,Q2) [49], separated from F2(x,Q

2) on the basis
of the centre of mass energy dependence of the DIS cross section at fixed x and Q2. A
similar approach can be taken to extract FD

L [50].

3.3 Geometric Scaling

3.3.1 First Observation

The geometric scaling follows from the concept of dipole picture of the DIS ep scat-
tering. The prescription for the dipole cross section σ̂(x, r) in Eq. 2.45) only depends
on the dimensionless ratio r/R0(x) and its energy dependence is entirely driven by
the saturation radius R0(x) [40]. This property of σ̂(x, r) is referred to as geometric
scaling. It has a consequence on the prescription for the total γ∗p cross section given
by the dipole model in Eq. 2.43. After the integration, the total cross section σγ∗p

becomes a function of only one dimensionless variable

τ = Q2R2
0(x) (3.5)

instead of x and Q2 separately

σγ∗p(x,Q
2) = σγ∗p(τ). (3.6)

The first observation of the geometric scaling, by A. Stasto et al. [40], in data at
0.045 < Q2 < 450 GeV2 and x < 0.01 is shown in Fig. 3.13.

Such scaling was initially attributed to the saturation of the parton density. In the
small x regime the standard perturbation theory is not well justified due to the strong
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Figure 3.13: Experimental data on σγ∗p from the region x < 0.01 plotted versus the
scaling variable τ = Q2R2

0(x). [40]
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growth of the gluon density with decreasing x. As a consequence, the saturation
models also predict the very high parton densities to saturate [52]. The validity of
the applicability of the linear evolution equations for the parton densities is therefore
limited. However, they can be modified to include the nonlinear terms in the parton
density responsible for the gluon recombination. It turns out that, the solutions to the
nonlinear equations for the gluon density at small x do indeed lead to the geometric
scaling property. [5]

3.3.2 Scaling Properties in DIS

Geometric scaling directly follows from the solutions to the nonlinear equations in the
saturated regime. However, the DGLAP evolution is also compatible with geometric
scaling. It is known that the DGLAP evolution describes the deep inelastic data even
at very low x and Q2. This raises questions whether geometric scaling can be attributed
directly to saturation or not. [5]

In Appendix C, a thorough analysis of the scaling properties in DIS data can be
found. The analysis tests the predictions for the geometric scaling following from
the non-linear Balitsky-Kovchegov equation [53]. The predictions are fitted to data
from HERA and fixed-target experiments. Standard DIS and DVCS data samples are
considered for the studies. The scaling properties are also tested on the elastic vector
meson and diffractive data.

3.4 From HERA to Tevatron

3.4.1 Selection of Diffractive Events

Similarly as at HERA, the diffractive events in the hadron-hadron collisions at Tevatron
are characterised by the exchange of colourless object, pomeron, that leeds to a gap in
rapidity. Since there are two hadrons involved in the interaction, the classification of
events is the following:

• non-diffractive events (ND): The hadrons are directly involved in the interac-
tion. No pomerons are exchanged and consequently no rapidity gap is observed.

• single diffractive events (SD): Only one hadron exchanges a pomeron and
stays intact, leading to a rapidity gap on one side of the rapidity spectrum.

• double pomeron exchange (DPE): Both hadrons exchange a pomeron and
stay intact. Therefore, the produced final state is separated from the scattered
protons by a rapidity gap on both sides.

The diffractive events at HERA and Tevatron are selected in a similar way.

• Large Rapidity Gap Method (LRG) A simple selection demanding no signal
(above certain noise level) close to the direction of the proton beam, and thus
ensuring the presence of a rapidity gap in an event. In case of p̄p collisions at
Tevatron, a gap can be required only on one side of the rapidity spectrum for SD
events, or on both sides for DPE events.
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Figure 3.14: Non-diffractive (top), single diffractive (middle) and double pomeron
exchange (bottom) event.

• Proton Tagging Diffractive events can also be recognized by detecting the scat-
tered proton which stays intact in the diffractive interactions. Special detectors,
called Roman pots, can be installed close to the beam pipe in the direction of
the proton beam far from the central detector, in order to detect the protons
scattered under small angles. The Roman pot detectors have high requirement
of radiation hardness as the active part of the detector is positioned very close
to the beam. The detectors are usually designed so that they can move away
from the beam in case of high radiation. As an illustration of such detector, the
Forward Proton Spectrometer (FPS) at H1 is shown in Fig. 3.15.

The proton tagging has a disadvantage of low acceptance. On the other hand,
it can reconstruct the momentum of the scattered proton and thus provide more
constraints on kinematics of the process.

3.4.2 Testing QCD Factorisation at Tevatron

H1 provided two sets of diffractive parton densities based on the inclusive measurements
of the diffractive DIS NC processes: H1 2006 DPDF Fit A and Fit B. The inclusive
measurements are able to well constraint the quark densities. However, the gluon
densities are determined only weakly from the scaling violations. The concept of QCD
hard ‘factorisation was tested on exclusive measurements that are more sensitive to
gluons. These are the studies of open charm production in diffraction and diffractive
dijets. Both measurements are successfully described by the structure functions from
the fits to the inclusive data. The dijet data are even able to further constrain the gluon
density and give a preference to H1 2006 DPDF Fit B (over the Fit A), as illustrated
in Fig. 3.12.
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Figure 3.15: Forward Proton Spectrometer (H1).

The analysis of diffractive longitudinal proton structure function, the main topic
of this work, also gives an important cross check of the validity of the description of
diffractive processes based on QCD.

The concept of QCD factorisation was tested in many ways at HERA, and it is
successful in describing all kinds of diffractive processes in terms of diffractive parton
densities. Therefore, it is natural to assume that the diffractive parton densities de-
rived at HERA are universal and applicable also at other colliders. The measurement
of the diffractive proton structure function is also possible at Tevatron. The CDF
collaboration measured the ratio of dijet events in single diffractive and non-diffractive
events, which is directly proportional to the ratio of the diffractive to the inclusive
proton structure functions:

R(x) =
NSD

jj (x)

NND
jj (x)

∼
(F )SDjj (x)

FND
jj (x)

(3.7)

The comparison between the CDF measurement (black points, with systematics errors
as shaded area) and the expectation from the H1 QCD fits in full line is shown in
Fig. 3.16 shows the well known comparison of the diffractive structure function, plot-
ted as a function of the fractional parton momentum with respect to the diffractive
exchange β, as measured by the CDF collaboration with the expectations from the
QCD fits to the H1 data. The predictions overestimate the CDF data by a factor of
∼ 10.

The observation stimulated theoretical work in this field. It was shown that the
QCD factorisation is not expected to hold in hadron-hadron collisions [54]. Additional
soft exchanges with respect to the hard interaction are expected to fill in the rapidity
gap, and thus spoil the experimental signature of the diffractive event. The probability
that the large rapidity gap is not destroyed by the additional interactions is quantified
by the variable S2 called survival probability [55]. It is defined in such a way that
S2 = 1 for processes where no gap destruction occurs.

The other interesting measurement carried out at Tevatron is the test of factori-
sation between single diffraction and double pomeron exchange. The results from the
CDF Collaboration are shown in Fig. 3.17 [56]. Whereas the factorisation does not
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Figure 3.16: Comparison of the CDF measurement of diffractive structure function
(black points) with the expectations of the H1 QCD fits (red full line).

hold for the ratio of single diffraction to non-diffractive events, the factorisation works
for the ratio of double pomeron exchange to single diffraction. In other words, the gap
survival probability is not sensitive to whether there is only one or two rapidity gaps.

To summarize, the QCD factorisation is not observed to hold between HERA and
Tevatron. However, it holds between the single diffraction and double pomeron ex-
change which means that the soft exchanges do not depend on the hard scattering.
The concept of gap survival probability was studied also at HERA. [57, 15] The diffrac-
tive dijet photoproduction has, in LO QCD, so called resolved contribution which is a
process with similar topology to the diffractive interactions at Tevatron (see Fig. 3.18).
The H1 experiment observed factorisation breaking pointing to an additional soft ex-
change between the proton and the photon remnant [57]. However, the results from
ZEUS [15] are compatible with a gap survival probability close to 1. The results from
H1 and ZEUS are not in contradiction since both measurements were carried out in
different kinematical domain, and hint a possible ET dependence of the gap survival
probability. It has to be admitted that the mechanism is not fully understood and fur-
ther studies are welcome. Of special interest will be the diffractive processes at LHC
that will allow to test the concept of QCD factorisation even at higher energies.

3.4.3 Diffractive Exclusive Event Production

Fig. 3.19 gives a schematic view of non-diffractive, inclusive double pomeron exchange
and exclusive diffractive processes at Tevatron. All three types of processes can contain
the same specific final states such as Higgs boson, dijets or diphotons. In the standard
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Figure 3.17: Restoration of factorisation for the ratio of double pomeron exchange to
single diffractive events (CDF Collaboration).

Figure 3.18: Diagram of the direct (left) and resolved (right) diffractive photoproduc-
tion process at HERA. The resolved processes are similar to the diffractive hadron-
hadron interactions at Tevatron, as an additional soft interactions can occur between
the photon remnant and the proton.
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Figure 3.19: Diagrams of non-diffractive, inclusive double pomeron exchange and ex-
clusive diffractive events at Tevatron.

non-diffractive process, these final states are produced directly by a coupling to the
proton, and proton remnants occur in the final state too. In the double pomeron
exchange processes, both protons remain intact and the total available energy is used to
produce the heavy object and the pomeron remnants. A special class of the diffractive
exchange processes exists such that no energy is lost in the pomeron remnants. This
has an important kinematical consequence: the mass of the produced object can be
directly computed from the momenta of the scattered protons ξ1 and ξ2 that can be
measured in the Roman pot detectors

M2 = ξ1ξ2s. (3.8)

Therefore, one can benefit from the good resolution of the Roman pots and accurately
reconstruct the mass in the central detector. The information on kinematics can also
be used to increase the signal over background ratio.

3.4.4 Exclusive Dijet Production

The first results on the exclusive dijet production in high energy p̄p collisions at CDF
are presented in [58]. The analysed data sample of integrated luminosity 310 pb−1

demonstrates the presence of exclusively produced dijets p̄p → p̄+ dijet + p, by means
of detailed studies of distributions of the dijet mass fraction Rjj, defined as the dijet
mass divided by the mass of the system produced by the double pomeron exchange.

Fig. 3.20 compares data Rjj distributions with inclusive POMWIG Monte Carlo
simulations [59]. An excess of events in the data over the Monte Carlo predictions at
high Rjj is observed, which is consistent in terms of kinematic distribution shapes with
the presence of an exclusive dijet signal as modeled by the ExHuME [60] and exclusive
DPE in DPEMC [61] Monte Carlo simulations.

3.5 Prospects for Diffraction at LHC

The large rapidity gap method is widely used at HERA and Tevatron. However, it may
be problematic at LHC as there is huge pile-up expected of up to 35 interactions per
bunch crossing. There is also the fact that the ATLAS detector does not have a full
coverage in rapidities. Seaching for smaller gaps in rapidities may therefore be difficult
due to the contamination from the other interactions in the bunch crossing. And the
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Figure 3.20: Dijet mass fraction in inclusive DPE data (points) and best fit (solid
histograms) with a mixture of (i) POMWIG generated events composed of pomwig
DPE signal and SD plus ND background events (dashed histogram), and (ii) exclusive
dijet Monte Carlo events (shaded histogram). [58]
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larger gaps cannot be fully seen because of the limited rapidity coverage that decreases
the efficiency of the LRG selection.

The proton tagging technique detects directly the scattered proton from the diffrac-
tive process and also allows to reconstruct its momentum. However, the pile-up puts
high demands on the detectors used since there is a precise timing information needed
in order to assing the tagged proton to the correct interaction vertex in the central
detector.

The idea to install the forward detectors at ATLAS is motivated by the possibility
to search for novel physics in the diffractive channels [62]. Two locations for the forward
detectors are considered at 220 and 420 m to ensure a good coverage in ξ or in mass of
the diffractively produced object. Installing forward detectors at 420 m is a challenging
task since the detectors should be located in the cold region of LHC, where the available
place is limited becouse of the cryostat. The ATLAS Forward Physics (AFP) [62]
project is under discussion in the ATLAS collaboration and includes both 220 and
420 m detectors on both sides of the main ATLAS detector.

3.5.1 Physics Motivation

The physics motivation of the project corresponds to different domains of diffraction
that were described in the previous sections. The following text lists the main topics.

• Search for the diffractive Higgs boson production via double pomeron exchange.
This is especially challenging in case of low Higgs boson masses, where the Higgs
boson decays into bb̄ and the standard non-diffractive search is difficult [63].

• Measurement of the exclusive production of diffractive events and its cross section
in the jet channel as a function of jet transverse momentum. Its understanding
is necessary to control the background to Higgs signal [64].

• Testing the QCD picture of the proton structure functions determined at HERA.
Because of the different kinematical coverage (see 3.21) the evolution dynamics
can be probed as the obtained structure functions have to be evolved to as yet ex-
perimentally unknown domain. Here, the concept of the gap survival probability
will be important.

• Sensitivity to other topics such as the anomalous coupling of the photon to W or
Z bosons. It can be measured in the QED production of W or Z boson pairs [65],
and it provides the cleanest way to detect Higgsless or extra dimensions models
at LHC [66].

3.5.2 Forward Detectors

Two kinds of detectors are proposed to be put into the forward detectors: 3D Silicon
detectors to precisely measure the position of the scattered protons, and precise timing
detectors with a pico-second resolution.

The 3D Silicon detectors allow to measure a position with better than 10µm reso-
lution. The detectors consist of many layers of 3D silicon pixels, and will be read out
by the FEI4 chip. The chip is fast enough to to send back the local L1 trigger decision
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Figure 3.21: Kinematical coverage. [5]
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from the forward detectors to ATLAS, and take it into account in the full L1 decision.
[62]

Up to 35 interactions per bunch crossing are expected during the highest luminosity
of LHC. The timing detectors are necessary in order to identify the interaction vertex
of the detected scattered proton. Therefore, a precision of ∼ 1 mm is required, which
corresponds to 2 − 5 ps resolution in time.

Pico-second timing resolution is very challenging and there is an independent R&D
project [67], that will find applications in medicine, security as well as particle physics.
The diffractive protons emit photons in a gas medium or in a crystal, which are then
read by the Micro-Channel Plate (MCP) photomultipliers [62]. Appendix B includes
a publication of a study where the simulations predict measuring both space with
millimeter precision and fast timing at a few pico-seconds resolution.



Chapter 4

HERA and the H1 Detector

4.1 HERA Accelerator

The HERA accelerator ring is located at DESY laboratory in Hamburg, Germany. It
has a circumference of approximately 6.3 km and consists of four 360 m long straight
sections connected by four circular segments with a radius of 797 m. An overview
of the accelerator can be found in Fig. 4.1. The tunnel contains a beam-pipe with
normal conducting magnets for the electron beam, and a superconducting proton ring.
The electrons and protons circulate in bunches, containing roughly 1011 particles with
a Gaussian density distribution of σ ≈ 11 cm each. Both rings can store up to 220
bunches and the time between two consecutive bunches is 96 ns.

There are two general purpose experiments that study the ep collisions at HERA.
The H1 detector was built around the north interaction point. The ZEUS detector is
located in the south.

During the HERA-I running period (1992-2000) the electrons at the energy of
Ee = 27.6 GeV collided with the protons at the energy of Ep = 820 GeV. The to-
tal integrated luminosity of L ≈ 140 pb−1 was collected during this period. In the
years 2000-2003, new focusing magnets were installed close to the interaction regions
in order to increase the luminosity. After the upgrade, the HERA-II running period
started, and the nominal proton beam energy was increased to Ep = 920 GeV. Almost
L ≈ 400 pb−1 of data had been collected by the end of the HERA data taking in June
2007.

4.2 Overview of the H1 Detector

The H1 detector is a multipurpose detector consisting of a set of subdetectors designed
for a full reconstruction of ep interactions. Due to the different energies of the colliding
beams, the H1 detector has an asymmetric design with the forward region highly seg-
mented to reconstruct hadronic final states of high multiplicities. The backward region
is optimised for detection of the scattered electron. The H1 detector is embedded in
the right-handed Cartesian coordinate system such that the z-axis follows the direction
of the proton beam, the y-axis points vertically upwards and the x-axis points to the
centre of the HERA machine. The origin of the H1 coordinate system is defined at the
nominal interaction point. As indicated in Fig. 4.2, the electrons go in the −z direction

45
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Figure 4.1: The HERA accelerator.

and enter the detector through the beam pipe 1 on the left side in the picture. The
protons go in the opposite direction. The interaction point is surrounded by silicon
detectors that are followed by the central 2 and forward 3 tracking detectors. These
are surrounded by a large calorimeter system consisting of the Liquid Argon (LAr)
calorimeter 4 and 5 in the central and forward region, and the SPACAL calorimeter

12 in the backward region. Both calorimeters are divided into an electromagnetic and

hadronic parts. An additional plug calorimeter 13 is installed in the forward direction
close to the beam pipe. The LAr calorimeter is surrounded by a superconducting coil
6 which provides a homogeneous magnetic field of 1.15 T and helps to reconstruct the

charge of the detected particles. The iron return yoke 10 is used to detect muons and
to measure the energy leakage from hadrons that are not fully contained within the
LAr calorimeter. The forward muon detector 11 is designed to identify and measure
the momentum of muons penetrating in the forward direction. Away from the central
detector in the −z direction, a set of electromagnetic calorimeters is situated to mea-
sure the final state particles from Bethe-Heitler processes that are used to determine
the luminosity. A more detailed description of the H1 detector can be found in [68].

4.3 Tracking

4.3.1 The Central Track Detectors

Silicon strip detectors are placed close to the beam pipe in order to provide a precise
vertex information. The Central Silicon Tracker (CST) is located around the nominal
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Figure 4.2: The H1 detector.
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Figure 4.3: Longitudinal view of the H1 tracking system.

Figure 4.4: Radial view of the H1 tracking system.
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interaction point in the region that corresponds to the polar angles between 29◦ and
151◦. It comprises 32 ladders in two layers at the radius of 6 cm and 10 cm, and allows
to measure the r and ϕ coordinates of a track with an impact parameter resolution of
57µm. It also provides a measurement of secondary vertices.

The track reconstruction in the central region is based on two concentric drift
chambers, the central jet chamber 1 (CJC1) and the central jet chamber 2 (CJC2),
and the central inner (CIZ) and central outer (COZ) drift chambers. The central
tracking system has a full azimuthal acceptance, and covers the θ range between 15◦

and 165◦. The Central Jet Chambers CJC1 and CJC2 are 2.2 m long and consist of
wires parallel to the beam pipe. Jet cells are tilted by 30◦ in the transverse plane. The
space point resolution is 170µm in the r–ϕ plane, whereas the z coordinate of a hit is
measured with an uncertainty of 2.2 cm. The specific energy loss dE/dx is measured to
improve the particle identification. The x and y positions of the interaction vertex are
determined using high momentum tracks and the z coordinate is reconstructed from
all tracks fitting the vertex. The resolution in z is improved by involving the CIZ and
COZ chambers. They are located inside and outside of CJC1 at a radius of 18 m and
24 m, respectively. The resolution in z is 260µm.

The combination of CJC1 and CJC2 with the CIZ and COZ chambers leads to a
momentum resolution of σ(p)/p2 < 0.01 GeV−1. Two central multiwire proportional
chambers CIP and COP have a response time faster than the beam crossing rate and
provide level 1 trigger information (see Section 4.8).

4.3.2 The Backward Silicon Tracker

The Backward Silicon Tracker (BST) is located close to the beam pipe between the
CST and the SPACAL calorimeter and covers the range of polar angles between 165◦ <
θ < 175◦. The BST consists of 8 planes of silicon detectors arranged perpendicular to
the z axis. Each plane is divided into 16 segments in azimuthal angle. Every segment
consists of two silicon strip detectors which are oriented both in perpendicular and
radial direction. The tracks in the backward region are reconstructed from the hits
with a polar angle resolution of 0.03◦. The BST allows a charge reconstruction of the
scattered electron at smaller scattering angles with respect to the CJC.

4.4 Calorimetry

4.4.1 The Liquid Argon Calorimeter

The LAr calorimeter is a non-compensating calorimeter designed to detect electrons,
muons and neutral particles, as well as high energy jets. It has a high granularity and
contains 44000 cells, each cell containing plates of absorber and active medium.

The liquid argon calorimeter (LAr) is a sandwich type calorimeter with the cover-
age of 3.8◦ < θ < 155◦. The LAr calorimeter consists of eight wheels, each segmented
in ϕ into eight identical octants (see Fig. 4.5). The wheels are divided into the in-
ner electromagnetic region containing absorbers made of 2.3 mm thick lead plates, and
the outer hadronic region with absorber plates 16 mm thick. The plates are supple-
mented with a high voltage and are surrounded by liquid argon that serves as the
active detection material. The size of the electromagnetic part corresponds to 20 − 30
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Figure 4.5: The Liquid Argon Calorimeter. Longitudinal view (a) shows the wheel
structure, radial view (b) shows the octant structure of wheels.
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radiation lengths, and the hadronic part corresponds to 5 − 8 interaction lengths, de-
pending on the polar angle. The LAr is non-compensating, therefore the calorimeter
response to hadrons of the same energy as leptons is reduced, typically by 30%. This
difference is adjusted by adjusting the hadronic energy in the offline reconstruction
software. The energy resolutions for the electromagnetic and hadronic showers are
σem(E)/E = 0.12/

√

E[GeV] ⊕ 0.01 and σhad(E)/E = 0.50/
√

E[GeV] ⊕ 0.02, respec-
tively.

4.4.2 The Plug Calorimeter

The Plug calorimeter was specially designed to fill the gap in acceptance between
the LAr calorimeter and the beampipe in order to minimize the energy losses in the
forward region. Its coverage is 0.6◦ < θ < 3.5◦. Given the geometrical constraints
the Plug calorimeter is very compact in design. It is a sampling calorimeter consisting
of 9 sheets of copper as the absorber medium. It has a rather poor resolution of
σhad(E)/E = 1.5/

√

E[GeV].

4.4.3 The SPACAL Calorimeter

The SPACAL calorimeter covers the backward scattering region between 153◦ < θ <
173◦. It is a non-compensating sampling calorimeter, and it is divided into inner
electromagnetic and outer calorimetric sections. Contrary to the LAr calorimeter, the
absorber material in both sections is lead with embedded scintillating fibres as the
active material. Due to the limited space available for the calorimeter, both sections
are 25 cm thick and correspond to 28 radiation lengths in the electromagnetic part, and
only 1 interaction length in the hadronic part. The number of combined interaction
lengths for both sections is 2.2. Therefore, the SPACAL calorimeter is not suitable to
detect jets. On the other hand, it is an excellent tool to measure the scattered electron
in the DIS processes with virtualities roughly in the region of 4 GeV2 < Q2 < 100 GeV2.
The energy resolutions of the electromagnetic and hadronic parts are σem(E)/E =
0.07/

√

E[GeV] ⊕ 0.01 and σhad(E)/E = 0.50/
√

E[GeV] ⊕ 0.02, respectively.

4.5 The Forward Detectors

4.5.1 The Forward Muon Detector

The Forward Muon Detector (FMD) consists of two sets of three double-layers of drift
chambers that are separated by a toroidal magnet, as can be seen in Fig. 4.6. Four of
the double-layers are designed to measure the polar angle θ and have their wires strung
tangentially to the beam-pipe. Two double-layers have their wires in a radial direction
and enable a φ measurement. The FMD has an angular acceptance of 3◦ < θ < 18◦.
The presence of the toroidal magnet allows for a momentum reconstruction in the
range between 5 GeV and 100 GeV. The post-toroidal layers are inherently noisier
than the pre-toroidal ones because of the amount of the dead material and synchrotron
radiation.
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Figure 4.6: The forward muon detector. Six sets of double-layers separated by a
toroidal magnet are shown (a), each layer having an octogonal structure. A particle
producing a hit-pair in a double-layer is illustrated in (c).
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4.5.2 The Forward Tagger System

The Forward Tagger System (FTS) includes 4 planes of scintillating counters. They
are located at 26, 28, 53 and 92 m from the interaction point in the proton direction.
Each layer consists of four counters that surround the proton beampipe. Each counter
at 53 and 92 m is formed by two scintillators separated by a 1.5 mm steel layer. Each
counter at 26 and 28 m has only one scintillator plate. All counters are protected
against synchrotron radiation by 1 mm thick layer of lead.

The FTS allows detection of the proton fragments at very large rapidity with a
good efficiency due to secondary interactions of hadrons with the collimators, beam-
pipe, magnets and adjunct material.

4.6 The Time of Flight System

The Time of Flight (TOF) system is used to reject background from beam-wall and
beam-gas interactions. It consists of scintillator layers placed at various distances
from the interaction point. They are the BToF (backward ToF) at z = −275 cm, the
PToF (Plug ToF) at z = +540 cm and the FToF (forward ToF) at z = +790 cm. In
addition there are two layers of Veto scintillator walls located at z = −650 cm and
z = −810 cm. These are used to compare the time of arrival of the signal. The
background processes occur at different times than the actual ep interaction and can
thus be rejected. The ToF resolution is 1 ns and defines the region of the primary
interaction vertex at −35 cm < zvtx < +35 cm.

4.7 The Luminosity System

The cross section σ of a specific process can be extracted from the number of events
N in a data sample with an integrated luminosity L using the relation

N = σL. (4.1)

The integrated luminosity is obtained from L =
∫

Ldt, where L is the instantaneous
luminosity measured in units of cm−2s−1. At HERA the instantaneous luminosity is
determined from the measured rate of Bethe-Heitler events ep → epγ. The cross section
of the Bethe-Heitler process is accurately calculable within QED. The H1 luminosity
system is depicted in Fig. 4.7 and consists of the electron tagger (ET) located at
z = −40 m, and the photon detector (PD) which is placed at z = −102 m.

4.8 Data Acquisition and Triggering

The time between consecutive ep interactions in the H1 detector is 96 ns, and it is
determined by the bunch spacing in the HERA accelerator. It is not possible to record
all the collisions at this rate. Therefore, there is a multi-stage triggering system that is
able to take almost immediate decision, and thus reject background events and keep as
many ep interactions as possible. The H1 trigger system consists of four levels, which
reduce the incoming rate of 10.4 MHz determined by the HERA bunch spacing down
to about 20 Hz. It is schematically shown in Fig. 4.8.
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Figure 4.7: The Luminosity System.

Most H1 subdetectors provide binary signals which can be used for triggering and
are stored in an array. Based on this information, so-called trigger elements (TE)
are constructed, consisting of single as well as multiple bits. Not all subdetectors are
able to provide an information within 96 ns. Level 1 operates at the rate of 2.1µs
which corresponds to the time needed by the LAr calorimeter to deliver the trigger
information. The full detector information is therefore sent into pipelines where it
is stored until all subdetectors provided their TE. The TE serve as an input to the
Central Trigger Logic (CTL) where they are combined and form so-called subtriggers
(ST). When the CTL finds that the event fulfills any of the subtrigger conditions, then
the corresponding event is read from the pipeline and passed onto the next trigger level.
The L1 trigger level is deadtime free since any rejected events are simply overwritten
in the pipeline.

The next trigger level, L2, operates at the rate of 20µs. Given the amount of time
available, more complicated decisions can be taken. L2 incorporates neural network
algorithms as well as topological conditions. Again, if the event passes any of the
selection criteria it is passed onto the next level in the chain. According to the plans,
this would be L3 with the rate of 2 ms. However, L3 has never been implemented.

The next level is therefore L4 where the full event information is available and
a partial event reconstruction is performed. L4 runs asynchronously to the HERA
accelerator on a processor farm consisting of 32 CPU’s. Each event accepted at lower
trigger levels is verified again with a higher precision. At L4, still ∼ 50% of events
are rejected. According to the L4 finders, events are classified and either kept or
downscaled, i.e. kept at reduced rate. This applies to obvious backgrounds as well as
soft physics with high event rates. The events are written to a Data Summary Tape
(DST) in ∼ 100 ms.

In order to reduce the rate of particular subtriggers, integer prescales are applied
on run-by-run basis.
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Figure 4.8: The H1 Trigger System.
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Chapter 5

Measurement Strategy

5.1 Extraction of the Longitudinal Proton

Structure Functions

5.1.1 Extraction of FL

The inclusive deep inelastic ep scattering cross section at low Q2, written in reduced
form as

σr(x,Q
2, y) =

d2σ

dxdQ2
· Q4x

2πα2Y+
= F2(x,Q

2) − y2

Y+
· FL(x,Q2), (5.1)

is determined by two structure functions, F2 and FL. The longitudinal structure func-
tion FL is scaled by a kinematical factor y2

Y+
, where Y+ = 1 + (1 − y)2. Therefore,

this kinematical factor is proportional to y2 and the sensitivity to FL is largest at high
y. The two structure functions F2 and FL can be separated only if at least two cross
section measurements at fixed Q2 and x are available for different values of inelasticity
y.

As mentioned in Section 2.1.1, there are two independent kinematic variables de-
scribing an inelastic scattering process. This implies that there is no way to vary the
inelasticity y for fixed Q2 and x, as it is needed to separate F2 and FL, if only one
measurement of σr is available. The kinematic variables are bound by

Q2 = xys, (5.2)

where s is the squared centre-of-mass energy of the collision which can be calculated
from the beam energies as

s = 4EeEp. (5.3)

Combining two or more σr measurements at fixed Q2 and x and different s makes it
possible to extract F2 and FL separately.

Fig. 5.1 illustrates how the two structure functions are determined in the so-called
Rosenbluth plot which shows the reduced cross section as a function of y2

Y+
, which is

the kinematic factor shielding the contribution of FL in Eq. 5.1. All the available σr

measurements at a given Q2 and x are combined in a single Rosenbluth plot. In an
ideal case, all such points sit on a single line, where the two structure functions can be
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Figure 5.1: A sketch of the extraction of the proton structure functions F2 and FL in
the Rosenbluth plot. The reduced cross sections at the same Q2 and x from collisions
at different centre-of-mass energies (denoted by the different energies of the proton
beam) are plotted as a function of the suppression factor y2/Y+. The cross sections are
expected to form a line, where the intercept at y2/Y+ = 0 gives the structure function
F2 and the intercept at y2/Y+ = 1 gives the combination F2 − FL.

read off in the following way

σr(
y2

Y+
= 0) = F2, (5.4)

σr(
y2

Y+
= 1) = F2 − FL. (5.5)

5.1.2 Extraction of FD
L

The extraction of FD
L is analogous. The diffractive reduced cross section σD

r , defined in
Eq. 2.40, has the same structure as σr. It is expressed as a function of three kinematic
variables β, Q2 and xIP . Equally, three different variables can be used. The FD

L analysis
described here evaluates the diffractive reduced cross sections in y, Q2 and xIP . The
diffractive kinematics is bound by

Q2 = xIPβys = xys. (5.6)

Again, it is necessary to change y for fixed β, Q2 and xIP in order to separate the
structure functions FD

2 and FD
L . The only way to do it is to change the centre-of-mass

energy of the collision. Therefore, the procedure described in the Rosenbluth plot in
Fig. 5.1 holds for diffraction as well.



5.2. RUNNING AT LOW PROTON BEAM ENERGIES 59

Figure 5.2: Simulation of a measurement of the diffractive longitudinal structure func-
tion FD

L (xIP , Q
2, β) based on data at Ep = 920 GeV (100 pb−1) and Ep = 400 GeV

(10 pb−1). The inner error bars show the statistical accuracy and the total error bars
represent the total uncertainty taking into account correlations of systematic effects
and adding both uncertainties in quadrature. [50]

5.2 Running at Low Proton Beam Energies

Changing the centre-of-mass energy
√
s of collisions requires different setups of the

accelerator so that it is able to provide beams at different energies.
For 13 years HERA operated at the highest accessible centre-of-mass energy

√
s

above 300 GeV in order to explore the region of highest momentum transfers Q2 and
high transverse scales. Towards the end of data taking, H1 decided to express its firm
interest in a run with lowered proton beam energies [50, 32]. This run was meant to
be devoted to a complementary measurement at low x and thus provide the important
information on theory of a high density gluon dominated systems of partons. In par-
ticular, two main physics subjects were foreseen: a measurement of the longitudinal
proton structure function FL and its diffractive counterpart FD

L .
Simulations of these measurements revealed that with ∼ 10 pb−1 of data, an FL

measurement with an accuracy of 5-6 standard deviations, and an FD
L measurement

with an accuracy of 3 standard deviations can be expected (see Fig. 5.2) [50, 32]. This
accuracy was considered as good enough to distinguish between different theoretical
predictions for FL. It was estimated that in order to acquire 10 pb−1 of data three
months are needed, including the set-up time.

At the end of HERA operation in 2007, the proton beam energy was reduced first
to Ep = 460 GeV, and then also to Ep = 575 GeV. Fig. 5.3 shows the H1 integrated
luminosity for the whole period of its operation, with a closer look at the reduced
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Figure 5.3: Acquired luminosity of data as a function of time. Data-taking periods
HERA-I and HERA-II are compared in (a) where the effect of the luminosity upgrade
is seen. The runs at reduced proton beam energy are shown as a green line at the end
of HERA-II data-taking, and they are viewed in detail in (b).

proton beam energy runs at the end of data-taking. 13 pb−1 of data at Ep = 460 GeV,
and 7 pb−1 of data at Ep = 575 GeV were taken by the H1 detector.

The proton beam energies also roughly determine the y range that needs to be
analysed in the FL and FD

L analyses. A certain y value at Ep = 460 GeV corresponds
to a twice smaller y value at Ep = 920 GeV for fixed x and Q2 (see Eq. 5.2). Therefore,
the upper limit of the y range in the analysis of the Ep = 920 GeV data does not need
to be larger than a half of the upper y limit in the Ep = 460 GeV data analysis.

5.3 Overview of the FD
L Analysis

The FD
L analysis is a complex measurement that requires understanding of three data

sets at different centre-of-mass energies at diffractive as well as inclusive level. It
also requires a perfect understanding of the H1 detector which makes it possible to
measure at high values of inelasticity y and separate the signal from background which
is dominant there.

In order to do that the analysis involves a complex set of selection criteria when
searching for the scattered positron. The cuts are motivated by the ability to properly
identify the scattered positron and reduce the background from mis-identified hadrons.
The background at high y cannot be fully excluded by the cuts and has to be quantified
and subtracted from the data.

It is a challenging task to measure DIS events at high y. The Monte Carlo simula-
tions are not fully tuned to reproduce the detector effects correctly and the efficiencies
of particular cuts have to be studied in data and Monte Carlo in order to adjust the
simulation.
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In the first step, the FD
L analysis copies the approach of the FL analysis and makes

sure that the official H1 FL results can be reproduced. As a second step, the diffractive
selection is applied. This means that the data sample for the FD

L analysis is a sub-
sample of the data used in the FL analysis. Using the measurement strategy adopted
from the FL analysis, the diffractive structure function FD

2 has to be reproduced from
all three data sets as a cross-check. In the final step, the diffractive longitudinal proton
structure function FD

L is extracted.
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Chapter 6

Longitudinal Proton Structure
Function

6.1 Data

The FL analysis uses three data sets that differ by the proton beam energy.

• Ep = 920GeV: The last HERA data at the nominal proton beam energies are
analysed. These are the so-called 2007 e+ data and will be denoted as the ’high
energy data’ in this text.

• Ep = 460GeV: The first data set from the runs at reduced proton beam energy.
These runs were dedicated to the FL and FD

L analyses. The full data set is used
and it will be denoted as the ’low energy data’ here.

• Ep = 575GeV: The last run period at the HERA accelerator. Again, the full
data set is used and it will be denoted as the ’medium energy data’.

All three data sets contain e+p collisions.
Obviously the full set of low and medium energy data are used in the official H1 FL

analysis as well. However, it uses different data set at Ep = 920 GeV. The FD
L analysis

chooses to use the latest high energy data. Since the FL analysis described here serves
as a starting point for the FD

L analysis, the same data sets will be used there as well.
Only the high energy data set will be extended in the FD

L analysis, since the 2007 e+

data alone do not have the desired statistics of diffractive events. Therefore, the 2006
e+ data will be used in addition.

6.2 Monte Carlo

Monte Carlo simulations are used to correct data for the detector effects of acceptance,
inefficiencies and migrations between measurement intervals. The FL analysis uses the
DJANGO [69] Monte Carlo to describe data. The DJANGO model fully generates
inclusive final states for the neutral current processes, and no other Monte Carlo is
needed in the analysis.

Higher order QCD radiation is modelled using initial and final state parton showers
in the leading log(Q2) approximation [70]. Hadronisation is simulated using the Lund
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string model [71] as implemented in JETSET [72]. The generated events are passed
through a full GEANT simulation of the H1 detector [73]. The simulated events are
subjected to the same reconstruction and analysis chain as the data. As described in the
following sections, the data are used to provide more accurate estimates of important
reconstruction efficiencies and the Monte Carlo responses are tuned accordingly.

It is possible to choose from different parametrisations of parton distribution func-
tions. The DJANGO model used for the high energy data is generated with the GRV
in LO set1 [74]. DJANGO for the low and medium energy data uses the CTEQ 6L LO
set2 [75]. All three Monte Carlo samples are reweighted so that the parton distributions
correspond to the H1 PDF 2009 set in NLO. This is reached by using the QCD weight
at the generator level which is simply defined as

w(QCD) =
(σr)outputPDF

(σr)inputPDF

(6.1)

where the input and output reduced cross sections (σr)inputPDF and (σr)outputPDF are
calculated from the corresponding parametrisations.

The longitudinal proton structure function in (σr)inputPDF is calculated from the
structure function F2 using the quantity R defined in Eq. 2.30

FL =
R

1 + R
F2. (6.2)

As seen in Fig. 3.5(c), R can be taken as constant, to a good approximation. The value
R = 0.25 is used in the FL analysis3.

6.3 Selection of NC DIS Events

6.3.1 Run Selection

The first stage of selecting data for the analysis before studying actual events is the run
selection. Only the runs that contain relevant information for the analysis are taken.

Each data taking period has a specific run range that is required in the run selection.
The analysis relies on several sub-detectors that are required to be turned on during
the data acquisition. For the FL analysis, these are the CIP, CJC and BST trackers,
the LAr and SPACAL calorimeters, the time of flight and the luminosity system. The
minimum luminosity per run should be at least 1 nb−1 for events with the interaction
point at −35 < zvtx < 35 cm. For low and medium energy runs, the sub-triggers ST0,
ST7 and ST8, which are used in the actual analysis (see Section 6.3.2), are requested.
There were no prescales applied in the low and medium energy runs, i.e. the event rate
for a particular sub-trigger was not reduced. For safety reasons, a maximum prescale
limit of 1 is introduced. All the run selection criteria are listed in Table 6.1.

1PDF set number 5004 in PDFLIB
2PDF set number 10041 in LHAPDF
3 The value of R = 0.25 does not correspond to the results of the λ fit presented in Section 3.1.2,

where R = 0.5 is quoted. However, the results of the latest QCD fits are consistent with R ∼ 0.25
which is illustrated in Fig. 7.39(d). The plot shows the ratio R in data and the H1 PDF 2009
parametrisation.
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Run period 2007 e+ Ep = 920 GeV Ep = 460 GeV Ep = 575 GeV

Run range 492559 − 500611 500919 − 507824 507843 − 511079

Sub-triggers ST0, ST7, ST8

Minimal luminosity 1 nb−1

Prescale limit 1

Sub-detectors CJC1, CJC2, LAR, TOF, LUMI, CIP, BST, SPAC

Vertex −35 < zvtx < 35 cm

Table 6.1: Run selection.

Run period Run Range Luminosity

2007 e+ Ep = 920 GeV 492559 − 500611 46.3 pb−1

Ep = 460 GeV 500919 − 507824 12.1 pb−1

Ep = 575 GeV 507843 − 511079 5.9 pb−1

Table 6.2: Run ranges and luminosity.

The selected amount of data used in the FL measurement presented here is given
in Table 6.2. It is 45.7 pb−1 for the high energy data, 11.0 pb−1 for the low energy data
and 6.0 pb−1 for the medium energy data.

6.3.2 The Trigger Selection

The FL measurement is an inclusive analysis, i.e. it does not require any specific
hadronic final state and uses all the DIS processes. The inclusive DIS processes in gen-
eral require a good reconstruction of the scattered positron. This basic characteristics
of the processes considered in this analysis define also the preselection of the events
using the triggering system. The expected topology of the events is such that the scat-
tered positron is detected in the SPACAL calorimeter. Therefore, only the so-called
SPACAL sub-triggers are used in the trigger selection. No other triggers are required
because of the inclusive nature of the analysed events.

The high energy data analysis requires sub-triggers S0, S2 and S3. All these sub-
triggers demand an energy deposit in SPACAL. S0 and S2 cover region of radial distance
rSPACAL > 20 cm, and S3 is sensitive only to higher rSPACAL above 30 cm. The sub-
triggers in high energy data-taking periods are prescaled, i.e. the rate of keeping the
triggered events is reduced by a prescale factor. The number of analysed events has to
be multiplied by the prescale factor in order to calculate the luminosity of the analysed
data sample correctly. The smaller the prescale number the larger the number of
analysed events is, and thus the better the statistical precision is. Table 6.3 shows
the average prescale numbers for 2006 e+ and 2007 e+ data-taking periods. The 2006
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Sub-trigger Average prescale

2006 e+ 2007 e+

ST0 21.69 2.13

ST2 1.14 4.15

ST3 1.00 1.00

Table 6.3: Sub-trigger prescale factors in 2006 e+ and 2007 e+ high energy data.

Run period Trigger selection

2006 e+ rSPACAL < 29 cm : ST2

Ep = 920 GeV rSPACAL > 29 cm : ST3

2007 e+ rSPACAL < 29 cm : ST0

Ep = 920 GeV rSPACAL > 29 cm : ST3

Ep = 460 GeV y < 0.6 : ST0

y > 0.6 : ST7 or ST8

Ep = 575 GeV y < 0.56 : ST0

y > 0.56 : ST7 or ST8

Table 6.4: Trigger selection.

e+ data set is not used in the FL analysis, as 2007 e+ data contain enough statistics
for the inclusive measruement. It is discussed here because it is analysed in the FD

L

measurement where the final data sample is a sub-sample of the events selected in the
FL analysis. Based on the low prescale numbers, the 2006 e+ data requires sub-triggers
S2 and S3 at rSPACAL < 29 cm and rSPACAL > 29 cm, respectively. The 2006 e+ data
use sub-triggers S0 and S3 at rSPACAL < 29 cm and rSPACAL > 29 cm, respectively.

As already discussed in Section 5.2, the lower the proton beam energy is the
higher y data need to be analysed. The high y events are more likely to fall within
the acceptance of the BST detector. Therefore, BST is also used in the trigger for the
low and medium energy data. At y > 0.6 (y > 0.56) for low (medium) energy data,
a combination of ST7 or ST8 sub-triggers (so-called ’high y’ sub-triggers) is required.
Otherwise, ST0 is used. The low and medium energy data are not prescaled.

The sub-triggers used in the analysis and the corresponding regions are listed in
Table 6.4.

6.3.3 Vertex Requirement

The Central Jet Chamber (CJC) tracker is used for the reconstruction of the primary
vertex. In standard HERA run conditions, the proton and the lepton beams are aimed
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to collide in the centre of the H1 detector at z = 0 cm (in the H1 coordinate system).
The distribution of the z-position of the primary vertex follows a Gaussian distribution
and standardly, a cut at −35 < z < 35 cm is required.

6.3.4 The Scattered Positron Finder

The inclusive measurements crucially depend on a perfect understanding of the scat-
tered lepton. The topology of the inclusive NC DIS processes naturally leads to the
requirement of the existence of the primary vertex, a cluster in the calorimeter cor-
responding to the energy deposition of the scattered positron. A track linking the
primary vertex and the cluster can also be considered.

The scattered positron finder is going to be described in detail in the following lines.

Cluster Requirement

The scattered positron can be reconstructed in the backward (−z) direction in the
SPACAL calorimeter or, for larger scattering angles, in the LAr calorimeter. The FL

analysis described here looks at data at 2.5 < Q2 < 100 GeV2 which corresponds to
scattering angles such that the LAr calorimeter can be excluded from the scattered
positron selection. The first requirement on the scattered positron candidate is to have
its energy deposited in a cluster in the SPACAL calorimeter.

As already mentioned in Sections 5.1 and 2.1.6, the highest sensitivity to the FL

structure function is at high values of inelasticity y. In order to extract FL, one has to
combine measurements at fixed values of Q2 and x, and different y (see Eq. 5.1). Data
sets with the proton beam energy of 920, 460 and 575 are analysed. The collisions
in these data sets correspond to centre-of-mass energies

√
s of 319, 225 and 252 GeV,

respectively. The fact that the low proton beam energy (Ep = 460 GeV) is exactly
half of the nominal proton beam energy (Ep = 920 GeV) leads to the following. The
kinematical variables are constrained by Q2 = xys, therefore the highest value of y in
the high energy data set (

√
s = 319 GeV) suitable for FL extraction equals to the half

of the highest accessible value of y in the low energy data set (
√
s = 225 GeV). The

FL analysis described here takes the challenge to describe the low and the medium
energy data sets by a Monte Carlo simulation in a wide range of inelasticity spanning
up to values of y < 0.9, which corresponds to E ′

e ∼ 2.8 GeV. For the high energy data
set, data up to y < 0.56, corresponding to E ′

e ∼ 12 GeV, are analysed. The high y
edges in the high and medium energy data sets exceed the actual range needed for the
FL extraction. Nevertheless, the fact that data are described by the simulation even
beyond the region of interest serves as an important check of understanding data.

The inelasticity y can by approximated by y ∼ 1− E′

e

Ee
(which follows from Eq. 6.27;

the ways of reconstructing kinematics are discussed in detail in Section 6.3.5). The
upper cuts on the inelasticity y are also accompanied by similar cuts on the cluster
energy of the scattered lepton candidate. E ′

e > 3.4 GeV is used for the low and medium
energy data sets, E ′

e > 12 GeV is used for the high energy data set.

The position of the cluster is reconstructed in H1 coordinates. In order to properly
reconstruct the scattering angle θe, the following inputs are needed: the position of the
cluster of the scattered positron, the position of the primary vertex and the trajectory
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of the beam. The θ and ϕ angles are first calculated as

tan θ =

√

(xH1
clus − xvtx)2 + (yH1

clus − yvtx)2

zH1
clus − zvtx

(6.3)

tanϕ =
yH1
clus − yvtx

xH1
clus − xvtx

(6.4)

where xH1
clus, y

H1
clus, z

H1
clus define the position of the cluster and xvtx, yvtx, zvtx define the

position of the vertex in the H1 coordinates. The angles θ and ϕ are then corrected
for the actual direction of the beam in the following way. First, a direction vector of
the beam is defined

sx =
x′

√

x′2 + y′2 + 1
, sy =

y′
√

x′2 + y′2 + 1
, sz =

1
√

x′2 + y′2 + 1
(6.5)

where x′ and y′ denote the beam direction in x and y, respectively4. The physical
scattering angles θe and ϕe are then calculated as

cos θe = sin θ cosϕsx + sin θ sinϕsy + cos θsz (6.6)

tanϕe =
yvtx − y0 − y′zH1

clus

xvtx − x0 − x′zH1
clus

(6.7)

where x0 and y0 stand for the beam position at z = 0 in the H1 coordinate system.
Only clusters in a certain region of the SPACAL calorimeter are considered. Based

on the efficiency of data description, clusters have to fall in the radial range of 18 <
rSPACAL < 74 cm, where the radius rSPACAL is calculated at z = −160 cm and corrected
for the beam tilt

rSPACAL = tan θe(−160 − zvtx). (6.8)

The lower cut is driven by the definition of sub-triggers used in the analysis. The
upper cut is close to the edge of the SPACAL calorimeter and it makes sure that
the full cluster is contained within the SPACAL acceptance. There is a region in
the SPACAL calorimeter where L2 triggers are inefficient due to a cabling problems.
Therefore, a box defined by −16 < xclus < 9 cm, −6 < yclus < 16 cm is excluded. xclus

and yclus are the beam tilt corrected cluster positions

xclus = rSPACAL cosϕe, yclus = rSPACAL sinϕe. (6.9)

Fig. 6.1(a) shows the position of SPACAL clusters after the cut on rSPACAL and the
box cut. Table 6.5 gives a list of cuts involved in the SPACAL acceptance cut.

The positron finder requires an electromagnetic cluster to be assigned to the scat-
tered positron candidate. Variable rlog, energy weighted cluster radius, is used to dis-
tinguish between electromagnetic and hadronic clusters. It is defined in the following
way involving the information from the cells contained in the cluster

rlog =

∑

cells dr max(0, 4.8 + log(
Ei

cell

Ecluster
))

∑

cells max(0, 4.8 + log(
Ei

cell

Ecluster
))

(6.10)

4 The beam parameters x0, y0, x
′, y′ are determined on event-by-event basis from the CST infor-

mation.
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Figure 6.1: SPACAL cluster position. The plots show the ratio of low energy data
and Monte Carlo after the analysis selection (see Table 6.10) without a track–cluster
link requirement. Only the SPACAL acceptance cut is applied (a), both the SPACAL
acceptance and the BST acceptance cuts are applied (b).

Selection Description Values

Radius cut 18 < rSPACAL < 74 cm

Box cut −16 < xclus < 9 cm, −6 < yclus < 16 cm

Table 6.5: SPACAL acceptance cuts.

where dr is the radial distance between the cell position and the cluster barycentre

dr =
√

(xi
cell − xbarycentre)2 + (yicell − ybarycentre)2 (6.11)

and the barycentre is defined as

xbarycentre =

∑

cells x
i
cell max(0, 4.8 + log(

Ei
cell

Ecluster
))

∑

cells max(0, 4.8 + log(
Ei

cell

Ecluster
))

, (6.12)

analogously for ybarycentre. A logarithmic energy cutoff of 4.8 is used in the calculation.
Electromagnetic showers are in general contained within a cone of smaller radius than
hadronic showers. A cut at rlog < 5 cm is used in the analysis in order to suppress
hadronic particle candidates.

Electromagnetic particles are also expected to deposit their energy in the electro-
magnetic part of the SPACAL calorimeter. A cut on the fraction of the cluster energy
coming from the cells in the hadronic SPACAL Ehad

Etot
< 0.15 is introduced.

Link between the Track and the Cluster

The vertex and cluster requirements, as described in the previous paragraphs, are
considered as the basic selection for the inclusive DIS processes. Such selection is
sufficient for analyses that do not probe a region with high levels of photoproduction
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background (described and discussed in Section 6.3.8). This background is dominant
at low energies of the scattered positron E ′

e and is negligible above an energy of ∼
15 GeV. The low and medium data analyses attempt to understand data down to
energies of 3.4 GeV, whereas the high energy data analysis cuts at y < 0.56 which
roughly corresponds to an energy of 12 GeV. Additional requirement of a track linking
the primary vertex and the cluster helps to reduce the photoproduction background.
Therefore, it is used in the selection for the low and medium energy data. In the high
energy data, the track–cluster link is not required since the lowest scattered positron
energies are not analysed. The following lines describe the procedure of finding a
linking track.

Given the geometry of the H1 detector, a track linking the primary vertex and
the cluster of the scattered positron can be found in the Central Jet Chamber (CJC)
tracker or the Backward Silicon Tracker (BST). The trackers as well as the LAr and
SPACAL calorimeters are contained in the 1.15 T homogeneous magnetic field of the
H1 detector. Therefore, the charged particles follow helix trajectories. The BCREC

routine is used to reconstruct the combined CJC or BST tracks. This routine returns
helix parameters κ (the curvature of the helix), φ (the azimuthal angle of the helix axis
with respect to the pivotal point), θ (the pitch angle), dca (distance of closest approach
of the helix and the pivotal point in the transversal plane), and z0 (distance of the
helix from the pivotal point in z-direction). The pivotal point is chosen in the origin
of the H1 coordinate system. The BCREC routine also returns the number of linked hits
in CJC and BST.

The ϕ structure of the BST detector is such that there is a slice where electronics
is located, and therefore particles cannot be detected there. In order to take into
account this geometrical acceptance of the BST detector, the position of the track in
the BST has to be known. The helix can be reconstructed either from the output of
the BCREC routine, or from the position of the cluster and the primary vertex. The
BST acceptance cut in this analysis uses the position of the track in the middle of the
BST detector at z = −50 cm where the track is reconstructed from the cluster and the
vertex position.

In general, the helix can be parametrized in the following way

x = xpivot + dca cosφ0 + ρ(cosφ0 − cos(φ0 + φ)) (6.13)

y = ypivot + dca sin φ0 + ρ(sin φ0 − sin(φ0 + φ)) (6.14)

z = zpivot + z0 − ρ tanλφ (6.15)

where xpivot, ypivot, zpivot specify the position of the pivotal point, dca is the distance of
the helix from the pivotal point in the transversal plane, φ0 is the azimuthal angle that
specifies the pivotal point with respect to the helix center, ρ being the signed radius of
the helix, z0 is the distance of the helix from the pivotal point in the z-direction, and
tanλ is the dip angle. The deflection angle φ is measured from the pivotal point and
specifies the position of the charged particle on the helix track. The meanings of these
parameters are depicted in Fig. 6.2. Note that a negatively charged particle travels in
the increasing φ direction, while a positively charged particle travels in the decreasing
φ direction.

Starting with the vertex position xvtx, yvtx, zvtx and the cluster position in the H1
coordinates xH1

clus, yH1
clus, zH1

clus one can approximate the transversal momentum of the
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Figure 6.2: A graphical explanation of the helix parameters for (a) negatively charged
and (b) positively charged tracks. Notice that the meaning of φ0 changes discretely by
π, depending on the charge. [76]

scattered lepton as
pT = E ′

e sin θ (6.16)

where

tan θ =

√

(xH1
clus − xvtx)2 + (yH1

clus − yvtx)2

zH1
clus − zvtx

. (6.17)

The signed radius of the helix can be calculated as

ρ =
pT
cBQ

(6.18)

where c is the speed of light, B is the size of the magnetic field and Q is the charge
of the scattered lepton. Since the e+p scattering data are analysed the charge of the
scattered lepton is always taken as positive.

In order to evaluate the helix parameters φ0 and tanλ the following steps are taken.
First, the deflection parameter φ is calculated for the cluster position

sin
φclus

2
=

1
2

√

(xH1
clus − xvtx)2 + (yH1

clus − yvtx)2

|ρ| . (6.19)

The dip angle can then be evaluated as

tanλ = −zH1
clus − zvtx
ρφclus

. (6.20)

The calculation of the helix position in the centre of the BST detector is straight-
forward now. The deflection parameter φ at z = −50 cm is calculated from Eq. 6.15
where we take the vertex position as the pivotal point

φBST =
−50 − zvtx
−ρ tanλ

. (6.21)
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Selection Description Values

Geometry rSPACAL < 45 cm : −134◦ < ϕBST < 134◦

Problematic ϕBST slice rSPACAL < 45 cm : −2◦ < ϕBST < 15◦

Box cuts −4 < xBST < 4 cm, −7 < yBST < −4 cm

2 < xBST < 7 cm, 0 < yBST < 4 cm

Radius cut rBST < 6 cm

Table 6.6: BST acceptance cuts.

φBST is then directly used in Eq. 6.14 and 6.15 in order to obtain the xBST and yBST

positions. Finally, the xBST and yBST positions are corrected for the beam tilt

xBST → xBST − x0 − x′(−50), yBST → yBST − y0 − y′(−50). (6.22)

The radial length of the track in the middle of the BST is calculated using these beam
tilt corrected positions as

rBST =
√

x2
BST + (yBST + 0.7)2 (6.23)

tanϕBST =
yBST + 0.7

xBST

(6.24)

where 0.7 is an alignment correction.

The BST Acceptance Cut

The BST acceptance cut consists of the following components. The geometry of the
BST detector requires to cut away the ϕBST < −134◦ and ϕBST > 134◦ ranges for
rSPACAL < 45 cm. There is also a problematic region at ϕBST ∼ 0◦. Therefore, the
range of −2◦ < ϕBST < 15◦ for rSPACAL < 45 cm is also excluded. Two boxes are
removed as well: −4 < xBST < 4 cm, −7 < yBST < −4 cm and 2 < xBST < 7 cm,
0 < yBST < 4 cm. A cut on the radial length of the track rBST < 6 cm takes care of
the inner edge acceptance of the BST detector. Table 6.6 gives a list of cuts involved
in the BST acceptance cut. Fig. 6.1(b) shows the SPACAL cluster position after the
BST acceptance cut.

The Combined CJC/BST Track Validation

Using the parameters from the BCREC routine, the helix trajectory can be propagated
to the z-position of the cluster. The distance between the propagated helix and the
cluster in the transverse plane calculated at z = zclus is required to be less than 3 cm.

The quality of the reconstructed track is ensured by a cut on the total number of
linked hits in the trackers NCJC + NBST > 2. Depending on the radial length of the
track in the middle of the BST detector (at z = −50 cm) rBST and the radial length of
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Selection Description Values

Track–cluster distance dtrack−cluster < 3 cm

Linked hits in total NCJC + NBST > 2

CJC range rCJC > 40 cm : NCJC ≥ 10

CJC/BST transition region 30 < rCJC < 40 cm : NCJC > rCJC − 30

BST range 20 < rCJC < 30 cm : NCJC ≤ 15

rBST < 13 cm : NBST ≥ 2

Low radius rCJC < 20 cm : NCJC ≤ 4

Table 6.7: List of cuts in the combined CJC/BST track validation.

the track in the middle of the CJC (at z = −112.5 cm) rCJC , the quality of the track
can be studied in more detail. rCJC is defined in a similar way as rBST

rCJC = (−112.5 − zvtx) tan θ (6.25)

where

tan θ =
rBST

−50 − zvtx
. (6.26)

Both radial lengths help to decide whether the track falls into the acceptance region of
the corresponding detector. The cut on the number of linked hits is then extended by
the following set of conditions. These ranges are considered depending on rCJC :

• CJC range : At least 10 hits in the CJC are expected for rCJC > 40 cm.

• CJC/BST transition region : A linear dependence of the minimum number of
hits required in the CJC on the radial length is considered for 30 < rCJC < 40 cm.
The following cut is applied: NCJC > rCJC − 30.

• BST range : Not more than 15 hits are expected in the CJC for 20 < rCJC <
30 cm.

• Low radius : Almost no hits in the CJC are expected at all. A cut on NCJC ≤ 4
is applied for rCJC < 20 cm.

There is only one requirement for a specific range in rBST .

• At least 2 BST hits are expected in the middle of the BST acceptance at rBST <
13 cm.

The full set of the cuts involved in the combined CJC/BST track validation is
listed in Table 6.7.
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Figure 6.3: Index of the electromagnetic particle candidate that passes the scattered
positron selection criteria. The candidates are sorted in energy in decreasing order.
The relative amount of the scattered positrons that do not correspond to the highest
energy electromagnetic particle is at a percent level.

Scattered Positron Hunting

Table 6.8 gives the list of all cuts applied in the scattered positron finder. This set
of cuts is applied to the three highest energy electromagnetic particle candidates in
the SPACAL calorimeter. Fig 6.3 shows the index of the electromagnetic particle
candidates that pass the positron finder selection criteria in the final analysis sample
for low energy data. The scattered positron candidates found at the second and third
place among the electromagnetic particle candidates correspond mostly to low energy
scattered positrons where it is more likely to find a hadronic final state particle that
mimics an electromagnetic particle and has a larger energy than the real scattered
positron. The reason to probe the first three scattered positron candidates is a possible
increase of statistics. As the figure shows the relative amount of the scattered positrons
that do not correspond to the highest energy electromagnetic particle is at a percent
level.

6.3.5 Reconstruction of the Inclusive Final State

Ideally, a 4π detector gathers the full information about the collision. In reality, it is
impossible to detect everything. There are energy losses from the final state particles
leaving the detector unseen through the beam pipe or, in general, going outside of
the detector acceptance. The accuracy of the gathered information depends on the
detector resolution, and on the understanding of the detector and robustness of the
reconstruction techniques.

The H1 detector is a 4π detector and it attempts to measure the whole final state of
the ep collisions. In NC DIS processes, both the scattered lepton and the hadronic final
state are detected (provided it strikes the acceptance region of the detector). Therefore,
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Selection Description Values

Ep = 460, 575 GeV Ep = 920 GeV

Cluster type SPACAL cluster SPACAL cluster

Energy E ′
e > 3.4 GeV E ′

e > 12 GeV

Electromagnetic/hadronic rlog < 5 cm rlog < 5 cm

cluster separation Ehad

Etot
< 0.15 Ehad

Etot
< 0.15

Acceptance SPACAL acceptance cut SPACAL acceptance cut

BST acceptance cut

Track requirement CJC/BST track validation cuts

Table 6.8: List of cuts in the scattered positron finder.
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the kinematics of the process is over-constrained and can be reconstructed either from
the measured scattered lepton or from the hadronic final state measurement. The
following paragraphs describe possible ways of reconstructing kinematics together with
their pros and cons.

The Electron Method

Only the scattered lepton is used to determine the kinematics of the ep interaction in
the Electron method. The scattered lepton energy E ′

e is measured together with the
scattering angle θe. The kinematics is then given by

ye = 1 − E ′
e

Ee
sin2 θ

2
, Q2

e = 4EeE
′

e cos2
θ

2
(6.27)

where Ee is the energy of the electron beam. The Electron method has especially a
good resolution at high y.

The Hadron Method

Contrary to the Electron method, the Hadron method uses the information from the
hadronic final state. The kinematics is reconstructed from the transverse size of the
total hadronic final state momentum pT and the difference between the energy and the
z-component of the momentum Σ = (E − pz)h

yh =
Σ

2Ee
, Q2

h =
p2T

1 − yh
(6.28)

The Hadron method is mainly used for processes where no information about the
scattered lepton is available (e.g. photoproduction processes). In general, the scattered
lepton is reconstructed with a better precision (< 1%) than the hadronic final state.
With a good hadronic calibration, ∼ 2% uncertainty on the energy scale is considered.
However, the main reason for a poor resolution of the Hadron method are energy losses
in the forward region.

The Double-Angle Method

The Double-Angle method combines the angular information of both the scattered
lepton and the hadronic final state. The polar angle of the hadronic final state is
defined by

cos γh =
p2T − Σ2

p2T + Σ2
(6.29)

The kinematics is then reconstructed as

yda =
sin θe(1 − cos γh)

sin γh + sin θe − sin(θe + γh)
, Q2

da =
4E2

e sin γh(1 + cos θe)

sin γh + sin θe − sin(θe + γh)
(6.30)

The Double-Angle method has a good resolution at low y.
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The Average Method

The Average method combines the excellent precision of the Electron method at high
y with the excellent precision of the Double-Angle method at low y. This method is
especially suitable for inclusive diffraction. In diffraction, the hadronic final state is
fully contained in the main calorimeter. As there are no energy losses in the forward
region, the resolution in the hadronic angle, and therefore the Double-Angle method,
is excellent. The Average method is given by

yav = y2e + yda(1 − yda), Q2
av =

4E2
e (1 − yav)

tan2 θ
2

(6.31)

6.3.6 Background Rejection

Two background processes are considered for the inclusive NC DIS analysis: photo-
production processes and QED-Compton scattering events.

Photoproduction Background

The photoproduction γ∗p processes are processes where the lepton and the proton
from the beam exchange a low virtuality photon. These processes are characterised by
Q2 → 0 and low scattering angles such as the scattered lepton exits the main detector
undetected through the beam pipe.

If one of the hadronic final state particles (pion) deposits energy in the SPACAL
calorimeter it can be mis-identified as a lepton, and the event topology can mimic
a signal NC DIS process. Therefore it is important to introduce cuts that help to
separate electromagnetic and hadronic clusters. Such cuts (on rlog,

Ehad

Etot
) were already

introduced in Section 6.3.4.

Another important selection criterium that reduces the photoproduction back-
ground is based on the conservation of energy and longitudinal momentum. In DIS
event, kinematics define that E − pz = 2Ee = 55 GeV where all final states (including
the scattered lepton) contribute to E−pz . The event selection requires E−pz > 35 GeV
for all events in the measurement.

There are detectors along the beam pipe in the electron beam direction that can
detect the scattered lepton from the photoproduction events (electron and photon tag-
gers). Photoproduction studies using these detectors show that the hadronic final
state particles reconstructed in SPACAL can mimic the scattered lepton from DIS
processes up to energies of ∼ 18 GeV. However, the photoproduction background is
mainly an issue at lower energies of the scattered lepton candidate reconstructed in
SPACAL. The FL and FD

L structure functions are extracted from data at high values
of inelasticity y which correspond to low scattered lepton energies. Even after the
rejection of background using the selection criteria described here the photoproduc-
tion background is still comparable to the signal at high y. Introducing harder cuts
against photoproduction is not desirable since it kills the signal events as well. A large
amount of background in the final event selection makes the FL and FD

L measurements
so challenging. The understanding and treatment of the remaining photoproduction
background is discussed in Section 6.3.8.
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Selection Description Values

Number of electromagnetic particles NSPACAL
elmag. ≥ 2

in the SPACAL calorimeter

Energy E1 > 4 GeV

E2 > 4 GeV

E1 + E2 > 18 GeV

Acoplanarity − cos(ϕ1 − ϕ2) > 0.95

Table 6.9: Selection criteria for the QED-Compton events.

QED-Compton Events

The QED-Compton scattering events (ep → epγ) are not part of the deep inelastic
scattering signal and have to be excluded from the analysed data sample. The QED-
Compton events are identified by the set of cuts in Table 6.9. At least two electromag-
netic particles are required in order to have candidates in the opposite ϕ direction that
match the final state lepton and photon.

6.3.7 The Final Inclusive NC DIS Selection

This section gives an overview of all the selection criteria used in the analysis, the
so-called analysis selection.

The low and medium energy data are analysed in the kinematical range 2.5 <
Q2 < 100 GeV2 and 0.1 < y < 0.9. The scattered positrons with energies down to
E ′

e = 3.4 GeV are selected. A track linking the primary vertex with the positron
energy cluster is also required.

The high energy data are selected in more restricted kinematical domain of 7 <
Q2 < 100 GeV2 and 0.1 < y < 0.56. The lower Q2 cut is increased on grounds of the
trigger efficiency. A track cluster link is not required in this data set.

The analysis selection is summarised in Table 6.10.

6.3.8 Photoproduction Background Subtraction

As already mentioned in Section 6.3.6, there is a large amount of photoproduction
background in the final data analysis sample. The cuts responsible for background re-
jection do not succeed in removing all the background events, and introducing harder
cuts would lead to further rejection of signal events as well. The amount of remaining
photoproduction background at high values of inelasticity y – which is the most im-
portant region for the FL and FD

L extraction – is comparable to signal. This section
describes a way how to subtract the residual photoproduction background.

The photoproduction events that appear as a NC DIS signal in the central detector
are of two kinds. Either a positive pion is mis-identified as the scattered positron, or
a negative pion mimics the scattered positron. Negative pions can be excluded by the
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Selection Description Values

Ep = 460, 575 GeV Ep = 920 GeV

Vertex CJC vertex

−35 < zvtx < 35 cm

Cluster type SPACAL cluster

Energy E ′
e > 3.4 GeV E ′

e > 12 GeV

Inelasticity 0.1 < ye < 0.9 0.1 < ye < 0.56

Electromagnetic/hadronic rlog < 5 cm

cluster separation Ehad

Etot
< 0.15

Acceptance SPACAL acceptance cut

BST acceptance cut

Track requirement CJC/BST track validation cuts

Q2 region Q2
e > 2.5 GeV2 Q2

e > 7 GeV2

E − pz cut E − pz > 35 GeV

QED-C events anti-Compton selection

Table 6.10: Overview of the analysis selection criteria.
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Selection Description Values

E − pz cut E − pz + 2Eelectron
tagger + 2Ephoton

tagger < 80 GeV

Energy in the taggers Eelectron
tagger > 2 GeV

Ephoton
tagger < 2 GeV

Trigger element L1TE 115 (signal in the tagger)

Eelectron
tagger < 6 GeV : xelectron

tagger > −2.8 cm

Table 6.11: Selection criteria for the tagged photoproduction events.

requirement of a positively charged track linking the vertex and the cluster, assuming
reliable charge reconstruction.

Tagged Events Subtraction

The scattered positron from photoproduction events can be detected in the tagger
detectors. One way to subtract the residual photoproduction background from the
final data analysis sample is to subtract the tagged events multiplied by the geometrical
acceptance of the tagger acctagger = 0.2. The number of signal events is then equal to

Nsignal = Nall −
2

acctagger
N−

tagged (6.32)

where Nall stands for the number of all events in the final selected data analysis sample,
and N−

tagged is the number of events that pass the analysis selection criteria as well as
the tagger selection and have a negatively charged track associated to the scattered
positron candidate. The amount of π+ and π− mis-identified as scattered leptons is
similar, hence the factor of 2.

The tagger selection involves two tagger detectors: the 6 m electron tagger station
and the photon tagger. There is a cut on the total E − pz from the central detector,
the electron tagger and the photon tagger

(E − pz)total = E − pz + 2Eelectron
tagger + 2Ephoton

tagger . (6.33)

This quantity is required to be less than 80 GeV which should reject the events with
the scattered positron detected in the central detector and a beam halo measured in
the taggers. In order to reject Bethe-Heitler processes, cuts on Eelectron

tagger > 2 GeV and

Ephoton
tagger < 2 GeV are considered. The tagger selection is listed in Table 6.11.

The charge requirement in N−

tagged does not depend on the charge reconstruction
efficiency since the number of positive mis-reconstructed charges is the same as the
number of negative mis-reconstructed charges. Therefore, the number of subtracted
events in Eq. 6.32 is correct. The reason for the charge requirement is the presence of
the background from Bethe-Heitler processes. Especially at Ep = 920 GeV, there is a
significant fraction of events with overlap of DIS and Bethe-Heitler processes due to
higher instantaneous luminosity. Requiring a negative charge of the scattered positron
candidate naturally removes this background.
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The charge is reconstructed from the track curvature. Since there is no track–cluster
link requirement in the high energy data analysis, the charge information is not used
for the tagged event subtraction, and the background is removed as

Nsignal = Nall −
1

acctagger
Ntagged (6.34)

where Ntagged denotes all events that pass the tagger selection. The number of tagged
events is corrected just by the tagger acceptance acctagger and the factor of 2 as in
Eq. 6.32 is missing.

Charge Asymmetry

As already said, the amount of π+ and π− mis-identified as scattered leptons (referred
to as N+ and N−, respectively) is similar and can be accurately studied with the tagger
detectors. The background charge asymmetry

asym =
N+

N−
(6.35)

is determined in an independent analysis. Since the tagger detectors have limited
acceptance the analysis looks at the whole HERA-II data set. The analysis gives the
charge asymmetry both for data and Monte Carlo

asymdata = 0.98, asymMC = 0.94. (6.36)

Wrong Charge Background Subtraction

In the low and medium energy data analyses, there is a requirement of a track linking
the primary vertex and the cluster of the scattered lepton candidate in the scattered
positron finder. Therefore, a charge measurement from the curvature of the track is
also available. The larger the curvature the higher the charge measurement precision
is, and vice versa. Fig. 6.4 shows the QE′

e

p
distribution in the final selection of events

from the low energy data. Here, the energy E ′
e is measured in the calorimeter and

the track momentum p comes from the track and the charge Q from its curvature.
The black points are data, the magenta line is the Monte Carlo simulation of the e+p
NC DIS events. Therefore, the Monte Carlo events seen with a negative charge corre-
spond only to the events where the charge is mis-reconstructed. There are significantly
more negative events in data. Assuming the charge reconstruction is well simulated
by the Monte Carlo (the charge reconstruction efficiency is discussed in detail in Sec-
tion 6.4.4), the difference in negative events seen between data and Monte Carlo has to
correspond to the photoproduction background (e+p collisions are analysed in data).
Since there is also a certain amount of signal events in the data with negative recon-
structed charge (charge mis-reconstruction), these events are referred to as the wrong
charge background (rather than just the photoproduction background).

In order to subtract the full photoproduction background from the final selected
data sample, also the π+ photoproduction events have to be identified. The amount of
these events can be estimated using the charge asymmetry (6.35) and the number of
the π− photoproduction events N−. Signal events can then be obtained as

Nsignal = Nall − (1 + asym)N− = N+ − asymN−. (6.37)
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Figure 6.4: A distribution of QE′

e

p
in the final selection of events from the low energy

data. The black points are data, the magenta line is the Monte Carlo simulation.

As already mentioned above, N− in the analysis consists not only of the π− photopro-
duction events but also from the charge mis-reconstructed signal. Therefore, the wrong
charge background subtraction (6.37) is performed for both data and Monte Carlo in
order to account for the presence of the mis-reconstructed signal events. The mistake
made by using different charge asymmetry factors for data and Monte Carlo (6.36)
for these events is negligible and covered by the systematic uncertainty on the charge
reconstruction.

Background Subtraction Summary

In the low and medium energy data analysis, the wrong charge background subtraction
relies on precise charge measurement and accurate charge reconstruction simulation in
the Monte Carlo. Since the charge reconstruction is most precise for low pT tracks, the
following strategy for the background subtraction is chosen for the low and medium
energy data:

• The wrong charge background subtraction is performed for y > ytrans. High y
region corresponds to low energy, low pT scattered leptons. As already mentioned
above, the precision of the charge reconstruction improves with decreasing pT
(increasing curvature of the track).

• The tagged events subtraction based on Eq. 6.32, where the negative charge of the
tagged background is required, is done in the remaining region of the inelasticity
y < ytrans.

The transition values ytrans are chosen as

y575trans = 0.56, y460trans = 0.6. (6.38)

In the analysis of high energy data, the background is subtracted using the tagged
events in the whole y range according to Eq. 6.34. No charge is required here. The
background subtraction strategy is also summarised in Table 6.12.
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y range Background subtraction technique

Ep = 460, 575 GeV

y > ytrans wrong charge background subtraction

Nsignal = Nall − (1 + asym)N− = N+ − asymN−

y < ytrans tagged events subtraction

Nsignal = Nall − 2
acctagger

N−

tagged

y575trans = 0.56, y460trans = 0.6

Ep = 920 GeV

all y tagged events subtraction

Nsignal = Nall − 1
acctagger

Ntagged

Table 6.12: Photoproduction background subtraction strategy.

Fig. 6.5 shows the wrong charge background and the tagged event background in
the final selected low energy data sample. Fig. 6.6 then shows the description of the
positron energy in the same data sample. Data are well described by the Monte Carlo
simulation after the wrong charge background subtraction.

Fig. 6.7 shows the tagged background in the electron energy distribution. Since
the overlap of the DIS signal with the Bethe-Heitler processes is not reduced by the
charge requirement, the tagged background appears even at higher positron energies as
a constant fraction of the signal events. Around ∼ 1% of the signal events also pass the
tagger selection because of the overlap with Bethe-Heitler processes. These events are
not background events. Real photoproduction background appears in addition only at
lower positron energies. Since the tagged events are corrected by the tagger acceptance
acctagger = 0.2, there is ∼ 5% fraction of events that should not be subtracted. This
has to be taken into account when normalising the control plots from data and Monte
Carlo and extracting cross sections.

6.4 Efficiency of the Selection and Accuracy of the

Simulation

The efficiency of particular selection cuts is not necessarily the same in data and Monte
Carlo. The efficiencies of the cuts have to be monitored both in data and the simulation,
and possible differences have to be taken into account in the corrections applied to data
or Monte Carlo or both at the analysis level.

The efficiency of the cuts is usually monitored in the following way

ε(cut) =
monitor & cut

monitor
(6.39)

where monitor stands for the number of events in the monitoring sample, and monitor & cut
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The background seen in Monte Carlo (ma-
genta line) contains only the charge mis-
reconstructed signal events. The differ-
ence between data and Monte Carlo shows
the amount of photoproduction background.
However, the wrong charge background is sub-
tracted as a whole (for both data and Monte
Carlo).

Electron Energy / GeV
0 10 20 30

0

20

40

60

Electron Energy / GeV
0 10 20 30

0

20

40

60

(b) Tagged events with the negative charge
in data at y < 0.6 multiplied by the fac-
tor of 2

acctagger
. The photoproduction back-

ground for the scattered lepton energy above
∼ 18GeV is negligible.

Figure 6.5: Background in the low energy data sample.
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Figure 6.6: Positron energy description before (a) and after (b) the background sub-
traction in the low energy data. Black points are the selected data, green area is the
background determined from data. Monte Carlo (magenta line) describes the signal
data well.
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Figure 6.7: Background in the high energy data sample.

is the number of events that pass the monitoring sample selection together with the
monitored cut. The monitoring sample has to be defined as independently on the mon-
itored cut as possible. Table 6.13 lists the so-called basic selection that is used for
several efficiency monitorings described in this section. It is a simple NC DIS event
selection in a similar kinematical domain as the analysis selection (see Table 6.10).
The basic selection consists of an positron cluster requirement where a stronger rlog cut
is used in order to suppress the photoproduction background even harder (the signal
is suppressed as well, which is not desirable for the final analysis selection). There are
the SPACAL and BST acceptance cuts, the E − pz cut and anti-Compton selection.

The requirement of a primary vertex is missing and it will be specified in each of
the sections below where the basic selection is used.

There is also no trigger selection in the basic selection. Again, the trigger selection
will be specified in the following sections depending on the efficiency studied.

The efficiency corrections in Monte Carlo can be applied in two ways. Either an
efficiency weight is assigned to each event, or a corresponding fraction of events is
rejected on random basis.

6.4.1 Trigger Efficiency

This sections describes the efficiency of the sub-triggers used in the analysis. Details
on the efficiency monitoring are given here, and possible sources of inefficiencies are
discussed.
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Selection Description Values

Ep = 460, 575 GeV Ep = 920 GeV

Cluster type SPACAL cluster

Energy E ′
e > 3.4 GeV E ′

e > 11 GeV

Inelasticity 0.1 < ye < 0.9 0.1 < ye < 0.56

Electromagnetic/hadronic rlog < 4 cm

cluster separation Ehad

Etot
< 0.15

Acceptance SPACAL acceptance cut

BST acceptance cut

Q2 region Q2
e > 2.5 GeV2 Q2

e > 7 GeV2

E − pz cut E − pz > 35 GeV

QED-C events anti-Compton selection

Table 6.13: Overview of the basic selection cirteria used in the efficiency studies.

Trigger Efficiency in the High Energy Data

In order to monitor a sub-trigger efficiency, it is necessary to find an independent sample
for the monitoring. Sub-triggers consist of trigger elements. The monitoring sample has
to be defined by sub-triggers that have different trigger elements in their definition. The
sub-triggers used in the analysis fall into a category of so-called SPACAL sub-triggers.
Table 6.14 lists non-SPACAL sub-triggers that are used for the monitoring5.

As already mentioned in Section 6.3.2, sub-triggers used in the high energy analysis
are prescaled. Suppression by prescales is done at the trigger level 3. Since the sub-
triggers ST0, ST2 and ST3 do not use any level 3 trigger elements, the efficiency
of L1*L2 raw sub-triggers can be monitored. No prescale suppression means higher
statistics which leads to better precision of the monitoring. At least one of the actual
non-SPACAL sub-triggers is required in the monitoring sample. To summarize, the
sub-trigger efficiency is monitored as

ε(sub-trigger) =
top

bottom
(6.40)

where the bottom = monitor and top = monitor & cut selections are defined as:

• bottom

5The list is generated from
https://www-h1.desy.de/h1/iww/itrigger/TrigSetup/tdl.subtriggers

via the following command:
cat tdl.subtriggers |grep -v "C\[2\]" |grep -v "\/\*" |

sed "s/\(^s\)\(...\)\(.*\)/\2,/g"

https://www-h1.desy.de/h1/iww/itrigger/TrigSetup/tdl.subtriggers
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10 , 12 , 13 , 14 , 16 , 18 , 19 , 20 , 23 , 24 , 25 , 29 , 30 , 32 ,

34 , 45 , 47 , 48 , 50 , 51 , 52 , 53 , 54 , 55 , 56 , 57 , 58 , 59 ,

60 , 62 , 64 , 65 , 66 , 67 , 68 , 71 , 72 , 73 , 74 , 75 , 76 , 77 ,

78 , 79 , 80 , 81 , 82 , 84 , 85 , 86 , 87 , 89 , 91 , 92 , 93 , 94 ,

95 , 96 , 99 , 101, 102, 103, 104, 105, 107, 108, 109, 110, 111,

113, 114, 116, 117, 118, 119, 120, 122, 123, 124, 126, 127

Table 6.14: List of non-SPACAL sub-triggers. These sub-triggers contain no trigger
elements requiring any information from SPACAL. Therefore, they can be used as
independent monitors for the SPACAL trigger elements used in this analysis.
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Figure 6.8: Efficiency of ST0 (a) and ST2 (b) sub-triggers at rSPACAL < 29 cm, and
ST3 (c) sub-trigger at rSPACAL > 29 cm.

basic selection

CJC vertex (−35 < zCJC
vtx < 35 cm)

at least one non-SPACAL actual sub-trigger

rSPACAL cut

• top

bottom

L1*L2 raw sub-trigger

Fig. 6.8 shows the efficiency of sub-triggers in the region where they are used: ST0,
ST2 at rSPACAL < 29 cm and ST3 at rSPACAL > 29 cm. No correction is needed.

The sub-trigger ST3 uses hadronic SPACAL trigger elements
!SPCLh_ATof_E_! && !SPCLh_ToF_E_2 in its definition. Therefore, it is desirable to
check the efficiency of the sub-trigger as a function of a variable sensitive to the hadronic
SPACAL. Fig. 6.9(a) shows the efficiency in bins of (E−pz)

had
SPACAL and reveals a rapid

drop of the efficiency above ∼ 30 GeV. However, a detailed study of the efficiency in
bins of E ′

e and rSPACAL reveals that no correction is needed because the statistics at
(E − pz)

had
SPACAL > 30 GeV is very limited. The inefficiency propagates only to the

lowest E ′
e and high rSPACAL where it is observed at the level of ∼ 0.5%. Therefore, no

correction is needed.
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Figure 6.9: Efficiency of ST3 and a combination of ST7 or ST8 sub-triggers as a
function of (E − pz)

had
SPACAL.
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Figure 6.10: Efficiency of ST0 monitored by the non-SPACAL sub-triggers in the low
energy data. The efficiency is steeply falling at E ′

e < 7 GeV.

Trigger Efficiency in the Low and Medium Energy Data

The efficiency of the sub-trigger ST0 is monitored in the same way as described above
for the high energy data. Fig. 6.10 shows the efficiency of ST0 monitored by the non-
SPACAL sub-triggers as a function of E ′

e. There is no efficiency correction needed in
the region where ST0 is used, i.e. at y < 0.6 and y < 0.56 for the low energy and
medium energy data, respectively (which corresponds roughly to E ′

e > 11 GeV and
E ′

e > 12 GeV, respectively).
The figure also points out that the efficiency is steeply falling at E ′

e < 7 GeV. ST0
will be used in the monitoring samples for other efficiencies, and it is clear that in these
cases the efficiencies cannot be studied at E ′

e < 7 GeV.
The combination of ST7 or ST8 is used at y > 0.6 and y > 0.56 in the low energy

and medium energy data, respectively. The efficiency of this sub-trigger combination
can be monitored by the ST0 sub-trigger, but only for E ′

e > 7 GeV. Since the ST7 and
ST8 sub-triggers are used only at high y, a cut on ye > 0.38 is used in the monitoring.
The efficiency is monitored as

ε(ST7 or ST8) =
top

bottom
(6.41)

where the bottom = monitor and top = monitor & cut selections are defined as:
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Figure 6.11: Efficiency of ST7 or ST8 sub-triggers for (E − pz)
had
SPACAL < 32 GeV.

• bottom

basic selection

CJC vertex (−35 < zCJC
vtx < 35 cm)

E ′
e > 7 GeV

ye > 0.38

ST0 actual sub-trigger

• top

bottom

ST7 or ST8 actual sub-triggers

The sub-triggers ST7 and ST8 contain also the hadronic SPACAL trigger elements
!SPCLh_ATof_E_! && !SPCLh_ToF_E_2 in their definitions. Similarly as in the case of
ST3, they are sources of an inefficiency (see Fig. 6.9(b)). The figure shows the efficiency
of ST7 or ST8 as a function of (E−pz)

had
SPACAL where the efficiency rapidly drops above

(E − pz)
had
SPACAL > 32 GeV.

Cutting on (E − pz)
had
SPACAL < 32 GeV in the monitoring sample removes the in-

efficiency caused by the hadronic SPACAL trigger elements and makes it possible to
monitor other sources of inefficiency. Fig. 6.11 shows the ST7 or ST8 efficiency after
the cut on (E − pz)

had
SPACAL. The plot showing the trigger efficiency as a function of

rSPACAL is used to determine the efficiency correction for ST7 or ST8 sub-triggers.
The correction is 0.3% at rSPACAL < 30 cm, 1.3% at rSPACAL > 45 cm, and linear
in-between.

Fig. 6.12 displays the ST7 or ST8 efficiency after the rSPACAL dependent correc-
tion is applied. There is no longer an inefficiency as a function of E ′

e or rSPACAL

observed. However, there is still the inefficiency coming from the hadronic SPACAL
trigger elements that needs to be treated.

After applying the correction described above, the hadronic SPACAL trigger ele-
ment inefficiency can be studied simply by removing the (E−pz)

had
SPACAL < 32 GeV cut

from the monitoring sample. Although the plot in Fig. 6.9(b) shows a clear dependence
of the efficiency on (E−pz)

had
SPACAL, the correction is not evaluated as a function of this
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Figure 6.12: Efficiency of ST7 or ST8 sub-triggers after (E − pz)
had
SPACAL < 32 GeV the

rSPACAL dependent correction.

variable. The reason for that is the following. The efficiency drops close to 0 at higher
values of (E − pz)

had
SPACAL and it is not desirable to apply extremely large weights to

the corresponding data events in order to correct for such a low efficiency. Therefore,
the correction is evaluated in bins of different variables. The scattered positron energy
E ′

e and rSPACAL are chosen for that. Since the SPACAL calorimeter is situated in the
backward direction, the inefficiency should be visible at low E ′

e, i.e. high values of
inelasticity y (which directly follows from the prescription for hadronic reconstruction
method for y in Eq. 6.28). Fig. 6.13(a) shows the efficiency evaluated in three slices
of rSPACAL. The inefficiency arises only at E ′

e < 16 GeV and is fitted by a line with a
fixed point ε(E ′

e =16 GeV) = 1. The correction at E ′
e = 7 GeV, which is the lower limit

for a monitoring with sub-trigger ST0, is ∼ 2%. An extrapolation of the correction to
lower E ′

e is used in the analysis.

6.4.2 Vertex Reconstruction Efficiency

This section discusses the efficiency of the primary vertex reconstruction in the CJC
tracker. Two ways of monitoring the CJC vertex reconstruction efficiency are consid-
ered. The efficiency can be monitored by a vertex reconstructed in the CIP detector
or by a track reconstructed with the BCREC routine.

In the monitoring with the CIP vertex, more than 3 hits in the CIP detector are
required as a quality check of the reconstructed vertex. The acceptance of the CIP
detector restricts the monitoring to a region of rSPACAL > 23 cm. The lower rSPACAL

region (the analysis uses a lower rSPACAL > 18 cm cut) is out of acceptance and cannot
be monitored by the CIP vertex. The way of CJC vertex reconstruction efficiency
monitoring is summarized here.

ε(CJC vertex) =
top

bottom
(6.42)

where the bottom = monitor and top = monitor & cut selections are defined as:

• bottom

basic selection



6.4. ACCURACY OF THE SIMULATION 91

Electron Energy / GeV
0 5 10 15 20 25 300.96

0.97

0.98

0.99

1

1.01

1.02
18<R<38

Electron Energy / GeV
0 5 10 15 20 25 300.96

0.97

0.98

0.99

1

1.01

1.02
38<R<58

Electron Energy / GeV
0 5 10 15 20 25 300.96

0.97

0.98

0.99

1

1.01

1.02
58<R<78

(a) The efficiency of ST7 or ST8 sub-triggers as a function of E′

e after the rSPACAL dependent correction
in three bins of rSPACAL. A combined efficiency from the low and medium energy data is shown. The
cut on (E−pz)

had
SPACAL < 32GeV is not applied here. Therefore, the plots show the residual inefficiency

coming from the hadronic SPACAL trigger elements. The correction for this inefficiency is obtained as
a linear fit and is displayed as a line.
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(b) The efficiency of ST7 or ST8 sub-triggers after all corrections. The trigger efficiency is well under-
stood within 1%.

Figure 6.13: ST7 or ST8 sub-trigger efficiency.
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Figure 6.14: CJC vertex reconstruction efficiency as a function of E ′
e in the high energy

data analysis. The efficiency in data (black points) is well described by Monte Carlo
(red line).

ST0

CIP vertex (−30 < zCIP
vtx < 30 cm, NCIP

hits > 3)

• top

bottom

analysis trigger

CJC vertex (−35 < zCJC
vtx < 35 cm)

Another way of monitoring the CJC vertex reconstruction efficiency is by using the
BCREC track, i.e. requiring the CJC/BST validation cut in the monitoring sample. If
there is a CJC vertex found in the monitoring sample then it is required to lie between
−35 cm and 35 cm. The bottom = monitor and top = monitor & cut selections are
chosen as:

• bottom

basic selection

ST0

CJC/BST validation

if CJC vertex exists : −35 < zCJC
vtx < 35 cm

• top

bottom

analysis trigger

CJC vertex (−35 < zCJC
vtx < 35 cm)

Vertex Reconstruction Efficiency in the High Energy Data

Fig 6.14 shows the CJC vertex reconstruction efficiency as a function of E ′
e for data

and Monte Carlo. The efficiencies agree well and no correction is needed.
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Vertex Reconstruction Efficiency in the Low and Medium Energy Data

In the monitoring described at the beginning of this section, the sub-trigger ST0 is
required in the monitor sample and the analysis trigger is required in the sample that
is monitored. In Section 6.4.1, where the trigger efficiency is discussed, the combination
of ST7 or ST8 is also monitored by the sub-trigger ST0. Therefore, the monitoring
described here can be considered as a monitoring of a combined trigger and vertex
reconstruction efficiency, and the combined CJC vertex and trigger efficiency can be
written as a product of the trigger and the CJC vertex efficiency

ε(CJC vertex and trigger) = ε(ST7 or ST8) × ε(CJC vertex). (6.43)

The efficiency monitoring is displayed in Fig. 6.15.

• combined CJC vertex and trigger efficiency: The upper row of plots shows
the combined CJC vertex and trigger efficiency
ε(CJC vertex and trigger) in bins of E ′

e and rSPACAL. The observed inefficiency
at low E ′

e and rSPACAL will be partially corrected by the trigger efficiency cor-
rection ε(ST7 or ST8) (see Section 6.4.1).

• CJC vertex efficiency alone: The plots in the middle row show the same
ε(CJC vertex and trigger) = top

bottom
efficiency where the events in the numerator

are corrected for the trigger efficiency correction for ST7 or ST8. In other words,
the plots show the CJC vertex efficiency alone. The CJC vertex efficiency correc-
tion is evaluated for E ′

e < 16 GeV and rSPACAL < 43 cm in 5 cm rSPACAL slices.
For each slice, the efficiency is evaluated as a linear fit to the E ′

e dependence6.
Up to 4% correction is needed in the simulation.

• after the efficiency corrections: The bottom row of plots show the
ε(CJC vertex and trigger) efficiency after both the trigger and the CJC vertex
efficiency corrections.

6.4.3 Track–Cluster Link Efficiency

The efficiency of finding a track linking the primary vertex with the cluster of the
scattered lepton is not the same in data and Monte Carlo, therefore a correction of the
simulation is needed. The efficiency can be monitored in the following way

ε(track–cluster link) =
top

bottom
(6.44)

where the bottom = monitor and top = monitor & cut selections are defined as:

• bottom

basic selection

analysis trigger

CJC vertex

15 < E ′
e < 25 GeV

6The CJC vertex efficiency alone can be consistently monitored with ST7 or ST8 sub-triggers in the
monitoring sample (instead of ST0). In this way, the efficiency can be evaluated even at E′

e < 7GeV.
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(a) Combined CJC vertex and trigger efficiency as monitored by the BCREC vertex and the
ST0 sub-trigger.
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(b) The above corrected for the trigger efficiency. The plots show the CJC vertex efficiency
alone. An inefficiency is seen at low E′

e and low rSPACAL.
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(c) After the trigger and the CJC vertex efficiency corrections, the efficiency is understood
within 2%.

Figure 6.15: Combined CJC vertex and trigger efficiency in the low energy data. The
plots show the ratio of the efficiency in data and Monte Carlo.
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• top

bottom

CJC/BST track validation

The lower cut on the energy of the scattered lepton candidate is there to reduce the
photoproduction background. Fig 6.16 shows the track–cluster link efficiency in the
low energy data analysis. There is up to 10% difference seen between data and the
simulation at lower rSPACAL. Therefore a correction is needed. The efficiency correction
factors are evaluated in bins of rSPACAL and ϕe. The analysed region of 18 < rSPACAL <
74 cm can be divided into 3 regions with respect to the acceptance of the tracking
detectors:

• 18 < rSPACAL < 30 cm : BST only region

• 30 < rSPACAL < 54 cm : CJC/BST overlap

• 54 < rSPACAL < 78 cm : CJC only region

rSPACAL slices of 2 cm are considered for the track–link efficiency correction. Based
on the geometry of the BST detector, 7 equidistant slices in ϕe are considered for
rSPACAL < 54 cm. No bins in ϕe are defined in the CJC region since it has no compli-
cated ϕ structure.

The obtained correction factors are applied to the monitored events in order to
check the performance of the correction. Fig. 6.17 compares the track–link efficiency in
the low energy data with the corrected efficiency in the Monte Carlo. The correction
works perfectly as a function of rSPACAL and ϕe. However, there is a discrepancy at
low E ′

e in Fig. 6.17(d).
This difference in efficiency is attributed to the photoproduction background in

data. The track–link requirement helps to reduce this background. However, the cut
is not present in the monitoring sample selection. Therefore, the amount of photopro-
duction background in the monitoring sample is not negligible, and has an effect on the
monitored efficiency. The photoproduction background can be subtracted in a similar
way as in the analysis of the high energy data (see Section 6.3.8), and the signal events
are obtained as

Nsignal = Nall −
1

acctagger
Ntagged (6.45)

where Ntagger is the number of events that passed the tagger selection described in
Table 6.11 and acctagger = 0.2 is the tagger acceptance. Fig 6.18 shows the track–cluster
link efficiency as a function of E ′

e where the tagged event subtraction is performed in
the monitoring sample. No dependence on E ′

e is seen.
The FL and FD

L analysis requires a good understanding of data down to E ′
e of

3.4 GeV. Because of the photoproduction background, it is not possible to measure the
track–link efficiency at low E ′

e. However, being able to show that there is no energy
dependence of the efficiency for E ′

e > 10 GeV only hints that the derived correction can
be trusted in the whole range of E ′

e. Validity of the correction at low E ′
e was checked

in an independent analysis using radiative events. The track-cluster link efficiency is
related to the performance of the tracking detectors, and it is natural to assume that
the correction factors should depend only on geometrical quantities (such as rSPACAL

and ϕe) and not E ′
e.
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Figure 6.16: Track–cluster link efficiency in the low energy data (black points) and
Monte Carlo (red line) as a function of rSPACAL, ϕe, and E ′

e. The 2-dimensional plot
shows the efficiency double-ratio in bins of rSPACAL and ϕe.
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Figure 6.17: Track–cluster link efficiency in the low energy data (black points) and
Monte Carlo (red line) as a function of rSPACAL, ϕe, and E ′

e. The 2-dimensional plot
shows the efficiency double-ratio in bins of rSPACAL and ϕe. The track–cluster link
efficiency correction is applied in the Monte Carlo. The remaining discrepancy at low
E ′

e is attributed to the photoproduction background in the monitoring sample.
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Figure 6.18: Track-cluster link efficiency in the low energy data (black points) and
Monte Carlo (red line) as a function of E ′

e. The track–cluster link efficiency correction
is applied in the Monte Carlo. Photoproduction background is subtracted from the
monitoring sample using tagged events.
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The correction factors are evaluated separately for the low energy, medium energy
and high energy analyses.

6.4.4 Charge Reconstruction Efficiency

The LAr and the SPACAL calorimeters as well as the inner tracking detectors are
situated within the 1.15 T homogeneous magnetic field. This allows to reconstruct the
charge of a particle from a curvature of the corresponding reconstructed track. The
selection criteria for the scattered positron used in this analysis contain a track–cluster
link requirement where the cluster from SPACAL calorimeter has to be linked with
a track reconstructed by the BCREC routine. One of the parameters returned by this
routine, κ, gives the signed inverse transversal momentum of the track. The sign of κ
can be directly transformed into a charge.

The wrong charge background subtraction described in Section 6.3.8 crucially de-
pends on the correct simulation of the charge reconstruction efficiency in the Monte
Carlo. Fig. 6.19(a) shows the QE′

e

p
distribution in the final selection of events from the

low energy data. The energy E ′
e comes from the calorimeter measurement, and it is

well described by the Monte Carlo. The momentum p and charge Q are reconstructed
in the tracker. The data (black points) are not well described by Monte Carlo (magenta

line) where no correction to the simulated momentum is applied. The E′

e

p
peak in data

is broader than in Monte Carlo which means the momentum reconstruction in Monte
Carlo is too efficient. Since the charge is reconstructed from the curvature of the track,
it is important to get the track momentum reconstruction efficiency in Monte Carlo
at the same level as it is in data. Therefore, a momentum smearing correction is
introduced.

The momentum smearing corrects the shape of the E′

e

p
distribution in Monte Carlo.

The E′

e

p
peak is fitted by a Gaussian distribution in bins of E ′

e (1 GeV slices) and

rSPACAL (5 cm slices). The resulting µ and σ of the fit to data and Monte Carlo is then
combined

M =
µdata

µMC

, S =
√

σ2
data − σ2

MC (6.46)

and used to calculate the smeared momentum of the track

E ′
e

psmeared
= M × E ′

e

p
+ S × RANDOM (6.47)

where RANDOM is a random number from the Gaussian distribution with µ = 0 and
σ = 1.

Fig. 6.19(b) shows the fraction of the cluster energy and the smeared track momen-

tum multiplied by the track charge Q E′

e

psmeared
. The effect of the momentum smear-

ing correction is clearly visible in the side-by-side comparison. The description of
the fraction improves after the correction, however there is still place for improvement.
Therefore, an additional correction is going to be discussed in the following text.

In order to check the charge reconstruction efficiency it is useful to study the amount
of positive and negative charge events. Fig. 6.20 shows the asymmetry N+−N−

N++N−
in

the low energy data sample. Only events that pass the analysis selection with
15 < E ′

e < 25 GeV are considered. The events with E ′
e below 15 GeV are excluded in

order to reject the photoproduction background. The figure shows the dependence of
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Figure 6.19: Distribution of QE′

e

p
in the final selection of events from the low energy

data. The black points are data, the magenta line is the Monte Carlo simulation before
(a) and after (b) the momentum smearing correction.
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Figure 6.20: Asymmetry of the selected events N+−N−

N++N−
in low energy data sample. Data

(black points) as described by Monte Carlo (red line) after the momentum smearing
correction (a), and after both the momentum smearing as well as the charge flip cor-
rections (b).

the asymmetry on E ′
e and rSPACAL in data and Monte Carlo where the momentum

smearing correction is applied. The plots suggest that an additional correction to
the Monte Carlo is needed. The charge reconstruction efficiency can also be modified
by artificially changing the amount of positive and negative charge events, regard-
less what the track curvature implies. Based on Fig. 6.20(a), an additional charge
flip correction is introduced. The correction flips the reconstructed charge with the
probability of 1%.

The asymmetry of events after the momentum smearing correction and the
additional charge flip correction is displayed in Fig. 6.20(b). The 1% overall charge
flip correction describes the low E ′

e region well7. The remaining discrepancy at high
E ′

e proves that a simple overall correction is not sufficient to describe the whole E ′
e

range. However, the charge measurement in the analysis is required only at high y

7The description at lower energies was checked in an independent study.
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Figure 6.21: rlog distribution in the low energy data (points) and Monte Carlo (magenta
line). The quantity is not well described by the simulation.

(low E ′
e). The performance of the correction at low E ′

e was checked in an independent

study using radiative events. The E′

e

p
distribution after both corrections is shown in

Fig. 6.4.
The momentum smearing correction is evaluated separately for the low energy,

medium energy and high energy data analyses. The 1% charge flip correction holds for
all three analyses.

6.4.5 Efficiency of the rlog Cut

Fig. 6.21 shows the quality of description of the rlog variable. The peak position in
data and Monte Carlo is different and also the tail, where the cut on rlog < 5 cm is
applied, is not well described. Therefore, it is necessary to check of the efficiency of
the rlog cut used in the analysis.

The efficiency of the rlog cut is monitored together with the cut on Ehad

Etot
< 0.15.

These two cuts are removed in the monitoring sample. Since the DJANGO Monte Carlo
does not contain photoproduction background events it is important to remove this
background from data. This is achieved by the wrong charge background subtraction.
It is important to mention that the charge asymmetry changes with the rlog cut which
makes the monitoring more complicated. The asymmetry for the corresponding rlog
and Ehad

Etot
cuts is checked using tagged events.

The efficiency correction is up to 5% at high y and it is given in Table 6.15.

6.4.6 Hadronic Final State Calibration

The FL and FD
L analyses use the iterative calibration method for the calibration

of hadronic final state particles. The method is described in detail in Part A. The
introduction to hadronic final state calibrations, the explanation of how the iterative
calibration method works and how the calibration constants are derived together
with the problems encountered during the extraction of the constants can be found
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y range correction

y > 0.8 0.95 ± 0.03

0.7 < y < 0.8 0.965 ± 0.015

0.6 < y < 0.7 0.989 ± 0.005

Table 6.15: rlog efficiency correction.

there. In this section, only the performance of the calibration in the FL analysis is
discussed.

The iterative calibration method is designed as a low pT calibration suitable
for hadronic final states with total transverse momenta below 10 GeV. This pT range
is compatible with the analysis described here. Inclusive final states were used to
derive the calibration constants for this method which makes it in particular suitable
for inclusive measurements.

There are 20 calibration constants used in the iterative calibration method.
They correspond to 10 slices in the polar angle θ that roughly correspond to the
calorimeter wheels8. Each wheel i has a separate calibration constant for its electro-
magnetic and hadronic part denoted as αi

em and αi
had, respectively. Tracks are excluded

from the calibration. Therefore, the hadronic final state particles that take the en-
ergy measurement from the tracker and not from the calorimeter are not calibrated.
Momentum of every other hadronic final state particle detected within the θ range
corresponding to the calorimeter wheel i is scaled by a factor of (1+αi

em) or (1+αi
had),

depending on whether its cluster comes from an electromagnetic or hadronic part of
the calorimeter. The calibration constants for the iterative calibration method are
derived separately for all data taking periods, every time independently for data and
three Monte Carlo models. The FL analysis uses the constants derived for 06/07 e+

period for data and DJANGO(CDM) model. The same constants are used for all high
energy, low energy and medium energy data taking periods. There are no separate
calibration constants available for the runs with reduced proton beam energy.

There is one important issue of the iterative calibration method that has to
be stressed here. The method does not deliver a calibration constant for the hadronic
SPACAL αhad

SPACAL. The hadronic SPACAL has only one radiation length and therefore
it is extremely hard to calibrate. However, the hadronic SPACAL calibration constant
can be tuned directly in the analysis.

Calibration of the Hadronic SPACAL

In order to tune the hadronic SPACAL calibration constant αhad
SPACAL, it is useful to

look at events where the hadronic final state goes in the backward (−z) direction. The
prescription for hadronic method of kinematics reconstruction (see Eq. 6.28) tells that
the inelasticity yh is proportional to E − pz of the hadronic final state. This implies

8There are 8 separate wheels in the LAr calorimeter (see Fig 4.5). Another θ range corresponds
to the SPACAL calorimeter. One additional wheel is considered in the forward part of the LAr
calorimeter.
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Run period 1 + (αhad
SPACAL)data 1 + (αhad

SPACAL)MC

07 e+ Ep = 920 GeV 1.25 1.55

Ep = 460 GeV 1.25 1.55

Ep = 575 GeV 1.25 1.55

Table 6.16: Calibration of the hadronic SPACAL.

that events with hadronic final state going in the backward direction have high values
of inelasticity. Therefore, the high y events are in particular important for setting
αhad
SPACAL, and E − pz is going to be used for its determination.

As already mentioned in Section 6.4.1, the sub-triggers ST3 and ST8 contain
hadronic SPACAL trigger elements that are sources of the trigger inefficiency. There-
fore, it is desirable not to use these sub-triggers in the studies described here. Only
the sub-trigger ST0 is required in the data samples. The samples are selected with the
analysis selection where the cut on E − pz is removed in order to see the lower tails
of the E − pz distributions as well.

First, the E − pz distribution is studied in the sample where all the calibration
constants are applied except for αhad

SPACAL which is set to 0. The top row of plots in
Fig. 6.22 shows such distributions in the low energy data and Monte Carlo. The left plot
displays E − pz in the whole y range and there is no significant disagreement between
data and Monte Carlo visible there. On the contrary, the right plot shows the E − pz
distribution only at y > 0.38 which is a region more sensitive to the hadronic SPACAL.
This plot is used to determine the value of αhad

SPACAL. The momentum conservation
law implies that the correct E − pz value is 55 GeV. Therefore, (αhad

SPACAL)data and
(αhad

SPACAL)MC are set such that the mean of the E − pz peak in the plot is shifted to
55 GeV. The derived calibration factors are (αhad

SPACAL)data = 0.25 and (αhad
SPACAL)MC =

0.55 and hold for all three data taking periods. The bottom row of the plots in Fig. 6.22
show the E − pz distributions after the final calibration.

Performance of the Calibration

The iterative calibration method makes use of the transverse momentum balance
pbalT in order to derive the calibration constants. The balance is defined as

pbalT =
pHFS
T

peT
(6.48)

where pHFS
T is the transverse component of the total momentum of the hadronic final

state and peT denotes the transverse momentum of the scattered lepton. The balance
pbalT can be used to check the performance of hadronic calibration methods in general.
The aim of the hadronic calibrations in first place is an agreement of the transverse
momentum balance between data and Monte Carlo, the so-called hadronic energy scale.
The agreement of pbalT is usually evaluated as a double-ratio

DR(pbalT ) =
〈pbalT 〉data
〈pbalT 〉MC

, (6.49)
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(a) E − pz after the iterative calibration without any calibration of hadronic SPACAL. The
quality of the description at high y (right) is used to determine the hadronic SPACAL
calibration factor αhad

SPACAL.
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(b) E − pz after the iterative calibration with tuned hadronic SPACAL calibration factor.
The E − pz peak is at 55GeV and it is well described by the simulation.

Figure 6.22: The E − pz distribution in the low energy data (points) and Monte Carlo
(magenta line) for all events in the analysis sample (left) and y > 0.38 (right). At high
y, the hadronic final state is expected to occupy the SPACAL calorimeter.
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that is the ratio of the mean values of the pbalT distributions in data and Monte Carlo.
The mean values are obtained in Gaussian fits. The iterative calibration method
claims to reach an agreement between data and Monte Carlo better than 2%. The
calibration is also expected to bring the pbalT in data and Monte Carlo closer to unity,
i.e. improve the absolute calibration. A good calibration should also conserve the
width of the pbalT peak, or even better, it can make the pbalT peak more narrow. To check
this, the width σ of the pbalT peak scaled by its mean position µ can be compared before
and after the calibration. A good calibration should not increase the quantity σ

µ
.

The performance of the calibration is checked in the following way. The pT balance
is studied as a function of the transverse momentum of the scattered lepton peT , Q2

e, the
polar angle of the hadronic final state θeh and the inelasticity ye. All these quantities are
calculated from the information of the scattered positron only, and thus are independent
of the hadronic final state. The angle θeh reconstructed by the electron method is defined
as

tan θeh =
2Ee −E ′

e + pez
peT

. (6.50)

As quoted above, the double ratio DR(pbalT ) should lie within 2% around unity.

Fig. 6.23 compares the absolute and the relative calibration between data and Monte
Carlo for the low energy data taking period. The first row of the plots show the pbalT

in data and Monte Carlo, the second row compares σ
µ

of the pbalT peaks in data and

Monte Carlo. The third row shows the double ratio DR(pbalT ), where the fit error on
µ of the corresponding peak in the numerator and denominator is used in order to
calculate the error of the ratio. The different columns show these quantities studied
as a function of peT , Q2

e, θ
e
h and ye. All these plots prove a good consistency between

data and Monte Carlo. The double ratios agree within 2% which corresponds to the
expected performance of the iterative calibration method.

Figures 6.24, 6.25, 6.26 and 6.27 show the Gaussian fits to the pbalT peaks in bins of
peT , Q2

e, θ
e
h and ye, respectively. The parameters of these fits are used in the previous

Fig. 6.23. However, not all bins are considered there. The first two peT bins do not
reveal the mean position of the distribution properly (see Fig. 6.24) and therefore are
excluded from the comparison in Fig. 6.23. The same holds for the lowest Q2

e bin and
the highest non-empty ye bin (see Fig. 6.25 and 6.27). The lowest non-empty bin in θeh
is removed on grounds of low statistics.

So far, the calibration performance was described in terms of the transverse com-
ponent of the 4-momentum. The performance can also be independently checked with
Σ = (E − pz)h which uses the remaining two components of the 4-momentum, E and
pz. The variable Σ is directly related to the inelasticity yh calculated from the hadron
reconstruction method (see Eq. 6.28). In order to check the performance of the calibra-
tion, yh should be compared to the inelasticity y reconstructed in an independent way
from the hadronic final state. The electron reconstruction gives a completely indepen-
dent inelasticity (see Eq. 6.27). However, the electron method has a poor resolution at
low y where the dominant portion of statistics is. The inelasticity reconstructed using
the double-angle method yda (see Eq. 6.30) has a good resolution even at low y and
therefore is used to balance the yh. yda is not completely independent of the hadronic
final state but it relies on the independent information from the scattered electron as
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Figure 6.23: pbalT (top row) and σ
µ

(middle row) in data (black) and Monte Carlo (red) together with DR(pbalT ) after the iterative

calibration shown in bins of peT , Q2
e, θ

e
h and ye. The low energy data are shown. The calibration successfully pushes the hadronic energy

scale uncertainty down to 2%.
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Figure 6.24: Fits to the pbalT in data (black) and Monte Carlo (red) in bins of peT . In
the lowest two peT bins, the fits do not reproduce the peak position properly because
of the large tails at higher values.

well. Analogously to the pbalT and DR(pbalT ) variables, a y-balance

ybal =
yh
yda

(6.51)

and its double ratio

DR(ybal) =
〈ybal〉data
〈ybal〉MC

(6.52)

are introduced.
Fig. 6.28 shows ybal in bins of peT , Q2

e, θ
e
h and ye after the calibration. Again, the

agreement between data and Monte Carlo is within 2%.

6.5 Description of Data

Fig. 6.29, 6.30 and 6.31 show the control plots for the high energy, low energy and
medium energy data, respectively. The distributions of ye, Q

2, E − pz, rSPACAL and
zvtx are shown in the figures. In all cases data (points) are well described by the sum of
the simulation (magenta line) and the background determined from data (green area).

In the low and medium energy data, the background at y > ytrans is determined
using the wrong charged events. Data at y > ytrans in the plots are only the events
with positive reconstructed charge of the scattered positron N+. The green histogram
in this y region corresponds to the events with negative reconstructed charge of the
scattered positron candidate. These events are corrected for the background charge
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Figure 6.25: Fits to the pbalT in data (black) and Monte Carlo (red) in bins of Q2. In
the lowest Q2 bin, the fits do not reproduce the peak position properly because of the
large tails at higher values.
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Figure 6.26: Fits to the pbalT in data (black) and Monte Carlo (red) in bins of θeh.
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Figure 6.27: Fits to the pbalT in data (black) and Monte Carlo (red) in bins of ye. In the
highest non-empty ye bin, the fits do not reproduce the peak position properly because
of the large tails at higher values.

asymmetry as described in Section 6.3.8. The plotted background events therefore
correspond to asymN−.

The remaining y region, y < ytrans, display events regardless of the charge measure-
ment. The background events here are determined from the tagged events.

The high energy data show the tagged background in the whole y range.

The DJANGO simulation based on the H1 2009 PDF set with R = 0.25 gives very
good description of data.

6.6 Extraction of the Reduced Cross Section

The reduced cross section in this FL analysis is measured in bins of Q2 and y, and it
is related to the double differenctial cross section in the following way

σr =
dσ

dxdQ2
· Q4x

2πα2Y+
. (6.53)

The following paragraphs give detailed description of how the differential cross section
is extracted from the data.
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Figure 6.28: ybal (top row) and σ
µ

(middle row) in data (black) and Monte Carlo (red) together with DR(ybal) after the iterative

calibration shown in bins of peT , Q2
e, θ

e
h and ye. The low energy data are shown. The ybal agrees within 2%.
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Figure 6.29: Description of the positron energy, ye, Q
2, E − pz, rSPACAL and zvtx in the high energy data sample. Data (points) are

well described by the sum of the signal Monte Carlo (magenta line) and background (green area) which is determined from data.
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Figure 6.30: Description of the positron energy, ye, Q
2, E − pz, rSPACAL and zvtx in the low energy data sample. Data (points) are

well described by the sum of the signal Monte Carlo (magenta line) and background (green area) which is determined from data.
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Figure 6.31: Description of the positron energy, ye, Q
2, E − pz, rSPACAL and zvtx in the middle energy data sample. Data (points) are

well described by the sum of the signal Monte Carlo (magenta line) and background (green area) which is determined from data.
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6.6.1 Cross-Section Definition

The differential cross section is standardly defined by the following equation

dσdata

dxdQ2
=

Ndata −Nbg

A · L · B ·
σnrad
gen

σrad
gen

(6.54)

where B is the bin centre correction, A is the smeared acceptance and L is the lu-
minosity. In order to measure the cross section, one first has to make sure that the
analysed data sample is properly described by Monte Carlo. Monte Carlo not only
reflects our knowledge of the studied process, but it also accounts for hadronisation,
detector effects and initial and final state radiation. In order to measure the cross
section of the process only, all these effects have to be taken out.

The acceptance correction A corrects from the cross section measured at the recon-
structed level in the radiative Monte Carlo (with the initial and final state radiation
turned on) to the cross section at the generator level.

A =
N rad

rec

N rad
gen

(6.55)

The bin centre correction B accounts for the difference between the actual cross
section at the chosen central values of Q2 and x with respect to the average cross
section in the phase space of the bin.

B =
σnrad
gen

dσnrad
gen

dxdQ2

(6.56)

where non-radiative Monte Carlo (with the initial and final state radiation turned off)
is used in the calculation.

The difference between the cross section in the radiative and non-radiative Monte
Carlo is accounted for in the radiative correction which corresponds to the last term
in Eq. 6.54.

Inserting the definitions of the acceptance correction and bin centre corrections into
Eq. 6.54 leads to

dσdata

dxdQ2
=

(Ndata −Nbg) ·N rad
gen

N rad
rec · L · σnrad

gen

·
dσnrad

gen

dxdQ2
·
σnrad
gen

σrad
gen

(6.57)

which can be simplified by using N = σL to

dσdata

dxdQ2
=

(Ndata −Nbg)

N rad
rec

·
dσnrad

gen

dxdQ2
(6.58)

Therefore the cross section measurement requires just the number of events in a given
bin in data and at the reconstructed level of the radiative Monte Carlo (used to describe
the data set). The last term in Eq. 6.58 corresponds to the differential cross section at
the generator level in the non-radiative Monte Carlo. It is actually an analytical cross
section of the studied process that has been plugged into the Monte Carlo.
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Figure 6.32: Reduced cross sections from low (top) and medium (bottom) energy data
at 24 < Q2 < 32 GeV2. Data from this analysis (black points) are compared to the
results from the official H1 measurement (open points) and the prediction from H1
2009 PDF (red line). The ratio plots (right) show the agreement between the results
from the two analyses.

6.6.2 Cross Section

At the level of control plots, the data are well described by the DJANGO simulation
based on the H1 2009 PDF set with R = 0.25. Therefore, the same quality is expected
in the cross section description, since the cross section extraction method simplifies
just to comparing number of reconstructed events (see Eq. 6.58).

In order to demonstrate the agreement of this analysis with the official H1 mea-
surement, the cross section for one bin in Q2 is shown in Fig. 6.32. Only the low and
medium energy data are compared since the high energy data sets are not the same in
the two analyses. The cross sections from these two independent measurements agree
well with each other.

6.7 Summary of the FL Analysis

The FL analysis presented here follows the measurement strategy of the official H1 FL

analysis. The cross sections and FL results are not shown here as the aim of this work
is the FD

L measurement. However, the results of the two analyses are in a very good
agreement and the level of understanding data has been shown in Section 6.5 in the
control plots. As the analysis is robust and consistent with the official H1 measurement
(see the cross section comparison in Section 6.6.2), it can be used as a solid basis for the



6.7. SUMMARY OF THE FL ANALYSIS 115

diffractive measurement. The data sample is further restricted by a diffractive selection
and the diffractive proton structure functions can be measured. The description of the
diffractive part of the analysis is described in the following chapter.
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Chapter 7

Longitudinal Proton Structure
Function in Diffraction

7.1 Data

The diffractive FD
L analysis utilises the same data sets as the inclusive FL analysis.

The final analysis data are selected in such a way that they are a sub-sample of the
data used for the FL measurement.

Since the diffractive events form only ∼ 10% of all DIS processes, more data at
Ep = 920 GeV are used in the FD

L analysis than in the FL analysis in order to increase
the statistical precision of the measurement. The high energy data sample consists of
two run periods here: 2006 e+ and 2007 e+ data.

The high energy data sets are analysed only at Q2 > 7 GeV2 because of the trigger
efficiency. The low and medium energy data do not have such limitation and can
be analysed down to Q2 = 2.5 GeV2. However, the low and medium energy data by
themselves are not sufficient to measure FD

L at 2.5 < Q2 < 7 GeV because of low
statistics. Therefore, the published cross sections from the HERA-I data analysis at
Ep = 820 GeV are used as well to make the FD

L measurement at low Q2 possible.

7.2 Monte Carlo

The FD
L analysis involves several Monte Carlo models for the event simulation.

7.2.1 Simulation of Signal Processes

The signal diffractive events are generated using the RAPGAP [77] generator. It
returns the events in three samples. The first one corresponds to the Pomeron exchange
with light quarks u, d, s, the second one gives the Pomeron exchange with the c quark
and the third one generates the Reggeon exchange.

The RAPGAP generator is based on the H1 2006 DPDF Fit B and uses only the
structure function FD

2 as the input reduced cross section, i.e. there is no FD
L in this

Monte Carlo. Therefore, the Monte Carlo cannot be expected to describe data at high
y where the longitudinal structure function contributes. This is a good approximation
for all analyses that do not attempt to study high inelasticities y. However, the high

117
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Figure 7.1: Description of the scattered positron energy in the low energy data (points)
by the sum of the signal Monte Carlo and background contributions. RAPGAP con-
tains only the FD

2 structure function and therefore does not describe the data well at
high y (low E ′

e) where the reduced cross section is suppressed by FD
L (a). The low

E ′
e region is described better when RAPGAP is reweighted to the full reduced cross

section from H1 2006 DPDF Fit B (b). The Monte Carlo is normalised to the area
(not to the luminosity).

y region is in particular important for the FD
L analysis, and it is desirable to use the

best knowledge of the high y region that is available. Therefore, the following weight
is applied to RAPGAP at generator level

w(σD
r ) =

σD
r (Fit B)

FD
2 (Fit B)

(7.1)

that changes the input FD
2 to σD

r . Fig. 7.1 illustrates the effect of the weight. It is
clear that RAGPAP with FD

2 only overestimates the real cross section at high y.
RAPGAP attempts to describe the whole phase space of inclusive diffractive events.

However, it is observed that the low MX states are poorly simulated since the vector
meson resonances are not well described by RAPGAP. Therefore, the RAPGAP Monte
Carlo is used together with the DIFFVM [78] Monte Carlo that generates diffractive
events for a particular vector meson resonance in the final state. There are four separate
DIFFVM event samples used in the FD

L analysis that correspond to the ρ, J/Ψ, φ and
ω resonances.

All signal Monte Carlo samples are listed in Table 7.1.

7.2.2 Simulation of Background Processes

There are four major sources of background in the FD
L analysis: photoproduction, QED-

Compton events, lepton pair production and smearing of the non-diffractive events into
the final selected diffractive sample.
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Description Monte Carlo Generator

Signal

Pomeron exchange (light quarks) RAPGAP

Pomeron exchange (c quark) RAPGAP

Reggeon exchange RAPGAP

ρ meson DIFFVM

J/Ψ meson DIFFVM

φ meson DIFFVM

ω meson DIFFVM

Background

QED-Compton events COMPTON

non-diffractive events DJANGO

Table 7.1: Monte Carlo used in the FD
L analysis.

The photoproduction events represent the dominant background contribution. How-
ever, they do not need to be simulated since a data driven procedure to remove this
background from the analysis sample is used. It is described in detail in Sections 6.3.8
and 7.3.6.

The QED-Compton events ep → epγ do not belong to deep inelastic scattering
sample. They form a background in both the FL and FD

L analyses. However, this back-
ground is negligible in the FL analysis, and it is further reduced by the anti-Compton
selection listed in Table 6.9. In the diffractive sample, the QED-Compton background
cannot be neglected. Since there is no hadronic final state in these events, the back-
ground contributes only at the region of MX ∼ 0 GeV. The events are simulated with
the COMPTON [79] Monte Carlo model.

Another class of background events that occupy the lowest MX region is the lepton
pair production. These events can be generated with the dedicated LPAIR [80] Monte
Carlo model. In the FD

L analysis, the background coming from QED-Compton events
and lepton pairs is modelled only by the COMPTON Monte Carlo where the normali-
sation of the Monte Carlo sample is modified so that the total background is described.
This approach is sufficient because both types of background have less than three final
state particles and contribute only at small MX to the final analysis sample.

As shown in Fig. 2.6, there is no sharp border between diffractive and standard DIS
events in the ηmax plot. ηmax is exactly the quantity used to select diffractive sample.
Details on the selection are given in Section 7.3.1. Therefore, the background from
non-diffractive events is expected at high values of ηmax. The standard DIS events are
generated using the DJANGO Monte Carlo. However, the DJANGO used in the FL

analysis also generates diffractive events. In the FD
L analysis, the DJANGO generator

is used only to provide a non-diffractive sample. In order to avoid double-counting
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Monte Carlo Allowed phase space

DJANGO xIP > 0.15 or MY > 5.0 GeV

RAPGAP xIP < 0.15 or MY ≤ Mproton

Table 7.2: Combination of the DJANGO and RAPGAP simulations.

RAPGAP and DJANGO are combined using the cuts listed in Table 7.2.

7.2.3 Simulation of Proton Dissociation

The RAPGAP Monte Carlo generates only events with elastic proton. However, there
is also a class of diffractive events where the proton does not stay intact and dissociates
into the final state Y , as indicated in Fig. 2.7. The difference between the diffractive
cross section of events with elastic proton and a proton that dissociates is studied in
Section 7.6.4. The DIFFVM Monte Carlo is used for these studies.

7.3 Selection of Diffractive DIS Events

Diffractive events in this analysis are selected on the basis of a large rapidity gap that
separates two distinct final state systems: the proton system Y going in the direction
of the proton beam, and the rest of the hadronic final state X . The rapidity gap is a
result of the exchange of a colour singlet.

The large rapidity gap selection asks for a hadronic final state X contained in the
main detector and looks for a rapidity gap that is reflected in absence of activity in
the forward region, close to the proton beam pipe. Therefore, the forward parts of the
H1 detector that are sensitive to the energy flow are involved in the diffractive event
selection.

It is experimentally possible to measure the scattered proton in the diffractive
processes with the Forward Proton Spectrometer (FPS) or the Very Forward Proton
Spectrometer (VFPS). These tracking detectors can either be used only as a tagger of
the scattered protons, or they can reconstruct MY and t as well. The large rapidity
method does not allow that because the scattered proton is not detected. The method
of detecting the leading proton is very limited in statistics by the acceptance of the
forward spectrometers. Therefore, the analysis presented here uses the large rapdity
gap selection method. This technique relies on indirect detection of the scattered
proton by demanding no activity in the forward parts of the H1 detector. Due to
the acceptance of the detector around the beam pipe in the forward region, the large
rapidity gap method not only selects events where the proton remains intact but also
keeps events where the proton dissociates into a system with MY < 1.6 GeV. Therefore,
the diffractive cross section measured by the large rapidity gap method is defined for
the kinematic range

MY < 1.6 GeV, |t| < 1.0 GeV2. (7.2)
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Figure 7.2: Distribution of the ηmax variable in the inclusive high energy data (black
points). The DJANGO Monte Carlo used in the FL analysis (magenta line) does not
simulate diffractive events.

7.3.1 ηmax Selection

First of all, a rapidity gap is required in the forward part of the LAr calorimeter.
Rapidity is defined as

y =
1

2
log

E + pz
E − pz

=
1

2
log

(E + pz)
2

m2 + p2T
. (7.3)

For a massless particle, rapidity is directly related to the polar angle θ. Pseudorapidity,
a m = 0 GeV limit of the rapidity, reads

η = y|m=0 = log
E + pz
pT

= − log(tan
θ

2
). (7.4)

The definition implies that the forward region corresponds to the higher values of
pseudorapidity.

The ηmax variable is used in order to require the rapidity gap. ηmax corresponds to
the pseudorapidity of the most forward cluster found in the LAr calorimeter that has an
energy higher than a certain threshold which cuts away the calorimeter noise. Fig. 7.2
shows the ηmax distribution in the high energy data in the FL analysis. The peak
at the highest values of ηmax corresponds to the non-diffractive events and contains
approximately one order of magnitude more events than the plateau seen at lower
ηmax. The events in the plateau do not show any forward activity and therefore are
likely to be diffractive events. As a rapidity gap selection for diffractive events, a cut
on ηmax < 3.3 is introduced. The right edge of the distribution corresponds to the
forward acceptance of the LAr calorimeter. The DJANGO Monte Carlo used in the
FL analysis does not simulate diffractive events correctly. Therefore the plateau in the
Monte Carlo is significantly lower than in data.

In order to use the ηmax selection, it is important to be able to distinguish the
signal from a hadronic final state particle and a calorimeter noise. Fig. 7.3 shows the
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Figure 7.3: Description of the ηmax variable using the cluster energy noise threshold of
400 MeV (a) and 800 MeV (b). Diffractive high energy data are plotted.

ηmax distribution in the high energy diffractive analysis using an energy threshold of
400 MeV and 800 MeV. Since the η800MeV

max variable is described better by the simulation,
the 800 MeV threshold is used for the ηmax cut.

7.3.2 Forward Detector Selection

Forward Detectors

The principle component of the forward detector selection is the forward muon detector.
It was originally designed to measure high energy muons but it was also found to be
sensitive to secondary particles from proton dissociation decay products interacting
with the beam pipe. Therefore, it is efficient in rejecting proton dissociation events.
It has an acceptance in the region of 5.0 < η < 6.5. Only the three pre-toroid layers
of FMD are used in the selection as they are shielded by synchrotron radiation by the
toroidal magnet unlike the noisier post-toroidal layers. The demand on no activity in
FMD is such that at most 1 hit pair is detected in the first two double-layers and at
most 2 hit pairs are in the three pre-toroid double-layers.

The large rapidity gap requirement also involves the Plug calorimeter. It covers the
rapidity range 3.5 < η < 5.5 which fills the area between the FMD and LAr accep-
tances. No activity in the Plug detector is ensured by the request on the reconstructed
energy EP lug < 3 GeV.

The last detector taking part in the forward detector selection is the forward tagger
system station located 28 m away from the central detector. It allows to detect the
secondary hadrons from proton dissociation at very large rapidities around the proton
direction. The presence of zero hits in this detector is required.

The forward detector selection is listed in Table 7.3.
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Selection Description Values

Hit pairs in the first 2 FMD layers NFMD
1+2 ≤ 1

Hit pairs in the first 3 FMD layers NFMD
1+2+3 ≤ 2

Energy in the Plug EP lug < 3 GeV

Hits in the FTS 28m station NFTS
28m = 0

Table 7.3: The forward detector selection.

Run Selection

The run selection for the FD
L analysis is similar as in the FL analysis. The only difference

is in an additional requirement on forward sub-detectors. The forward muon detector
and the Plug calorimeter are demanded to be turned on since it is crucial for the large
rapidity gap selection. All run selection criteria for the diffractive analysis are listed in
Table 7.4.

After the run selection, there are 82.1 pb−1 of 2006 e+ data with Ep = 920 GeV,
45.7 pb−1 2007 e+ data with Ep = 920 GeV, 10.9 pb−1 of the low energy data (Ep =
460 GeV) and 5.9 pb−1 of the medium energy data (Ep = 575 GeV). These data samples
are further reduced by rejection of noisy runs which is in particular strong in the low
and medium energy data.

Rejection of Noisy Runs

The forward detectors are situated close to the beam pipe and may suffer from high
level of noise caused by synchrotron radiation. The synchrotron radiation was an issue
especially at the beginning of the low energy data taking. The beam was not well
focused and the beam halo produced a constant signal in the forward detectors.

In order to study the noise in the forward detectors an unbiased selection of events
is needed. The events from so-called random trigger files can be used. Random trigger
files contain events that are randomly triggered and therefore no physical process is
preferred there. They can be used as an independent sample in order to study the
noise in the forward detectors.

The noise level is studied in the following way. In every run, events that pass the
rapidity gap requirement in the LAr calorimeter ηmax < 3.3 are selected. These are
events with no forward activity in the central detector, and therefore it is expected to
observe no activity in the forward detectors as well. Therefore, the noise is evaluated
as a fraction of events that fail the forward detector selection in the ηmax < 3.3 sample.

noise =
ηmax < 3.3 & activity in the forward detectors

ηmax < 3.3
. (7.5)

This quantity is evaluated for every run in the random trigger files. Different forward
detectors can be considered in the selection.

Fig. 7.4(a) shows the noise distribution in the low energy random trigger files. A
combination of the FMD and Plug selections is taken into account. An activity in at
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Run period 2006 e+ Ep = 920 GeV 2007 e+ Ep = 920 GeV Ep = 460 GeV Ep = 575 GeV

Run range 468531 − 492541 492559 − 500611 500919 − 507824 507843 − 511079

Sub-triggers ST0, ST7, ST8

Minimal luminosity 1 nb−1

Prescale limit 1

Sub-detectors CJC1, CJC2, LAR, TOF, LUMI, CIP, BST, SPAC

FMD, Plug

Vertex −35 < zvtx < 35 cm

Table 7.4: Run selection.
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Figure 7.4: Fraction of events in a run that fail the FMD and Plug selection (a). Ran-
dom trigger files for low energy data are analysed. A 40% noise threshold is considered
in the run selection (noisy runs are plotted in red). The run dependence of the noise
levels in data (b) is well simulated in the Monte Carlo (c).

least one of these detectors has to be seen in order to contribute to the numerator of
Eq. 7.5. The noise fraction is plotted also in Fig. 7.4(b) and 7.4(c) as a function of run
number in data and Monte Carlo, respectively. The noise simulation in Monte Carlo
describes the run dependence well, therefore only the runs with extreme noise levels
are rejected. A cut on noise < 40% is chosen and the excluded runs are plotted in red.
The noisy period at the beginning of the low energy data taking is clearly visible in
the plot and removed by the selection. Fig. 7.5 shows the distribution of noise in the
medium energy random trigger files. The amount of noisy runs there is smaller than
in the low energy data.

The FTS 28m station is not considered in the study of the noisy runs. It is not
sensitive to the forward noise caused by beam halo and the noise levels there are
negligible. The noise quantity where only the FTS 28m station is studied is plotted in
Fig. 7.6. This detector is in general quiet and not very efficient in detecting forward
activity (see Section 7.4.1). However, it can be used in addition to the FMD and Plug
detectors in order to slightly increase their tagging efficiency.

The rejection of the noisy runs results in significant reduction of statistics in the
low and medium energy data. Nevertheless, it is crucial to retain low levels of noise
in the forward detectors in order to ensure a high efficiency of the large rapidity gap
selection. Table 7.5 shows the luminosity before and after the rejection of noisy runs
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Figure 7.5: Fraction of events in a run that fail the FMD and Plug selection (a).
Random trigger files for medium energy data are analysed. A 40% noise threshold is
considered in the run selection (noisy runs are plotted in red). The run dependence of
the noise levels in data is shown (b).
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Figure 7.6: Fraction of events in a run that fail the FTS 28m station selection. Random
trigger files for low energy data are analysed.
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Run period Run Range Luminosity

all runs 40% noise 20% noise

2006 e+ Ep = 920 GeV 468531 − 492541 81.7 pb−1 81.3 pb−1 72.8 pb−1

2007 e+ Ep = 920 GeV 492559 − 500611 45.7 pb−1 45.5 pb−1 43.8 pb−1

Ep = 460 GeV 500919 − 507824 10.7 pb−1 8.5 pb−1 5.9 pb−1

Ep = 575 GeV 507843 − 511079 5.9 pb−1 5.2 pb−1 4.2 pb−1

Table 7.5: Run ranges and luminosity. The 40% noise cut is used in the analysis. The
H1 FD

L preliminary results (see Appendix E) were obtained with the harder cut on
20%.

in all analysed data sets in the FD
L analysis. The analysis uses the 40% noise cut.

7.3.3 Reconstruction of Diffractive Kinematics

The diffractive event kinematics are reconstructed using the mass of the system X .
Standardly, MX is obtained from

M2
X = (E2 − p2)h

ye
yh

. (7.6)

Neglecting the transverse momentum of the hadrons and using the definition of yh in
Eq. 6.28, this method of reconstructing M2

X reduces to 2Ee(E+pz)hye, which improves
the resolution.

Furthermore, an additional correction to the reconstruction of MX is applied in the

Monte Carlo based on the study of
M2

X,gen

M2
X,rec

. Fig. 7.7 shows the fraction of generated

and reconstructed M2
X in bins of ηmax. The entries in the plot were obtained from

Gaussian fits to the
M2

X,gen

M2
X,rec

distributions in corresponding ηmax bins. The plot shows

an overall under-reconstruction of MX which slightly increases for high values of ηmax.
The following correction to the reconstructed MX is derived from the linear fit to the
displayed dependence

δ(M2
X) = 1.18 + 0.004ηmax. (7.7)

The correction is applied to both data and simulation in order to accurately reconstruct
MX . The final reconstruction of MX is then

M2
X = (E2 − p2)h

ye
yh

δ(M2
X). (7.8)

As t cannot be measured in a diffractive sample selected by the large rapidity gap
method, the diffractive kinematics are reconstructed in the following way (compare to
Eq. 2.37 and 2.38)

β =
Q2

Q2 + M2
X

, xIP =
x

β
. (7.9)
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The linear fit to this plot gives the correction applied to the reconstructed M2
X as a

function of ηmax. The bins at the edges are statistically limited and therefore are not
involved in the fit.

Selection Description Values

Box cut ηmax < −1.7, rSPACAL < 40 cm

Table 7.6: CJC acceptance cut.

7.3.4 Vertex Requirement

CJC Vertex

The topology of the diffractive events can be a source of an inefficiency of vertex
reconstruction using the tracks in the CJC detector. The large rapidity gap separating
the final states X and Y can lead to a lack of CJC tracks coming from the hadronic
final state. There is a requirement of a track–cluster link for the scattered positron,
where the track can be reconstructed either in the CJC or the BST detector. This
means that there are diffractive events with no or very limited activity in CJC where a
very low efficiency of the CJC vertex reconstruction has to be expected. The efficiency
of such events will be discussed in detail in Section 7.4.2. These events are excluded
from the analysis sample. The problematic region is identified with ηmax < −1.7 and
rSPACAL < 40 cm, where the value of ηmax corresponds to the polar angle of 160◦ which
is the backward edge of the CJC detector. The range of rSPACAL ∼ 40 cm roughly
corresponds to the region where the BST acceptance takes over the acceptance of the
CJC tracker. The CJC acceptance cut is shown in Table 7.6. The topology of an
event is highly correlated with its kinematics. Therefore, such a geometrical cut has
an influence on a certain part of phase space. It will be shown that mainly the low xIP

events are affected by the cut.

7.3.5 The Final Diffractive Selection

The FD
L analysis uses the large rapidity gap selection method. All the cuts described

above ensure there is no activity in the forward region, i.e. there is a gap separating the
proton final state Y from the hadronic final system X . In order to make sure that the
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Selection Description Values

Rapidity gap η800MeV
max < 3.3

Hit pairs in the first 2 FMD layers nFMD
1+2 ≤ 1

Hit pairs in the first 3 FMD layers nFMD
1+2+3 ≤ 2

Energy in the Plug EP lug < 3 GeV

Hits in the FTS 28m station NFTS
28m = 0

xIP cut 0.0001 < xIP < 0.01

Final state X exists NHFS
particles ≥ 1

Acceptance CJC accepatance cut

Inelasticity yav > 0.1

Table 7.7: The diffractive selection.

final system X exists, at least one reconstructed hadronic final state particle is required.
The analysis attempts to measure FD

L in the kinematical range of 0.0001 < xIP < 0.01,
therefore a cut on xIP is applied as well.

A cut on yav > 0.1 is also introduced to accompany the lower cut on ye in the
analysis selection. The electron reconstruction method has poor resolution at low
y. The average reconstruction method has better resolution there since it also involves
hadronic final state in the reconstruction. The FL analysis does not require a specific
final state, it is a fully inclusive analysis. The FD

L analysis is also an inclusive analysis,
but it uses the hadronic final state in the diffractive kinematic reconstruction and in
the large rapidity gap selection. Therefore, it makes sense to take the advantage of the
better low y resolution of the average reconstruction method.

7.3.6 Photoproduction Background Subtraction

The background subtraction strategy in the FL analysis combines both the wrong
charge background subtraction at y > ytrans and the tagged events subtraction at
y < ytrans. The negative charged tagged events are scaled by 2

acctagger
in Eq. 6.32 where

acctagger = 0.2 is the tagger acceptance.

In the FD
L analysis, the statistics of the tagged events is very limited, and the large

correction would therefore lead to big statistical fluctuations in the signal sample, after
the background subtraction. Therefore, the tagged background is not used.

The wrong charge background subtraction could be used instead of the tagged event
subtraction at lower E ′

e. However, it strongly relies on the charge reconstruction which
is poorly modelled at lower E ′

e in the simulation (see Fig. 6.20(b)). The amount of
mis-reconstructed charges in data and Monte Carlo is different at lower E ′

e which makes
the wrong charge background subtraction technique unreliable there.

The decision is taken to perform the wrong charge background subtraction only at
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y range Background subtraction technique

y > 0.6 wrong charge background subtraction

Nsignal = Nall − (1 + asym)N− = N+ − asymN−

Table 7.8: Photoproduction background subtraction strategy in the FD
L analysis.
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background seen in Monte Carlo (red line)
contains only the charge mis-reconstructed
signal events. The difference between data
and Monte Carlo shows the amount of photo-
production background. However, the wrong
charge background is subtracted as a whole
(for both data and Monte Carlo).
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is also summed with the wrong charge back-
ground from data.

Figure 7.8: Background in the low energy data sample.

y > 0.6 for all data sets1. The expected amount of photoproduction background at
lower y is negligible with respect to the statistical precision of the diffractive analysis.
Any attempt to remove this background either by using tagged events or wrong charge
events is not reliable because of the reasons given above. No background is subtracted
in the remaining region. The photoproduction background subtraction strategy is also
given in Table 7.8, and the amount of wrong charge background in the low energy data
sample is illustrated in Fig. 7.8.

1This means that no background is subtracted in the high energy data since they are analysed only
in the region of 0.1 < y < 0.56.



7.4. ACCURACY OF THE SIMULATION 131

NmFmu1
0 10 20

0

50

100

150

3
10×

NmFmu1
0 10 20

0

50

100

150

3
10×

NmFmu2
0 10 20

0

50

100

150

3
10×

NmFmu2
0 10 20

0

50

100

150

3
10×

NmFmu3
0 10 20

0

50

100

150

3
10×

NmFmu3
0 10 20

0

50

100

150

3
10×

(a) Number of hit pairs in the first three FMD double-layers.
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Figure 7.9: Simulation of the FMD and Plug response. The non-diffractive Monte
Carlo (magenta) dominates at higher values and clearly denotes the difference between
diffractive and non-diffractive processes.

7.4 Efficiency of the Selection and Accuracy of the

Simulation

7.4.1 Efficiency of the Forward Detector Selection

The large rapidity gap selection requires an empty forward region of the H1 detector.
It involves a forward detector selection where no activity above certain noise threshold
is required. The noise in the forward detectors is simulated in the Monte Carlo and the
simulation reflects the time dependence of the noise levels as it is seen in data. Fig. 7.9
shows the number of hit pairs in the first three layers of the FMD detector and the
energy measured in the Plug calorimeter. Data after the analysis selection (without
the diffractive selection applied) are compared to the combination of non-diffractive
and diffractive Monte Carlo models. The simulation is not accurate and gives rather
poor description of data. Therefore, the activity of the forward detector selection has
to be monitored and a correction has to be evaluated, if needed.

The efficiency of forward activity tagging for a particular forward detector is stud-
ied using a data sample where a forward activity is required. It is ensured by an
anti-diffractive cut on ηmax > 3.3. The ηmax variable is defined only within the LAr
calorimeter, therefore it can be used to independently check the performance of the
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Detectors Efficiency Correction

Data Monte Carlo

FMD 0.771 ± 0.001 0.953 ± 0.004 0.809 ± 0.003

Plug 0.852 ± 0.001 0.874 ± 0.004 0.975 ± 0.004

FTS 28m 0.193 ± 0.001 0.256 ± 0.002 0.754 ± 0.006

FMD + Plug 0.933 ± 0.001 0.981 ± 0.004 0.952 ± 0.004

FMD + Plug + FTS 28m 0.946 ± 0.001 0.986 ± 0.004 0.959 ± 0.004

Table 7.9: Forward activity tagging efficiency of the forward detectors in the 2006 e+

data. The efficiency in Monte Carlo is higher and needs to be corrected.

forward detectors. The efficiency is simply monitored in the following way

ε(forward detector) =
top

bottom
(7.10)

where the bottom = monitor and top = monitor & cut selections are defined as:

• bottom

analysis selection

ηmax > 3.3

• top

bottom

activity in the forward detector

The activity in the forward detector means that the event fails to pass a requirement
of an empty detector listed in Table 7.3. The non-diffractive DJANGO Monte Carlo
model is used for this study. This model does not generate diffractive events, therefore
the events with a large rapidity gap are missing which makes this Monte Carlo suitable
to study the forward activity tagging.

Tables 7.9, 7.10, 7.11 and 7.12 list the efficiencies of the FMD, Plug, and FTS
28 m detectors separately and in combination for data and Monte Carlo. The tables
correspond to 06e+, 07e+ at Ep = 920 GeV, Ep = 460 GeV and Ep = 575 GeV run
periods, respectively. The study reveals that the Plug detector has the highest efficiency
in data and is simulated with the best precision. According to the simulation, FMD is
the most efficient one. The FTS 28m station alone has < 20% efficiency in data and it
brings ∼ 1% improvement to the combined efficiency of the FMD and Plug detectors.
In all cases, the Monte Carlo efficiency is larger than in data and has to be corrected.
The absolute efficiencies differ among the run periods. However, the correction factors
needed for Monte Carlo remain the same. Therefore, all data sets are combined together
in order to achieve the best precision possible for the determination of the Monte Carlo
efficiency correction.
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Detectors Efficiency Correction

Data Monte Carlo

FMD 0.760 ± 0.002 0.954 ± 0.005 0.797 ± 0.004

Plug 0.853 ± 0.002 0.872 ± 0.005 0.978 ± 0.006

FTS 28m 0.182 ± 0.001 0.251 ± 0.003 0.727 ± 0.008

FMD + Plug 0.932 ± 0.002 0.980 ± 0.005 0.951 ± 0.005

FMD + Plug + FTS 28m 0.944 ± 0.002 0.985 ± 0.005 0.958 ± 0.005

Table 7.10: Forward activity tagging efficiency of the forward detectors in the 2007 e+

data. The efficiency in Monte Carlo is higher and needs to be corrected.

Detectors Efficiency Correction

Data Monte Carlo

FMD 0.728 ± 0.003 0.912 ± 0.004 0.799 ± 0.005

Plug 0.809 ± 0.003 0.821 ± 0.003 0.986 ± 0.006

FTS 28m 0.075 ± 0.001 0.106 ± 0.001 0.707 ± 0.013

FMD + Plug 0.913 ± 0.004 0.959 ± 0.004 0.952 ± 0.005

FMD + Plug + FTS 28m 0.922 ± 0.004 0.965 ± 0.004 0.956 ± 0.005

Table 7.11: Forward activity tagging efficiency of the forward detectors in the low
energy data. The efficiency in Monte Carlo is higher and needs to be corrected.

Detectors Efficiency Correction

Data Monte Carlo

FMD 0.764 ± 0.004 0.932 ± 0.003 0.819 ± 0.005

Plug 0.825 ± 0.004 0.840 ± 0.003 0.983 ± 0.006

FTS 28m 0.107 ± 0.001 0.148 ± 0.001 0.723 ± 0.011

FMD + Plug 0.924 ± 0.004 0.969 ± 0.003 0.953 ± 0.005

FMD + Plug + FTS 28m 0.934 ± 0.004 0.975 ± 0.003 0.958 ± 0.005

Table 7.12: Forward activity tagging efficiency of the forward detectors in the medium
energy data. The efficiency in Monte Carlo is higher and needs to be corrected.
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Figure 7.10: CJC vertex reconstruction efficiency in low energy data. The efficiency is
monitored with (a) and without (b) an anti-diffractive selection applied in the moni-
toring sample. The CIP vertex is used for the monitoring.

7.4.2 Vertex Reconstruction Efficiency

The following text explains the CJC vertex reconstruction efficiency monitoring and
motivates the CJC acceptance cut introduced in Section 7.3.4.

CJC Vertex Reconstruction Efficiency

The vertex reconstruction efficiency in the diffractive analysis is monitored in a similar
way as in the inclusive FL analysis. The only difference is the presence of the diffractive
selection. The efficiency can be monitored by a CIP vertex or by a BCREC track. For
more details, see Section 6.4.2.

Possible sources of the CJC vertex reconstruction inefficiency are diffractive events
due to a lack of activity in the forward region. No forward activity naturally leads to
smaller amount of tracks that define a vertex. In order to study this effect, the CJC
vertex reconstruction efficiency can be monitored in an inclusive sample (as in the case
of the FL analysis) and compared to the efficiency monitored in the anti-diffractive
sample. The anti-diffractive selection can be defined by the ηmax > 3.3 cut and a
requirement of an activity in the forward detectors, i.e. failure to pass the forward
detector selection listed in Table 7.3. Fig. 7.10(a) shows the CJC vertex efficiency in
the low energy data monitored in the inclusive sample. Fig. 7.10(b) shows the CJC
vertex efficiency monitored in the anti-diffractive sample. Indeed, the efficiency in the
anti-diffractive sample is better than in the inclusive sample and diffractive events are
a source of the CJC vertex inefficiency.

The diffractive selection uses the CJC acceptance cut (see Table 7.6) that cuts away
the events with a poor CJC vertex reconstruction efficiency. The cut is motivated by
the fact that some diffractive events exist such that the final state misses the CJC
detector. The scattered lepton in these events has a track reconstructed in BST and
the hadronic final state X goes in the backward direction beyond the acceptance of
CJC. Therefore, it makes sense to study the vertex reconstruction efficiency in bins
of ηmax, which is the pseudorapidity of the most forward cluster of the final state X ,
and rSPACAL. The rSPACAL variable is sensitive to the position of the track, and three
regions of the CJC and BST detectors are considered:
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• 18 < rSPACAL < 30 cm : BST only region

• 30 < rSPACAL < 54 cm : CJC/BST overlap

• 54 < rSPACAL < 78 cm : CJC only region

The problematic region is expected for low rSPACAL where no CJC track of the scattered
lepton is available, and ηmax < −1.7 which is the pseudorapidity value corresponding
to the polar angle of 160◦ that defines the backward acceptance of the CJC detector.
The poor efficiency should be mainly visible for high y events and low xIP events. Since
the high y (low E ′

e) and low rSPACAL regions are in particular important for this study,
the CIP vertex is not suitable for the efficiency monitoring. The CIP acceptance puts
a lower limit on rSPACAL at ∼ 23 cm. The monitoring with the BCREC track does not
have such limitation. The study is done for the low and medium energy data where the
low E ′

e cut of 3.4 GeV is used. The combination of ST7 or ST8 sub-trigger is required
for the monitoring. The way of CJC vertex reconstruction efficiency monitoring is
summarized here.

ε(CJC vertex) =
top

bottom
(7.11)

where the bottom = monitor and top = monitor & cut selections are defined as:

• bottom

basic selection

diffractive selection

ST7 or ST8

CJC/BST validation

if CJC vertex exists : −35 < zCJC
vtx < 35 cm

• top

bottom

CJC vertex (−35 < zCJC
vtx < 35 cm)

Fig. 7.11 shows the CJC vertex reconstruction efficiency at 0.0001 < xIP < 0.001,
E ′

e < 15 GeV in bins of ηmax as a function of rSPACAL. As expected, the efficiency
is poor especially at low ηmax, low rSPACAL and low xIP . The efficiency for data at
E ′

e < 15 GeV, ηmax < −2.3, rSPACAL < 33 cm and 0.0001 < xIP < 0.001 is only around
30% and is not well described by the simulation. For ηmax > −1.7, the efficiency in
data is above 80% and it is in agreement with the simulation within 5%. The plots are
used to derive the CJC acceptance cut which removes the region at ηmax < −1.7 and
rSPACAL < 40 cm.

The CJC vertex reconstruction efficiency in the diffractive analysis in a wider E ′
e

and rSPACAL range and for 0.0001 < xIP < 0.01 is shown in Fig. 7.12. The figure
displays the effect of the CJC acceptance cut on both the absolute efficiency and the
agreement between data and the simulation.

Fig. 7.13 shows in detail the efficiency after the CJC acceptance cut is applied
separately for 0.001 < xIP < 0.01 and 0.0001 < xIP < 0.001. The data efficiency in the
higher xIP region is described within 2% by the simulation. The description in lower
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Figure 7.11: CJC vertex efficiency in the low energy data at 0.0001 < xIP < 0.001,
E ′

e < 15 GeV and low ηmax. The efficiency is shown as a function of rSPACAL in three
bins of ηmax. Data efficiency (black) is not described by the simulation (red) at low
ηmax where it drops below 30%. The region where the efficiency is below ∼ 80% is
excluded by the CJC acceptance cut of ηmax < −1.7 and rSPACAL < 40 cm.
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(a) The efficiency is low and not described by the simulation before the CJC acceptance cut
is applied.
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(b) RAPGAP gives a good description of the CJC vertex reconstruction after the CJC ac-
ceptance cut.

Figure 7.12: CJC vertex reconstruction efficiency in the low energy data (black) as
described by the simulation (red) in the full analysis xIP range of 0.0001 < xIP < 0.01.
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Figure 7.13: CJC vertex reconstruction efficiency in the low energy data after the CJC
acceptance cut in two bins of xIP . The left plots show the efficiency in data (black)
and Monte Carlo (red), the right plots show the ratio of the efficiencies.
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xIP is worse and an agreement within 10% is claimed. This level of agreement is taken
as a systematic uncertainty. No efficiency correction in the simulation is needed.

Contrary to the FL analysis, there is no CJC vertex efficiency correction applied in
the FD

L analysis.

7.4.3 Track–Cluster Link Efficiency

The FD
L analysis uses the same track–cluster link efficiency correction as the FL anal-

ysis. Finding a link between a reconstructed track and a cluster associated to the
scattered positron does not depend on hadronic final state and therefore there is no
difference between the efficiency correction for diffractive and non-diffractive events
expected. The efficiency is monitored in a similar way as described in Section 6.4.3.
The diffractive selection is used in addition, and different Monte Carlo models are
studied.

Fig. 7.14 compares the efficiency for the high energy data sample as it is seen in
the inclusive and the diffractive sample. In the diffractive analysis, the monitored
efficiency in data is seen to be lower than in the inclusive case. A more detailed study
reveals that this extra inefficiency comes from the QED-Compton and/or lepton pair
background in the monitoring sample, and that the COMPTON Monte Carlo does
not model the track–cluster link efficiency well. This background is also present in
the inclusive analysis but it is negligible there. Fig. 7.15 shows the ratio of the track–
cluster link efficiency in data and Monte Carlo with a cut on MX > 1 GeV applied in
the monitoring sample. The cut significantly reduces background from QED-Compton
and lepton pair production processes. Indeed, the efficiency both in data and Monte
Carlo is larger than without using the MX cut as shown in Fig. 7.14(b), and it is
consistent with the efficiency seen in the inclusive analysis as displayed in Fig. 7.14(a).
The efficiency is well modelled by the signal Monte Carlo. The remaining discrepancy
observed at the highest rSPACAL comes from the poor modelling of the background by
the COMPTON Monte Carlo.

The diffractive analysis uses the same track–cluster link efficiency correction as the
FL analysis.

7.4.4 Hadronic Final State Calibration

Hadronic final states in the FD
L analysis are calibrated with the iterative calibration

method which is briefly introduced in Section 6.4.6. The constants derived for 06/07
e+ period for data and RAPGAP model are applied here. The same constants are
used for all high energy, low energy and medium energy data since there is no separate
calibration constants available for the runs with reduced proton beam energy.

Calibration of the Hadronic SPACAL

The iterative calibration method does not provide calibration constants for the
hadronic SPACAL. Similarly as in the FL analysis, the corresponding calibration con-
stant is derived from the description of E − pz at high values of inelasticity y where a
backward activity is expected.

The momentum conservation law implies that E − pz of the whole final state is
equal to 55 GeV. In the FL analysis, the (αhad

SPACAL)data = 0.25 factor is used for all
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Figure 7.14: Track–cluster link efficiency in the high energy data (black) compared
to the simulation (red) after the efficiency correction derived in the inclusive analysis.
Therefore, the efficiency is well described by DJANGO in the inclusive analysis (a).
The efficiency in the diffractive analysis (b) is not well described by the combination
of RAGPAP, DIFFVM and COMPTON Monte Carlo models. A more detailed study
reveals that the description is spoiled just by the COMPTON Monte Carlo.
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Figure 7.15: Track–cluster link efficiency in the diffractive high energy data (black) as
described by the combination of RAPGAP, DIFFVM and COMPTON Monte Carlo
models (red) at MX > 1 GeV (a). The ratio of the efficiencies is shown in (b). The cut
reduces the COMPTON Monte Carlo contribution that produces low mass final states,
and data are well described by Monte Carlo after this cut. The remaining discrepancy
observed at the highest rSPACAL comes from the poor modelling of the background by
the COMPTON Monte Carlo.
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Figure 7.16: E − pz distribution in 2006 e+ (a) and 2007 e+ (b) data before the
calibration of hadronic SPACAL. The peak position in data is different between the
two periods. Therefore, different (αhad

SPACAL)data calibration factors are needed.

data sets. The same set of calibration constants for data is used in the diffractive
analysis and there is no reason to expect any difference in the calibration performance
in the diffractive sample. Fig. 7.16(b) shows the E − pz distribution at y > 0.38 for
2007 e+ period. All calibration factors except for αhad

SPACAL are applied in these plots for
both data and Monte Carlo. The mean value of the peak position in data determines
the calibration factor (αhad

SPACAL)data = 0.25 which corresponds to the one used in the
FL analysis. The FD

L analysis also looks at the 2006 e+ data. Fig. 7.16(a) reveals that
the E − pz peak position in data before the hadronic SPACAL calibration is different
than in the 2007 e+ data. A higher calibration factor is needed for the 2006 e+ data
and it set to (αhad

SPACAL)data = 0.35.

The RAPGAP Monte Carlo does not use the same set of calibration constants as
the DJANGO model in the FL analysis. There are also constants for the RAPGAP
model available from the iterative calibration method. They were derived for an
inclusive version of RAPGAP. Therefore, the hadronic SPACAL calibration factors
derived here do not have to fully agree with the ones determined for DJANGO.

Fig. 7.17 displays the E − pz distributions after the final calibration for 2006 e+,
2007 e+ at Ep = 920 GeV, Ep = 460 GeV and Ep = 575 GeV periods. The correspond-
ing hadronic SPACAL calibration constants for Monte Carlo (αhad

SPACAL)MC are 0.575,
0.6, 0.6 and 0.5, respectively. They are similar to (αhad

SPACAL)MC = 0.55 derived for
DJANGO. The constants for both data and Monte Carlo are given in Table 7.13.

Performance of the Calibration

Fig. 7.18 compares the absolute and the relative calibration between data and Monte
Carlo for the low energy data taking period. The first row of the plots shows the
pbalT in data and Monte Carlo after the calibration, the second row compares σ

µ
of the
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Figure 7.17: E − pz after the iterative calibration with the tuned calibration of hadronic SPACAL for all y (a) and y > 0.38 (b). The
high y plots were used to fix the αhad

SPACAL calibration constant. The plots show the data-taking periods 06 e+, 07 e+, low energy and
medium energy data, from left to right.
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Run period 1 + (αhad
SPACAL)data 1 + (αhad

SPACAL)MC

06 e+ Ep = 920 GeV 1.35 1.575

07 e+ Ep = 920 GeV 1.25 1.6

Ep = 460 GeV 1.25 1.6

Ep = 575 GeV 1.25 1.5

Table 7.13: Calibration of the hadronic SPACAL.

pbalT peaks in data and Monte Carlo after the calibration. µ and σ are the standard
Gaussian parameters, The third row shows the double ratio DR(pbalT ), where the fit error
on µ of the corresponding peak in the numerator and denominator is used in order to
calculate the error on the ratio. The different columns show these quantities studied
as a function of peT , Q2

e, θ
e
h and ye. All these plots prove a good consistency between

data and Monte Carlo. The double ratios agree within 2% which corresponds to the
expected performance of the iterative calibration method. Fig. 7.19 summarises a
similar study done for ybal. Again, the data and Monte Carlo agreement is within 2%.

7.5 Description of Data

7.5.1 RAPGAP components

RAPGAP has three components: the pomeron exchange with light quarks (u, d, s),
the pomeron exchange with the charm quark c, and the reggeon exchange. All three
components are normalised so that they give consistent cross sections with the analyt-
ical prediction from H1 2006 DPDF Fit B. After the proton dissociation acceptance
correction (described in Section 7.6.4), data and Monte Carlo agree within 3% in terms
of normalisation.

7.5.2 Normalization of the DIFFVM Simulation

The RAPGAP simulation does not describe the low MX final states well. It is the region
occupied by vector meson resonances that are clearly visible in the MX distribution
in data. RAPGAP also produces low MX final states but it does not give satisfactory
description of data. Therefore, the DIFFVM model is used to generate events with ρ,
ω, φ and J/Ψ vector meson resonances which are then added to RAPGAP in order to
improve the data description.

The cross sections of vector meson production follow the SU(4) relations

ρ : ω : φ : J/Ψ = 9 : 1 : 2 : 8 (7.12)

The luminosity of the DIFFVM components is modified so that the cross sections obey
these relations.

The absolute normalisation of the DIFFVM contributions is determined directly
from control plots. There is a dedicated selection, referred to as vector meson se-
lection, that chooses events where only the scattered lepton and two particles from
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Figure 7.18: pbalT (top row) and σ
µ

(middle row) in data (black) and Monte Carlo (red) together with the DR(pbalT ) after the iterative

calibration shown in bins of peT , Q2
e, θ

e
h and ye. The low energy data are shown. The calibration successfully pushes the hadronic energy

scale uncertainty down to 2%.
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Figure 7.19: ybal (top row) and σ
µ

(middle row) in data (black) and Monte Carlo (red) together with the DR(ybal) after the iterative

calibration shown in bins of peT , Q2
e, θ

e
h and ye. The low energy data are shown. The ybal agrees within 2%.
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Selection Description Values

Number of final state particles NFS
particles = 3

Central tracks

π+π− topology N central
tracks = 2, Q1 + Q2 = 0

or

π+π−e+ topology N central
tracks = 3, Q1 + Q2 + Q3 = 1

Table 7.14: Vector meson selection.

the hadronic final state are detected. It is a simple topology cut that uses the central
tracks, and selects either two opposite charged central tracks (the scattered positron is
assumed to have a track outside the central region) or three central tracks with a total
positive charge. In the second case, one of the central tracks is assumed to correspond
to the scattered positron, therefore the requirement on the total charge translates into
a selection of two particles from the final state X with an opposite charge. The vector
meson selection in addition to the analysis selection and the diffractive selec-
tion is used in order to fix the normalisation of the DIFFVM Monte Carlo components.
The selection criteria are listed in Table 7.14.

The selection is suitable especially for ρ resonances that decay into π+π− with
almost 100% branching ratio, and φ resonance where the main decay channel is the
K+K− production. On the other hand, ω resonances dominantly decay into π+π−π0

with 89.1% probability, and the branching ratio of the decay into π+π− is only 1.7%.
Therefore, only a limited sensitivity of this selection to the ω resonances can be ex-
pected. The same holds for J/Ψ which is too heavy to expect a decay only into two
hadrons. Therefore the normalisation of the DIFFVM components is also cross checked
by looking at the description of data at low MX after the analysis selection and the
diffractive selection only.

Fig. 7.20(a) shows the description of E ′
e in the final analysis sample of Ep = 920 GeV

data using the vector meson selection as well. Fig. 7.20(b) displays the low MX

region in the same data set in the final analysis sample without the vector meson
selection. This level of description is achieved by an appropriate normalisation of the
DIFFVM components. The SU(4) relations 7.12 have to be violated in order to give a
satisfactory description of data as seen in the figure. The J/Ψ cross section needs to
be reduced by a half. Otherwise, there is an excess of events around the J/Ψ mass in
Monte Carlo. This is not considered as a problem since there is already some model of
low mass states in RAPGAP.

The same normalisation factor for DIFFVM models is used for all data sets in the
analysis. The normalisation is not well constrained. The uncertainty coming from the
DIFFVM normalisation is discussed in Section 7.6.5.
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Figure 7.20: High energy data (black points) as described by the sum of Monte Carlo
(red). The normalisation of the DIFFVM contribution (yellow) is determined using
the dedicated vector meson selection (a) and the low MX region in the analysis data
sample (b). High energy data sample is shown.

7.5.3 Normalisation of the COMPTON Simulation

The COMPTON Monte Carlo model is used to describe background processes from
QED-Compton events as well as from the lepton pair production. The anti-Compton
selection is used in the analysis in order to reduce this background. The remaining
events have to be modeled by Monte Carlo and then subtracted from the data using
the simulation.

The COMPTON Monte Carlo simulates the QED-Compton events only. However,
it is sufficient to use this model also to describe the background from the lepton pair
production. Both processes appear as events with the hadronic final state mass MX ∼
0 GeV. Since the events from the COMPTON Monte Carlo are used to describe both
these processes, its luminosity has to be modified. A dedicated selection is used to set
the normalisation of the COMPTON Monte Carlo. It requires no hadronic final states
by cutting on MX < 0.1 GeV. It also requires 2 final state particles and 2 tracks at
most. The selection criteria of this Compton selection are listed in Table 7.15, and
they are used together with the analysis selection and the diffractive selection in
order to set the COMPTON Monte Carlo normalisation.

Fig. 7.21 shows the 460 data in the analysis sample after the Compton selection
as described by the simulation after fixing the normalisation of the COMPTON Monte
Carlo. The normalisation factors needed in each data set differ by 30% which is also
taken as a systematic uncertainty.

7.5.4 Control Plots

Fig. 7.22, 7.23, 7.24 and 7.25 show the control plots for the 2006 e+, 2007 e+, low
energy and medium energy data, respectively. The distributions of ye, Q2, E − pz,
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Selection Description Values

MX cut MX < 0.1 GeV

Number of final state particles NFS
particles = 2

Number of central tracks N central ≤ 2

Table 7.15: The Compton selection.
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Figure 7.21: Positron energy (a) and MX (b) in the low energy data (points) using
the dedicated Compton selection as described by the COMPTON Monte Carlo (black
line) after fixing its normalisation.
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rSPACAL and zvtx are shown together with the diffractive variables ηmax, MX , β and
xIP . In all cases data (points) are well described by the sum of the simulation (red line)
and the background estimates.

The signal Monte Carlo models are depicted using different colours, and the indi-
vidual contributions are stacked on top of each other. The largest contribution comes
from the RAPGAP pomeron exchange with light quarks (red line). The second largest
contributions is the RAPGAP pomeron exchange with charmed quarks (green line).
The reggeon exchange RAPGAP (blue line) contributes only at high xIP . The vector
meson resonances simulated by the DIFFVM Monte Carlo (yellow line) are seen at the
low MX region, and correspondingly at high β.

There are two background Monte Carlo simulations. The COMPTON Monte Carlo
(black line) is visible only at the highest β bins since the reconstructed MX in these
events is close to 0 GeV. The non-diffractive DJANGO (magenta line) simulates smear-
ing of inclusive processes into the diffractive sample. Therefore, it is visible at high
ηmax and high xIP .

In the low and medium energy data, a photoproduction background at y > ytrans is
determined from data using the wrong charged events. Data at y > ytrans in the plots
are only the events with positive reconstructed charge of the scattered positron N+.
The green histogram corresponds to the events with negative reconstructed charge of
the scattered positron candidate. These events are corrected for the background charge
asymmetry as described in section 6.3.8. The plotted background events therefore
correspond to asymN−.

There is no photoproduction background evaluated in the remaining y region. The
high energy data do not consider any photoproduction background at all.

The RAPGAP Monte Carlo here is tuned to generate events according to the diffrac-
tive deduced cross section based on the prediction from H1 2006 DPDF Fit B. The
DIFFVM and COMPTON Monte Carlo samples are normalised using a dedicated se-
lection.

In all data sets, the simulation gives good description of data.

7.6 Extraction of the Diffractive Reduced Cross Sec-

tion

7.6.1 Cross Section Definition

The diffractive reduced cross section in this analysis is measured in bins of xIP , Q2 and
y, and it is related to the triple differenctial cross section in the following way

σD
r (y,Q2, xIP ) =

Q4y

2πα2Y+

· dσ

dydQ2dxIP

. (7.13)

The following paragraphs give detailed description of how the differential cross section
is extracted from the data.

7.6.2 Bin Selection

The bin grid (in xIP , Q2 and y) for the differential cross section measurement for all
three proton beam energies is given in Table 7.16. The measurement in each bin is



7.6. CROSS SECTION 149

Electron Energy / GeV
0 10 20 30

0

10000

20000

30000

Electron Energy / GeV
0 10 20 30

0

10000

20000

30000

e
y

0 0.2 0.4 0.6 0.8 10

10000

20000

30000

e
y

0 0.2 0.4 0.6 0.8 10

10000

20000

30000

2 / GeVe
2Q

0 20 40 600

20000

40000

2 / GeVe
2Q

0 20 40 600

20000

40000

E-Pz / GeV
0 20 40 60 800

50

100

310×

E-Pz / GeV
0 20 40 60 800

50

100

310×

/cmSpaCalR
0 20 40 60 80 100

0

20000

40000

60000

/cmSpaCalR
0 20 40 60 80 100

0

20000

40000

60000

 / cmvtxZ
-40 -20 0 20 40
0

10000

20000

 / cmvtxZ
-40 -20 0 20 40
0

10000

20000

800 MeV
maxEta

-4 -2 0 2 4 6
0

10000

20000

30000

40000

800 MeV
maxEta

-4 -2 0 2 4 6
0

10000

20000

30000

40000

)
X

log(M
0 0.5 1 1.5 20

10000

20000

30000

)
X

log(M
0 0.5 1 1.5 20

10000

20000

30000

β
0 0.5 1

0

10000

20000

30000

β
0 0.5 1

0

10000

20000

30000

)
IP

log(x
-5 -4 -3 -2 -1 00

20000

40000

)
IP

log(x
-5 -4 -3 -2 -1 00

20000

40000

Figure 7.22: Description of the positron energy, ye, Q
2, E − pz, rSPACAL, zvtx, ηmax,

MX , β and xIP in the 2006 e+ data sample. The data (points) are shown compared
to the sum of the Monte Carlo simulations and background estimates (red line). The
solid green histogram shows the data with negatively charged linked tracks. The indi-
vidual Monte Carlo contributions are: RAPGAP pomeron exchange with light quarks
(red) and charm quark (green), RAPGAP reggeon exchange (blue), DIFFVM (yellow),
COMPTON (black), and non-diffractive DJANGO (magenta).
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Figure 7.23: Description of the positron energy, ye, Q
2, E − pz, rSPACAL, zvtx, ηmax,

MX , β and xIP in the 2007 e+ data sample. The data (points) are shown compared
to the sum of the Monte Carlo simulations and background estimates (red line). The
solid green histogram shows the data with negatively charged linked tracks. The indi-
vidual Monte Carlo contributions are: RAPGAP pomeron exchange with light quarks
(red) and charm quark (green), RAPGAP reggeon exchange (blue), DIFFVM (yellow),
COMPTON (black), and non-diffractive DJANGO (magenta).
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Figure 7.24: Description of the positron energy, ye, Q
2, E − pz, rSPACAL, zvtx, ηmax,

MX , β and xIP in the low energy data sample. The data (points) are shown compared
to the sum of the Monte Carlo simulations and background estimates (red line). The
solid green histogram shows the data with negatively charged linked tracks. The indi-
vidual Monte Carlo contributions are: RAPGAP pomeron exchange with light quarks
(red) and charm quark (green), RAPGAP reggeon exchange (blue), DIFFVM (yellow),
COMPTON (black), and non-diffractive DJANGO (magenta).
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Figure 7.25: Description of the positron energy, ye, Q
2, E−pz , rSPACAL, zvtx, ηmax, MX ,

β and xIP in the middle energy data sample. The data (points) are shown compared
to the sum of the Monte Carlo simulations and background estimates (red line). The
solid green histogram shows the data with negatively charged linked tracks. The indi-
vidual Monte Carlo contributions are: RAPGAP pomeron exchange with light quarks
(red) and charm quark (green), RAPGAP reggeon exchange (blue), DIFFVM (yellow),
COMPTON (black), and non-diffractive DJANGO (magenta).
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Variable Bin edges

Ep = 920 GeV 0.045, 0.075, 0.12, 0.19, 0.3, 0.35, 0.4, 0.45

y Ep = 575 GeV 0.072, 0.12, 0.2, 0.304, 0.48, 0.56, 0.64, 0.72

Ep = 460 GeV 0.09, 0.15, 0.24, 0.38, 0.6, 0.7, 0.8, 0.9

Q2 2.5, 7, 19, 100

xIP 0.0001, 0.001, 0.01

Table 7.16: Bin edges. The y values are chosen in such a way that the β value is the
same for all three proton beam energies (following the relation Q2 = xys = xIPβys).

Variable Bin centres

Ep = 920 GeV 0.06, 0.105, 0.155, 0.245, 0.325, 0.375, 0.425

y Ep = 575 GeV 0.096, 0.168, 0.248, 0.392, 0.52, 0.6, 0.68

Ep = 460 GeV 0.12, 0.21, 0.31, 0.49, 0.65, 0.75, 0.85

Q2 4, 11.5, 44

xIP 0.0005, 0.003

Table 7.17: Bin centres. The y values are chosen in such a way that the β value is the
same for all three proton beam energies (following the relation Q2 = xys = xIPβys).

corrected to the central values listed in Table 7.17. The bins are optimised for the FD
L

measurement. Note that the y edges and the y centres are chosen such that the same
value of β is received for all three proton beam energies.

Since the low and medium energy data probe high y the electron reconstruction
method is used to define the bin centres and edges, as it has the best resolution there.
On the other hand, the highest y bin edge is at 0.45 in the high energy data analysis.
Therefore the average reconstruction method is chosen.

7.6.3 Acceptance, Purity, Stability

The three variables acceptance A, purity P and stability S quantify the relationship
between the generator (GEN) and reconstructed (REC) level. Cuts are placed on a
simulated event at both the GEN and REC level and possible migrations between the
bins defined for the differential cross section measurement are studied. There are four
scenarios for a given bin i that are recorded in the following variables:

• NSTAY = The number of events that fall into bin i at both the GEN and REC
levels.

• NSMEARIN = The number of events in bin i at the REC level that fall into a
different bin at the GEN level.



154 CHAPTER 7. FD
L

• NSMEAROUT = The number of events in bin i at the GEN level that fall into a
different bin at the REC level.

• NLOST = The number of events in bin i at the GEN level that do not pass the
selection cuts at the REC level.

The total number of reconstructed and generated events in bin i is then given by

NREC = NSTAY + NSMEARIN (7.14)

NGEN = NSTAY + NSMEAROUT . (7.15)

Acceptance, purity and stability are defined as

A =
NREC

NGEN

(7.16)

P =
NSTAY

NREC

(7.17)

S =
NSTAY

NGEN −NLOST

. (7.18)

The acceptance A is the ratio of the reconstructed and generated events in bin i, and
therefore is used to correct data for the detector effects. The other two variables,
purity P and stability S, account for smearing between different bins. P quantifies the
fraction of events at the GEN and REC levels that fall into the same bin. S quantifies
the fraction of events at the GEN and REC level that have the same bin, without taking
into account events that are lost (as this is taken into account by the acceptance).

The values of acceptance, purity and stability for each measurement bin must satisfy

A > 20% (7.19)

P > 50% (7.20)

S > 50% (7.21)

in order to ensure that the contents of the bin are well understood. Since there are
three variables used to define the cross section grid, then 1 σ corresponds to a value of
(68%)3 ≈ 30%.

7.6.4 Correcting Data using Simulations

The differential cross section in the diffractive analysis using the large rapidity gap
selection is given by

dσdata

dydQ2dxIP

=
Ndata −Nbg

A · L · B ·
σnrad
gen

σrad
gen

· PDAC (7.22)

where PDAC is the proton dissociation acceptance correction which will be desribed
further on. All other corrections in Eq. 7.22 were already introduced in Section 6.6.1.
It was shown that none of the corrections is explicitly needed (they cancel out), and
that the number of signal events in data and Monte Carlo, together with the prediction
for the cross section of the signal process, is sufficient in order to measure the cross
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section. However, this statement is true only if the model used in the Monte Carlo is
fully compatible with the model used for the prediction.

In the FD
L analysis, the original RAPGAP Monte Carlo is based only on the FD

2

structure function from H1 2006 DPDF Fit B. The FD
L structure function is missing

and is added by hand, as explained in Section 7.2.1. Therefore, all the corrections have
to be explicitly calculated.

The Acceptance Correction

The acceptance correction is calculated only from the RAPGAP Monte Carlo. The
DIFFVM Monte Carlo is not used in the calculation and its effect on the acceptance
correction is taken into account as a systematic uncertainty.

Bin Centre Corrections

The bin centre corrections are calculated using the prediciton from H1 2006 DPDF Fit
B.

Radiative Corrections

The radiative corrections are calculated using RAGPAP with the initial and final state
radiation turned on and off.

The Proton Dissociation Acceptance Correction

The acceptance of the forward parts of the H1 detector determine the range in MY and
t that is measured in a diffractive analysis using the large rapidity gap selection method
(see Eq. 7.2). The RAPGAP Monte Carlo simulates only elastic processes where the
scattered protons remain intact and does not account for the proton dissociation within
these kinematic boundaries. Therefore, the cross section given by the RAPGAP simu-
lation has to be corrected for proton dissociation. The proton dissociation acceptance
correction is given by

PDAC =
NPD

rec (MY < 1.6 GeV, |t| < 1 GeV2) + N elastic
gen

NPD
gen (MY < 1.6 GeV, |t| < 1 GeV2) + N elastic

gen

(7.23)

where NPD
rec (MY < 1.6 GeV, |t| < 1 GeV2) is the number of proton dissociative events

reconstructed within the given kinematic range that defines the acceptance of the large
rapidity gap selection method, NPD

gen (MY < 1.6 GeV, |t| < 1 GeV2) is the number of
proton dissociative events generated within the same kinematic range, and N elastic

gen is the
number of generated elastic processes. The number of generated (not reconstructed)
elastic processes is taken in the numerator since the acceptance correction defined in
Eq. 7.17 already corrects the elastic processes. The proton dissociation acceptance
correction corrects only for the effect of the proton dissociation.

The DIFFVM Monte Carlo is used to simulate proton dissociative processes in order
to estimate this acceptance correction. It does not simulate elastic processes, therefore
Eq. 7.23 is transformed to

PDAC =
NPD

rec (MY < 1.6 GeV, |t| < 1 GeV2) + Relastic
PD NPD

gen

NPD
gen (MY < 1.6 GeV, |t| < 1 GeV2) + Relastic

PD NPD
gen

(7.24)
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Run period PDAC

Ep = 920 GeV 1.150 ± 0.003

Ep = 460 GeV 1.038 ± 0.002

Ep = 575 GeV 1.063 ± 0.002

Table 7.18: Proton dissociation acceptance correction (with statistical uncertainty).

where Relastic
PD is the ratio of elastic to proton dissociative cross sections. It is experi-

mentally constrained to be in the range 0.5 < Relastic
PD < 2.0. Relastic

PD = 1 is the generally
assumed value. The equation then reduces to

PDAC =
NPD

rec (MY < 1.6 GeV, |t| < 1 GeV2) + NPD
gen

NPD
gen (MY < 1.6 GeV, |t| < 1 GeV2) + NPD

gen

. (7.25)

Only the DIFFVM events at xgen
IP < 0.01 and Mgen

Y < 5 GeV are analysed. The xIP cut
coincides with the one used in the FD

L analysis and MY < 5 GeV is wide enough to
approximate all proton dissociative processes needed in Eq. 7.25. The reconstructed
events entering the equation also have to pass the large rapidity gap selection (ηmax <
3.3 and the forward detector selection).

The proton dissociation acceptance correction is studied separately for all three pro-
ton beam energies. The higher the proton beam energy is the larger PDAC correction
is expected, since the final states tend to go more in the forward direction. Table 7.18
lists PDAC for all run periods used in the analysis. Only statistical errors are stated.
The total uncertainty is ∼ 7%2.

7.6.5 Correlated Systematics

This section lists the systematics that can be treated as correlated among the three
data sets. They are summarised in Table 7.19 and described in detail in the following
lines.

Electron Systematics

The calorimeter energy scale systematics for the scattered lepton measurement is taken
as 0.4% for E ′

e = 27.5 GeV and 1% for E ′
e = 0 GeV. The uncertainty at E ′

e = 27.5 GeV
is evaluated by studying the kinematic peak. The energy scale in the lower part of
the E ′

e spectrum is determined from π0 → γγ studies. QED-Compton events and
J/Ψ → e+e− decays are used as a cross check for the region in between. The results
of an independent study are summarised in Fig. 7.26.

An uncertainty on the scattering angle θe is also considered. It is determined
from the difference between the polar angle of the cluster θcluse and the polar angle
of the corresponding BCREC track θBCREC

e . Fig. 7.27 shows the difference for the

2Taken from the latest inclusive analysis of diffractive LRG data. The uncertainty takes into
account the experimental constraints on Relastic

PD as well as the precision of the MY modelling in the
DIFFVM Monte Carlo.
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Figure 7.26: Scattered lepton energy scale.

Ep = 460 GeV sample. The mean position of the peak in data is described by the
RAPGAP simulation within 1 mrad, which is also taken as the systematic uncertainty
on θe determination.

Hadronic Final State Systematics

The hadronic energy scale systematics of 2% is achieved by the iterative calibration
method. A separate uncertainty on the calibration of the hadronic SPACAL is con-
sidered. The performed studies indicate that the calibration factor αhad

SPACAL can be
determined with 5% precision which corresponds to the shift of ±0.075 (see Fig. 7.28).

Concerning the noise in the LAr calorimeter, an uncertainty of 15% is taken. It is
evaluated from the (E−pz)noise

(E−pz)total
and (E+pz)noise

(E+pz)total
noise fractions (see Fig. 7.29).

rlog Efficiency

The rlog efficiency is described in Section 6.4.5 and has to be corrected for y > 0.6.
The uncertainty on the correction goes from 0.5% to 3% at y > 0.8. See Table 6.15 for
more details.

Diffractive Systematics

The uncertainties on the xIP and β distributions used in RAPGAP enters as a model
uncertainty and arise from the uncertainties of previous measurements that RAPGAP is

based on. The input distributions are reweighted by
(

1
xIP

)±0.05

, β±0.05 and (1−β)±0.05.

The t dependence of the cross section is parametrised as eBt where the parameter
B used in RAPGAP is taken from previous H1 measurements. The input distribution
is reweighted by e±t in order to reflect the uncertainty on the measured value of B.

Vector Meson Monte Carlo

The diffractive production of vector mesons is part of an inclusive diffractive signal.
The RAPGAP Monte Carlo does not model the low mass final state well, therefore the
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Figure 7.27: The cluster and the BCREC track independently determine the scattering
angle θ. Data (points) and Monte Carlo (red) peak position of the difference θclus −
θBCREC agree within 1 mrad (illustrated by dotted lines).
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Figure 7.28: Uncertainty on the hadronic SPACAL calibration. The calibration con-
stant is determined from the E − pz position at hgih y. The data are well described
by the simulation within αhad

SPACAL ± 0.075. The low energy data sample is shown.
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Figure 7.29: E − pz and E + pz noise fractions in the low energy data. The simulation
(red) agrees with the data (points) within 15% (illustrated by dashed red lines). The
horizontal line at yh = 0.1 marks the lower y cut used in the analysis.

DIFFVM model is used in addition to RAGPAP in order to improve the description
of data at low MX .

The signal Monte Carlo is used in the calculation of the acceptance correction
defined in Eq. 7.17. It is the only place where the DIFFVM simulation can enter the
cross section extraction in Eq. 7.22. The relative contribution of the DIFFVM events
to the final Monte Carlo signal is not well constrained. The effect of the uncertainty
of the DIFFVM normalisation on the cross section is evaluated in the following way.
The acceptance correction is calculated once using only the RAPGAP simulation and
once using the sum of RAPGAP and DIFFVM. The difference between these two
corrections directly relates to the change in cross sections. The effect of adding the
DIFFVM Monte Carlo in the acceptance correction is visible only in the resonant low
MX region.

QED-Compton Monte Carlo

The COMPTON Monte Carlo is used to simulate background from QED-Compton
processes and lepton pair production in this analysis. The normalisation of the COMP-
TON Monte Carlo sample is constrained within 30%. It is changed up and down by
this amount and subtracted from data in order to estimate the effect of this uncertainty
on the final cross section.

Non-Diffractive Monte Carlo

The background from non-diffractive processes is simulated with the DJANGO Monte
Carlo. The amount of DJANGO processes passing the final event selection in the FD

L

analysis is scaled by 2 and divided by 2. The effect of this uncertainty on the cross
section is evaluated in a similar way as described above.
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Model Uncertainty

As mentioned in Section 7.2.1, the RAPGAP Monte Carlo used in this analysis is
reweighted so that it contains the full diffractive reduced cross section σD

r from H1
2006 DPDF Fit B. It reflects our state of art of understanding of the diffractive cross
sections based on QCD fits to the inclusive data. The gluon density (important at high
y) is only weakly constrained from the scaling violations.

The RAPGAP prediction is changed by 50% in order to account for the model
uncertainty. This is done by changing the w(σD

r ) introduced in Eq. 7.1 by 50%.

Bin Centre Correction

However, the previous model uncertainty changes only the prediction used in RAPGAP
and does not affect the prediction used in the calculation of the bin centre corrections.
The uncertainty on that is evaluated from the difference between bin centre corrections
calculated from H1 2006 DPDF Fit B and H1 2006 DPDF Fit A.

Charge Asymmetry

The charge asymmetry factors asymdata and asymMC used in the wrong charge back-
ground subtraction (see Eq. 6.36) are determined with 2% precision. In order to account
also for the charge reconstruction efficiency, the uncertainty is increased to 4%.

7.6.6 Uncorrelated Systematics

This section lists the uncorrelated systematics. They are summarised in Table 7.20
and described in detail in the following lines.

Trigger Efficiency

A global 1% uncertainty on the trigger efficiency is considered. This systematic uncer-
tainty also covers the correction derived for the inefficiency of the hadronic SPACAL
trigger elements (see Fig. 6.13(b)).

CJC Vertex Reconstruction Efficiency

The CJC Vertex Reconstruction efficiency is modelled with a 2% precision for xIP >
0.001, and a 10% precision below that (see Fig. 7.13). The corresponding global shifts
of the reconstruction efficiency in Monte Carlo are considered.

Track–Cluster Link Efficiency

A 1.5% global uncertainty on the track–cluster link efficiency is used.

Forward Detector Efficiency

The efficiency correction for the combined FMD, PLUG and FTS 28m selection is
evaluated with a 0.5% statistical precision. The corrections derived for different run
periods also agree within 0.5%. It is taken as a global uncertainty.
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Description Shift

Electron energy ±1%@E ′
e = 0, ±0.4%@E ′

e = 27.5

Scattering angle θe ±1 mrad

LAr energy scale ±2%

LAr noise ±15%

Hadronic SPACAL energy αhad
SPACAL ± 0.075

rlog up to 3%@y > 0.8

β β±0.05

(1 − β)±0.05

xIP 1/x±0.05
IP

t exp(±t)

Vector meson Monte Carlo acc(RAPGAP), acc(RAPGAP+VM)

QED-Compton Monte Carlo ∗1.3, /1.3

Non-diffractive Monte Carlo ∗2, /2

Model uncertainty σD
r

FD
2

± 50%

Bin centre corrections BCC(Fit A), BCC(Fit B)

Charge asymmetry ±0.04

Table 7.19: Correlated systematic shifts.
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Description Uncertainty

Trigger efficiency 1%

CJC vertex efficiency ±2%@xIP > 0.001, ±10%@xIP < 0.001

Track–cluster link efficiency 1.5%

Forward detector efficiency 0.5%

Relative normalisation < 2.5%

Monte Carlo statistics

Table 7.20: Uncorrelated systematics.

Relative Normalisation

The luminosity of HERA-II data is determined with 2.5% precision. In the diffractive
analyses using the large rapidity gap selection method, also the uncertainty on PDAC,
which is ∼ 7%, has to be taken into account. In order to reduce this uncertainty,
the three data sets are normalised to the H1 2006 DPDF Fit B prediction at high β
where the contribution of FD

L to the diffractive reduced cross section is negligible. More
information on the normalisation is given in Section 7.7.1. All three data sets then give
the same cross section at low β and only an uncertainty on the relative normalisation
is considered. It is determined by statistics and reads 0.4%, 1.6% and 2.1% for high,
low and medium energy data, respectively.

Monte Carlo Statistics

In each measurement bin, the statistical error on the number of events at the recon-
structed level in Monte Carlo is added in quadrature to the total uncorrelated system-
atic uncertainty. This uncertainty reflects the statistical precision of the Monte Carlo
corrections that are applied to data in order to extract cross sections. This uncertainty
should be negligible with respect to the statistical precision of data. Therefore, the
statistics in Monte Carlo should be at least thee times larger than in data (optimal
statistics is ten times larger).

7.6.7 Cross Section

The acceptance, purity and stability have to fulfil the requirements of A > 20%, P >
50% and S > 50% in order to ensure that a cross section measurement in a particular
bin is understood (see Section 7.6.3). Only the cross section measurements that fulfil
these criteria are considered among the results. Some of the points in the plots of
acceptance, purity and stability shown in this section are at β > 1. Values of β > 1
result from the choice of the central bin values, and the corresponding cross sections
are not shown, since the central values are unphysical.

As the high energy data are analysed only at Q2 > 7 GeV2, the FD
L measurement

uses the results from the published analysis of Ep = 820 GeV data for Q2 < 7 GeV.
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The cross section measurements from the publication are moved so that they can be
used in the binning chosen for the FD

L analysis.
Fig. 7.30 shows the diffractive reduced cross sections and the corresponding accep-

tance, purity and stability for the 2.5 < Q2 < 7 GeV2 and 0.0001 < xIP < 0.001 bin.
Based on the low acceptance, only three β bins are kept at Ep = 575 GeV. In the low
energy data, there are also three β bins kept although the lowest β cross section point
has an acceptance below 20%. Because of the poor statistics, the bin is merged with
the following one for the FD

L extraction. The average acceptance of the combined bin
is then larger than 20%.

Fig. 7.32 shows the diffractive reduced cross sections and the corresponding accep-
tance, purity and stability for the 2.5 < Q2 < 7 GeV2 and 0.001 < xIP < 0.01 bin. The
highest β point is excluded on grounds of poor acceptance. The two lowest β bins are
merged together for the FD

L extraction in order to improve the statistical precision.
At Q2 < 7 GeV2, the data cross sections are compared to the low Q2 extrapolation

of the H1 2006 DPDF Fit B as it was extracted only from data at Q2 > 8.5 GeV2,
β < 0.8 and MX > 2 GeV. The data are significantly above the prediction which is a
known feature of the fit, seen already in the original publication [12].

The diffractive reduced cross sections for Q2 > 7 GeV2 are shown in Fig. 7.31, 7.32
and 7.34. There are no points excluded because of low acceptance, purity or stability.
The two lowest β points in the low xIP are merged in order to improve the precision
of the FD

L measurement. There are also two points at β > 0.8 that are beyond the
range of validity of the H1 2006 DPDF Fit B. These bins also fall into the resonant low
MX region and the prediction is steeply falling in these bins. Therefore, the bin centre
corrections cannot be trusted, and only the bin averaged value for the cross section can
be stated, i.e. no bin centre correction is applied.

The data at Q2 > 7 GeV2 are in a good agreement with the H1 2006 DPDF Fit B
and confirm the turn-over of the reduced cross sections at low β that comes from the
FD
L structure function. The agreement with the prediction is an important cross-check

of consistency with the previous H1 results.
All the cross section points used in the FD

L analysis are shown in Fig. 7.35. The
cross sections that are merged for the actual FD

L measurement are merged in this plot
as well. The bin averaged cross sections are plotted with a horizontal error bar. The
cross sections in this figure are shown before the normalisation to H1 2006 DPDF Fit B.
The 2.5% uncertainty on the luminosity determination and 7% uncertainty on PDAC
lead to the total 7.4% error on the normalisation. This error is not shown in the plots.

The cross section measurements are predominantly statistically limited, especially
at high y. The dominant sources of systematic uncertainties are:

• The largest uncertainty in the low xIP bins comes from the LAr noise. The low
xIP bins are also influenced by the uncertainty on the vector meson simulation as
these bins fall into the resonant low MX region.

• The dominant source of systematic uncertainty in the high β bins comes from the
bin centre corrections because of large differences of the cross section predictions
inside of the measurement bins.

• At low β (high y), where FD
L is measured, the largest sources of uncertainties are

the photoproduction background subtraction, the rlog efficiency and the model
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uncertainty originating in the poor knowledge of the gluon densities obtained in
the fits to inclusive data.

7.7 Extraction of the Longitudinal Structure Func-

tion

7.7.1 Sensitivity to FD
L and Relative Normalisation of the Data

Sets

The longitudinal proton structure function is suppressed by the factor y2/Y+ in the
prescription for the reduced cross section. The higher the y is the higher the contribu-
tion from the longitudinal structure function is. The sensitivity of the low energy data
set in the forth highest y bin with central value of y = 0.49 is y2/Y+ = 19%, and it
is chosen as the lowest acceptable sensitivity that is considered for the FD

L extraction.
Therefore, only the highest four y bins in each Q2 and xIP bin are used to measure FD

L .
The cross sections from all three data sets at lower y should be compatible since the

suppression factor y2/Y+ is small and the reduced cross section is dominated by the
structure function FD

2 . After the proton dissociation acceptance correction, the cross
sections at low y are compatible within 3%. However, there is also a 2.5% uncertainty
on luminosity, and ∼ 7% uncertainty on PDAC that should be taken into account in
the FD

L extraction. Such a large uncorrelated uncertainty would make it impossible to
measure FD

L . However, the fact that the cross sections should be compatible at low y
can be used for a cross normalisation of the data sets and this uncertainty does not
have to be taken into account.

Therefore, the data sets are normalised to the prediction from H1 2006 DPDF Fit
B in the range Q2 > 7 GeV2 and y < 0.38 (0.3 and 0.3) for Ep = 460 (575 and 920)
GeV data sets, and the uncertainty of this normalisation is < 3%. As the published
data at Ep = 820 GeV were included in the analysis of the data used as input to H1
2006 DPDF Fit B, they are already consistently normalised.

Fig. 7.36 shows the cross sections at Q2 = 11.5 GeV2 and xIP = 0.003 from all three
data sets on top of each other in order to illustrate which points are used for the FD

L

extraction and which are used for the relative normalisation.

7.7.2 Extraction of the Structure Functions from the Fits

The strategy of extracting the structure functions F2 and FL from the Rosenbluth plots
was already explained in Section 5.1. All three cross section measurements in the same
xIP , Q

2, β bins from different proton beam energies are plotted in a single plot with the
suppression factor y2/Y+ on the horizontal axis. The structure functions correspond
to the parameters of a liner fit

σD
r = A + y2

Y+
B (7.26)

as A = FD
2 and B = −FD

L .
The following fits are performed in order to extract the results:

• Fit to the cross sections with statistical errors only in order to obtain the statis-
tical uncertainty on FD

L .
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Figure 7.30: Diffractive reduced cross sections multiplied by xIP and corresponding acceptance, purity and stability for the 2.5 <
Q2 < 7 GeV2 and 0.0001 < xIP < 0.001 bin as a function of β. In the top row, the data are shown compared to the extrapolation of
H1 2006 DPDF Fit B (coloured lines), with the grey line representing the contribution of FD

2 . Dashed line denote the extrapolation
of the fit. The inner error bars represent the statistical uncertainties, the outer error bars show the total error. The cross sections
at Ep = 820 GeV are taken from the previous publication. The bottom row shows the acceptance (circles) that is required to be
larger than 20%, and the purity (squares) and stability (triangles) that are required to by larger than 50%. Only the cross section
measurements that pass these criteria are plotted in the top row.
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Figure 7.31: Diffractive reduced cross sections multiplied by xIP and corresponding acceptance, purity and stability for the 7 < Q2 <
19 GeV2 and 0.0001 < xIP < 0.001 bin as a function of β. In the top row, the data are shown compared to the extrapolation of H1
2006 DPDF Fit B (coloured lines), with the grey line representing the contribution of FD

2 . Dashed line denote the extrapolation of
the fit. The inner error bars represent the statistical uncertainties, the outer error bars show the total error. The bottom row shows
the acceptance (circles) that is required to be larger than 20%, and the purity (squares) and stability (triangles) that are required to
by larger than 50%. Only the cross section measurements that pass these criteria are plotted in the top row.
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Figure 7.32: Diffractive reduced cross sections multiplied by xIP and corresponding acceptance, purity and stability for the 2.5 <
Q2 < 7 GeV2 and 0.001 < xIP < 0.01 bin as a function of β. In the top row, the data are shown compared to the extrapolation of
H1 2006 DPDF Fit B (coloured lines), with the grey line representing the contribution of FD

2 . Dashed line denote the extrapolation
of the fit. The inner error bars represent the statistical uncertainties, the outer error bars show the total error. The cross sections
at Ep = 820 GeV are taken from the previous publication. The bottom row shows the acceptance (circles) that is required to be
larger than 20%, and the purity (squares) and stability (triangles) that are required to by larger than 50%. Only the cross section
measurements that pass these criteria are plotted in the top row.
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Figure 7.33: Diffractive reduced cross sections multiplied by xIP and corresponding acceptance, purity and stability for the 7 < Q2 <
19 GeV2 and 0.001 < xIP < 0.01 bin as a function of β. In the top row, the data are shown compared to the extrapolation of H1 2006
DPDF Fit B (coloured lines), with the grey line representing the contribution of FD

2 . Dashed line denote the extrapolation of the
fit. The inner error bars represent the statistical uncertainties, the outer error bars show the total error. The bottom row shows the
acceptance (circles) that is required to be larger than 20%, and the purity (squares) and stability (triangles) that are required to by
larger than 50%. Only the cross section measurements that pass these criteria are plotted in the top row.
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Figure 7.34: Diffractive reduced cross sections multiplied by xIP and corresponding acceptance, purity and stability for the 19 < Q2 <
100 GeV2 and 0.001 < xIP < 0.01 bin as a function of β. In the top row, the data are shown compared to the extrapolation of H1
2006 DPDF Fit B (coloured lines), with the grey line representing the contribution of FD

2 . Dashed line denote the extrapolation of
the fit. The inner error bars represent the statistical uncertainties, the outer error bars show the total error. The bottom row shows
the acceptance (circles) that is required to be larger than 20%, and the purity (squares) and stability (triangles) that are required to
by larger than 50%. Only the cross section measurements that pass these criteria are plotted in the top row.



170 CHAPTER 7. FD
L

β

)2
, Qβ, 

IP
 (

x
rσ 

IP
x

-1

0.01

0.02

0.03

0.04  = 820 GeVpE

-1

0.01

0.02

0.03

0.04

2
 = 4 GeV

2
Q  = 0.0005IPx

 = 460 GeVpE

-1

0.01

0.02

0.03

0.04  = 575 GeVpE

-1

0.02

0.04

0.06

0.08  = 920 GeVpE

-1

0.02

0.04

0.06

0.08

2 = 11.5 GeV2Q  = 0.0005IPx
 = 460 GeVpE

-1

0.02

0.04

0.06

0.08  = 575 GeVpE

-1

0.01

0.02

0.03

0.04

 = 820 GeVpE

-1

0.01

0.02

0.03

0.04 2 = 4 GeV2Q  = 0.003IPx
 = 460 GeVpE

-1

0.01

0.02

0.03

0.04

 = 575 GeVpE

-1

0.02

0.03

0.04

0.05

 = 920 GeVpE

-1

0.02

0.03

0.04

0.05
2

 = 11.5 GeV
2

Q  = 0.003IPx
 = 460 GeVpE

-1

0.02

0.03

0.04

0.05

 = 575 GeVpE

-1
10 1

0.01

0.02

0.03

0.04

0.05

 = 920 GeVpE

-1
10 1

0.01

0.02

0.03

0.04

0.05
2 = 44 GeV2Q  = 0.003IPx

 = 460 GeVpE

-1
10 1

0.01

0.02

0.03

0.04

0.05

 = 575 GeVpE

Data

 H1 2006 DPDF Fit BD
r

σ IPx

extrapolated fit

 H1 2006 DPDF Fit BD
2

 F
IP

x

Data

 H1 2006 DPDF Fit BD
r

σ IPx

extrapolated fit

 H1 2006 DPDF Fit BD
2

 F
IP

x

Data

 H1 2006 DPDF Fit BD
rσ IPx

extrapolated fit

 H1 2006 DPDF Fit BD
2 FIPx

Figure 7.35: Diffractive reduced cross sections multiplied by xIP compared to the H1
2006 DPDF Fit B prediction. The grey line shows the FD

2 structure function form the
prediction as a reference. The dashed lines represent extrapolations of the fit. The
inner error bars represent the statistical uncertainties, the outer error bars show the
total error. The data are not normalised to the H1 2006 DPDF Fit B as it is done in



7.7. LONGITUDINAL STRUCTURE FUNCTION 171

β

-110 1

)2
, Qβ, 

IP
 (

x
rσ 

IP
x

0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

0.045

0.05 2 = 11.5 GeV2Q  = 0.003IPx

 = 920 GeVpE
 = 460 GeVpE
 = 575 GeVpE

Data

 H1 2006 DPDF Fit BD
rσ IPx

 H1 2006 DPDF Fit BD
2

 F
IP

x

Data

 H1 2006 DPDF Fit BD
rσ IPx

 H1 2006 DPDF Fit BD
2

 F
IP

x

Data

 H1 2006 DPDF Fit BD
rσ IPx

 H1 2006 DPDF Fit BD
2

 F
IP

x

Figure 7.36: Diffractive reduced cross sections multiplied by xIP measured at Q2 =
11.5 GeV2 and xIP = 0.003. The cross sections from different data sets agree well with
each other at high β where the contribution from FD

L is negligible. The data cross
sections are normalised to the prediction from H1 2006 DPDF Fit B there. The cross
sections differ at low β where the FD

L gives significant contribution. The grey line gives
just F2 as a reference. The high β points are used for the relative normalisation of the
data sets and the low β points determine the FD

L structure function. The inner error
bars represent the statistical error of the measurement, the outer error bars represent
the total error.
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Figure 7.37: Evaluation of the correlated error on FD
L from the uncertainty on the

positron energy. The black line shows the fit without any shift. The red line is the fit
to the points that are shifted up, the blue line is the fit to the points that are shifted
down. The changes of the cross section and FD

L values are denoted by the corresponding
numbers.

• Fit to the cross sections with statistical and uncorrelated errors added in quadra-
ture in order to obtain the FD

L value and its statistical and uncorrelated error.

• The correlated uncertainties on FD
L are extracted in the following way. The linear

fit to the cross sections with statistical and uncorrelated errors is repeated once
for the cross sections with the systematic shift up and once for the cross sections
with the systematic shift down. The correlated systematic uncertainty is then
evaluated as

δcor =
|(FD

L )upshift − FD
L | + |(FD

L )down
shift − FD

L |
2FD

L

(7.27)

The procedure is repeated for all correlated systematic shifts and the errors are
added in quadrature. Fig.7.37 shows the evaluation of the correlated error for
the shift in the positron energy.

Fig. 7.38 shows all the bins used for the FD
L measurement. The largest lever arm in

y2/Y+, and therefore highest sensitivity to FD
L , is evident at the lowest β.

The structure function FD
2 can be extracted in a similar way.

7.7.3 Ratio RD

The ratio RD =
FD
L

FD
2
−FD

L

can be simply calculated using the structure functions obtained

in the previous fits. However, there is a correlation between the errors on the fit
parameters that has to be taken into account when calculating the error on the ratio
RD. In order to simplify the procedure, the following fit is proposed

σD
r = B + AB(1 − y2

Y+
) (7.28)
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Figure 7.38: Rosenbluth plots. The reduced diffractive cross section σD
r multiplied by

xIP as a function of y2/Y+ in bins of Q2, xIP and β. Three beam energies are shown in
each bin, where the lowest y2/Y+ point is given by the 820 data for Q2 = 4 GeV2 and
by the 920 data at higher Q2. The linear fits to the data are also shown, the slope of
which gives the value of FD

L .
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where A = RD is directly the ratio RD and B = FD
2 −FD

L . The statistical, uncorrelated
and correlated errors on RD are determined in a similar way as in the case of FD

L

described in the previous section.

7.7.4 Ratio RD/R

In order to compare the size of the gluon distribution functions in diffractive and
inclusive DIS, it is useful to have a look at the fraction RD/R. The FD

L analysis
follows the strategy of the FL analysis, and the data sample in the diffractive analysis
is a sub-sample of the one used in the inclusive analysis. Therefore, many systematic
uncertainties cancel out in the fraction. The ratio is calculated only for Q2 > 7 GeV2

since there are no high energy data at low Q2 analysed here. Only the RD results from
the 0.001 < xIP < 0.01 bin are used.

The same Q2 and y binning as in the FD
L analysis is used for the FL analysis in order

to calculate the fraction. The inclusive F2 and FL structure functions and the ratio
R are extracted taking into account only the statistical uncertainties. The systematic
uncertainties are taken out for the sake of simplicity. This can by justified because the
precision of the FD

L measurement is largely limited by statistics.
The ratio RD is used with the statistical and uncorrelated errors together with

the diffractive correlated systematics. All these are added in quadrature. The non-
diffractive correlated systematics cancel out in the ratio RD/R.

Both the inclusive and diffractive structure functions obtained from the fit with
parametrisation in Eq. 7.26 together with the ratios R and RD received from direct fits
(using the parametrisation in Eq. 7.28) are shown in Fig. 7.39. The structure functions
FD
L , FD

2 and FL, F2 agree well with the predictions from H1 2006 DPDF Fit B and H1
2009 PDF. Only the errors used in the RD/R calculation are displayed.
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Chapter 8

Results and Interpretation

8.1 Summary of the Results

8.1.1 FD
L

Fig. 8.1 shows all the FD
L measurements extracted from the fits. The results are plotted

as a function of β, each Q2 and xIP value being in a separate plot. Significant, non-zero
measurements of FD

L are seen in all bins of Q2 and xIP . The data are compared to the
predictions of the H1 DPDF 2006 Fits A and B and to the Golec-Biernat &  Luszczak
model [51]. Although the prediction of Golec-Biernat &  Luszczak lies significantly
above both Fit A and Fit B at large β, the precision of the data is insufficient to
distinguish between the models. All three models are consistent with the data, although
there is a tendency for the measurements to lie above the predictions.

A summary plot of the FD
L measurements is given in figure 8.2, where all points

from the five Q2 and xIP bins are shown as a function of β. In order to remove
the significant dependence on xIP , the FD

L points have been divided by a factor fIP/p,
taken from [12], which expressed the measured xIP dependence of the data, assuming
proton vertex factorisation. The FD

L data cover a large range in longitudinal fractional
momentum 0.033 < β < 0.7 and the general trend of a slow decrease as a function of
β is well reproduced by H1 DPDF 2006 Fit B. The data have a tendency to lie above
the prediction, although the precision is limited.

8.1.2 RD

The fits in the Rosenbluth plots allow to extract both structure functions FD
L and FD

2 .
The parametrisation of the linear fit can be chosen such that one of the parameters

corresponds directly to the ratio ratio RD =
FD
L

FD
T

where FD
T = FD

2 − FD
L . The ratio

RD is extracted for all bins at 7 < Q2 < 100 GeV2. Fits to the low Q2 data show no
sensitivity to RD as the corresponding parameter is returned with large errors. The
measured ratios RD are shown in Fig. 8.3 and they is consistent with the prediction
from H1 2006 DPDF Fit B.

At medium Q2 = 11.5 GeV2, the prediction gives RD ∼ 0.5 which means that
the longitudinal contribution to the reduced cross section is at the same level as the
transversal one (reflecting the fact that there is one longitudinal and two transversal
modes). At high Q2 = 44 GeV2, data start to loose sensitivity and the prediction from
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Figure 8.1: The diffractive longitudinal proton structure function FD
L multiplied by xIP

in different bins of Q2 and xIP plotted as a function of β. The data are shown compared
to the predictions of H1 2006 DPDF Fit A (blue line) and Fit B (solid red line). In
addition, the value of FD

2 from Fit B is shown as a red dashed line. The data are also
compared to the prediction with a higher twist from the GBW model (solid beige line).
The inner error bars represent the statistical error of the measurement, the outer error
bars represent the total error.
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the leading twist NLO QCD fit falls to 0. At Q2 = 4 GeV2, the data have no sensitivity
to the ratio.

8.1.3 RD/R

The relative importance of the longitudinally polarised photon cross section in diffrac-
tive and inclusive scattering can be compared via the ratio RD/R. The ratio is ex-
tracted for Q2 > 7 GeV2 and 10−3 < xIP < 10−2, and it is shown in Fig. 8.4. The
data are compatible with the prediction from H1 2006 DPDF Fit B / H1 2009 PDF.
At medium Q2 = 11.5 GeV2, the ratio is greater than 1 which means that the gluon
density in diffraction is larger than in the inclusive case, with respect to the quark
densities. At high Q2 = 44 GeV2, the predicted ratio is ∼ 1 and falls with increasing
x. The data are not sensitive to the higher x region.

8.2 Conclusions

First measurements of the diffractive reduced cross section at centre of mass energies√
s of 225 and 252 GeV have been presented, together with a new analysis of data at

√
s

of 319 GeV. These measurements at high inelasticity y have been used to extract the
first measurement of the longitudinal diffractive structure function FD

L in the range of
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Figure 8.4: The ratio RD/R as a function of x. The data (points) are shown compared
to the prediction of H1 2006 DPDF Fit B / H1 2009 PDF (blue line). The ratios with
limited precision are shown as dashed lines with the indicated value and error.

photon virtualities 2.5 < Q2 < 100 GeV2 and longitudinal momentum fraction 10−4 <
xIP < 10−2. The reduced cross section measurements and FD

L agree well with the
predictions of leading twist NLO QCD fits to previous H1 data [12] throughout the
kinematic range. At large fractional momentum β, there is a tendency for the FD

L data
to overshoot this prediction, but the data are compatible with H1 2006 DPDF Fit A
and Fit B as well as a model which includes a higher twist contribution based on a
colour dipole approach.

The ratio RD =
FD
L

FD
T

=
FD
L

FD
2
−FD

L

have been measured in the same range as FD
L . Data

agree well with the H1 2006 DPDF Fit B prediction.

Finally, the ratio RD/R of the diffractive RD =
FD
L

FD
T

to the inclusive R = FL

FT
is

extracted for Q2 > 7 GeV2 and 10−3 < xIP < 10−2. The data are compatible with
the prediction from H1 2006 DPDF Fit B / H1 2009 PDF. The measured ratio indi-
cates that the longitudinally polarised photon contribution plays a larger role in the
diffractive than in the inclusive case, which means that the gluon densities are more
important in diffractive than in the inclusive DIS.
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Appendix A

Hadronic Final State Calibration

A.1 Introduction

The energy measurement of hadronic showers suffers from the limited energy fraction
of the shower that is measurable (the visible energy) which leads to a systematic de-
viation from the true value and poor energy resolution. Thus, the measured energy is
significantly smaller than the energy carried by the hadron that initiated the shower.
The energy measurement has to be corrected for these losses in order to reconstruct, as
closely as possible, the energy of the initial hadron. The correction factors are applied
in order to bring the measured energy to the correct scale, i.e. the absolute energy
scale of the measurement. The absolute scale of track momentum measurement and
its uncertainty have been determined to better than 1%, whereas the absolute energy
scale for cluster measurements in the hadronic calorimeter is known to substantially
worse precision (several percents). The uncertainty in the determination of the ab-
solute energy scale has direct impact on how well the energy of hadronic final state
particles (HFS particles) can be measured. The precision in the determination of the
energy scale also depends on how well the detector simulation is done. Not only the
performance of the calorimeter itself has to be accurately described in the simulation
but also the material budget in front of the calorimeter has to be known in detail in
order to correctly reproduce the energy measurement of the calorimeter.

Different calibration methods are used by the H1 experiment with the aim of reduc-
ing the uncertainty and improving the absolute scale in the measurements of calorime-
ter cluster energies. The Iterative method [81, 82] and the High Pt Jet Calibration
method [84, 83] are the most frequently used ones. The Iterative method provides global
calibration of hadronic energy measurements (i.e. it includes all calorimeter clusters in
the event), while in the High Pt Jet Calibration method only the clusters belonging to
the reconstructed jets are considered. The High Pt Jet Calibration method has been
developed for calibrating the energy of the jets with transverse momenta larger than
10 GeV and for high Q2 events. Recently, the jet calibrations have been enriched by a
dedicated Low Pt Jet Calibration [2].
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A.2 Reference for the Hadronic Calibrations

At HERA, the electron and proton beams are colliding head-on, which means that
the total transverse momentum of the initial state is zero. Thus, the total transverse
momentum of the final state also has to be zero due to momentum conservation. This
means that in the laboratory system the transverse momentum of the scattered electron
has to be balanced by the transverse momentum of the hadronic final state. However,
the experimental measurement suffers from limitations given by the detector, such as
the acceptance, the resolutions of energy and momentum measurements, and particles
that are escaping detection. One of the reasons of bad resolution and shift in energy
measurement using the H1 LAr calorimeter is the non-compensation of the calorimeter,
i.e. different response to electromagnetic and hadronic showers. Provided the scattered
electron can be measured with high precision, the influence of the detector effects can
be studied by using the measured transverse momentum of the scattered electron as
reference in comparison with the measured transverse momentum of the hadronic final
state. It should be noted that the HADROO II [84] algorithm is used for the recon-
struction of hadronic final state (HFS) objects, where isolated electrons and muons are
excluded from the HFS. Since the scattered electron is used as reference, all particles
in the hadronic final state have to be included (i.e. also isolated electrons and muons).

At high Q2, the scattered electron is detected in the LAr calorimeter. In this case
the best reconstruction of its transverse momentum is offered by the double angle
method, where P da

T is given by:

P da
T =

2Ee

tanθe
2

+ tanθh
2

(A.1)

where

tan
θh
2

=
Σ

PT,h
. (A.2)

The angle θh is the polar angle of the hadronic system, and Σ and PT,h are defined as:

Σ =
∑

i

(Ei − Pz,i) (A.3)

PT,h =

√

(
∑

i

Px,i)2 + (
∑

i

Py,i)2. (A.4)

Due to its good performance at high Q2, the double angle method has been used to
calibrate the energy measurements of high PT jets [84, 83].

At low Q2, the scattered electron is detected in the SPACAL. Here the electron
method provides the best determination of its transverse momentum, PT,e. The perfor-
mance of the PT,e reconstruction can be estimated by comparing the reconstructed and
generated values from Monte Carlo generated events. Figure A.1 shows the mean value
of the ratio between the reconstructed and generated PT,e distributions, 〈P rec

T,e/P
gen
T,e 〉,

together with the relative resolution, defined as the standard deviation, σ, of the
P rec
T,e /P

gen
T,e distribution, both plotted as a function of P gen

T,e . A comparison between
the electron and double angle method, in the low Q2 region, demonstrates that the
generated PT,e values are very well reconstructed by the electron method, whereas the
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Figure A.1: The mean value of the ratio between the reconstructed and generated PT,e

distributions (top) and the relative resolution, defined as the standard deviation, σ, of
the P rec

T,e /P
gen
T,e distribution (bottom) , both plotted as a function of P gen

T,e . A comparison
is made between the cases where PT,e has been reconstructed using the double angle
method (DA) and electron method (e), respectively.

double angle method gives much worse reconstruction, especially at low PT,e. The res-
olution in the reconstruction is also much better for the electron method compared to
the double angle method. However, it should be kept in mind that the PT,e reconstruc-
tion from the electron method also depends on the uncertainty in the absolute energy
scale of the SPACAL calorimeter, whereas the error in the absolute energy scale of
the LAr calorimeter cancels to first order if the double angle method is applied. Still,
the electron method provides by far the most accurate determination due to the high
precision in the energy calibration of the electromagnetic SPACAL. Therefore the elec-
tron method will be used for the measurement of the balance between the transverse
momentum of the scattered electron PT,e and the total transverse momentum of HFS
particles PT,h defined as

P bal
T =

PT,h

PT,e
. (A.5)

The limited resolution of the experimental measurement will lead to Gaussian like PT

distributions, whereas the losses due to acceptance and non-measurable particles will
give a systematic shift of the distributions compared to the PT of the scattered electron.

In Figure A.2, the P bal
T distribution obtained from the low Q2 DIS data is com-

pared with the detector simulated Monte Carlo data using the RAPGAP(dir) and
DJANGO(CDM) programs. As can be seen, the RAPGAP(dir) distribution repro-
duces the data better than that of DJANGO(CDM). It can also be noticed that the
peak value of the distributions is around 0.9, indicating that the average energy loss is
around 10%. The calculated mean value of the P bal

T distributions is used as an indicator
of the absolute energy scale, i.e. how well the total PT of the hadronic system is re-
constructed. In order to gain some knowledge of how well the response of the detector
is described by the detector simulation and how well the events are reconstructed, the
double ratio of the mean P bal

T values for data and Monte Carlo events can be studied.
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Figure A.2: The PT balance distribution, P bal
T = PT,h/PT,e, shown for data from DIS

events, and for the Monte Carlo predictions of RAPGAP(dir) and DJANGO(CDM).

The double ratio is defined as

DR(P bal
T ) = 〈PT,h

PT,e
〉data/〈

PT,h

PT,e
〉MC (A.6)

where 〈PT,h/PT,e〉 is the mean value of the P bal
T distributions. If DR(P bal

T ) is not equal
to unity, different amounts of transverse momentum are reconstructed in the data and
Monte Carlo events, suggesting that the knowledge of the detector and/or the event
reconstruction is not good enough. Thus, the double ratio, DR(P bal

T ), measures the
systematic uncertainty of the HFS transverse momentum. Since PT,h ≈ Ehsin(θh) and
the uncertainty in the θh reconstruction is expected to be small compared to the PT,h

measurement, DR(P bal
T ) is essentially equivalent to the systematic uncertainty in the

absolute energy scale.

A.3 Iterative Calibration Method

The Iterative Calibration method uses the transverse momentum of the scattered elec-
tron as a reference and attempts to calibrate complete hadronic final state energy.
Therefore this method is suitable for various kinds of inclusive analyses. Using the
transverse momentum balance (A.5), the method improves the absolute energy mea-
surement so that the transverse momentum in the whole event is conserved. However,
the final goal of calibration procedure is not only to improve the energy measurement.
The aim is mainly to reduce the systematic uncertainty in the absolute energy scale.
As was already discussed in Section A.2, this requires an improvement of the ratios of
PT balances in data and Monte Carlo samples (A.6).

In order to achieve an accurate calibration, the Iterative method takes into account
segmentation of the calorimeters, such that different calibration constants are assigned
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to different parts of calorimeters. Each part of the calorimeters has its own calibration
constant that is applied to all energy clusters measured there.

Since the scattered electron serves as a reference for the Iterative Calibration
method, the calibration constants are extracted from DIS sample with well measured
scattered electron. Selection criteria are introduced in order to reduce the photo-
production background, and restrict the sample to the low PT region. The Iterative
calibration procedure is not meant to correct for the energy losses in the beam pipe
in the forward region. However, the energy flow in the forward region can be rather
high in standard DIS events. Therefore, the events with significant energy losses in the
forward direction are removed from the calibration samples.

A.4 Calibration Procedure

This section gives detailed information on the Iterative Calibration method. Sev-
eral different approaches will be described. Calibration constants are extracted for
experimental data and for three different Monte Carlo models: DJANGO(CDM),
DJANGO(Lepto) and RAPGAP(dir) [69, 77]. The two DJANGO simulations use
different hadronisation models. The DJANGO(CDM) Monte Carlo utilize the colour
dipole model for radiation in the final state. The DJANGO(Lepto) and RAPGAP(dir)
use the so-called MEPS (matrix elements + parton showers) model [70].

A.4.1 Calibration Constants

The calibration procedure delivers constants for electromagnetic and hadronic sections
of the LAr and the SPACAL calorimeters. The calorimeters are segmented into wheels
(IF1, IF2, OF, FB, CB3, CB2, CB1, BBE, SPACAL). One additional wheel is added in
the forward direction. In order to refer to these wheels the polar angle calculated from
the nominal vertex is used. The angular ranges for separate calorimeter wheels are
listed in Table A.1. However, one has to bear in mind that the polar angle is only an
approximate reference to the calorimeter wheels. There is no one-to-one correspondence
between the wheels and the ranges in polar angle; each of the theta bins touches also
the neighbouring wheels.

The full hadronic final state is reconstructed from the standard HADROO II al-
gorithm [84], and includes also isolated leptons. The algorithm matches the tracks
measured in the tracker and the energy measurement in the calorimeter. Depending
on several conditions, either one or the other measurement is preferred. Therefore, the
HFS particles are classified either as ’tracks’ or ’electromagnetic clusters’ or ’hadronic
clusters’. For each HFS particle, this classification can be found with the following
code:

if((!inclHfs[i]->IsSelTrack() || inclHfs[i]->IsHFSChargedCls())) {

// cluster

if(inclHfs[i]->IsHFSEm()) {

// electromagnetic

} else {

// hadronic

}
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calorimeter wheel angular range (degrees) | ∆η |
additional forward wheel 3.2 − 7

IF1 7 − 10 0.36

IF2 10 − 15 0.41

OF 15 − 30 0.71

FB 30 − 55 0.68

CB3 55 − 80 0.43

CB2 80 − 110 0.54

CB1 110 − 135 0.53

BBE 135 − 155 0.62

SPACAL 155 − 178

Table A.1: The different regions in polar angle of the calorimeter wheels as used in
calibration and their coverage in η.

} else {

// track

}

Since the tracks are assumed to be well measured, only particles in the calorimeter are
calibrated. Electromagnetic and hadronic parts of each calorimeter wheel are calibrated
separately because the H1 calorimeter is not compensated. There is only one constant
per wheel both for the electromagnetic and the hadronic sections of calorimeter. The
constants do not depend on PT or any other quantity.

A.4.2 Data Selection

The selection of events used to determine the calibration constants is listed in Table A.2.
These are the standard DIS cuts requiring a primary vertex in the central region, a
reconstructed scattered electron, and specifying the Q2 range. The E−Pz cut is applied
to reduce the photoproduction background. In order to stay in the low PT region, a
cut on transverse momentum of the scattered electron is imposed. HERA-I data are
selected with sub-triggers ST0, ST3 and ST9. HERA-II data, except for the 06/07
data taking period, are selected with subtriggers ST0, ST3 and ST61. In case of the
06/07 data, sub-triggers ST2, ST3 and ST61 are used.

The HFS calibration is based on the momentum conservation in the transverse
plane. The transverse momentum of all HFS particles should be balanced by the
transverse momentum of the scattered electron. Since some of the HFS particles can
exit undetected through the beam-pipe, the detected total 4-momentum of HFS is
not always complete. To reduce such losses, only the events with polar angle of the
HFS in the range 5◦ < θeh < 150◦ are selected. The polar angle, using the electron
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DIS Cuts

|zvtx| < 35 cm

10 GeV2 < Q2
e

10 GeV< E ′
e

0.3 < PT,h/PT,e for E ′
e > 24 GeV

0.8 < PT,e/P
da
T

Rcl < 4 cm

rSPACAL > 9.1 cm for HERA-I

rSPACAL > 23 cm for HERA-II

1 GeV< PT,e < 10 GeV

fiducial cuts

35 GeV< E − Pz

5◦ < θeh < 150◦

ST0∨ST3∨ST9 for HERA-I (data only)

ST2∨ST3∨ST61

or for HERA-II (data only)

ST0∨ST3∨ST61

run selection (data only)

Table A.2: A summary of cuts used for the DIS event selection (Iterative Calibration).

reconstruction method, is defined as

tan θeh =
2 ∗ 27.5 GeV −E ′

e + Pz,e

PT,e
. (A.7)

The Iterative Calibration is not meant to compensate for the particle losses in the
forward region.

Three Monte Carlo samples — DJANGO(CDM), DJANGO(Lepto) and RAPGAP(dir)
— with full detector simulation are used for the calibration. The simulation contains
the ESCL (improved parametrisation of electromagnetic shower shapes). The same
selection criteria (except for the trigger selection, and run selection) as for data are
applied to the Monte Carlo samples.

For the calibration, it is essential that the electron distributions (energy, angles,
PT,e) are well described in the simulation, since the transverse momentum of the scat-
tered electron provides the reference for HFS calibration. Then the PT balance distri-
butions in data and Monte Carlo can be compared. Other distributions are less relevant
for calibrations. In physics analyses, it is usual to improve the agreement between the
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simulation and the real data using various reweighting procedures. But in the case of
the Iterative Calibration method, the reweighting would not affect resulting calibration
constants. All events entering the Iterative method are treated with the same weight.
No reweighting or trigger prescale weight plays role in the iterative procedure.

A.4.3 Iterative Method

The iterative procedure developed to extract the calibration constants is described in
this section. As already stated, the Iterative Calibration method delivers calibration
constants for the electromagnetic and hadronic calorimeter wheels. For each wheel
j, we denote these constants αit

em,j and αit
had,j respectively. The index it numbers the

iteration steps throughout the whole procedure. As the iteration procedure starts with
the uncalibrated HFS, the initial calibration constants αit=0

em,j and αit=0
had,j are set to 0.

The method is based on the idea of using the transverse momentum balance, defined
as P bal

T = PT,h/PT,e, to correct measured momenta of HFS particles. PT,h stands for the
transverse component of the HFS 4-momentum and PT,e is the transverse momentum
of the scattered electron. The deviation of P bal

T from unity determines corrections
to calibration constants in every iteration step. The method is designed to shift the
PT balance closer to unity.

PT balance of all selected events in the calibration sample is used to measure how
much the calibration constants have to be altered in each iteration step. Since every
calorimeter wheel has its own electromagnetic and hadronic constant, each of them
has to be modified using the PT balance distribution. In order to do so, every event is
given a set of weights so that all the electromagnetic and hadronic calorimeter wheels
have their own weight. These weights are set for each event quantifying how much do
the HFS particles in one particular wheel (electromagnetic or hadronic) contribute to
the total PT balance distribution in the event. Different definitions of these weights
will be discussed in the following section.

Having the method converged for both the data and Monte Carlo samples, the P bal
T

distributions are in better agreement than before the calibration. The agreement of
P bal
T is studied as a function of PT,e, Q

2
e and θeh.

A.4.4 Weighting Schemes

Here, several weighting schemes are discussed along with their pros and cons that lead
to the choice of the most suitable one for the Iterative Calibration method. All these
schemes are based on the method described in [81]. The original method has been
modified in order to improve the performance of the calibration.

P weighting scheme In this scheme, the P bal
T distribution is weighted according to

the energy deposited in each calorimeter wheel. Separate calorimeter wheels j are
given weights W it

em,j = W it
j ∗F it

em,j for the electromagnetic and W it
had,j = W it

j ∗F it
had,j

for the hadronic part, where the variables are defined as follows.

W it
j = P it

j /P
it
h (A.8)

F it
em,j =

P it
em,j

P it
em,j + P it

had,j

(A.9)

F it
had,j = 1 − F it

em,j (A.10)
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The vector ~P it
em,j denotes the total 4-vector of particles contained in the elec-

tromagnetic part of the wheel j using the calibration constant derived in the
iteration step it. Analogously, the 4-vector ~P it

had,j for the hadronic part is de-
fined. The total 4-vector of the particles in both electromagnetic and hadronic
parts of the wheel is denoted ~P it

j , and ~P it
h is the 4-vector of the full hadronic final

state. The previous equations utilize the 3-vector magnitudes of these vectors.

This definition of weights implies the following. For a given wheel, a particular
event contributes to the P bal

T distribution with the weight set as a fraction of the
total momentum of the particles in that wheel to the sum of the total momenta
from all wheels. In other words, it corresponds to the fraction of energy deposited
in the wheel and the total energy of HFS deposited in the whole calorimeter.

The second row of plots in Figure A.3 shows the energy deposited in separate
calorimeter wheels scaled by the transverse momentum of the scattered electron
in 99/00 data. This quantity is similar to the energy flow. As seen from the plots,
most of the energy goes in the forward parts of the calorimeter. On the other
hand, particles going in the forward direction have smaller transverse momenta,
whereas particles with high transverse momentum are mainly going in the central
region (see the third row in Figure A.3). Therefore, the P weighting scheme is
not a good choice for calibrations based on the PT balance. It is not sensitive to
the high transverse momentum particles and it prefers the forward region, where
the particles can leave undetected through the beam-pipe.

PT weighting scheme This scheme weights the P bal
T distributions with respect to

the transverse momentum of all HFS particles in the calorimeter wheels. The
electromagnetic W it

em,j = W it
j ∗ F it

em,j and hadronic W it
had,j = W it

j ∗ F it
had,j weights

are defined in the following way.

W it
j = (P it

j )T/P
ref
T (A.11)

F it
em,j =

(P it
em,j)T

(P it
em,j)T + (P it

had,j)T
(A.12)

F it
had,j = 1 − F it

em,j, (A.13)

where P ref
T stands for a reference transverse momentum. It can be either the

transverse component of total HFS 4-vector (P it)T,h or the transverse momentum
of the scattered electron PT,e. Both possibilities will be discussed in Section A.4.6.
Here, for a given wheel, one particular event contributes to the P bal

T distribution
with the weight calculated as the ratio of the transverse component of the total
momentum of HFS particles in this wheel to that of all HFS particles.

On the contrary to the P weighting scheme, this scheme is more sensitive to the
central region. The plots in the last row in Figure A.3 show the total transverse
momentum of HFS particles in separate wheels scaled by the transverse momen-
tum of the scattered electron. This scenario is more suitable for calibrations
based on the PT balance, since the weights prefer the wheels where the trans-
verse momenta are high and disfavour the forward region where the energy losses
take place.

However, there is one shortcoming of the PT weighting scheme. It does not
accurately ascribe the weight according to the real contribution of the particles
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in the wheel to the total transverse momentum in the event. The contribution
to the total transverse momentum in the event is not proportional to the total
transverse momentum in the wheel. It is proportional to its projection in the
direction of the total momentum in the transverse plane. This is fixed in the
~PT -projection weighting scheme described below.

~PT -projection weighting scheme This weighting scheme is sensitive not only to
the total transverse momentum (as the PT weighting scheme), but also to the
direction of the momentum vector in the transverse plane. One can then project
the transverse momentum of the HFS particles in the wheel to the direction of
the scattered electron, and thus obtain the real contribution of these particles
to the total transverse momentum in the event1. Here, the P bal

T distribution is
weighted with W it

em,j for the electromagnetic wheels and W it
had,j for the hadronic

wheels with the weights defined as

W it
em,j = (1 + αit

em,j) ∗ (Pem,j)proj/P
ref
T (A.14)

W it
had,j = (1 + αit

had,j) ∗ (Phad,j)proj/P
ref
T , (A.15)

where

(Pem,j)proj =
∣

∣

∣
(Pem,j)T ∗ cos(φem,j)

∣

∣

∣
(A.16)

φem,j = atan((Pem,j)y/(Pem,j)x) − φe (A.17)

(Phad,j)proj =
∣

∣

∣
(Phad,j)T ∗ cos(φhad,j)

∣

∣

∣
(A.18)

φhad,j = atan((Phad,j)y/(Phad,j)x) − φe (A.19)

and φe is the azimuthal angle of the scattered electron. φem,j, resp. φhad,j ,
is the difference between the azimuthal angle of the total momentum of the
uncalibrated particles in the electromagnetic, resp. hadronic, part of the wheel
and the azimuthal angle of the scattered electron. (Pem,j)proj, resp. (Phad,j)proj
is then the projected size of the transverse momentum (Pem,j)T , resp. (Phad,j)T ,
in the wheel in the direction of the scattered electron in the transverse plane.

A.4.5 Extraction of the Calibration Constants

The iterative procedure works in the following steps.

• In each iteration, a loop over all events in the calibration sample is performed. For
every event, the total 4-momentum of all HFS particles in every calorimeter wheel
is calculated as a sum of the three components referring to tracks, electromagnetic
and hadronic clusters in the calorimeter.

~P it
j = ~Ptrack,j + ~P it

had,j + ~P it
em,j (A.20)

1Projecting in the direction of the scattered electron is the same to projecting in the direction of
the total HFS momentum vector since these are back-to-back.



A.4. CALIBRATION PROCEDURE 199

calorimeter wheels

0 1 2 3 4 5 6 7 8 9 10

210

310

410

510

610

710

statistics in em. calorimeterstatistics in em. calorimeter

calorimeter wheels

0 1 2 3 4 5 6 7 8 9 10

210

310

410

510

610

710

statistics in had. calorimeterstatistics in had. calorimeter

calorimeter wheels

0 1 2 3 4 5 6 7 8 9 10
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

   T,e / Pem, j   P    T,e / Pem, j   P

calorimeter wheels

0 1 2 3 4 5 6 7 8 9 10

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

   T,e / Phad, j   P    T,e / Phad, j   P

calorimeter wheels

0 1 2 3 4 5 6 7 8 9 10

0.3

0.4

0.5

0.6

0.7

   T,e / Ptrack, j   P    T,e / Ptrack, j   P

calorimeter wheels

0 1 2 3 4 5 6 7 8 9 10

0.06

0.08

0.1

0.12

0.14

0.16

0.18

   T,e / P
T

)
em, j

   (P    T,e / P
T

)
em, j

   (P

calorimeter wheels

0 1 2 3 4 5 6 7 8 9 10

0.05

0.1

0.15

0.2

0.25

0.3

   T,e / P
T

)
had, j

   (P    T,e / P
T

)
had, j

   (P

calorimeter wheels

0 1 2 3 4 5 6 7 8 9 10

0.08

0.1

0.12

0.14

0.16

0.18

0.2

0.22

0.24

0.26

0.28

   T,e / P
T

)
track, j

   (P    T,e / P
T

)
track, j

   (P

Figure A.3: The first row of histograms shows statistics in separate calorimeter wheels
(sum of all particles in all selected events). The second row shows mean values of
Pem,j/PT,e, Phad,j/PT,e and Ptrack,j/PT,e. The first two are similar to the weights used in
P weighting scheme. The last row displays mean values of (Pem,j)T/PT,e, (Phad,j)T/)eT
and (Ptrack,j)T/PT,e. The first two are similar to the weights used in PT weighting
scheme. The histogram bins correspond to the calorimeter wheels (0 = forward wheel,
9 = SPACAL). 99/00 data sample is used.
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Tracks are not being calibrated. Relevant calibration constants are being applied
to electromagnetic and hadronic clusters in the following way:

~P it
em,j = (1 + αit

em,j) ∗ ~Pem,j (A.21)

~P it
had,j = (1 + αit

had,j) ∗ ~Phad,j (A.22)

These constants evolve throughout the calibration process, thus the momenta of
electromagnetic and hadronic clusters are modified during the iteration steps.

The total 4-momentum of HFS is given by the sum of 4-momenta in all wheels

~P it
h =

∑

j∈wheels

~P it
j . (A.23)

• For each calorimeter wheel, the new calibration constant is calculated using the
equation

(1 + αit+1
em,j) =

(1 + αit
em,j)

〈P it
T,h/PT,e〉W it

em,j

(A.24)

(1 + αit+1
had,j) =

(1 + αit
had,j)

〈P it
T,h/PT,e〉W it

had,j

(A.25)

where the 〈P it
T,h/PT,e〉W it

em,j
and 〈P it

T,h/PT,e〉W it
had,j

are the mean values of the P it
T,h/PT,e

distributions weighted by the weights W it
em,j and W it

had,j , respectively. Only the
weights differ among different wheels in the calibration procedure, all other quan-
tities remain the same. These weights are set in every event for all electromag-
netic and hadronic calorimeter wheels, and depend on the contribution of HFS
particles in these wheels to the total PT balance of the event.

In order to calculate the constants for each wheel, Equations (A.24) and (A.25),
one needs to know the mean value of the weighted PT balance distributions.
Extraction of the mean value depends on statistics (number of events).

– In case there are more than 10000 entries in the histogram, a three step fit
is performed. First, the statistical mean value is used to specify the range
suitable for Gaussian fit. Then, the first Gaussian fit is performed and the
parameters of the fit are used for closer specification of the second Gaussian
fit range from µ− σ to µ + σ. The mean value of the second fit is taken as
the final one.

– In case of smaller statistics, but larger than 500 entries, the statistical mean
is used.

– In case of statistics smaller than 500 entries, no calibration is performed at
all. The calibration constant for a given wheel is set to 0.

Figure A.3 shows the statistics for all calorimeter wheels in the 99/00 data sample.
Dashed lines separate the regions described above, and one can see that only the
electromagnetic SPACAL is not calibrated at all. Just one LAr wheel in 99/00
data sample is calibrated using the statistical mean value, and not the Gaussian
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fit. Statistics in HERA-II data is generally larger, all the wheels (except of the
electromagnetic SPACAL) have sufficient statistics to perform a fit. Similarly,
the statistics in the Monte Carlo samples was generated so that there is enough
of events for the fits.

• Deviations of 〈P it
T,h/PT,e〉W it

em,j
and 〈P it

T,h/PT,e〉W it
had,j

from unity give a measure

of how well the HFS is calibrated in each iteration step. Convergence of the
Iterative method can be tracked by the quantity η defined as

η =
∑

j∈wheels

(

(〈P it
T,h/PT,e〉W it

em,j
− 1)2 + (〈P it

T,h/PT,e〉W it
had,j

− 1)2
)

(A.26)

Calibration procedure is stopped when η reaches 0 within a required accuracy.

A.4.6 Convergence

Although the P weighting scheme, that defines the weights according to the energy
deposited in the calorimeter wheels, reflects the energy flow and number of particles
in different regions in the calorimeter, it is not suitable for calibrations based on PT

balance. The iterative procedure does not converge using the P projection weighting
scheme. It can be attributed either to the energy losses in the forward region, or to
the low weights in the central region where the particles with the largest transverse
momenta flow. Using the ~PT -projection weighting scheme, that sets the weights ac-
cording to the real contribution of particles in the wheels to the total HFS transverse
momentum, the iterative procedure converges. Therefore this is the scheme finally used
in the Iterative Calibration method.

Nevertheless, the convergence depends on the choice of the reference variable P ref
T

that acts in Equations (A.11), (A.14) and (A.15). As already stated in Section A.4.4,
P ref
T can either be set equal to PT,h or PT,e. Looking at Equations (A.14) and (A.15),

the following two observations can be made. In case of P ref
T = PT,e the weight is

sensitive only to the single calibration constant (in the nominator of the equations).
Whereas by setting P ref

T = PT,h the weight is determined by all calibration constants
via PT,h (in the denominator of the equations).

Let us discuss P ref
T = PT,h first. At the first sight, one may say that the dependence

of the weight on all constants is an advantage over the case where P ref
T = PT,e. But,

having the evolving variable PT,h in the denominator of the weight results in preferring

such calibration constants that push PT,h close to 0. With P ref
T = PT,h the iteration

procedure diverges.
Now, let us set P ref

T = PT,e. This is the case that will be used to extract the cali-

bration constants. With PT,e as the reference in the ~PT -projection weighting scheme,
the iterative procedure converges. However, it converges only in case that the hadronic
SPACAL is excluded from the calibration procedure, i.e. the hadronic SPACAL cali-
bration constant is set to 0, and it is not altered throughout the whole iteration process.
This can be surprising since the energy deposited in hadronic SPACAL is relatively
small in DIS events (see Figure A.3). Calibration of the hadronic part of SPACAL is
problematic since it has only one interaction length.

Based on the discussion above, the Iterative method finally uses the ~PT -projection
weighting scheme (with P ref

T = PT,e) and the fully inclusive DIS sample. The cal-
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ibration procedure is stopped after 30 iterative steps, which roughly corresponds to
η ∼ 10−6 (see Equation (A.26)). This method is used to extract the calibration con-
stants for 99/00 HERA-I data, and all periods in HERA-II data.

The calibration constants obtained with this Iterative method can be used either
alone, or together with the jet calibration to calibrate the particles outside jets only.

A.5 Results

The aim of the Iterative Calibration is to reach a 2% level agreement between the
PT balance distributions in data and Monte Carlo. The results of the Iterative Calibra-
tion method can be tested with the so called double-ratios DR(P bal

T ) = 〈P bal
T 〉data/〈P bal

T 〉MC .
The double-ratios can be plotted as functions of Q2

e, PT,e and θeh to see whether the de-
sired 2% level agreement has been reached. The mean values of PT balance are obtained
in separate bins of Q2

e, PT,e and θeh using the same method as described in Section A.4.5.
Such fits for 〈P bal

T 〉 versus Q2
e in 99/00 period are displayed in Figure A.4. It is also

important that the width of P bal
T distribution is preserved throughout the calibration

process. In other words, the value σ/µ of the Gaussian fit should not increase after
the calibration constants are applied. The plots in Figure A.4 show such behaviour,
no smearing of the peaks after the calibration is observed.

A.5.1 HERA-I Data

Figure A.5 shows the performance of the Iterative calibration in the 99/00 period.

The calibration constants are extracted using the ~PT projection weighting scheme with
P ref
T = PT,e. The performance of the calibration is checked in the same sample that

was used for the extraction of the calibration constants. The first (second) row of plots
compares P bal

T before (after) the calibration. The Iterative calibration significantly
improves the absolute energy scale, from 〈P bal

T 〉 ∼ 0.9 to 〈P bal
T 〉 ∼ 0.962. The third

(forth) row of plots show the double-ratio agreement before (after) the calibration. The
calibration improves the energy scale agreement as well and reaches the 2% agreement.
However, the agreement in the 99/00 period is already good without any calibration.

A.5.2 HERA-II Data

The agreement of the double-ratios in HERA-II data taking periods is much worse
than in the HERA-I period if no calibration is applied. Figure A.6 shows the Iterative
calibration performance in the 06/07 period. The first (second) row of plots compares
P bal
T before (after) the calibration. The Iterative calibration significantly improves

the absolute energy scale. The mean values of the P bal
T distributions change from

2A possible reason why the absolute calibration does not reach 1 is hinted in [85]. This paper
describes a bias of calibration methods based on χ2 minimization. It gives an explanation why these
methods end with the calibration constants that under-calibrate the measurement. It also shows, on
a simple example, how to correct for that, so that one receives the expected energy measurement after
the calibration. Formula (A.26) has similar structure as χ2, and therefore the Iterative Calibration
method is affected by the bias described in [85]. However, the correction of the calibration factors
does not simply follow from the formulas in [85]. The authors leave the reference [85] as a possible
starting point for future improvement of the Iterative Calibration method.
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Figure A.4: Comparison of calibrated and uncalibrated pT balance distributions in
different ranges of Q2

e. These distributions are fitted with Gaussians. Parameters of

the fits µ and σ/µ are compared in the first two plots. The ~PT -projection weighting
scheme with prefT = peT and 99/00 fully inclusive data sample are used.
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Figure A.5: Comparison of calibrated and uncalibrated PT balance and double-ratio
distributions in 99/00 data and DJANGO(CDM) model. Both are plotted as func-

tions of PT,e, Q
2
e and θeh. The constants have been extracted using the ~PT -projection

weighting scheme with P ref
T = PT,e on the fully inclusive sample.
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〈P bal
T 〉 ∼ 0.9 to 〈P bal

T 〉 ∼ 0.96, similarly as seen in HERA-I. The third (forth) row of
plots show the double-ratio agreement before the calibration. These plots reveal that
the hadronic energy scale uncertainty is not better than ∼ 4%. After the Iterative
calibration (last row of the plots), the 2% agreement in the energy scale is reached.

A.5.3 Model Dependence

For all data taking periods, three different models have been used to extract the Monte
Carlo calibration constants: DJANGO(CDM), DJANGO(Lepto) and RAPGAP(dir).
Results of the Iterative Calibration method for 06/07 period for all three models are
shown in Figures A.6, A.7 and A.8. In all three cases the Iterative Calibration constants
lead to significant improvement in the double-ratio plots. The 2% level agreement is
reached.

The constants from each model have been applied to all three models in order to
see whether the constants are model dependent or not. Although all the resulting
double-ratio plots strike the 2% level agreement, there are clear differences between
the three sets of constants.

• DJANGO(CDM) constants give reasonable results with DJANGO(Lepto) (see
Figure A.9. When applied on RAPGAP, the PT balance in data is approximately
1% higher than in the model (see Figure A.10.

• For the DJANGO(Lepto) constants applied on DJANGO(CDM) model, the PT bal-
ance in data is generally 1% higher than in the model. RAPGAP(dir) constants
applied on DJANGO(CDM) model give the PT balance in data roughly 2% lower
than in the model.

• RAPGAP(dir) constants applied on DJANGO(Lepto) model also give the PT bal-
ance in data roughly 2% lower than in the model.

• Average of DJANGO(CDM) and RAPGAP(dir) constants, and average of
DJANGO(CDM) and DJANGO(Lepto) constants have been studied also.

None of the constants extracted from one of the models or the average of constants
from different models provide a perfect calibration when applied to another model.
The constants obtained from DJANGO(CDM), however, work the best, and have been
chosen as a default set. The constants from the other models are available also.

Calibration constants obtained for the data or particular model are similar among
all HERA-II data taking periods. Such result is a good check of consistency of the
Iterative Calibration method. Constants for data and DJANGO(CDM) model can be
compared in Figure A.12.

The Iterative Calibration method is successful in calibrating the hadronic final
system so that the systematic uncertainty of the absolute energy scale is 2%. There
is also an apparent model dependence of the calibration constants in Monte Carlo.

A.6 Summary

The way how the Iterative Calibration method retrieves the calibration constants for
the hadronic final state clusters was described in the previous sections. The constants
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Figure A.6: Comparison of calibrated and uncalibrated PT balance and double-ratio
distributions in 06/07 period. Data and DJANGO(CDM) are compared using their
own calibration constants. Both are plotted as functions of PT,e, Q

2
e and θeh.
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Figure A.7: Comparison of calibrated and uncalibrated PT balance and double-ratio
distributions in 06/07 period. Data and DJANGO(Lepto) are compared using their
own calibration constants. Both are plotted as functions of PT,e, Q

2
e and θeh.
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Figure A.8: Comparison of calibrated and uncalibrated PT balance and double-ratio
distributions in 06/07 period. Data and RAPGAP(dir) are compared using their own
calibration constants. Both are plotted as functions of PT,e, Q

2
e and θeh.
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Figure A.9: Comparison of calibrated and uncalibrated PT balance and double-
ratio distributions in 06/07 period. Data and DJANGO(Lepto) are compared.
DJANGO(Lepto) is calibrated with the default set of calibration constants derived
from DJANGO(CDM). Both are plotted as functions of PT,e, Q

2
e and θeh.
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Figure A.10: Comparison of calibrated and uncalibrated PT balance and double-ratio
distributions in 06/07 period. Data and RAPGAP are compared. RAPGAP is cal-
ibrated with the default set of calibration constants derived from DJANGO(CDM).
Both are plotted as functions of PT,e, Q

2
e and θeh.
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Figure A.11: Comparison of the calibration constants for 06/07 period. The histogram
bins correspond to the calorimeter wheels (0 = forward wheel, 9 = SPACAL).
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Figure A.12: Comparison of the calibration constants for all HERA-II run periods.
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can then be easily applied in physics analyses in order to improve the hadronic energy
scale uncertainty. The Iterative Calibration claims to reduce this uncertainty down to
2%.

The Iterative Calibration is one of the official calibration methods used by the
H1 Collaboration (together with the High Pt Jet Calibration and the Low Pt Jet
Calibration). All three methods are implemented in the official object oriented software,
where a special class, H1HadronicCalibration, was designed to incorporate all three
methods in a similar code structure.

The Iterative Calibration is successfully used in the FD
L analysis. It was also applied

in the most recent measurement of αs [86], and the analysis of diffractive jets in DIS
with a leading proton.



Appendix B

Simulation of Fast Timing
Electronics

The following pages contain a copy of the published paper on “New Developments
in Fast-Sampling Readout of Micro-Channel Plate Based Large Area Pico-
second Time-of-Flight Detectors” [7].
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Appendix C

Geometric Scaling

The following pages contain a copy of the published paper on “Systematic Analysis
of Scaling Properties in Deep Inelastic Scattering” [1].

215



216 APPENDIX C. GEOMETRIC SCALING



Appendix D

Cross Section Tables
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xIP Q2 β xIPσ
D
r δstat δuncor δcor δtot δele δθ δnoise δspa δβ δxIP

δrlog δmodel δasym δV M δQEDC δBCC

0.0005 4.0 0.227 0.0175 14.2 17.4 15.4 20.5 2.6 0.7 6.3 0.3 2.5 3.9 0.9 6.2 0.8 8.2 0.4 7.1

0.0005 4.0 0.323 0.0301 10.4 11.6 9.6 18.3 2.5 1.4 6.6 0.7 0.9 3.1 0.0 0.1 0.0 4.7 0.0 2.0

xIP Q2 β xIPσ
D
r δstat δuncor δcor δtot δele δθ δnoise δspa δβ δxIP

δrlog δmodel δasym δV M δQEDC δBCC

0.0005 11.5 0.570 0.0446 13.2 11.1 8.7 18.3 1.9 0.2 7.0 2.6 0.4 1.3 2.4 0.4 1.3 0.8 8.1 1.0

0.0005 11.5 0.699 0.0640 14.0 12.1 14.9 23.7 1.7 1.3 12.5 0.9 1.0 1.6 0.5 1.2 0.0 6.7 0.5 3.8

0.0005 11.5 0.755 < β < 1.0 0.0185 8.8 10.7 15.0 20.4 2.4 0.6 12.6 1.8 0.7 1.2 0.0 0.4 0.0 4.5 0.0 0.0

xIP Q2 β xIPσ
D
r δstat δuncor δcor δtot δele δθ δnoise δspa δβ δxIP

δrlog δmodel δasym δV M δQEDC δBCC

0.003 4.0 0.033 0.0119 9.5 5.2 11.0 22.7 1.8 0.6 0.0 2.8 0.2 0.1 2.4 15.6 3.0 0.6 0.1 0.8

0.003 4.0 0.041 0.0132 8.0 4.9 7.8 12.2 1.0 1.0 0.6 1.4 1.2 0.0 0.5 6.6 0.4 0.3 0.0 0.6

0.003 4.0 0.054 0.0135 5.6 3.7 4.5 8.0 2.2 0.7 0.6 0.2 1.8 0.3 0.0 2.2 0.0 0.4 0.1 0.6

0.003 4.0 0.085 0.0188 8.3 4.9 5.5 11.1 1.4 1.8 1.9 0.1 2.0 0.0 0.0 0.9 0.0 0.7 0.0 3.0

0.003 4.0 0.125 0.0261 15.0 8.8 9.0 19.7 4.4 3.5 1.4 0.0 0.9 1.5 0.0 0.3 0.0 1.1 0.0 6.3

xIP Q2 β xIPσ
D
r δstat δuncor δcor δtot δele δθ δnoise δspa δβ δxIP

δrlog δmodel δasym δV M δQEDC δBCC

0.003 11.5 0.089 0.0216 11.9 4.2 6.9 14.4 2.1 0.8 1.7 3.0 0.8 0.5 3.2 3.2 2.9 0.8 0.5 1.2

0.003 11.5 0.101 0.0190 8.3 3.5 4.1 9.9 1.1 0.6 0.5 1.3 0.6 0.1 1.6 1.7 1.1 0.9 0.0 0.9

0.003 11.5 0.117 0.0230 6.3 3.3 3.2 7.8 1.0 1.2 0.3 0.7 0.2 0.2 0.5 0.4 0.3 0.6 0.0 0.8

0.003 11.5 0.155 0.0251 3.2 2.5 2.8 4.9 1.5 0.9 0.2 0.3 0.0 0.2 0.0 0.0 0.0 0.1 0.0 0.7

0.003 11.5 0.244 0.0262 3.0 2.4 3.0 4.9 1.3 0.9 0.5 0.1 0.3 0.4 0.0 0.1 0.0 0.8 0.2 0.5

0.003 11.5 0.361 0.0317 3.1 2.5 2.7 4.8 0.8 1.1 1.0 0.0 0.1 0.7 0.0 0.1 0.0 0.2 0.1 0.0

0.003 11.5 0.631 0.0410 4.7 3.0 5.9 8.1 5.0 1.7 0.4 0.1 0.2 0.5 0.0 0.0 0.0 0.0 0.1 1.1

xIP Q2 β xIPσ
D
r δstat δuncor δcor δtot δele δθ δnoise δspa δβ δxIP

δrlog δmodel δasym δV M δQEDC δBCC

0.003 44.0 0.341 0.0200 29.8 8.0 7.5 31.8 3.3 1.7 1.7 2.1 1.3 0.6 3.2 2.2 1.8 2.9 0.0 0.7

0.003 44.0 0.386 0.0355 8.6 4.2 3.2 10.1 0.6 0.5 0.3 0.8 0.5 0.5 1.6 0.4 0.3 0.1 0.4 0.7

0.003 44.0 0.446 0.0327 7.0 3.5 3.6 8.6 1.3 0.6 0.4 0.3 0.3 0.1 0.5 0.2 0.2 0.3 0.1 2.3

0.003 44.0 0.592 0.0387 3.8 2.6 5.5 7.2 0.6 1.2 1.4 0.0 0.2 0.3 0.0 0.0 0.0 0.7 1.0 4.8

0.003 44.0 0.76 < β < 1.0 0.0157 4.1 2.7 9.9 11.0 0.3 1.6 2.1 0.0 0.1 0.4 0.0 0.0 0.0 0.7 1.7 0.0

Table D.1: The reduced diffractive cross section xIPσ
D
r at 460 GeV. The normalisation uncertainty of 7.4% is not included.
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xIP Q2 β xIPσ
D
r δstat δuncor δcor δtot δele δθ δnoise δspa δβ δxIP

δrlog δmodel δasym δVM δQEDC δBCC

0.0005 4.0 0.186 0.0192 20.2 17.1 16.5 29.7 1.9 0.5 6.7 1.2 2.9 4.5 0.7 5.1 0.6 6.1 0.0 14.0

0.0005 4.0 0.227 0.0269 11.6 13.3 11.7 16.8 2.8 1.0 5.0 0.2 1.7 3.8 0.1 0.8 0.1 5.8 0.0 6.8

xIP Q2 β xIPσ
D
r δstat δuncor δcor δtot δele δθ δnoise δspa δβ δxIP

δrlog δmodel δasym δVM δQEDC δBCC

0.0005 11.5 0.570 0.0456 11.6 12.4 13.8 16.3 1.5 1.8 8.3 0.2 1.0 1.8 0.5 1.0 0.2 6.8 0.2 1.1

0.0005 11.5 0.699 0.0498 14.5 11.1 10.2 20.9 1.0 1.8 7.7 0.9 1.0 1.3 0.0 0.6 0.0 4.9 0.0 3.5

0.0005 11.5 0.755 < β < 1.0 0.0189 8.0 10.4 10.9 17.0 2.0 1.2 8.8 0.7 0.4 0.1 0.0 0.1 0.0 1.2 0.0 0.0

xIP Q2 β xIPσ
D
r δstat δuncor δcor δtot δele δθ δnoise δspa δβ δxIP

δrlog δmodel δasym δVM δQEDC δBCC

0.003 4.0 0.033 0.0159 6.6 4.4 5.7 9.1 2.1 0.9 0.5 0.9 1.1 0.0 0.5 5.9 0.3 0.3 0.0 1.3

0.003 4.0 0.041 0.0164 9.5 4.8 5.4 11.9 0.9 0.6 0.5 0.3 1.9 0.1 0.0 3.7 0.0 0.2 0.0 0.7

0.003 4.0 0.054 0.0160 7.4 3.7 5.0 9.7 1.5 1.7 0.6 0.2 2.5 0.8 0.0 1.5 0.0 0.3 0.1 0.4

0.003 4.0 0.085 0.0171 13.9 5.8 5.9 16.2 2.2 2.3 0.5 0.2 2.6 0.2 0.0 0.7 0.0 0.3 0.0 2.9

0.003 4.0 0.125 0.0115 36.3 11.2 9.1 39.1 2.6 5.3 2.0 0.0 1.4 1.1 0.0 0.2 0.0 1.4 0.0 6.2

xIP Q2 β xIPσ
D
r δstat δuncor δcor δtot δele δθ δnoise δspa δβ δxIP

δrlog δmodel δasym δVM δQEDC δBCC

0.003 11.5 0.089 0.0222 9.2 3.4 3.3 10.3 0.9 0.8 0.4 0.9 0.4 0.1 0.8 1.1 0.5 0.5 0.3 0.7

0.003 11.5 0.101 0.0227 7.5 3.2 3.0 8.7 1.0 1.4 0.1 0.6 0.1 0.2 0.2 0.5 0.1 0.5 0.1 0.7

0.003 11.5 0.117 0.0256 6.5 3.0 2.7 7.7 0.9 1.4 0.3 0.2 0.0 0.4 0.0 0.3 0.0 0.4 0.1 0.7

0.003 11.5 0.155 0.0288 3.4 2.4 3.0 5.1 1.6 1.1 0.1 0.1 0.4 0.4 0.0 0.2 0.0 0.1 0.1 0.7

0.003 11.5 0.244 0.0282 3.5 2.4 2.7 5.0 1.1 1.1 0.1 0.1 0.4 0.1 0.0 0.1 0.0 0.6 0.1 0.5

0.003 11.5 0.361 0.0284 4.1 2.5 2.9 5.6 0.8 1.3 0.5 0.0 0.1 0.7 0.0 0.0 0.0 0.1 0.1 0.0

xIP Q2 β xIPσ
D
r δstat δuncor δcor δtot δele δθ δnoise δspa δβ δxIP

δrlog δmodel δasym δVM δQEDC δBCC

0.003 44.0 0.341 0.0379 8.6 3.6 2.6 9.7 1.0 0.9 0.2 0.6 0.5 0.2 0.7 0.4 0.1 0.0 0.1 0.1

0.003 44.0 0.386 0.0350 8.0 3.4 3.1 9.2 1.0 0.8 0.5 0.1 0.2 0.0 0.2 0.1 0.0 0.2 0.2 1.2

0.003 44.0 0.446 0.0316 7.7 3.2 4.0 9.2 0.9 1.4 0.8 0.1 0.2 0.3 0.0 0.0 0.0 0.1 0.5 2.6

0.003 44.0 0.592 0.0412 4.1 2.5 5.7 7.4 0.7 1.4 1.5 0.0 0.1 0.2 0.0 0.0 0.0 0.0 1.2 4.8

0.003 44.0 0.76 < β < 1.0 0.0148 4.8 2.6 9.8 11.2 0.1 1.7 2.1 0.0 0.1 0.0 0.0 0.0 0.0 0.3 1.1 0.0

Table D.2: The reduced diffractive cross section xIPσ
D
r at 575 GeV. The normalisation uncertainty of 7.4% is not included.
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xIP Q2 β xIPσ
D
r δstat δuncor δcor δtot δele δθ δnoise δspa δβ δxIP

δrlog δmodel δasym δVM δQEDC δBCC

0.0005 11.5 0.570 0.0556 1.3 10.6 7.1 8.8 0.9 2.8 4.0 0.2 0.8 1.0 0.2 0.3 0.0 3.6 0.1 1.1

0.0005 11.5 0.699 0.0581 1.6 10.2 6.7 12.3 0.9 3.2 3.8 0.2 0.5 0.7 0.1 0.1 0.0 2.2 0.1 3.2

0.0005 11.5 0.755 < β < 1.0 0.0200 1.2 10.1 8.5 13.2 0.4 3.3 4.3 0.3 0.2 0.4 0.0 0.0 0.0 1.3 2.4 0.0

xIP Q2 β xIPσ
D
r δstat δuncor δcor δtot δele δθ δnoise δspa δβ δxIP

δrlog δmodel δasym δVM δQEDC δBCC

0.003 11.5 0.089 0.0273 1.4 2.6 3.2 4.3 0.3 2.3 0.3 0.2 0.1 0.2 0.1 0.1 0.0 0.2 0.3 0.5

0.003 11.5 0.101 0.0276 1.3 2.5 3.3 4.4 0.1 2.2 0.2 0.5 0.2 0.1 0.1 0.1 0.0 0.2 0.2 0.6

0.003 11.5 0.117 0.0269 1.2 2.4 3.3 4.2 0.4 2.3 0.2 0.4 0.2 0.1 0.0 0.0 0.0 0.0 0.1 0.6

0.003 11.5 0.155 0.0268 0.7 2.1 3.4 4.1 0.2 2.4 0.7 0.2 0.2 0.1 0.1 0.1 0.0 0.3 0.2 0.7

0.003 11.5 0.244 0.0271 0.7 2.1 3.6 4.2 0.3 2.6 0.7 0.3 0.2 0.3 0.3 0.3 0.0 0.5 0.3 0.6

0.003 11.5 0.361 0.0296 1.3 2.4 5.3 6.0 4.3 2.3 0.3 0.3 0.3 0.4 0.3 0.3 0.0 0.7 0.1 0.5

xIP Q2 β xIPσ
D
r δstat δuncor δcor δtot δele δθ δnoise δspa δβ δxIP

δrlog δmodel δasym δVM δQEDC δBCC

0.003 44.0 0.341 0.0379 1.8 2.8 3.1 4.5 0.5 1.2 0.5 0.2 0.2 0.2 0.2 0.2 0.0 0.1 1.6 0.8

0.003 44.0 0.386 0.0391 1.7 2.7 3.6 4.8 0.5 1.4 0.4 0.1 0.1 0.1 0.1 0.1 0.0 0.3 1.6 1.6

0.003 44.0 0.446 0.0413 1.4 2.6 4.0 5.0 0.2 1.3 1.0 0.1 0.1 0.1 0.1 0.1 0.0 0.1 1.4 2.8

0.003 44.0 0.592 0.0407 0.9 2.2 5.5 6.0 0.5 1.6 0.8 0.1 0.1 0.1 0.1 0.1 0.0 0.1 1.2 4.8

0.003 44.0 0.76 < β < 1.0 0.0162 1.0 2.3 9.8 10.1 0.2 1.6 1.6 0.1 0.1 0.5 0.1 0.1 0.0 0.0 0.7 0.0

Table D.3: The reduced diffractive cross section xIPσ
D
r at 920 GeV. The normalisation uncertainty of 7.4% is not included.
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xIP Q2 β xIPF
D
L δstat δstat+uncor δcor δtot δele δθ δnoise δspa δβ δxIP

δrlog δmodel δasym δV M δQEDC δBCC

0.0005 4.0 0.227 0.0317 27.0 36.1 5.1 36.4 3.9 1.0 9.4 0.4 3.7 5.8 1.3 9.2 1.2 12.1 0.5 10.6

xIP Q2 β xIPF
D
L δstat δstat+uncor δcor δtot δele δθ δnoise δspa δβ δxIP

δrlog δmodel δasym δV M δQEDC δBCC

0.0005 11.5 0.570 0.0220 44.6 69.2 14.0 70.6 3.1 12.9 10.7 10.3 1.9 0.9 8.8 0.6 4.9 10.1 28.0 1.5

0.0005 11.5 0.699 −0.0087 551.8 461.4 556.1 722.6 16.0 42.9 197.9 19.3 14.5 22.1 9.7 24.5 0.0 109.0 7.1 15.9

xIP Q2 β xIPF
D
L δstat δstat+uncor δcor δtot δele δθ δnoise δspa δβ δxIP

δrlog δmodel δasym δV M δQEDC δBCC

0.003 4.0 0.033 0.0147 24.2 28.3 6.7 29.1 1.8 0.6 0.4 4.6 0.3 0.3 4.0 24.4 5.4 0.8 0.1 0.5

0.003 4.0 0.041 0.0187 27.5 32.6 2.5 32.7 2.1 2.2 1.4 3.2 2.3 0.1 1.2 14.6 1.1 0.7 0.0 1.3

0.003 4.0 0.054 0.0287 28.1 33.5 1.2 33.5 6.3 1.3 1.8 0.7 4.5 0.5 0.0 6.2 0.0 1.4 0.2 1.7

xIP Q2 β xIPF
D
L δstat δstat+uncor δcor δtot δele δθ δnoise δspa δβ δxIP

δrlog δmodel δasym δV M δQEDC δBCC

0.003 11.5 0.089 0.0106 35.7 41.4 5.4 41.7 6.5 8.5 6.5 8.4 2.6 2.5 9.9 10.6 8.8 1.6 0.2 1.8

0.003 11.5 0.101 0.0189 18.0 22.0 0.9 22.0 2.3 6.1 1.2 1.2 0.7 0.6 3.3 3.7 2.3 1.3 0.6 0.2

0.003 11.5 0.117 0.0106 43.1 53.6 3.2 53.7 11.2 10.5 0.5 1.4 0.7 0.5 3.1 3.2 2.0 4.3 0.7 0.7

0.003 11.5 0.155 0.0055 142.5 142.8 62.1 155.7 52.0 47.0 25.2 3.1 5.0 2.3 2.9 3.6 0.0 4.4 3.7 0.8

xIP Q2 β xIPF
D
L δstat δstat+uncor δcor δtot δele δθ δnoise δspa δβ δxIP

δrlog δmodel δasym δV M δQEDC δBCC

0.003 44.0 0.341 0.0167 51.9 51.8 2.8 51.8 3.0 4.7 4.7 4.0 2.9 2.1 6.1 3.8 2.7 4.3 7.9 4.6

0.003 44.0 0.386 0.0086 73.6 89.8 9.0 90.2 4.3 10.3 5.3 5.0 5.0 5.2 12.8 3.2 2.3 4.2 15.7 10.5

0.003 44.0 0.446 0.0300 22.9 29.6 1.3 29.6 5.7 3.4 3.0 0.7 1.4 0.7 1.5 0.8 0.5 0.4 6.1 4.7

0.003 44.0 0.592 0.0071 155.9 187.5 37.9 191.3 43.2 17.5 21.0 6.3 3.7 7.1 3.1 2.4 0.0 24.1 8.9 5.2

Table D.4: The diffractive longitudinal structure function xIPF
D
L . The normalisation uncertainty of 7.4% is not included.
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Figure E.1: The H1 Preliminary FD
L measurement shown for the first time at the DIS

2009 conference.
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L measurement at low Q2 shown for the first time

at the DIS 2010 conference.
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