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Abstract

In this thesis, measurement of the transverse momentum and pseudorapidity distri-
butions of charged particles in deep-inelastic ep scattering at a centre of mass energy
of
√

s = 319 GeV are presented. The analysis is based on data collected by the H1 de-
tector in 2006, corresponding to an integrated luminosity of 88.64 pb−1. The phase
space of the measurement is de�ned by 5 < Q2 < 100 GeV2 and 0.05 < y < 0.6.
The transverse momentum and pseudorapidity distributions of charged particles are
measured in the virtual photon-proton centre of mass frame (hadronic centre of mass
frame) in di�erent regions of x and Q2. The measured distributions are compared
to predictions from di�erent Monte Carlo generators using di�erent approaches to
simulate the parton cascade.

The measurement shows the importance of parton emissions unordered in trans-
verse momentum. A QCD model, exhibiting this feature, such as the BFKL-like
colour dipole model is best in the description of the data, whereas a model gen-
erating emissions according to the DGLAP approach undershoots the data at low
Bjorken-x. It is shown that the region of small transverse momenta is primarily af-
fected by the hadronisation process, whereas the region of large transverse momenta
is mainly driven by perturbative parton radiation.

Kurzfassung

In der vorliegenden Arbeit wird eine Messung der Transversalimpuls- und Pseu-
dorapiditätsverteilungen von geladenen Teilchen in tiefunelastischer ep-Streuung
vorgestellt. Der dazu verwendete Datensatz hat eine integrierte Luminosität von
88.64 pb−1 und wurde bei einer Schwerpunktsenergie von

√
s = 319 GeV mit

dem H1 Detektor im Jahr 2006 aufgezeichnet. Die Analyse wird in dem Bereich
5 < Q2 < 100 GeV2 und 0.05 < y < 0.6 vorgenommen. Die Transversalimpuls- und
Pseudorapiditätsverteilungen von geladenen Teilchen werden im virtuellen Photon-
Proton Schwerpunktsystem (hadronisches Schwerpunktsystem) in verschiedenen Re-
gionen von x und Q2 gemessen. Die Messungen werden mit Vorhersagen von ver-
schiedenen Monte Carlo Generatoren verglichen, die unterschiedliche Ansätze bei
der Simulation der Parton-Kaskade verwenden. Die Messung zeigt die Bedeutung
der Parton-Emissionen bezüglich ungeordneter Transversalimpulse. Ein Modell der
QCD, wie beispielsweise das BFKL-ähnliche Farbdipol-Modell (CDM), ist am besten
geeignet um die Daten zu beschreiben, während ein Modell, das Emissionen mit Hilfe
des DGLAP Ansatzes erzeugt, die Daten bei niedrigen Bjorken-x unterschätzt. Es
wird gezeigt, dass der Bereich kleiner Transversalimpulse hauptsächlich durch die
Hadronisierungsmodelle beein�usst wird, während der Bereich der groÿen Transver-
salimpulse im Wesentlichen durch perturbative Parton Strahlung geprägt ist.
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Chapter 1

Introduction

A series of important experiments performed during the past decades has established
the new layer in the structure of matter - the protons and neutrons are no longer
regarded as elementary particles but are found to be made of quarks. The dynam-
ics of quarks can be described by quantum �eld theory, Quantum Chromodynamic
(QCD), possessing local gauge symmetry - like the theories that proved already suc-
cessful in describing the electromagnetic interactions of charged particles, QED, and
electromagnetic and weak interactions of leptons and quarks, electroweak standard
theory.

A main research tool in particle physics consists of accelerating elementary par-
ticles to high energy (beam) and letting them impact other particles (target). The
analysis of the products of these collisions gives evidence of the structure of the
colliding particles. It was scattering at large angles in the experiment the alpha
particles hitting gold atom which resulted in the picture of Bohr atom with nucleus
as the centre and electronic shells around it.

In case of nucleon there is one serious complication - isolated quarks and gluons
are experimentally unavailable due to colour con�nement and therefore the conclu-
sions about the behavior of the latter inside nucleon are deduced from experiments
rather indirectly. The most clean and e�ective way is inelastic scattering of leptons
o� nucleons. The momentum q, transferred by scattered lepton to nucleon, charac-
terises in such processes how small distances can be probed inside the nucleon. The
second important variable, Bjorken-x, de�ned by the equation (xP + q)2 = x2P 2,
gives the plausible measure of the part of the nucleon momentum P with which the
lepton was interacting elastically: xP + pl = xP ′ + pl′ , where P 2 = P ′2 = m2

p and
p2

l = p2
l′ = m2

l . From the early models of constituent quarks, according to which
the nucleon consists of three valence quarks, i.e. the quarks de�ning its quantum
numbers, each of mass mq ' mp/3, one would expect x ' 0.3, but the pioneering
Deep Inelastic Scattering (DIS) experiments [1�3] showed signi�cant contribution
from very small x in contradiction with this model. It is now �rmly established,
that quark-antiquark pairs ("sea" quarks) and gluons carry a major part of proton
momentum and hence the region of small x ' 10−4 continues to be the region of
intense experimental and theoretical studies.

At the Large Hadron Collider (LHC), the world's largest and highest-energy par-
ticle accelerator, the main goal is to answer the question if the Higgs mechanism for
generating elementary particle masses via electroweak symmetry breaking actually
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Figure 1.1: Manifestation of partons in the proton in a) ep and b) pp scattering.

realised in nature and is to demonstrate or rule out the existence of the Higgs boson.
The LHC at present successfully operates at 3.5 TeV per beam. The current status
of this fundamental search is reported recently by CMS and ATLAS collaborations:
an excess of events is observed around mH ∼ 124−126 GeV with a local signi�cance
of 3.1−3.5 standard deviations (σ) [4,5]. The LHC is designed to collide in the near-
est future protons at up to 7 TeV. The pairs of interacting partons have invariant
mass equal to

√
ŝ =

√
x1x2

√
s (see �gure 1.1) and thus production of objects with

mass 100 GeV is possible at
√

x1x2 ' 10−2. It means that the parton distributions
at small x gained from DIS experiments play crucial role for the interpretation of
LHC results.

Small values of the fractional proton momentum carried by the interacting parton
at moderate four-momentum transfer squared Q2 ≡ −q2 can be accessed at HERA.
This is a region of high parton densities in the proton, dominated by gluons and
"sea" quarks. At small Bjorken-x ' 10−4, further referred to as x, partons in the
proton can subsequently emit many partons before interacting with a virtual photon
(�gure 1.2).

In perturbative QCD multi-parton emissions are described only with certain ap-
proximations, in a restricted phase space. At large Q2 and not too small x values
the Dokshitzer-Gribov-Lipatov-Altarelli-Parisi (DGLAP) [6�9] evolution equation
is expected to be a good approximation. The DGLAP equation corresponds to a
strong ordering of the virtualities of the propagator partons, kTi, with increasing x,
which implies strong ordering of the transverses momentum of the emitted partons,
pTi � pTi+1, in the parton cascade from the proton side towards the virtual photon.
The DGLAP approximation leads to resummation of leading logarithms of trans-
verse momenta αslog(Q

2). This approximation, however, may become inadequate
for small x, where log(1/x) terms become important. In this region the Balitsky-
Fadin-Kuraev- Lipatov (BFKL) [10�12] scheme is expected to be appropriate, where
a resummation terms of αslog(1/x) is performed.

Measurements of F2(x, Q2) are well described by the NLO or NNLO DGLAP
evolution and might be too inclusive to exhibit signals for BFKL.

However, signi�cant deviation from the DGLAP approach are observed in the
fractional rate of di-jet events [13�16], in inclusive jet production [17,18], in measure-
ment of the transverse energy �ow [19�24] and in transverse momentum spectra [25].
Measurement of charged particle transverse momentum were proposed in [26] as a
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tum of emitted gluons i are labeled as pT,i. The fractional momentum of the proton carried by
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more direct probe of the underlying parton dynamics. It has been shown with the
aid of QCD models that the hard pT spectrum is sensitive to parton radiation, while
the contribution from hadronisation is small.

Measurements of the transverse momentum of charged particles have been per-
formed earlier by the H1 collaboration [25], but the low statistics available at that
time did not allow systematic di�erential investigations.

This thesis presents the study of the inclusive, event normalised, charged par-
ticle transverse momentum and pseudorapidity distribution at low Q2, using data
collected with the H1 detector in 2006 when positrons and protons collided with
energies of 27.6 GeV and 920 GeV, respectively, corresponding to a centre of mass
energy of

√
s = 319 GeV. The integrated luminosity of the data set is 88.6 pb−1,

which is about seven times larger than used in the previous publication [25].
One of the challenging task of this analysis was to reach the forward (towards

the proton remnant) direction to the maximum limit allowed by the detector track-
ing system. Compared to the DGLAP scheme more gluons with sizable transverse
momentum are emitted near the proton direction. For this reason charged particles
with high transverse momentum produced close to the proton direction, are consid-
ered to be especially sensitive to QCD dynamics at low x. This was a �rst attempt
to include forward tracks in to a H1 analysis after HERA upgrade.
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Chapter 2

Theoretical Framework

2.1 Lepton-Proton Scattering and Kinematics

In high energy ep-collisions, when the exchanged photons have large virtualities,
de�ned as Q2 ≡ −q2, where q2 is the squared four-momentum transferred from the
electron1 to the photon, the wavelength of the virtual photons can be much smaller
than the size of a proton, λ ≈ 1

Q
� 1 fm. Hence the virtual photon can probe

distances, that are small compared with the proton size, where, as it was discovered,
point-like particles, partons, manifest themselves. In deep inelastic scattering (DIS)
photons interact with partons, which carry a part x of a proton momentum, and
scatter o� them destroying thereby the proton. In cases, when very high momenta
are transferred, the process can also occur via the exchange of an electroweak vector
bosons, Z0 or W±. The processes where photon/Z0 bosons are exchanged are called
neutral current (NC) processes, whereas the exchange of a W± is called a charged
current (CC) process. Example diagrams of NC and CC DIS scattering are shown
in �gure 2.1. This analysis is restricted to a kinematic region of low momentum
transfer so that only photon exchange has to be considered.

ν (k’)
e (k)

e (k’)
e (k)

γ , Z  (q)0 +
W  (q)

X X
P (p)

xpxp
P (p)

Figure 2.1: Illustration of ep → lX reaction in the lowest order. The exchanged boson may be
photon or Z0 in NC or W± in CC events. The four-momenta of the particles are indicated in
brackets.

Let p, k and k′ be the four-momenta of the incoming proton, the incoming
electron and the outgoing electron, respectively. The main kinematic variables used

1The term electron refers to both the electron and the positron.
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to describe inclusive DIS are:

• the centre of mass energy

s ≡ (k + p)2 ; (2.1)

• the virtuality of the exchanged boson

Q2 ≡ −q2 = −(k − k′)2 ; (2.2)

• the Bjorken scaling variable x

x =
Q2

2p · q
(2.3)

in the quark-parton model can be interpreted as the momentum fraction of
the proton carried by the struck quark, see section 2.3;

• the inelasticity variable y

y =
p · q
p · k

(2.4)

de�ned as the fractional energy loss of the electron in the proton rest frame.

These variables are related to the square of the centre of mass ep energy by
Q2 = sxy. Thus at �xed s DIS interaction can be fully characterised by only two
variables, Q2 and x.

2.2 The NC DIS Cross Section

The di�erential NC cross section is proportional to the convolution of the leptonic,
Lµν , and hadronic, W µν , tensors:

dσNC ∝ LµνWµν . (2.5)

The convolution LµνWµν is shown graphically in �gure 2.2. The electron tensor Lµν

�
�
�
��
�
�
�

Le (k) e (k)

P (p)

µν

P (p)

Wµν

Figure 2.2: Graphical representation of the convolution LµνWµν .

is fully de�ned by the electron momenta k and k′ and is equal to

Lµν = 2 [k′µkν + k′νkµ − gµν(k′, k)] . (2.6)
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Equation (2.6) can be rewritten in the explicit gauge-invariant (qµL
µν = 0) form

− Lµν

2Q2
= −

(
gµν +

qµqν

Q2

)
Fe1 +

(
kµ +

qµ(k, q)

Q2

)(
kν +

qν(k, q)

Q2

)
Fe2

(k, q)
, (2.7)

where the "structure functions" of the electron are constants:

Fe1 =
1

2
, Fe2 = 1 , Fe2 = 2Fe1 .

The hadronic tensor is more complicated than the leptonic one and so far cannot
be calculated theoretically. In its most general form, Wµν can be written as an
expression analogous to (2.7) in terms of the proton structure functions:

Wµν = −
(

gµν +
qµqν

Q2

)
F1(x, Q2) +(

pµ +
qµ(p, q)

Q2

)(
pν +

qν(p, q)

Q2

)
F2(x, Q2)

(p, q)
. (2.8)

In contrast to the structure functions of the point-like electron the structure func-
tions F1 and F2 of the proton are not constants and have to be determined experi-
mentally.

The double-di�erential cross section for unpolarised ep scattering can be written
in terms of these structure functions:

d2σ

dxdQ2
=

4πα2

xQ4

[
(1− y)F2(x, Q2)− y2xF1(x, Q2)

]
, (2.9)

where α is the electromagnetic coupling constant. F1 and F2 are related via the
longitudinal structure function FL = F2 − 2xF1. The magnitude of FL is propor-
tional to the cross section for protons colliding with longitudinally polarised virtual
photons, FL ∝ σL.

2.3 The Quark-Parton Model

In the simple Bjorken-Feynman Quark-Parton Model (QPM) the proton is made
of point-like spin-1

2
constituents, called partons [27]. In this model the DIS cross

section can be approximated by an sum of elastic lepton-quark cross sections over
all relevant types (�avors) of quarks, see �gure 2.3. The wave function of this quark
in the vertex p → kiX is equal to

√
fi(x). The square of

√
fi(x) gives the quark

distribution, or quark density, fi(x), of �avor i in the proton. The parton tensor
Wiµν in the approximation shown in �gure 2.3 is calculable in the same manner as
the electron tensor Lµν , see eq. (2.6):

Wiµν = 2e2
i Q

2

[
−
(

gµν +
qµqν

Q2

)
1

2
+

(
pµ +

qµ(p, q)

Q2

)(
pν +

qν(p, q)

Q2

)
x

(p, q)

]
,

where the relation ki = xp was used and the squared electric charge e2
i of the quark

is introduced. Due to relation Wµν =
∑

i fi(x)Wiµν (followed from �gure 2.3) one
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Figure 2.3: Graphical representation of the Wµν in simple partonic model.

obtains:

Wµν = 2Q2

[
−
(

gµν +
qµqν

Q2

)∑
i e

2
i fi(x)

2
+(

pµ +
qµ(p, q)

Q2

)(
pν +

qν(p, q)

Q2

)
x
∑

i e
2
i fi(x)

(p, q)

]
.

Comparing this expression with equation (2.8) one derives

F1(x) =

∑
i e

2
i fi(x)

2
, F2(x) = x

∑
i

e2
i fi(x), F2(x) = 2xF1(x) , (2.10)

where the sum runs over all quarks and antiquarks in the proton. That is, the
structure functions F1,2 in this approximation depend only on x and are independent
on Q2. This was observed in early DIS experiments [1�3] and is known as Bjorken
scaling. The last relation in eq. (2.10) is known as the Callan-Gross relation. Thus,
the QPM predicts FL(x) = F2(x) − 2xF1(x) = 0 illustrating the fact that particles
with spin 1

2
cannot absorb longitudinally polarised photons elastically.

Let us summarize that in this model the proton structure functions are calcu-
lated as a sum of the constant structure functions of the charged point-like partons,
averaged with their momentum distributions depending on only x.

2.4 Quantum Chromodynamics

The QPM assumes only essentially free quarks in the proton. This approximation
contradicts the fact that no free partons were observed in experiment, but only
mesons and baryons, - strong indication on the existence of some additional particle
bounding (`gluing') quarks together. This problem and many others were solved by
the theory of the strong interactions, Quantum Chromodynamics (QCD). According
to QCD all hadrons consist of a fermions - the quarks - which are exchanged by vector
bosons - the gluons. QCD is a gauge theory of the SU(3)c gauge group and the gluons
play the similar role as the photons in QED. Quarks are spin-1/2 fermions which
carry colour charge and represent the fundamental representation 3 of the gauge
group SU(3)c. That is the quarks �elds are vectors in the complex 3-dimensional
space of colours: qc, c = 1, 2, 3 (antiquarks - q̄c̄). Gluons are spin-1 bosons which
also carry colour charges since they correspond to the adjoint representation 8 of
SU(3)c, which means that gluon �elds are traceless Hermitian tensors, gab̄. The
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basis of these tensors consists of the eight Gell-Mann matrices, λab̄
i , i = 1, 2, ..., 8.

The q → gq vertex is described by λi
b
a, the g → qq̄ - λab̄

i etc. The vertex g → gg
is given by the structure constants f jk

i which are completely antisymmetric in the
three indices and originate from the commutation relation

[λj, λk] = if jk
i λi .

Colourless mesons and baryons are described by two SU(3)c -invariant tensors:
Eab̄ = diag(1, 1, 1) and εabc - completely antisymmetric tensor with ε123 = 1 so
that the meson vertex M → qq̄ is given by Eab̄ and the baryon vertex to valence
quarks B → qqq - by εabc.

The important property of QCD is the asymptotic freedom, which means that
at short distance, or high-energy, coloured partons interact very weakly and become
almost free particles. At long distance the force between them does not diminish
but becomes even stronger. This is believed to be the reason of the con�nement of
coloured partons inside the hadrons. Asymptotic freedom follows from the analysis
of the the strong coupling constant by methods of the renormalisation group. Ac-
cording to this analysis, the strong coupling constant depends on renormalisation
scale µr and in the one loop approximation (leading order) looks as follows

αs(µr) ≈
12π

(33− 2Nf ) ln µ2
r

Λ2

, (2.11)

where Λ ∼ 200 MeV is the QCD scale and Nf is the number of quark �avours. For
Nf < 17 αs decreases with increasing µr, which allows perturbation theory to be
used accurately in describing of experiments performed at very high energies.

QCD was con�rmed experimentally in 1979 at PETRA by the analysis and
discussion of three-jet events initiated by the gluons [28].

2.4.1 Divergences and Factorisation Theorem

A better description of the proton is achieved by allowing interactions between par-
tons in the frame of QCD. Some of the diagrams, additional to Born level diagram,
are shown in �gure 2.4. They are gluon radiation from quark line (QCD Compton,
QCDC) and g → qq̄ (boson gluon fusion, BGF). Though the expansion parameter
αs of such perturbative series is assumed to be small, still many diagrams contribute
to the cross section and have to be summed up, making the task to compute QCD
corrections to the QPM di�cult. An essential point in these calculations is the con-
cept of factorisation. When carrying out the calculation of ep cross sections one has
the diagrams for real gluon emission, the second and the third diagrams in �gure 2.4,
and for virtual corrections (see �gure 2.5 as an illustration of virtual gluon loops in
the quark propagators and vertices), and all these diagrams are divergent. The real
emissions contain infra-red divergences, arising due to the radiation of soft quanta
with small momenta k → 0, and collinear divergences, corresponding to emission
parallel to the initial quark (k2

T → 0), while virtual corrections are both infra-red
and ultra-violet (UV) divergent (large loop momenta). The method of the dimen-
sional regularisation applied to the UV divergences in the virtual diagrams shows
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Figure 2.5: Virtual gluon loops in the quark propagators and vertices.

that they cancel between propagator and vertex corrections2 .

As to the soft, infra-red, divergences, the Kinoshita-Lee-Nauenberg (KLN) the-
orem [31, 32] guarantees that they are exactly canceled when one adds virtual cor-
rections to real emission diagrams.

We are then left with the collinear divergences in the real gluon emissions, ap-
pearing as terms ln Q2

µ2 , where µ is the infra-red cut-o� of small kT (k2
T > µ2). Since

this cut-o� is connected with some e�ective quark masses, the collinear divergences
are also called mass singularities. How to deal with collinear divergences is mainly
the content of the factorisation theorem [33�35]. The general idea of factorisation is
a rearrangement of the perturbative expansion so that it is factorized into a part free
from mass singularities and another one containing all (and only) mass singularities.
The last part can be absorbed into the "bare" parton distribution function (PDF),
f 0

i (x), introduced in the QPM (see �gure 2.3), which makes it dependent on the
infra-red cut-o� µ. Removing this infra-red cut-o� is done by going from the bare to
the dressed parton density. Actually, the computed correction has to be convoluted
by the bare quark density and at this stage a factorisation scale µf is introduced and
de�ne a dressed density at that point. This procedure allows us to replace the diver-

2General statement is that the Ward identity insures a cancellation between the UV divergences
arising from virtual quark wave function and vertex corrections [29,30].

10



gent bare density by the �nite dressed one, introducing a scale dependence. Since a
physical quantity, such as f(x, Q2), must not depend on the factorisation scale µf ,
the derivative of it with respect to ln µ2

f has to vanish. This gives the well-known
DGLAP (Dokshitzer-Gribov-Lipatov-Altarelli-Parisi) evolution equation. Thus, the
factorisation scale determines which of the radiated gluons are considered to belong
to the hadronic structure (the PDF). Finally, the electron-proton structure function
F2 with the singularities removed is the convolution of rede�ned, or dressed, parton
distribution function (further on referred to as just parton distribution function)
with the partonic hard-scattering function C:

F2(x, Q2) = x
∑

i=q,q̄,g

∫ 1

x

dξ

ξ
Ci

(
x

ξ
, Q2, µ2

f

)
fi(ξ, µ

2
f ) =

x
∑

i=q,q̄,g

(Ci(Q
2, µ2

f )⊗ fi(µ
2
f ))(x) , (2.12)

where the sum runs over all partons in the proton. The choice of µf is arbitrary and,
qualitatively, the factorisation scale corresponds to the resolution with which the
proton is being probed. The partonic hard-scattering functions Ci can be calculated
perturbatively for any scale. For µf = Q it reduces to the Born graph and parton
distribution function is such as it is seen by a photon with virtuality Q2. The changes
of parton density with the scale is governed by so-called evolution equations so that
once the PDF is given at one scale it can be calculated for any other scale.

2.4.2 DGLAP Evolution Equations

As was mentioned above, there are two steps in the derivation of the DGLAP evo-
lution equation. The �rst is to deal with collinear divergences when calculating the
corrections due to gluon emissions, and the second - to resum the perturbative ex-
pansion (factorisation theorem). The derivation of the DGLAP evolution equation
in leading order (LO) is presented in this subsection. To distinguish the partonic
distribution function, fi, for quarks and gluons, let us denote qi as a quark density
for �avour i and g as the gluon density in the proton. The partonic distribution
function introduced in the QPM we denote as q0

i . Then the expression of F2(x) in
the QPM, given in (2.10), can be also written as:

F2(x) = x
∑

i

e2
i q

0
i (x) = x

∑
i

e2
i

∫ 1

x

dξ

ξ
q0
i (ξ)δ(1−

x

ξ
) ≡ x

∑
i

e2
i (E ⊗ q0

i )(x) , (2.13)

where E(x) = δ(1− x) is the unit function w.r.t. the convolution: E ⊗ f = f .
Let us consider �rst the q → qg splitting and the corresponding QCDC diagram

(see second term in �gure 2.4). The calculation of this diagram requires the knowl-
edge of the squared vertices illustrated in �gure 2.6 - they are called the splitting
functions - and the integration over the internal momenta of the exchanged quarks.
This leads to the following modi�cation of the function E (eqs.(10.32) and (10.34)
of [36]):

E → E +
αs

2π
ln

Q2

µ2
P (0)

qq , (2.14)

11
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Figure 2.6: Splitting functions

where

P (0)
qq (z) =

4

3
· 1 + z2

1− z
, z ≡ x

ξ
(2.15)

is the q → qg splitting function shown �rst in �gure 2.6. Here µ2 is just the infra-
red cut-o� of small kT , discussed above, which regulates the collinear singularities.
Equation (2.14) is valid when Q2 is large but x is not too small.

The infra-red cut-o� should be removed, and this is done by the introducing a
factorisation scale µ2

f and then, by factorizing the eq. (2.14) as follows

E +
αs

2π
ln

Q2

µ2
P (0)

qq ' (E +
αs

2π
ln

Q2

µ2
f

P (0)
qq )⊗ (E +

αs

2π
ln

µ2
f

µ2
P (0)

qq )) . (2.16)

This factorisation is valid up to the �rst order in αs. Then the LO F2, given by eq.
(2.17), transforms into

F2(x, Q2) = x
∑

i

e2
i ((E +

αs

2π
ln

Q2

µ2
P (0)

qq )⊗ q0
i )(x) =

x
∑

i

e2
i ((E +

αs

2π
ln

Q2

µ2
f

P (0)
qq )⊗ qi(µ

2
f ))(x) , (2.17)

where qi(µ
2
f ), E and P (0) etc. are functions of x and where a dressed parton density

at the factorisation scale µ2
f is introduced:

qi(µ
2
f ) ≡ (E +

αs

2π
ln

µ2
f

µ2
P (0)

qq )⊗ q0
i = q0

i +
αs

2π
ln

µ2
f

µ2
(P (0)

qq ⊗ q0
i ) . (2.18)

Comparing eq.(2.17) with the general factorisation equation (2.12), one obtains that
at αs order the partonic hard-scattering function Ci is equal to:

Ci(x, Q2, µ2
f ) = e2

i (E +
αs

2π
ln

Q2

µ2
f

P (0)
qq )(x) . (2.19)

F2(x, Q2) should not depend on the scale µ2
f , and the derivation of equation (2.17)

with respect to ln µ2
f must be equal to zero. At αs order this leads to the LO DGLAP

equations:

dqi(µ
2
f )

d ln µ2
f

=
αs

2π
(P (0)

qq ⊗ qi(µ
2
f )) ⇔

dqi(x, µ2
f )

d ln µ2
f

=
αs

2π

∫ 1

x

dξ

ξ
qi(ξ, µ

2
f )P

(0)
qq (

x

ξ
) .

(2.20)

12



In (2.20) we have limited ourselves to the case of gluon emission by a quark

coming out the proton. In that case, P
(0)
qq (x

ξ
) describes the probability to �nd a quark

of momentum fraction x emerging from an incident quark of momentum ξ. This
can be generalised to the probability to �nd a parton a (quark or gluon) emerging
from parton b by emission of a third parton3. The four cases are summarised in
�gure 2.6. Equation (2.20) for the quark density then becomes:

dqi(x, Q2)

d ln Q2
=

αs

2π

∫ 1

x

dξ

ξ

(
qi(ξ, Q

2)P (0)
qq (

x

ξ
) + g(ξ, Q2)P (0)

qg (
x

ξ
)

)
, (2.21)

where the probability to �nd a quark in a gluon (second vertex in �gure 2.6) is given
by

P (0)
qg (z) =

1

2
[z2 + (1− z)2] . (2.22)

Similar for the quark density, the gluon density evolves as:

dg(x, Q2)

d ln Q2
=

αs

2π

∫ 1

x

dξ

ξ

(∑
i

qi(ξ, Q
2)P (0)

gq (
x

ξ
) + g(ξ, Q2)P (0)

gg (
x

ξ
)

)
, (2.23)

where

P (0)
gq (z) =

4

3
· 1 + (1− z)2

z
and

P (0)
gg (z) = 2Nc

[
1

z
+

1

1− z
− 2 + z(1− z)

]
, (2.24)

where Nc = 3.
In perturbative QCD the splitting functions can be expanded as power series in

αs:

P (z, αs) =
αs

2π
P (0)(z) +

(αs

2π

)2

P (1)(z) +
(αs

2π

)3

P (2)(z) + · · · (2.25)

Keeping only the �rst term in this expansion leads to the LO splitting functions,
taking into account the second term results in next-to-leading (NLO) splitting func-
tions, and so on. The splitting functions are known up to NNLO, i.e. O(α2

s) [37,38].
Taking into account all gluon ladder diagrams with n the intermediate gluon

emissions equation (2.14) becomes [9]: (in what follows we use another notation for
the factorisation scale: µf = Q0)

E → E +
∞∑

n=1

(αs

2π

)n 1

n!
lnn Q2

Q2
0

P n . (2.26)

The terms lnn Q2

Q2
0
build up from the nested integrals over kT arising when summing

gluon ladder diagrams with n gluon rungs [9]:

1

n!
lnn Q2

Q2
0

=

∫ Q2

Q2
0

dk2
nT

k2
nT

∫ k2
nT

Q2
0

dk2
(n−1)T

k2
(n−1)T

· · ·
∫ k2

3T

Q2
0

dk2
2T

k2
2T

∫ k2
2T

Q2
0

dk2
1T

k2
1T

.

3Strictly speaking, splitting functions are not probability since they are not normalised to unity,
but squared matrix elements of corresponding vertices, e.g q → gq in �rst αs order, integrated over
all kinematics variables apart from z ≡ p+

g /p+
q , where "+"- components of the momenta in light

cone parametrisation are used . However the term "probability" is still used in literature. See e.g.
page 213 of the classic book [36].
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In fact this contribution comes from a region where the coordinates (k2
1T , · · · , k2

(n−1)T , k2
nT )

of the n-dimensional hypercube are strongly ordered

Q2 � k2
nT � k2

(n−1)T � · · · � k2
2T � k2

1T � Q2
0 . (2.27)

DLL approximation

The special case for which DGLAP equations can be solved analytically is the double
leading log approximation (DLL) [39], which is based on the small x limit. At small
x the parton content of the proton is dominated by gluons and a good approximation
of the LO g → gg splitting function (2.24) is Pgg(z) ∼ 2Nc

z
. If one assumes that the

gluon distribution at factorisation scale Q0, xg0 ≡ xg(x, Q0), is a constant so that
g0(x) = c

x
, the convolution with the n-degree of splitting function, (P n ⊗ g0)(x), in

(2.20) can be calculated analytically:∫ 1

x

dξn

ξn

P (
x

ξn

)

∫ 1

ξn

dξn−1

ξn−1

P (
ξn

ξn−1

) · · ·
∫ 1

ξ2

dξ1

ξ1

P (
ξ2

ξ1

)g0(ξ1) =
(2Nc)

n

n!
lnn

(
1

x

)
·g0(x) .

(2.28)
Similarly to (2.27), the lnn

(
1
x

)
term comes from the region where the longitudinal

momentum fractions are strongly ordered

1 � ξ1 � ξ2 � · · · � ξn � x .

Applying (2.26) to the parton distribution function g0(x) = c
x
at the scale Q0 and

taking into consideration (2.28), one derives the parton density at the scale Q

g(x, Q2) =

[
∞∑

n=0

1

(n!)2

(
ᾱs · ln

Q2

Q2
0

· ln
(

1

x

))n
]
· g(x, Q2

0) , (2.29)

where ᾱs ≡ Ncαs

π
= 3αs

π
. This expression can be rewritten in exponential form by

introducing a Bessel function, which for large arguments grows like an exponential:
I0(2

√
X) ∼ e2

√
X . Thus one obtains

g(x, Q2) = e
2

r
ᾱs·ln Q2

Q2
0
·ln 1

x · g(x, Q2
0) , (2.30)

which represents the DLL solution, valid for large Q2 and small x, when both log-
arithms are large. Here the coupling ᾱs is assumed to be constant. For a running
coupling (2.11) the dressed parton density (2.30) is replaced by [39]:

g(x, Q2) = e

vuuut 144
33−nf

·ln

24 ln
Q2

Λ2

ln
Q2

0
Λ2

35·ln 1
x

· g(x, Q2
0) . (2.31)

Equation (2.31) predicts at small x a fast rise of the gluon density with decreasing
x.
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Sudakov form factor

Both the q → qg (2.15) and the g → gg (2.24) splitting functions have the infra-red
singularity 1/(1− z), which, as was mentioned above, is screened by taking into ac-
count virtual corrections to real emission diagrams (KLN theorem). Let us denote
xq(x, Q2) ≡ a(x, Q2). Then the evolution equation (2.20) can be rewritten as

dar(x, Q2)

d ln Q2
=

αs

2π

∫ 1

x

dξ ar(
x

ξ
, Q2)P (0)

qq (ξ) , (2.32)

where the subscript r means only real gluon emission. In the leading log approxi-
mation with virtual gluon contribution the evolution equation (2.32) is modi�ed as
follows

dar+v(x, Q2)

d ln Q2
=

αs

2π

[∫ 1−δ

x

dξ ar+v(
x

ξ
, Q2)P (0)

qq (ξ)− ar+v(x, Q2)

∫ 1−δ

0

dξ P (0)
qq (ξ)

]
.

(2.33)
Straightforward check4 gives the partial solution of (2.33)

ar+v(x, Q2) = ∆s(Q
2, Q2

0)ar(x, Q2) , (2.35)

where ar(x, Q2) is the solution of the DGLAP evolution equation (2.32) with the
only real gluons, whereas ∆s, the so-called Sudakov form factor, is equal to

∆s(Q
2, Q2

0) = exp

(
−
∫ Q2

Q2
0

dQ2′

Q2′
αs(Q

2′)

2π
×
∫ 1−δ

0

dξ P (0)
qq (ξ)

)
. (2.36)

It is said that Sudakov form factor arises from the resummation of the virtual cor-
rections.

2.4.3 BFKL Evolution Equation

The DGLAP approximation leads to a resummation of leading logarithms αs ln(Q2).
This approximation, however, may become inadequate for small x, where ln(1/x)
terms become important. In this region the Balitsky-Fadin-Kuraev-Lipatov (BFKL)
[10�12] scheme is expected to be the appropriate approximation, where resumma-
tion includes only single logarithmic terms (the leading log approximation, LLA) of
the form αn

s lnn(1/x), and no strong ordering in kT is assumed. The BFKL equation

4

d[∆sar(x,Q2)]
d lnQ2

= ∆s
dar

d lnQ2
+ ar(x,Q2)

d∆s

d lnQ2
=

∆s
αs

2π

∫ 1

x

dξ ar(
x

ξ
,Q2)P (0)

qq (ξ)− ar(x,Q2)∆s
αs

2π

∫ 1−δ

0

dξ P (0)
qq (ξ) =

αs

2π

[∫ 1−δ

x

dξ ar+v(
x

ξ
,Q2)P (0)

qq (ξ)− ar+v(x,Q2)
∫ 1−δ

0

dξ P (0)
qq (ξ)

]
. (2.34)
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takes into account diagrams in which the xi are strongly ordered,
x0 � ...xi � xi+1 � .. � x. Since the parton virtualities perform a random walk,
the gluon density and the propagating partons can not be treated as collinear and
have to depend on the transverse momentum. The unintegrated gluon density
f(x, k2

T ) is approximately related to the integrated gluon distribution g(x, Q2) by

xg(x, Q2) '
∫ Q2

0

dk2
T

k2
T

f(x, k2
T ) . (2.37)

An additional e�ect of the fact that the parton virtualities perform a random walk
is so-called "kT di�usion". There is a possibility that the evolution di�uses into
infrared region (kT < Q0) where perturbative theory cannot be applied, since αs

becomes large and is not usable as an expansion parameter.
The BFKL equation is an evolution equation in x and is written for the uninte-

grated gluon density [40]:

dfr+v(x, k2
t )

d ln 1
x

= ᾱs(k
2
t )

[∫
d~pt

πp2
t

fr+v(x, k′t
2)− fr+v(x, k2

t )

∫ k2
t

µ2

d~pt

πp2
t

]
, (2.38)

where ~pt = ~kt − ~k′t is the transverse momentum of the emitted real gluon and the
�rst term is the contribution of its emission. The second contribution corresponds to
the virtual correction in which the virtual transverse momenta ~pt are bound by the
total transverse momentum ~kt. The subscript r+v means just real and virtual gluon
emissions. The cut-o� parameter µ2 prevents from the singularity when pt → 0.
Similarly to the Sudakov form factor one can resum the virtual corrections:

fr+v(x, k2
t ) = ∆ns(x, k2

t )fr(x, k2
t ) , (2.39)

where

∆ns(x, k2
t ) ≡ e

−ᾱs(k2
t ) ln 1

x

R k2
t

µ2
d~pt
πp2

t = e
−ᾱs(k2

t ) ln 1
x

ln
k2
t

µ2 = x
αs(k2

t ) ln
k2
t

µ2 (2.40)

is the so-called non-Sudakov form factor, the latter equation presenting its Regge-like
form, and fr(x, k2

t ) is the gluon density originating from only real gluon emissions:

dfr(x, k2
t )

d ln 1
x

= ᾱs(k
2
t )

∫
d~pt

πp2
t

fr(x, k′t
2) . (2.41)

The BFKL equation can be solved analytically, if one assumes a �xed αs, and
with the help of (2.37) the series analogous to DLL (2.29) is derived:

g(x, Q2) =

[
∞∑

n=0

1

n!

(
ᾱs · 4 ln 2 · ln

(
1

x

))n
]
· g(x, Q2

0) =

eλ ln( 1
x)g(x, Q2

0) = x−λg(x, Q2
0) , (2.42)

where λ ≡ ᾱs · 4 ln 2. That is the 1
n!

lnn Q2

Q2
0
in the sum (2.29) is replaced by the

(4 ln 2)n. For ᾱs = 0.19 we obtain λ = 0.55. According to BFKL dynamics the gluon
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pn−1 = yn−1p + yn−1ξn−1pe + ptn−1zn−1

pn = ynp + ynξnpe + ptnzn

Figure 2.7: Hard process γ∗g → qq̄ along with preceding multigluon emission.

density is expected to rise like a power of (1/x), faster than the DLL result at x → 0.
However, higher-order corrections and running αs decrease the value of λ. BFKL
predictions contain several uncertainties but are not in general inconsistent with the
data. The DGLAP prediction, on the other hand, �ts the data down to surprisingly
small x, so it is hard to say whether any e�ects of the BFKL resummation can be
seen in the data.

2.4.4 CCFM Evolution

The CCFM [41�43] approach attempts to cover both DGLAP and BFKL regions by
considering color coherence phenomenon. At small x the gluons are the dominating
partons of the proton, and a typical interaction can be illustrated by the diagram
shown in �gure 2.7, where ki is the four-momentum of the evolved virtual gluon,
k2

i < 0, and pi is the four-momentum of the real emitted gluon, p2
i = 0. Sudakov

parametrisation of the momenta of real emitted gluons (see Appendix A) looks like

pi = yipp +
p2

t i

syi

pe + pti , (2.43)
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so that the rapidities of the emitted gluons in ep centre of mass system are

ηi = −1

2
ln

p2
t i

sy2
i

→ e−ηi =
pti

Wyi

=

√
tan

θi

2
. (2.44)

The important feature of the branching ki−1 → ki + pi is the coherence [44, 45] for
x → 0 and x → 1, which means that the interference among soft gluons results in
the angular ordering

θ0 < θ1 < · · · θn ,

or, equivalently, in the rapidity ordering

η1 > η2 > ... > ηn (2.45)

of the emitted real gluons.
The lower limit in (2.45) is determined by the kinematics of the hard interaction

γ∗ + g∗ → qq̄, namely by the rapidity of the interacting system γ∗g∗. Introducing
zi ≡ xi

xi−1
and 1 − zi = yi

xi−1
one can de�ne a reduced transverse momentum of the

emitted gluon

qi ≡
pit

1− zi

= xi−1
pit

yi

= xi−1We−ηi , (2.46)

and can show that the ordering requirement ηi−1 > ηi is equivalent to

qi > zi−1qi−1 . (2.47)

Instead of the LO DGLAP splitting function

Pgg(z, αs) = ᾱs(Q
2)

[
1

1− z
+

1

z
− 2 + z(1− z)

]
,

where in fact only the �rst two terms are relevant for soft gluon emission and x → 0,
the CCFM splitting function Pgg is given by

Pgg(zi, qi, kti) =
ᾱs(q

2
i (1− zi)

2)

1− zi

+
ᾱs(k

2
ti)

zi

∆ns(zi, q
2
i , k

2
ti) , (2.48)

where the non-Sudakov form factor ∆ns is introduced. The non-Sudakov form fac-
tor is generated by the resummation of virtual corrections, which are relevant, in
contrast to Sudakov form factor, only for low x, and screens the singularity of the
g → gg splitting function as z → 0. In unfolded form these corrections are presented
by the second contribution of right side of the BFKL equation (2.38) but with one
reservation - the cut-o� µ in (2.38) is replaced by z′qti which follows from the angular
ordering requirement q > z′qti.

As to the speci�c scales of ᾱs in (2.48), it was argued in [46], that the proper
hard scale is expected to be (1 − zi)k

2
ti, which tends to k2

ti as zi → 0 and to p2
ti as

zi → 1. Therefore k2
ti is taken as the argument of ᾱs in the non-Sudakov form factor

(2.49) and in the 1/zi term of (2.48), while the argument is p2
ti for the soft gluon

emission term 1/(1 − zi) and in Sudakov form factor (2.53). This simpli�cation
allows to perform analytical calculation in some cases. In particular, one can derive
from (2.38) that

∆ns(zi, qi, kti) = exp

{
−ᾱs(k

2
ti) ln

1

zi

ln
k2

ti

ziq2
i

}
. (2.49)
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The expression (2.49) goes to 0 when z → 0, screening thus the singularity at z = 0
in (2.48) (∆ns

z
→ 0 when z → 0). De�ning the constant Ci and introducing the

variable τ as follows:

Ci ≡ ln
kit

qi

, τ ≡ Ci + ln
1

z
→ z = eCi−τ , (2.50)

one can cast the expression (2.49) to the Gaussian form

∆ns(τ, C) = e
(τ0−C)2

2σ2 e−
(τ−τ0)2

2σ2 (2.51)

with the mean and the standard deviation equal to

τ0 ≡
1

2ᾱs(k2
t )

, σ =
√

τ0 =
1√

2ᾱs(k2
t )

. (2.52)

Equation (2.51) is convenient for Monte Carlo implementation (see below).
In accordance with the angular ordering the Sudakov form factor (2.36) is also

modi�ed in the CCFM approach5:

∆s(qi, ziqi−1) = exp

{
−
∫ qi

2

(zi−1qi−1)2

dq2

q2

∫ 1−Q0/q

0

dz
ᾱs(q

2(1− z)2)

1− z

}
=

exp

{
6

11− 2
3
nf

[
ti

(
ln

t0
ti

+ 1

)
− ti−1

(
ln

t0
ti−1

+ 1

)]}
, (2.53)

where the explicit form with

t0 ≡ ln
Q2

0

Λ2
, ti ≡ ln

q2
i

Λ2
, ti−1 ≡ ln

z2
i−1q

2
i−1

Λ2
(2.54)

is derived by use of (2.11). The upper limit in the integral over z keeps the argument
of the running coupling constant out of the non-perturbative region ((1− z)q > Q0)
and regulates the 1/(1 − z) singularity. The q integration region (q > zi−1qi−1)
corresponds to the angular ordering constraint.

2.4.5 Hadronisation

The equations considered above re�ect the various branchings of the quarks and
gluons, as prescribed by QCD. The coloured objects form multiparton colour state
which �nally hadronises (fragments) into sets of charged particles detected in the
experiment. It is thought that the global kinematic characteristics of the detected
particles are generically connected with those of the original coloured partons.

There are few hadronisation (fragmentation) models: the Lund string model
[47, 48], the area law string model [49], the independent jet model based on the
Field-Feynman approach [50], and the cluster model [51]. Since there is no QCD
description of the hadronisation, all these models are phenomenological.

5Note that it is customary to leave in the Sudakov form factor (2.53) in this case only the 2NC

1−z
term of the splitting function.
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Lund string model

The Lund string model treats gluons as �eld lines, which are attracted to each
other due to the gluon self-interaction and so form a narrow tube of strong color
�eld. These �ux tubes are approximated by relativistic massless strings, which break
up producing the �nal state hadrons. The transverse dimension of the string is of
typical hadronic sizes, roughly 1 fm. The assumption of the string model is that
the tube-like �eld between an outgoing q and q̄ contains a constant amount of �eld
energy stored per unit length, i.e. that the potential between q and q̄ is linearly
rising: V (r) ≈ kr, where r is the distance between the charges and k ≈ 1 GeV/fm is
the string constant, i.e. the amount of energy stored per unit length. As the charges
move apart from each other their momenta and invariant mass are linearly growing
with "time" τ and at some moment τ0 this string break up to two new colour neutral
strings, qq̄′ and q′q̄. Further breaks of the new strings may occur stochastically. The
process is going on until all the available energy is used.

The string does not have any transverse degree of freedom, but the newly created
q′q̄′ pairs receive some pT from the fragmentation process which can be described
by Gaussian in px and py [52] with width σ:

d2n

dpxdpy

=
1

σ
√

2π
exp

(
−p2

x

2σ2

)
1

σ
√

2π
exp

(−p2
y

2σ2

)
. (2.55)

The model predicts the suppression of heavy-quark production, u : d : s : c ≈ 1 :
1 : 0.3 : 11−11. Thus, charm and heavier quarks are not produced in hadronisation,
but only in perturbative parton-showers g → qq̄.

Baryons can also be produced in the model. In the simple approach [53,54] the
string breaks by the production of a diquark-antidiquark pair, which later becomes
the baryon and antibaryon. In this model the baryon and antibaryon are neighbors
in rank and thus contain transverse momentum correlation. In the improved model,
so-called "popcorn" model [55], one or few mesons can be produced in between
the baryon and antibaryon. The experimental data tend to con�rm the "popcorn"
scenario.

The requirement, that the results of fragmentation are the same for the two
scenario, mesons are produced starting from the quark edge and meson production
starts from antiquark edge of the string, leads to the following f(z), with z being
the fraction of the remaining momentum taken by the new particle (symmetric Lund
model):

f(z) =
N

z
(1− z)ae−

bµ2
T

z , (2.56)

where N , a and b are free parameters to be determined from the experiment, and
µT =

√
m2 + p2

T is the meson transverse mass.

Model of cluster fragmentation

The mechanism of cluster fragmentation [51, 56], although being quite string-like,
is however the alternative to the string fragmentation. The cluster model (used in
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Figure 2.8: Upper: schematic mechanisms of string and cluster fragmentation [57]. Down: sample
event demonstrating the cluster fragmentation of some Monte Carlo multiparton state [56].

particular in the parton cascade model of the Monte Carlo generator HERWIG) fol-
lows naturally from the "precon�nement" property already exhibited by jets at the
perturbative level. Precon�nement is the tendency of the partons generated in the
branching process to be arranged in colour-singlet clusters with limited extension
in both coordinate and momentum space. It is natural to suppose that these clus-
ters are the basic units out of which hadrons arise non-perturbatively. Their mass
scale is controlled by the rather small value of the infra-red cut-o� Q0, so that most
clusters have masses of a few GeV or less and may be regarded as superpositions
of resonances, with phase-space dominated decay schemes into known resonances.
In �gure 2.8 the schematic mechanisms of string and cluster fragmentation (upper
drawing) as well as a sample event, demonstrating the cluster fragmentation of some
Monte Carlo multiparton state, are shown.

2.4.6 The Colour Dipole Model

The colour dipole model (CDM) [58�60] was originally developed for �nal-state
parton cascades from a quark-antiquark system. It is the semiclassical model based
on Lund string construction. In �gure 2.9 a quark-antiquark-gluon event is shown.
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Figure 2.9: The space-time development of a quark-antiquark-gluon event [61].

Figure 2.10: (a) A soft transverse gluon; (b) a collinear gluon; (c) a state with many gluons [61].

The string is stretched from the quark to the antiquark via the gluon, which moves
like a point-like kink carrying energy and momentum. The string breaks by the
production of new qq̄ pairs, and the �nal state contains three jets. Soft particles
formed in between the jets get a boost by the transverse motion of the string.

The situation in �gure 2.9 can be directly generalised to many gluons. The string
is here stretched from the quark to the antiquark via the colour-ordered gluons, as
shown in �gure 2.10(c). In a state with many gluons the string is stretched from
the quark to the antiquark via the colour-ordered gluons, in the �gure from red
to antired, from blue to antiblue etc. Actually, the �nal state containing a set of
dipoles has a strong similarity to the Lund string with a set of gluon excitations
dragging out a set of straight string segments (corresponding to the dipoles) (c). As
the masses of the dipoles quickly diminish, the corresponding gluons quickly become
soft, i.e. the excitations on the string become smaller and smaller. A soft transverse
gluon, shown in �gure 2.10(a) will soon lose its energy. The kink on the string is
split in two corners and a straight string piece is stretched in a way similar to a
one-dimensional string. Also for a collinear gluon, �gure 2.10(b), the energy in the
string between the quark and the gluon is too small for a breakup of the string.
A general rule in string fragmentation is that a gluon with less than a few GeV of
transverse momentum does no longer really produce any noticeable e�ects. There
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Figure 2.11: (a) The phase space of parton emission from a qq̄ pair. (b) After the �rst emission,
the phase space is split into two triangle which radiate gluons independently, but under a pt ordering
condition. (c) An event with four emissions [62].

is no "extra" particle production and the transverse momentum given away by the
gluon to the string neighbourhood is drowning in the background noise. Therefore
adding to the cascade the use of Lund string fragmentation means that the whole
process is infrared stable .

The Sudakov parametrisation of the real gluons emitted from (qq̄) string looks
like

p =
sgq̄

s
pq +

sqg

s
pq̄ + pt , (2.57)

where sgq̄ = 2(pq̄, p) and sqg = 2(pq, p) are the squared masses of (g, q̄)- and (q, g)-
dipoles respectively. Then p2

t and the rapidity in qq̄ CMS are equal to

p2
t =

sqgsq̄g

s
, y =

1

2
ln

sq̄g

sgq̄

(2.58)

and the kinematically allowed region is given by

pt <

√
s

2
, |y| ≤ ln

√
s

pt

=
L− κ

2
, L ≡ ln s , κ ≡ ln p2

t , (2.59)

which corresponds to a triangle region shown in �gure 2.11, where the phase space
for gluon emission from a qq̄ pair is shown in (y, ln p2

t )-plane.
The gluons are assumed to be radiated from a qq̄ colour dipole and after each

emission the dipole is split into smaller dipoles, which continue to radiate indepen-
dently. Two independent dipoles with squared masses Sqg and Sgq̄ emit a softer
gluon independently, which means that the cross section of emission of one more,
softer, gluon is factorisable into

dP (qq̄ → qg1g2q̄) = dP (qq̄ → qg1q̄) [dP (qg1 → qg1g2) + dP (g1q̄ → g1g2q̄)] ,
(2.60)

where all the terms dP on the right hand are equal to

dP =
4

3
· αs

π
· dκ · dy . (2.61)
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Figure 2.12: A parton-parton scattering chain (a) in the (y, ln q2
t ) plot (b). The real gluons qi

are ordered in p+ and in p−, and thus also in rapidity or angle [61].

Equation (2.61) follows from the radiation pattern of classic charge-anticharge sys-
tem (dipole).

At �xed p2
t 1 of the �rst emitted gluon the rapidity range is equal to

∆y1 = ln
s

p2
t 1

. (2.62)

In case of emission of a second gluon with p2
t 2 by two independent dipoles with the

squared masses sqg1 and sq̄g1 the rapidity range is increased if p2
t 1 > p2

t 2:

∆y2 = ln
sqg1

p2
t 2

+ ln
sq̄g1

p2
t 2

= ln

[
s

p2
t 2

· sqg1sq̄g1

s
· 1

p2
t 2

]
=

ln

[
s

p2
t 2

· p2
t 1

p2
t 2

]
= ln

s

p2
t 2

+ ln
p2

t 1

p2
t 2

> ln
s

p2
t 2

. (2.63)

Additional rapidity range ln
p2

t 1

p2
t 2

is drawn as the fold in �gure 2.11(b). Each new

emission has the same e�ect on the phase space. After several emissions one obtains
a complex �gure with many folds as in �gure 2.11(c).

In [63, 64] a comparison of the semiclassical Dipole Cascade Model predictions
with the ones of the conceptually very di�erent approach of the Webber-Marchesini
Cascade Model [65] based on the angular ordering of the emissions in the cascade
(HERWIG [66]) is done. Surprisingly, both approaches give very similar results. As
argued in [63, 64] the basic reason for this similarity is that the building of dipoles
in the cascade is actually the same as the requirement of angular ordering in the
emissions. The two di�erent cascades developing along di�erent lines nevertheless
cover the same phase space region of �gure 2.12 including the folds sticking out
of the plane. In the dipole scheme it is searched from top to bottom, while in
the Webber-Marchesini scheme it is searched sideways going from one rapidity end
towards the other one.
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Chapter 3

Event Generation

The measured transverse momentum distributions o�ers the possibility for discrimi-
nation of the various underlying parton dynamics. For these purposes the measured
distributions are compared to the model distributions obtained with the help of se-
ries of Monte Carlo (MC) event generators. In the presented analysis in average six
charged particles per event can be measured. Such multiplicity are not possible to
generate by �xed-order calculations and therefore only Monte Carlo generators with
applied hadronisation models are considered.

Monte Carlo event generators are computer programs used to simulate high-
energy events. There are di�erent MC generators which rely on di�erent QCD
models and particle collisions. They start with some given initial conditions and
generate an event by random sampling of processes and �nal states.

As an example, the elements of an ep event generator are shown in �gure 3.1.

A MC program starts with the hard scattering process, usually in leading-order.
Then, the available phase space is �lled by parton emissions in the initial/�nal
state parton shower (PS). This can be done either for example according to the
DGLAP/CCFM evolution equations (or by the CDM, see subsection 2.4.6). The
generation of this cascade is often performed using so-called backward evolution,
where we start from the hard scattering and go down in the ladder. The showering
terminates at a cut-o� scale Q0, at this point the parton propagator is taken from

Figure 3.1: Elements of an ep event generator with the BGF matrix element.
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the PDF. Before all produced partons undergo the hadronisation, corrections of
their momenta have to be made such that the energy and momentum conservation
is ensured. The most frequently used hadronisation models are Lung sting and
cluster models (see section 2.4.5).

3.1 Monte Carlo Generators

In this section the MC generators used in this analysis are presented.

RAPGAP

The Rapgap 3.1 MC generator [67] matches �rst order QCD matrix elements to
DGLAP-based leading logarithm parton showers with strongly ordered transverse
momentum of subsequently emitted partons. The factorisation and renormalisation
scales are set to µf = µr =

√
Q2 + p2

T , where pT is the transverse momentum of one
of the outgoing hard partons from the matrix element in the centre of mass of the
hard subsystem. The hadronisation is modelled with the Lund string fragmentation
as implemented in Pythia [68]. QED radiative corrections are included through
the Heracles [69] program. Heavy quarks are treated as massive.

CASCADE

The Cascade 2.2 program [70,71] uses o�-shell leading order QCD matrix elements,
supplemented with parton emissions based on the CCFM evolution equation requir-
ing an unintegrated parton distribution function (uPDF) (see eq. (2.37)), which
takes the transverse momenta of the propagators into account (see �gure 3.2). It
uses only gluon chains in the initial state cascade. For the hadronisation process
the Lund string model is used. The light and heavy quarks are treated with masses.
Cascade has no QED corrections modelled.

Figure 3.2: Leading order o�-shell matrix element with CCFM parton shower.
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DJANGOH

The Djangoh 1.4 program [72] uses the Colour Dipole Model as implemented in
ARIADNE [73], where dipoles are created between coloured partons. Gluon emis-
sion is treated as radiation from these dipoles. The hadronisation is modelled with
the Lund string fragmentation and QED radiative corrections are included through
the Heracles program. Djangoh uses on-shell leading order QCD matrix ele-
ments.

SHERPA

The Sherpa 1.3.1 Monte Carlo [74] program uses a parton shower algorithm based
on Catani-Seymour dipole factorisation [75]. It contains tree-level multileg matrix
elements for the calculation of hard scattering processes. For the current analysis,
matrix elements with up to �ve partons in the �nal state are used. To consis-
tently combine multiparton matrix elements with the QCD parton cascades the
approach described in [76] is employed. Sherpa uses a modi�ed cluster hadronisa-
tion model [77], but is also interfaced to the Lund string hadronisation and hadron
decays provided by Pythia. In Sherpa only �nal-state QED radiations can be
included, but not the initial-state ones.

Herwig++

The Herwig++ 2.5.2 Monte Carlo [66] program uses the Coherent Parton Branch-
ing [78, 79] algorithm which is based on colour coherence to suppresses branching
outside an angular-ordered region of phase space. Here, �nal state radiation is angu-
lar ordered, initial state radiation is ordered in E · θ, where E and θ are energy and
angle of the radiated parton. Herwig++ has now available the POWHEG (POsitive
Weight Hardest Emission) method for DIS processes [80], which combines parton
shower simulation and NLO calculation. Since the higher-order matrix element and
the parton shower both radiate in some regions of the phase space, it leads to dou-
ble counting. An approached, which match PS and NLO corrections, as POWHEG
matching algorithm, is needed to remove this problem of double counting.

Choice of PDF

In this thesis, the Rapgap, Djangoh and Sherpa programs are used together
with the CTEQ6L(LO) PDF [81]. The sensitivity to the choice of di�erent LO and
NLO PDFs is discussed. The predictions of Herwig++ were obtained with the de-
fault PDF MRST 08 LO** and with MRST 02 NLO [82] for POWHEG matched.
The Cascade uses uPDF set A0 [83].

27



3.2 Monte Carlo Tuning

All MC programs which use the Lund string fragmentation model are tuned to de-
scribe e+e− results. The tuning was performed by the ALEPH collaboration [84] us-
ing hadronic Z boson decay data and a Pythia 6.134 simulation with Bose-Einstein
correlations included. The resulting tuned parameters are listed in table 3.1. In ad-
dition, the tune obtained by the Professor1 tool using LEP data [85] is also compared
to the data. The corresponding parameters are listed in table 10.1. This tune is the
latest tune to LEP data using Pythia 6, which was prepared to be used at LHC. As
discussed in [85] the Professor tool provides better accuracy and systematic control
compared to the previous tuning system, used by ALEPH.

The parameter variation ranges used by Professor are shown in table 3.3.

1Acronym for "PROcedure For EStimating Systematic errORs".
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MSTJ(11) 3 PARJ(54) -0.040

MSTJ(12) 2 PARJ(55) -0.0020

MSTJ(46) 0 PARJ( 1) 0.108

MSTJ(51) 2 PARJ( 2) 0.286

MSTJ(52) 9 PARJ( 3) 0.69

MSTJ(53) 0 PARJ(11) 0.553

MSTJ(54) 2 PARJ(12) 0.470

PARJ(92) 1.11 PARJ(13) 0.65

PARJ(93) 0.341 PARJ(14) 0.12

PARJ(81) 0.299 PARJ(15) 0.04

PARJ(82) 1.54 PARJ(16) 0.12

PARJ(21) 0.382 PARJ(17) 0.20

PARJ(41) 0.437 PARJ(19) 0.55

PARJ(42) 0.85 PARJ(26) 0.276

Table 3.1: ALEPH tuned parameters.

MSTJ(11) 5

PARJ(21) 0.325

PARJ(41) 0.5

PARJ(42) 0.6

PARJ(47) 0.67

PARJ(81) 0.29

PARJ(82) 1.65

Table 3.2: Professor tuned parameters.

PARJ(21) 0.33 0.43 σq

PARJ(41) 0.4 1.5 Lund a

PARJ(42) 0.5 2.5 Lund b

PARJ(47) 0.4 1.0 rb

PARJ(81) 0.23 0.35 Lambda

PARJ(82) 0.8 3.0 Parton shower cut-o�

Table 3.3: Production ranges and settings for the Professor tune.
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Chapter 4

Low-x Physics

4.1 The Structure Function F2

In the previous section the evolution equations, describing the scaling violations of
the proton structure function, were derived. There are two principal predictions for
the rise of F2, the DGLAP (or DLL) evolution equations, and the BFKL scheme.
In principle it should therefore be possible to distinguish between these predictions
by looking at the F2 data from HERA. The observed rise of F2 towards small
x indicates the rise of the parton density in the proton. Is the NLO (or NNLO)
DGLAP evolution equation su�cient to describe the data at small x or do BFKL
e�ects play a role? Unfortunately this is not that simple to answer.

The H1 and ZEUS combined structure function data [86] from e+p NC DIS
scattering as function of Q2 for di�erent values of x are shown in �gure 4.1. A steep
rise towards small x, which �attens at smaller Q2, is clearly seen.

To compare the DGLAP evolution results with the experimental data the parton
densities at the starting scale have to be de�ned. This is usually done by parametris-
ing the parton densities at the starting scale Q0. By varying these parameters, the
best �t to the data is produced. In �gure 4.1 such a �t is performed by applying
the DGLAP evolution equation in NLO. The scaling violation is well described by
the DGLAP formalism over the whole range in Q2 and x.

In [87] another PDF group doing the �t (MSTW) compared the description of
the measured F2 with a LO, NLO as well as NNLO DGLAP evolution �t. The
results show that the LO �t is not able to give a good description of the data. The
NLO and NNLO �ts are very similar to each other and the overall �t quality is good.

Apart from the DGLAP evolution results, the e�ect of small x resummations
was studied in [88]. This was done by resumming terms of the form ln(1/x) for the
structure function based on the BFKL equation with next-to-leading logarithmic
(NLL) corrections. The comparison of this prediction (labelled as `NLL') with the
measured F2 for small x is shown in �gure 4.2 together with the �t at NLO (la-
belled as `NLO'). The results of the resummation of ln(1/x) also give a successful
description of the measurement.

A uni�ed BFKL and DGLAP description of the F2 data using the unintegrated
gluon distribution is also possible, with signi�cant contributions from the ln(1/x)
resummation [89].

The consequence of the above is that the present data on F2 do not distinguish
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H1 and ZEUS
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Figure 4.1: H1 and ZEUS combined structure function data from e+p NC DIS scattering as
function of Q2 for di�erent values of x [86].
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Figure 4.2: H1 and ZEUS combined structure function data from e+p NC DIS scattering as
function of Q2 for 5 · 10−5 ≤ x ≤ 4 · 10−4 (left) and for 5 · 10−4 ≤ x ≤ 8 · 10−3 (right) together
with theoretical predictions [88].
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between the BFKL, DGLAP, and CCFM which embodies both, predictions.

4.2 Hadronic Final State

With structure function data alone one cannot distinguish between BFKL and
DGLAP evolutions. Semi-inclusive measurements, where in addition to the scat-
tered electron the hadrons emerging from the cascade are measured, are believed to
provide a larger sensitivity to parton dynamics.

Reference frame

The hadronic �nal state is better studied in a frame where the transverse boost
due to high Q2 of the photon is removed, such that the virtual photon and proton
are collinear. There are two appropriate frames: the hadronic centre of mass system
(HCM), where the proton and photon are in the rest frame, ~p + ~q = 0 (~p and ~q are
the momentum of the incoming proton and the virtual photon, respectively), and
the Breit frame, where in addition to the collinearity it is required that the virtual
photon does not transfer energy, but only momentum.

The transverse momentum and pseudorapidity of charged particles in the HCM
frame are labeled as p∗T and η∗, respectively1. In the HCM frame all hadronic �nal
state particles which have pz > 0 are said to belong to the current hemisphere, and
all particles with pz < 0 are assigned to the target or proton remnant hemisphere,
as shown in �gure 4.3. The forward direction, the direction of the incoming proton,
is pointing to negative η∗.

�
�
�

�
�
�

γ ∗
P

z

TargetCurrent

Figure 4.3: Illustration of the hadronic centre of mass system.

Some of the most dedicated measurements at small x at HERA which were concen-
trated on a search for deviations from DGLAP evolution are:

Transverse energy �ow
The measurement of transverse energy �ow [19�24] in the laboratory and HCM
frames provides a rather generic signal, where the increased parton activity should
result in an increased transverse energy. The measurements were found to agree
with a BFKL-like CDM scenario and to disagree with the DGLAP predictions. Un-
fortunately, a �nal judgment in favour of BFKL in this experiment rested on the

1 The de�nition of the pseudorapidity in HCM frame is η∗ = − ln (tan(θ∗/2)), where θ∗ is the
angle with respect to the virtual photon direction, i.e. to the positive z∗ direction
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impossibility to disentangle the perturbative parton radiation from non-perturbative
hadronisation e�ects. The hadronisation e�ects were estimated by MC, and it was
shown that hadronisation adds relatively little to the partonic ET for CDM, most
of the ET is generated by hadronisation for the kt ordered cascades.

Forward jet production
Measurements of forward jet production [90,91] (or measurements of forward π0 pro-
duction [92] ), that is energetic jets of high transverse momentum produced close to
the proton direction in the laboratory frame, at low x are considered to be sensitive
to BFKL dynamics [93]. The selection criteria can be constructed in such a way
as to suppress the contribution of kT -ordered DGLAP cascades by the restriction
P 2

T,fwdjet ≈ Q2, and to maximize the phase space for BFKL evolution by requiring
xfwdjet = Efwdjet/Ep to be as large as possible to allow for strong ordering xi � xi−1

along the ladder.
In addition, measurements of the azimuthal correlation between the forward jet

and the scattered electron were performed [94]. The additional parton emissions
partially decorrelate the jet from the electron. As a consequence, for evolution
schemes without ordering in transverse momentum, the decorrelation is expected to
increase with the electron-jet rapidity distance, since the phase space for additional
parton emissions increases. Again the best description of the data is achieved by
the BFKL-like CDM model, while the DGLAP-based model is below the data.

Transverse momentum spectra
Measurements of transverse momentum spectra were proposed in [26] as a more
direct probe of the underlying parton dynamics and were measured by H1 [25] and
ZEUS [95, 96]. Hadrons with large transverse momentum are disfavoured by the
strong kT ordering in DGLAP. It has been shown that the high-pT tail is sensitive
to parton radiation, while the contribution from hadronisation is small.

4.2.1 Transverse Momentum Spectra

The transverse momenta of �nal-state hadrons are expected to come not only from
QCD radiation, but also from an intrinsic pT of the initial parton in the proton
(pintr

T ) and from fragmentation, see (2.55).
Measurements of the transverse momentum of charged particles have been per-

formed earlier by the H1 collaboration, and one of the results of this publication
is shown in �gure 4.4. The measurements are shown in di�erent x and Q2 bins
for 0 < η∗ < 1.5, where the largest deviation from DGLAP is expected, since in
this region the forward direction to the maximum limit allowed by the H1 detector
tracking system is reached. The lower limit of the pseudorapidity interval is given
by the approximate acceptance of the detector and the upper limit suppresses the
current fragmentation region.

The data are compared to DGLAP-like models (LEPTO, HERWIG) and to an
other model which performs a random walk in kT (ARIADNE). At small x and high
p∗T a deviation from the DGLAP model is seen, but the low statistics available at
that time did not allow systematic di�erential investigations.

The high statistics of the data taken at HERA II and the substantial improve-
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Figure 4.4: Measured p∗T spectra of charged particles in the HCM in 0 < η∗ < 1.5 range for eight
intervals of Q2 and x together Monte Carlo predictions [25].

ment of the track reconstruction and calibration by H1 collaboration allowed to
measure charged particle distributions with much better precision compared to the
measurements performed by H1 collaboration in 1996.
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Chapter 5

HERA and H1 detector

5.1 The HERA Ring

The Hadron Electron Ring Accelerator (HERA) at Deutsches Elektronen-Synchrotron
(DESY) in Hamburg was the �rst and so far the only colliding beams facility in the
world where electrons or positrons1 were colliding with protons. The circumference
of the machine was 6.3 km. There were four experimental halls along the HERA
ring. Since the startup of HERA in 1992 up to 2007 two detectors measured inter-
actions of the colliding beams: H1 and ZEUS. The aims of both experiments were
to probe the structure of the proton, study the fundamental interactions between
particles and search for new physics beyond the standard model. Besides these two
experiments two more �xed-target experiments were taking data: HERMES and
HERA-B. At HERMES interactions between longitudinally polarised electrons and
a stationary polarised gas target were studied. HERMES operated from 1995 to
2007. Its main research programme was to study the spin structure of nucleons.
At HERA-B the proton beam collided with a stationary wire target to study CP
violation in the decay of B-mesons and was in operation between 1998 to 2003.

Being injected into the HERA ring, electrons and protons were accelerated in
several steps (see �gure 5.1) from the initial linear accelerators and synchrotrons
to the storage ring Positron-Elektron-Ring-Anlage (PETRA), which was the �nal
pre-accelerator in the chain and was used for both electrons and protons. PETRA
delivered electrons of 14 GeV into HERA, while the protons were injected at 40 GeV.
After injection the beam particles were stored in bunches separated by a distance
of 28.8 m corresponding to a bunch crossing time of 96 ns. In HERA the electrons
obtained a �nal energy of 27.6 GeV and the protons a �nal energy of 820 GeV (HERA
I). In 1998/99 an upgrade of the HERA led to an increase of the proton energy to
920 GeV (HERA II), resulting in a centre of mass energy of

√
s ≈ 319 GeV. Data

taking after the upgrade started in 2003. To keep high momentum protons on the
circular orbit superconducting magnets were required with a magnetic �eld of 4.7 T,
the electrons were controlled by conventional magnets.

An important quantity that characterises the performance of a collider is the
luminosity. For the collision of n bunches having Ne and Np of electrons and protons

1further the term electron refers to both the electron and the positron.
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Figure 5.1: The HERA ring and acceleration system.

in a single bunch the luminosity is calculated as:

L = f
nNeNp

4πσxσy

[cm−2s−1], (5.1)

where f is the revolution frequency and σx and σy denotes the Gaussian transverse
beam pro�les in horizontal and vertical directions. The total (integrated) luminosity
is

L =

∫
Ldt =

N

σ
, (5.2)

where N is the number of detected events and σ is the interaction cross section.
In �gure 5.2 the integrated luminosity collected by the H1 detector is shown. With
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Figure 5.2: Integrated luminosity collected by the H1 detector during HERA I and HERA II
running period [97].
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the HERA upgrade the luminosity was increased by a factor of �ve, which was
achieved by introducing new superconducting focusing magnets well inside the H1
and ZEUS detectors and thus compress the beam size (HERA II period). The total
integrated luminosity of HERA II data taking period is around 400 pb−1. In last
month of operation the proton beams were accelerated to lower energies of 460 GeV
and 575 GeV to perform a measurements of the longitudinal structure function FL,
this region is marked as a "low E" in �gure 5.2. The HERA II data taking continued
until the end of June 2007 when HERA closed its operation.

5.2 The H1 Detector

Figure 5.3 shows the general layout of the H1 detector. In this �gure the electron
enters from the left and the proton from the right. The direction of the proton
beam is de�ned as positive z-axis. The nominal interaction point is the centre of a
right-handed coordinate system. In the spherical coordinate system the polar angle
is chosen such that the electron beam direction is at θ = π (negative z direction).
Since the energy of the proton is much higher than the energy of the electron, charged
particles are produced at small angles with respect to the incident proton (forward)
direction which corresponds to θ = 0. This requires an asymmetric detector design
and therefore the detector in the forward region was more massive and segmented.

From the center outwards, H1's most important systems are silicon trackers for
the determination of primary and secondary vertices, jet chambers for the measure-
ment of charged particle tracks, the liquid argon (LAr) calorimeter for the mea-
surement of electromagnetic and hadronic showers and the lead/scintillating �ber
calorimeter (SpaCal) in the backward direction for the measurement of the scat-
tered lepton. Some undetectable particles, mostly muons, escaping the inner part
of the detector enter the muon chambers and instrumented iron in which the small
fraction of hadronic shower leaking out from the LAr calorimeter may also be de-
tected. To measure highly energetic muons in the forward direction, the forward
muon detector was installed. A uniform magnetic �eld of 1.15 T was generated by a
superconducting solenoid positioned outside the tracking and calorimeter systems.

A detailed description of the H1 detector can be found elsewhere [98,99] and in
following subsections only components relevant for the analysis is described.

5.2.1 Tracking System

The tracking system of the H1 detector provided track reconstruction and particles
identi�cation. To maintain good e�ciency for event triggering and reconstruction
over the whole solid angle, the tracking system has been divided between the central
and forward regions (see �gure 5.4). Each was optimised for tracking and triggering
in its angular region.

Central Tracking System
The Central Tracking Detector (CTD) consisted of six chambers shown in �gure 5.4.
Track reconstruction in the central region was based on two large concentric drift
chambers, CJC1 and CJC2, where the charge and momenta of charged particles
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Figure 5.3: Schematic layout of the H1 detector [98].
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Figure 5.4: Schematic side view of H1 tracking system, divided into forward, central and backward
systems [100].

are measured. In addition the speci�c energy loss, dE
dx
, is used to improve particle

identi�cation.
The CJC1 had inner radius of 203 mm and outer radius of 451 mm, and consisted

of 30 drift cells with 24 sense (anode) wires each. The CJC1 covered the polar
angular range 11◦ < θ < 169◦. The CJC2 comprised of 60 drift cells with 32 sense
wires each and covered 25◦ < θ < 160◦. The sense wires stretched parallel to the
beam pipe and the magnetic �eld, and the drift cells were tilted by 30◦ with respect
to the radial direction. This is due to the fact that the existence of the magnetic
�eld tilts drift lines of the ionisation electrons by the Lorentz angle with respect to
the electric �eld direction. The angle of 30◦ is approximately equal to this Lorentz
angle in the presence of the 1.5 T magnetic �eld, thus the ionisation electrons from
a high momentum track, so-called sti� track, drift approximately perpendicular to
radial direction (see �gures 5.5 (left) and 5.6). This gave few advantages on track
reconstruction:

• High momentum charged particle crossing several cells produce ionisation elec-
trons, which drift on both sides of the wire give mirror hits (wrongly assigned)
(see �gure 5.6). Such wrong mirror track segments are easy to determine since
they do not result in a smooth track and do not point to the vertex.

• Every sti� track crosses the sense wire plane in the CJC1 and CJC2 at least
once. From the matching with the beam crossing the passing time of a particle
can be determined with an accuracy of approximately 0.5 ns which allowed an
easy separation of tracks from di�erent bunch crossings.

The spatial resolution of the hit position measurement in the rϕ plane was σrϕ =
170 µm obtained from the drift time measurements. The trajectories of charged
particles were measured with a transverse momentum resolution of σpT

/(p2
T ) =

0.005GeV−1 ⊕ 1.5% [101].
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Figure 5.5: The H1 tracking system in xy-plane.

Figure 5.6: Track reconstruction in CJC2.

By measuring the signal propagation time on both wire ends the z-coordinate
could be measured with a resolution of σz = 22 mm. The z-chambers provided
higher precision for the measurements.

The central outer z-chambers (COZ)
To obtain an exact measurement of the z-coordinate the central outer drift z-
chambers (COZ) were used (for HERA I two sets of outer and inner drift z-chambers,
CIP and COP). Its sense wires were perpendicular to the beam pipe, resulting in a
drift direction along z-direction. The achieved resolution was σz = 200 µm.

The central inner and outer proportional chambers (CIP, COP)
Triggering and timing information for the central trackers was supplied by two mul-
tiwire proportional chamber, the central inner proportional chamber (CIP) and the
central outer proportional chamber (COP) (see �gure 5.5 (left)). The CIP was mod-
i�ed during the HERA upgrade and redesigned to CIP2000 (or CIP2k) [102] with
higher response time and was therefore used for online event selection. The CIP
and COP were used for measurement of the z-position of the event vertex. This was
used in the �rst level of the H1 trigger system [103,104].
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The Silicon track detectors (CST, FST, BST)
The silicon tracker [105] consisted of the central silicon tracker (CST), the forward
silicon tracker (FST) [106] and the backward silicon tracker (BST) [107], shown in
�gure 5.4. The CST consisted of two concentric cylindrical layers of silicon sensors.
It surrounded the elliptical beam pipe at the nominal interaction point (IP) such that
particle trajectories originating at the IP were perpendicular to the silicon layers.
It was built to provide a precise vertex information as well as the identi�cation of
displaced secondary vertices. A polar angular coverage of CST was 30◦ < θ < 150◦.
The achieved resolution was 12 µm in rϕ-plane and 22 µm in the z-direction. The
impact parameter resolution was 37 µm for high momentum track. The BST and
FST were used to extend the angular coverage of the CST and to improve the re-
construction of small angle tracks in the backward and forward regions. The FST
covered a forward polar angular range of 7◦ < θ < 19◦ and the BST covered a
backward region of 165◦ < θ < 176◦.

The backward proportional chamber (BPC)
The backward proportional chamber (BPC) was located in front of the SpaCal and
provided the angular measurement of the electron together with its track. The BPC
consisted of six wire layers at three di�erent azimuthal orientations and measured
the angle of a particle with a precision of 0.5 mrad.

The forward track detector (FTD)
The forward tracking detector (FTD), which was built in three supermodules, cov-
ered a polar angle range of 5◦ < θ < 25◦. The forward detector was rebuilt to host
�ve additional planar drift chambers. Each of the supermodules contained three
planar (P) chambers, which remained from the HERA I running period and a new
(Q) planar chamber added during the HERA upgrade to increase the e�ciency at
high track multiplicity (see �gure 5.7). New chambers reduced the amount of the
material to minimise the e�ects of multiple Coulomb scattering. In addition, the
number of sense wires was increased in the new planar chambers. The P-chambers
had 32 drift cells with four sense wires each and oriented with respect to the y-axis
at φ = +60◦,−60◦, 90◦ and 0◦. The Q-chambers contained 30 drift cells with eight
wires at 30◦ and 90◦. A combination of hit information from each planar cham-
ber in a supermodule de�ned a planar track segment. The achieved resolution was
210 µm in rϕ-plane and radial resolution was about 3 cm. The momentum resolu-
tion depends on the track length and the track's polar angle and varies in the range
of σp/p

2 ∼ 0.1 − 0.02 GeV−1. The track �nding e�ciency was about 70% in each
supermodule.

5.2.2 Calorimeters

In DIS events scattered electrons could be observed in the backward calorimeter
SpaCal (Spaghetti Calorimeter) for Q2 ≤ 100 GeV2 and in the LAr (liquid argon)
calorimeter for larger values of Q2. The SpaCal and LAr were sampling calorimeters,
where the material which produces the particle shower (passive layer) is distinct from
the material which collects and measures the signal (active layer). Both calorimeters
had an electromagnetic and a hadronic part.
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Figure 5.7: Side vies of the forward track detector (FTD).

Figure 5.8: Side vies of the SpaCal calorimeter together with the backward proportional chambers
in front of electromagnetic part of the SpaCal.

The SpaCal calorimeter

The SpaCal calorimeter was a backward lead/scintillating �bre calorimeter and cov-
ered the range of 154◦ < θ < 174◦. It was used for identi�cation and precise recon-
struction of the scattered electron in the backward region. The SpaCal consisted of
the inner electromagnetic and outer hadronic sections (see �gure 5.8). The absorbing
material was lead for both electromagnetic and hadronic parts. The active material
was plastic scintillating �bres. Shower particles produced light in scintillating �bers
which were oriented parallel to the beam direction. The signal was collected by pho-
tomultiplier tubes. The active length of the electromagnetic SpaCal corresponded
to 28 radiation lengths and 1 hadronic interaction length. The energy resolution
for positrons in the electromagnetic section was σ(E)/E ≈ 7.1%/

√
E/GeV ⊕ 1%,

as determined in test beam measurements [108]. The SpaCal provided energy and
time-of-�ight information used for triggering purposes.
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Figure 5.9: Side view of the liquid argon calorimeter (LAr).

The LAr calorimeter

The liquid argon (LAr) [109] calorimeter covered the range 4◦ < θ < 154◦ as shown
in �gure 5.9. It was designed for measurement of electromagnetically as well as
hadronically interacting particles. The LAr was used in this analysis for the recon-
struction of the hadronic �nal state. The active material of LAr was liquid argon.
The passive material was lead in the electromagnetic part and stainless steel in
the hadronic part. The LAr calorimeter was segmented in eight concentric wheels
with absorber plates orientated such that the incident particles entered the LAr as
perpendicular as possible. An incoming particle entering the active layer created a
shower, and a signal was produced by ionisation in the liquid argon. The response
to the hadronic shower and electromagnetic one was very di�erent due to unde-
tectable energy in case of hadronic shower. The e�ciency of collecting energy from
electromagnetic showers in LAr is about 30% larger than for hadrons. Such energy
imbalance had to be corrected during the reconstruction.

The LAr calorimeter had an energy resolution of σ(E)/E ≈ 50%/
√

E/GeV⊕2%
for hadronic showers, as obtained from test beam measurements [110] . For electrons
the achieved resolution was σ(E)/E ≈ 12%/

√
E/GeV⊕ 1%. [111].

5.2.3 Time-of-Flight Counters

To reject background events induced by interaction of beam particles with residual
gas molecules in the beam pipe and stray protons interacting with the walls of the
beam pipe the Time-of-Flight (ToF) detectors were used. The ToF system, shown
schematically in �gure 5.10, consisted of several detectors. In the forward region
three Forward Inner ToF (FIT) detectors were installed at 1.3 m (FTi1), 2.5 m
(FTi2) and 2.7 m (FIT) from the IP, as well as the Plug detector (PToF) at 5 m.
In the backward region the ToF system consisted of the SpaCal ToF (SToF), the
backward ToF (BToF) at -4 m and the large and small veto walls, LVeto and Veto,
at −6.5 m and −8.1 m, respectively. Each of these detectors consisted of scintillator
arrays which were used to compare the time of arrival of the signal. The background
processes occur at di�erent times compared to the actual ep interaction and were

45



LVetoBToF

Tracker

Ir
o

n

In
st

ru
m

en
te

d

PToFFToF

p

y

0m 1m 2m z

LAr Calorimeter

Forward

muon system

SpaCal

FIT

FTi2 FTi1 SToF

SVeto

e

Figure 5.10: The Time-of-Flight systems.

rejected. The time resolution of ToF system was of about 1 ns.

5.2.4 Luminosity System

The luminosity measurement in the H1 experiment is based on the Bethe-Heitler
process, ep → epγ, where the electrons and photons are scattered at very low angles.

Theoretically, the Bethe-Heitler process is very precisely calculable in QED, and
therefore well suited for the determination of the luminosity in an electron-proton
colliding beam experiment.

The scattered photon from the Bethe-Heitler process is detected with the Photon
Detector, situated at z = −101.8 m near the beam pipe along the electron beam
direction. The Photon Detector is a sampling calorimeter consisting of scintillating
�bres and tungsten absorbers. For the background suppression a beryllium �lter
and a water Cherenkov counter are mounted in front of the Photon Detector.

In a certain energy range, the scattered electron from the Bethe-Heitler process
is detected with the Electron Tagger, placed at z = −5.4 m along the electron beam
direction. This measurement is used for the calibration of the luminosity system
and as a cross check of the luminosity determination.

5.2.5 Trigger System

The bunch crossing rate at HERA was about 10.4 MHz, which is much higher than
the storage capabilities and the readout rates of the detectors. The overwhelming
amount of the events were background. The purpose of a four-level trigger sys-
tem was to e�cient reject background events, such that the ep collisions could be
recorded with a maximal frequency of about 50 Hz at which data could be written
out. Each trigger level consisted of several sub-triggers and di�erent decision algo-
rithms. Some sub-triggers had a very high trigger rate and had to be prescaled, i.e.
some triggered events were rejected while the events that were kept were given a
weight.
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Level 1
The �rst level of the trigger system analysed bunch crossing information stored in
a pipeline and was based on the information from 256 trigger elements combined
into 128 sub-triggers named S0 to S127. As an example of the trigger element is
the one that requires the energy deposited in the SpaCal to be large enough to be a
scattered electron, or is the one that requires the position of the scattering vertex to
be within some reasonable distance from the nominal interaction point. At the �rst
level trigger system a decision to keep or reject the event was taken within 2.3 µs,
corresponding to 24 bunch crossings. If at least one of the sub-triggers accepts the
event the event is taken to the second level trigger.

Level 2
With a decision time of 20 µs a more sophisticated analysis of the event could be
made at the second level. At L2 an event was analysed by either a topological trigger
system (L2TT) or by a neural network (L2NN). The L2TT provided reduction of
background based on topological event signatures, while the L2NN was trained to
select events based on sub-detector information.

Level 3
The third trigger level was implemented in 2005. The L3 trigger system mainly used
track based information to search for heavy quark decays. The decision took place
within 100 µs and reduced the event rate to 50 Hz.

Level 4
In the fourth level trigger the full information of the event was used and a fast online
reconstruction of the event was performed. After all the levels the event could be
prescaled again at the fourth level due to the limited storage volume. In this �nal
step all events which passed the fourth level trigger were classi�ed into classes, which
are available for further physics analysis (for example, DIS, electron in the SpaCal
or jets classes).

5.2.6 Detector Simulation

For the simulation of e�ects of H1 detector, such as detector geometry, interaction
of particles in matter and tracking and hit management, the programme H1Sim
based on Geant 3 [112] was developed. To simulates the behaviour of the de-
tector, Geant creates tracks and energy deposits from four-momenta of particles
generated by Monte Carlo generators and simulates electromagnetic and hadronic
showers. The events created by H1Sim are reconstructed and analysed using the
same programmes as for the data.
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Chapter 6

Reconstruction

6.1 Track Reconstruction

Detailed information on track reconstruction in H1 can be found in [113], and in
this chapter only a brief description is given.

The trajectory of a particle moving in a uniform magnetic �eld, ~B = (0, 0, Bz),
parallel to the beams is ideally a helix. To reconstruct particle momentum one per-
forms the general strategy: �rst, the track trajectory is parametrised, second, a �t of
the given parametrisation to the point measured in a tracking chamber is performed.

Track parametrisation
The helical parametrisation contains �ve parameters (see �gure 6.1):

• the azimuth angle, ϕ - an angle between x-axis and transverse momentum
vector at the point of closest approach;

• the polar angle, θ - an angle between z-axis and momentum vector at the point
of closest approach;

• the curvature which is signed inverse radius k = ±r−1. It is positive if the
direction of the azimuth angle coincides with a counter-clockwise rotation as
seen from the +z direction.

• the signed closest distance from z-axis in the (x, y) -plane, dca = ±| ~dca|, which
is positive if ~dca and the trajectory direction form a right-handed system;

• the z-position (z0) at the point of closest approach;

The helix is a circle in the (x, y)-plane:

1

2
(r2 + d2

ca) + (1− kdca)r · sin(ϕ− φ)− dca = 0, (6.1)

and a straight line in the (y, z)-plane:

zi = z0 + (
dz

dS
)sxy

i , (6.2)
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where sxy
i is the track length for the point zi in the (x,y). At the point of closest

approach we have sxy
i = 0. The slope dz

dS
is related to the polar angle angle by:

θ = arctan

(
1

(dz/dS)

)
(6.3)

Track �tting
The helical parametrisation is valid only as an approximation. In reality various
e�ects can result in a deviation from the ideal helix trajectory. Such de�ections
are caused by multiple scattering, by inhomogeneities of magnetic �elds and energy
loss along the particle's trajectory. For such situations, a simple 2D �t of the circle
(6.1) and of a straight line (6.2) may lead to large χ2 and cannot be used to decide
whether the hit is acceptable or not. To take into account these e�ects the H1
track reconstruction uses a track-�t method similar to algorithm based on broken
lines [114]. In H1 two sets of parameters were needed with the constraint that both
join at the point between CJC1 and CJC2. Track parameters obtained in simple 2D
�t of the circle and of a straight line are used as starting values in a broken-helix �t.
The required criteria of the �t are: optimal track parameters at track start (vertex)
and at track end for extrapolation to other detectors, good overall χ2 of track and
χ2 of each single hit for improvement of hit selection.
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After track is �tted and parameters are determined the track momentum is found
via track's curvature

k =
1

r
=

0.3 ·Bz

pT

, (6.4)

and the following expressions

px = p · sinθ · cosϕ, (6.5)

py = p · sinθ · sinϕ, (6.6)

pz = p · cosθ. (6.7)

When tracks are found, the primary event vertex can be calculated from the z0

parameter. The more precise determination can be obtained not only from CJC
or FTD tracks, but also from tracks measured by the silicon track detectors (CST,
FST and BST) and event timing t0 information. The details on the determination of
z-coordinate of the primary vertex can be found in [115]. When the vertex position
is known the tracks are re�tted using the vertex position as an input. In the region
where the acceptance of CJC and FTD overlaps a combined �t using hits from both
detectors is tried, in case of fail only FTD tracks are �tted to the primary vertex.

6.2 Hadronic Final State

The momenta of the charged particles can be measured either from the tracker device
or through the energy deposit in the calorimeter. The algorithm described in this
section estimates the resolution for these two measurements and decides which one
to use to de�ne a charged particle. If the tracks measurements are better, it is used in
further reconstruction. If the cluster measurements are better, only this information
is used to de�ne a charged particle. The output objects are then calibrated and used
in the analysis.

The Hadronic Final State (HFS) consist of all particles except isolated electrons
and muons. The HFS �nder algorithm used in this analysis was Hadroo2 (Hadronic
Reconstruction in H1OO1) [116], where information from the tracks and cluster were
combined.

Further, the description of the input for the algorithm, tracks and clusters, is
discussed, and then the details of comparison of track and cluster information are
presented.

6.2.1 Tracks

The Hadroo2 algorithm uses vertex-�tted tracks measured by the central tracker
(central tracks), forward detector (forward tracks) or their combination (combined
tracks), see chapter 8 and �gure 8.1. The selection criteria on the tracks are based
on studies made by Lee West [117] and listed in table 8.1 and refereed as "Lee West
selection". After the selection of good tracks, isolated electrons2 and muons are

1H1OO is the Object Oriented framework developed in H1.
2The electron is de�ned as isolated if the energy in the calorimeter in a cone around the electron

Rη−ϕ = 0.5 is less than 3% of the electron energy, excluding the energy associated to any other
identi�ed electron in this cone.
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identi�ed. Finally HFS tracks include all particles except isolated electrons and
muons.

After all selected tracks were used to reconstruct HFS, the remaining clusters are
still used to make other particle candidates. These particles correspond to neutral
particles.

6.2.2 Clusters

Calorimeter clusters are made out of LAr and SpaCal energy deposited cells. The H1
o�ine reconstruction algorithm identi�es clusters originating from electromagnetic
particles or from hadrons. In Hadroo2 a particle is considered as electromagnetic if
95% or more of its energy was deposited in the electromagnetic part of the calorime-
ter, with 50% of this energy in the �st two layers. All other clusters are considered
as hadrons.

6.2.3 Tracker and Calorimeter Measurements Comparison

To make a decision which measurement, either from the track or from the cluster,
has to be used, the algorithm compares the energy resolution obtained from the
track �t with the resolution of calorimeter measurements. The energy of the track
which is under the hypothesis to belong to a pion, π, is calculated according to

E2
track = P 2

track + m2
π = p2

T /sin2θ + mπ. (6.8)

The uncertainty on the energy can be written as

σ(E)track

Etrack
=

1

Etrack

√
p2

T

sin4θ
cos2θσ2

θ +
σ2

pT

sin2
θ

(6.9)

where σθ and σpT
are uncertainties of the track transverse momentum and its polar

angle, respectively, obtained from a track �t.
The evaluation of the corresponding uncertainty on the calorimeter measurement

is only based on the track, since the number of induced clusters by the incident
particle is a priori not known. For the resolution on the LAr the following expression
is used [118] (

σ(E)

E

)
LAr

=
σ(Etrack)LAr

Etrack
=

0.5√
Etrack

(6.10)

Then the relative resolution of the tracks and calorimeter measurements are
compared and the measurement with the best resolution is taken. It was shown
that the track measurements are better than calorimeter up to an energy of 25 GeV
for central tracks, up to 13 GeV for combined tracks and up to 12 GeV for forward
tracks.

To avoid double counting the measurements which were not preferred have to
be removed. How it performs, as well as the details of work of the algorithm, are
discussed below.
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Track measurement

In case the track measurements are taken, the energy in the calorimeter originating
from a track has to be removed to avoid double counting of the track energy. To
estimate the amount of the energy in the calorimeter, which corresponds to a certain
track, the track is extrapolated up to the surface of the calorimeter as an helix, and
inside the calorimeter as a straight line, see �gure 6.2. The volume for the clusters

Figure 6.2: The volume in the calorimeter within which the clusters are summed up [100].

is de�ned by a cone with opening angle of 67.5◦ and cylinders of radius 25 cm in the
electromagnetic part and 50 cm in the hadronic part of the calorimeter. The sum
of the cluster energies inside this volume is denoted with Ecylinder and this energy is
compared to the track energy Etrack. The Ecylinder is set to zero and removed from
the list if the following condition is ful�lled (see �rst line in �gure 6.3):

Ecylinder < Etrack ·

1 + 1.96

√(
σ(E)

E

)2

track

+

(
σ(E)

E

)2

LAr

 (6.11)

This expression takes into account possible �uctuations of both measurements. If
this condition is not ful�lled only the energy Etrack is removed. The cluster with
remaining energy is associated to a neutral particle or another track and kept for
further steps of the algorithm.

Calorimeter measurement

In the case of the calorimeter measurement, Ecylinder and Etrack are compared and if

Etrack ∈ [Ecylinder − 1.96σEcylinder
, Ecylinder + 1.96σEcylinder

], (6.12)

with σEcylinder
= 0.5

√
Ecylinder, the calorimeter measurements are used and track is

removed from the list.
If the condition 6.12 is not ful�lled and Etrack < Ecylinder − 1.96σEcylinder

then it
is assumed that Ecylinder consists of a few clusters originating from several particles,
see second line in �gure 6.3. In this case the track measurements are used.
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On the other hand, if Etrack > Ecylinder − 1.96σEcylinder
, the calorimeter measure-

ments are used, since highly energetic tracks usually are less accurately measured
(see third line in �gure 6.3).
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Figure 6.3: Example of the Hadroo2 algorithm behaviour in three di�erent situations [116].

6.3 Calibration

The measurements presented in this thesis depend on the reconstruction of the scat-
tered electron energy and of the energy of the hadronic �nal state particles, and
therefore demand a precise calibration of the SpaCal, where the scattered electron
is measured, and LAr calorimeter, where the HFS is measured. The energy of the
scattered electron is measured only with calorimeter, while the HFS is reconstructed
by combination of the tracks with the measurement of calorimeter, as discussed in
the previous section. The general idea of the calibration is to compare the mea-
sured energy with the expected one and thus derive calibration functions, which are
di�erent for the data and the simulation.

6.3.1 Electron Calibration

The event kinematics reconstruction uses information of the scattered electron and
thus the resolution in the kinematic variables depends on the energy measurement
of the �nal state electron. Therefore the SpaCal calibration is demanded to be as
precise as possible. The largest uncertainty in the electromagnetic energy calibration
is from �uctuations of the charge collection e�ciency, which lead to small deviations
from the electromagnetic scale over time. The aim of the electron calibration is to
correct for this e�ect. In addition, the electron may lose part of its energy due to
interaction in dead material, in front of the SpaCal, before it enters the active part
of the calorimeter. To well simulate this e�ect, the electron calibration determines
the radially dependent corrections.
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The most accurate method for the SpaCal electromagnetic energy scale is the
double angle (DA) method [119], where the the electron energy E ′

DA is expressed
by the two angles, scattered lepton angle, θe, and the hadronic scattering angle,
θh. Deviations of the ratio E ′

e/E
′
DA from one are used to determine the calibration

constants for the individual SpaCal cells. The calibration has been �nally applied to
the data and simulated events during the o�ine analysis. The achieved uncertainty
on the electron energy is less than 1% [120].

6.3.2 Hadronic Final State Calibration

As discussed in the previous section the HFS object is reconstructed either from
track or from clusters. Tracks are well measured and do not need to be calibrated.
The measured calorimeter energy is not precisely the particle energy and the number
of induced clusters by the incident particle is not known. A hadronic shower consists
of both an electromagnetic and hadronic parts. The response of the electromagnetic
section is very similar to the pure electromagnetic shower, where positrons, electrons
and photons are detected. In the hadronic part, a relatively large fraction of the
energy can not be measured. Such undetectable energy is related to the energy
dissipating into the recoil of the target nuclei, nuclear binning energy and to the not
measured neutrinos and muons. Thus the measured energy will be signi�cantly lower
compared to the true energy of the hadrons initiating the cascade. A correction of
the energy is needed to compensate for such losses and bring the measured energy to
the true energy, i.e. the absolute energy scale. Apart from a correction of the energy,
the calibration procedure is aimed to reduce the uncertainty in determination of the
absolute energy scale, as much as possible.

For the current analysis the low pT HFS Iterative Calibration method [121] is
used. Here, low pT means the method was used in events where the transverse
momentum of the hadronic system is lower than 10 GeV. The principle of the
calibration is to �nd reference measurements independent of the hadronic energy
measurement. In ep collision, in the laboratory frame, the transverse momentum
of the scattered electron is balanced by the other �nal state particles (HFS par-
ticles plus isolated electron and muons). Since the scattered electron is measured
with high precision, it can be used as a reference. The transverse momentum of
the electron, P e

T , is compared with the transverse momentum of the hadronic �nal

state, P h
T =

√
(
∑

P i
x)

2 + (
∑

P i
y)

2. To study how they are balanced, the quantity

P bal
T = P h

T /P e
T is used. The deviation of P bal

T mean value from unity determines the
corrections to the calibration constants.

To know how well the detector response is simulated, the double ratio
(

P h
T

P e
T

)
data

/
(

P h
T

P e
T

)
MC

is de�ned. These quantities are used to de�ne the systematic uncertainty on the mea-
sured energy. From the methods described in [116, 122, 123] it was shown that the
uncertainty is less than 2%.

6.4 Event Kinematic Reconstruction

The kinematics of an ep scattering process is characterised by a set of two of the
three variables x, y and Q2 at a �xed centre of mass energy

√
s. At HERA, the DIS

55



Figure 6.4: Initial state QED Radiation (ISR) in ep → eX reaction.

kinematics can be reconstructed using the scattered lepton (electron method), the
hadronic �nal state (Σ method) or a combination of both (electron-Σ method). The
resolution of each of them depends on the kinematical region.

Before the details of each reconstruction method are discussed it is important
to mention how the scattered electron was measured. The electron cluster posi-
tion might be associated with a track. The azimuthal angle of the electron, ϕe is
determined from the track if a vertex-�tted track was found, otherwise the ϕe is
obtained from the cluster. The polar angle, θe, is always calculated form the cluster
information. Since the CTD was removed during HERA upgrade from the H1 de-
tector for maintenance and then reinstalled, a realignment of the CTD with respect
to the calorimeters was necessary. The procedure leads to consistency between the
measurements of ϕe and θe obtained from cluster position and tracks within 1 mrad.
The energy of the scattered electron is obtained from calorimeter energy deposit
with an energy scale uncertainty of 0.5%.

Electron method. The kinematic variables are calculated using only information
of the scattered lepton, its energy E ′

e and its angle θe:

y = 1− E ′
e

Ee

sin2 θe

2
(6.13)

Q2 = 4EeE
′
ecos

2 θe

2
(6.14)

x =
Q2

sy
(6.15)

At high Q2 and low y this method is a�ected by the initial state QED radiation
(see �gure 6.4), which leads to lower collision energy than the nominal one and thus
to wrong determination of the kinematical variables. To reduce the e�ect of QED
corrections the hadronic �nal state particles can be used to calculate the kinematic
variables.

The Σ method and the e-Σ method. The idea is to reduce the e�ect of initial
state QED radiation by reconstruction of the scattered electron energy using the �nal
state information. Energy and momentum conservation requires that

∑
i(Ei− pz,i),

where i runs over all �nal state particles including the scattered electron, is equal
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to two times the incident electron energy, 2Ee

E − Pz ≡
∑

i

(Ei − pz,i) = Σ + E ′(1− cosθe) = 2Ee. (6.16)

Thus (E−Pz)/2 can be used to rede�ne the electron beam energy and thus giving the
possibility to correct for e�ect of initial state radiation. The kinematical variables
in the Σ method are de�ned as:

yΣ =
Σ

E − Pz

, (6.17)

Q2
Σ =

E ′2
e sin

2(θe)

1− yΣ

, (6.18)

xΣ =
Q2

Σ

syΣ

(6.19)

The term Σ is calculated using the hadrons measured by LAr calorimeter and thus
the method su�ers from the poor resolution of the calorimeter.

In e-Σ method [124] the mixture of electron and Σ methods is used. The kine-
matical variables in the e-Σ method are de�ned as:

Q2
eΣ = Qe, (6.20)

xeΣ = xΣ =
Q2

Σ

syΣ

, (6.21)

yeΣ =
Q2

e

sxΣ

(6.22)

The e-Σ method has better resolution than Σ method and is used to reconstruct the
kinematical variables in this analysis.

6.5 Reconstruction of the Boost to the HCM Frame

The Lorentz Boost to the hadronic centre of mass (HCM) system (introduced in
section 4.2) can be reconstructed for each event using the four-vector of the virtual
photon, which can be calculated from kinematical variables y and Q2 as well as the
azimuthal angle of the scattered electron. It was shown in [125] that the most precise
measurement of boost vector is obtained from kinematic variables reconstructed by
the e-Σ method, which is less a�ected by QED radiation. The energy Ereco

e , polar
angle θreco

e and azimuthal angle φreco
e of the scattered electron are calculated as

following:

Ereco
e =

Q2
eΣ

4Ee

+ Ee(1− yeΣ), θreco
e = arccos

1− b

1 + b
, (6.23)

where

b = 4E2
e

1− yeΣ

Q2
eΣ

and φreco
e = φe. (6.24)

The φreco
e is calculated from the electron method and is used to rotate the HCM

frame such way the x-axis is parallel to px of the scattered electron in the HCM
frame.
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Chapter 7

Event Selection

The measurement of the charged particle transverse momentum spectra is based on
a selection of NC DIS events, which are de�ned through the scattered electron. The
selection described in this chapter is optimised to reduce the background from ep
and non-ep interactions and to ensure a well identi�ed scattered electron well inside
the detector acceptance and within the region where the trigger e�ciency is high.

In section 7.2 the event triggers are introduced. In sections 7.5 and 7.6 the
physics selection, which restricts the phase space of the analysis, as well as detector-
related cuts to optimize the event reconstruction are presented. In addition, the
exclusion of non-functioning and ine�cient parts of the detectors is discussed. In
section 7.7 the trigger e�ciencies are shown.

The chapter is complemented with control distributions comparing the data with
simulated events. This comparison illustrates the quality of the event simulation
including the detector performance.

7.1 Run Sample Selection

The analysis utilises the e+p data collected with the H1 detector in 2006. The
proton beam energy was 920 GeV and the positron energy was 27.6 GeV resulting in
a centre of mass energy of

√
s = 319 GeV. The data recorded at similar detector and

accelerator conditions are grouped into run periods. From run to run the detector
conditions might change, for example because of a sudden drop of the high voltage
(HV) for a detector component. The run selection is chosen to obtain a subset
of events where the following detector components, relevant to this analysis, were
switched on and the corresponding HV was on: LAr, SpaCal, CJC1, CJC2, FTD,
CIP, ToF and Luminosity system. In case of studies with forward tracks, the FST
is also required to be on. Runs with a total luminosity less than 0.1 nb−1, with poor
run quality or with shifted z-vertex are ignored.

7.2 Event Triggering

Only events satisfying certain trigger conditions are read out and analysed. In the
current analysis the event must ful�ll the requirements of the s1 and s2 SpaCal
triggers (based on the energy depositions in the SpaCal calorimeter as counted by
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the Inclusive Electron Trigger (IET)). The level 1 trigger elements of s1 and s2 are
de�ned as

s1 = (SPCLe_IET > 2||SPCLe_IET_Cen_3) ∧ (BG), (7.1)

s2 = (SPCLe_IET > 2) ∧ (BG). (7.2)

The trigger element SPCLe_IET > 2 means that the energy deposition in one of
the outer1 SpaCal trigger towers has to be larger than 9 GeV. The trigger element
SPCLe_IET_Cen_3 is similar to SPCLe_IET > 2 but for the central part of
the SpaCal (also with a cluster of energy above 9 GeV). The BG is a collection of
background rejection trigger elements including requirements on the time-of-�ight
measurement. Trigger s1 allows to trigger low Q2 events and has very high e�ciency,
which leads to a high trigger rate. In order to reduce the rate, integer prescales are
applied run-by-run. Mean prescale factor of s1 for 2006 is about 23. To avoid a loss
in statistics at low Q2 the trigger s1 was used in combination with the trigger s2.
Trigger s2 has a SpaCal radius cut (R > 20 cm), as a level 2 trigger requirement,
cutting very low Q2 events. It has a low prescale factor of 1.2 averaged over 2006
running period.

Since two subtriggers are used and each of them has its own prescale factor, one
needs to combine their weight in such a way that no events are missed or double
counted. The detailed explanation of such a combination is presented in [126]. In
case of two subtriggers with prescale factors pf1,jk and pf2,jk, which trigger the event
j in the run k, the weight is de�ned as:

wjk = P−1
jk =

(
1− (1− 1

pf1,jk

)(1− 1

pf2,jk

)

)−1

. (7.3)

7.3 Interaction Vertex

One of the basic requirement for reconstructing a DIS event is that there should
be a primary interaction vertex reconstructed from the tracks. Since the particle
density in the bunches follows a Gaussian distribution (σP

z ∼ 13 cm, σ2
z ∼ 2 cm,

for the proton and electron beam respectively) along the z-direction, the frequency
of the collisions between beam particles is also distributed according to a Gaussian
around the nominal vertex position. Some of the beam particles will depart from the
ideal beam orbit. For example, beam-wall and beam-gas collisions will be evenly
spread out along the beam direction and some of these collisions will give tracks
in the detector. Also, so-called shifted z-vertex events might be seen in case of
collisions of electrons with proton satellites, which are small bunches shifted with
respect to the main bunch. In order to suppress such backgrounds the z coordinate
of the primary vertex is required to be within 35 cm of the nominal interaction
point. The spread in the x- and y-coordinates of the primary vertex is expected to
be small due to the small transverse size of the beams of σx×σy = 112× 30 µm. In
�gure 7.1 (left) the distribution of the z coordinate of the primary vertex is shown
together with detector simulated MC predictions of Djangoh and Rapgap. A

1The SPCLe_IET trigger is divided into a central (−16 < x < 8 cm and −8 < y < −16 cm)
and an outer region.
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Figure 7.1: zvertex distribution before (left) and after (right) reweighting.

small shift between the data and the MC simulations can be seen. The di�erence
between data and MC is due to the fact that the position of the actual collision
point is normally not exactly at the nominal vertex position and that it varies from
run to run. In addition, it depends on the beam conditions, which have not been
taken into account for the detector simulation. To match the data, the simulated
events were reweighted using a polynomial �t function of �fth order. The resulting
distribution is shown in �gure 7.1 (right), where a good agreement between data
and MC is observed.

The following reweighting procedure is performed in this analysis. A reweighting
function is the �tting function, f , (usually polynomial) to the ratio of data and MC.
The event weight, w, is calculated from the generated level value of the particular
quantity:

f(x) =
xdata

xMC,rec

, w = f(xMC,gen). (7.4)

The weight is applied to both reconstructed and generated level, used for the data
correction.

7.4 The Final State
∑

(E − pz)

Due to energy and momentum conservation, E − Pz de�ned in eq. (6.16), is equal
to two times the incident electron energy, 2Ee = 55.2 GeV. In a real measurement,
the energy of the �nal state can only be determined to a certain degree of accuracy
and therefore a cut on this variable must cover a certain region correlated to the
detector performance. For the event reconstruction the following cut was applied:
35 < E − Pz < 75 GeV. This cut suppresses radiative background, where photons
radiated collinear to the electron beam, escaping the detector. In addition, the
lower cut suppresses photoproduction events, in which the scattered lepton escapes
in the beam pipe and a particle from hadronic �nal state is misidenti�ed as the
scattered lepton.

In �gure 7.2 the measured E − Pz distribution is shown before and after the
calibration of the hadronic �nal state energy, discussed in subsection 6.3.2. It can
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be seen that before the calibration the E − Pz distribution does not peak at 2Ee.
This is however the case after the corrections from the calibration have been applied
and the distribution peaks exactly at 55.2 GeV, shown by the vertical line in the
�gure.

The comparison with the simulated events is shown in �gure 7.3 (left). The
MC does not reproduce well the shape of the distribution. The di�erence might be
partly explained by the uncertainty of the hadronic energy scale, which is 2%, see
�gure 7.3 (right). The remaining discrepancy can be covered be increasing the value
of the energy shift roughly by two. Since the e�ect of the hadronic energy scale
uncertainty on the measurement is rather small (see table 9.2), the total systematic
uncertainty will not change in this case.
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Data (after calibration)

Figure 7.2: Sum of (Ej − pz,j), for the data compared to detector simulated Djangoh and
Rapgap. Zoomed peak is shown in the overlap frame.

7.5 Physics Selection

According to the four-momentum Q2 of the photon participating in the interaction,
the scattered lepton might be detected either by SpaCal or by the LAr calorime-
ters. In this analysis only the SpaCal has been used, where the scattered lepton is
identi�ed as the cluster with the highest ET . Such a cluster is required to ful�ll all
selection criteria and identi�cation cut listed below.

The scattered lepton is required to have an energy E ′
e larger than 12 GeV. For

lower energies the contribution of photoproduction might become signi�cant.
The event kinematics is reconstructed by the e-Σ method (see section 6.4). The

kinematical phase space is de�ned by requiringQ2 to be in the range 5 < Q2 < 100 GeV2

and the inelasticity y to be in the range 0.05 < y < 0.6. The cuts ensure high
acceptance. The lower cut on Q2 and upper cut on y reduce background from pho-
toproduction. In addition, x is required to be in the range 0.0001 < x < 0.01. This

62



0

0.05

0.1

0.15

Data

RAPGAP

DJANGOH

0

0.05

0.1

0.15

Data (+2% shidt in had. energy)

Data (­2% shift in had. energy)

Data

 [GeV]
z

E­p

35 40 45 50 55 60 65 70 75

R
a

ti
o

0.5

1

1.5

DJANGOH / Data

RAPGAP / Data

 [GeV]
z

E­p

35 40 45 50 55 60 65 70 75
R

a
ti

o

0.5

1

1.5

Data(­2%) / Data

Data(+2%) / Data

Figure 7.3: Sum of (Ej − pz,j), for the data compared to detector simulated Djangoh and
Rapgap (left). On the right �gure the e�ect of the uncertainty of the hadronic energy scale is
shown.

restriction is slightly harder compared to the cut in Q2 and y. In �gure 7.4 the
analysis kinematic region in the (x, Q2)-plane is shown.

7.6 Detector Level Selection

In addition, a few other detector-related cuts were applied to ensure a well identi�ed
scattered electron and to suppress background. Since one expects that the scattered
electron should be fully absorbed in the electromagnetic part of the SpaCal, the
energy in the hadronic part behind the electromagnetic cluster is required to ful�ll
Ehad < 0.5 GeV.

Scattered electron hitting the SpaCal close to the edge of the detector may not
deposit their full energy in the SpaCal. This e�ect is especially severe at the beam
hole edge since most of the electrons are scattered at small angles. Hence, in order
to obtain a good energy measurement, one requires that the total energy deposit
in the four layers, positioned in the SpaCal, closest to the beam pipe (Eveto) is not
allowed to exceed 1.0 GeV.

To reduce background from hadronic showers, the fact that hadronic showers
have a broader spatial extension compared to electromagnetic shower is used. There-
fore, the radius of the electron candidate cluster in the SpaCal is required to be
smaller than 4 cm.

63



Bj X

-410 -310

]2
  [

G
eV

2
 Q

1

10

210
2 = 100 GeV2 Q

2 = 5 GeV2 Q

 y = 0.05

 y = 0.6

Figure 7.4: The phase space in the (x,Q2)-plane covered in this analysis.

7.6.1 Fiducial Cuts

To have a precise identi�cation of the scattered electron some ine�cient regions of
the SpaCal have to be excluded. The following regions were removed for the 2006e+

running period in the data and in the detector simulated Monte Carlo samples:

−16.2 < x < 16.2 cm and −4.05 < y < 4.05 cm ,

0 < x < 17 cm and −5 < y < 5 cm ,

10 < x < 15 cm and 5 < y < 8 cm ,

5 < x < 16 cm and 8 < y < 13 cm ,

−10 < x < 10 cm and −17 < y < 10 cm ,

where (x, y) are the electron coordinates in the SpaCal.
To avoid transverse energy leakage in case the electron hits the edges of the

SpaCal, restrictions on the radius for the inner and outer regions of the SpaCal are
applied:

RSpaCal > 15 cm, RSpaCal < 70 cm.

Dead cells were excluded by requiring

−28.35 < x < −24.3 cm and −52.65 < y < 44.55 cm ,

60.75 < x < 64.8 cm and 20.25 < y < 24.5 cm ,

64.8 < x < 68.85 cm and −20.25 < y < −16.2 cm ,

−68.85 < x < −64.8 cm and 0 < y < 8.1 cm .

In addition, to ensure high e�ciency of the analysis triggers, the region of low s2
trigger e�ciency was also excluded:

−16.2 < x < 8.1 cm and −8.1 < y < 16.2 cm .
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Figure 7.5 shows the distributions of the electron in the SpaCal in (x,y)-plane after
all �ducial volume cuts. The full set of o�ine cuts is listed in table 7.1.
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Figure 7.5: SpaCal after �ducial cuts.

Selection criteria

z-coordinate of vertex |zvertex| < 35 cm

Scattered lepton energy E ′
e > 12 GeV

Energy in hadronic section Ehad < 0.5 GeV

Cluster radius in the SpaCal Rclus < 4 cm

Energy in a "veto"-region Eveto < 1 cm

Fiducial volume cut see subsection 7.6.1

Longitudinal momentum balance 35 < E − Pz < 75 GeV

Kinematic range

5 < Q2 < 100 GeV2

0.05 < y < 0.6

0.0001 < x < 0.01

Table 7.1: Selection criteria on reconstruction level used for this analyses.

7.7 Trigger E�ciency

The trigger e�ciency, ε, is calculated using independent triggers, so-called monitor
triggers, which have no common requirements with the investigated trigger. For the
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SpaCal triggers s1 and s2, the monitor triggers s65 and s64 are chosen, which are
based on LAr calorimeter information. The e�ciency is calculated bin-by-bin in the
analysis bins according to

ε =
Ntrue∧monitor

Nmonitor
,

where Ntrue&&monitor is the number of the events after the event selection, accepted
by both investigated and monitor triggers, and Nmonitor is the number of the events
after the event selection accepted only by the monitor trigger.

For the phase space de�ned in the previous section, the trigger e�ciencies for
the combination of s1 and s2, as used in the analysis, are shown in �gure 7.6 as
a function of kinematic variables, Q2, y, log10x, and as a function of reconstructed
electron quantities, E ′, θe and ϕ.
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Figure 7.6: E�ciencies for the combination of subtriggers s1 and s2 measured as a function of
the DIS variables.

The e�ciency is close to 100% for all variables. The trigger information is also
implemented in the H1 simulation. The trigger e�ciency in MC is 100%.

7.8 DIS Control Plots

The comparison of data with predictions from Rapgap and Djangoh MC of the
following variables are presented in �gure 7.7: θ, Q2, E ′, log10 x, y and ϕ. All
distributions are normalised to the total number of events. The weight from the
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Figure 7.7: Control distributions for the DIS variables before the reweighting and energy smearing
procedure.

zvertex reweighing procedure for MC is applied here. As seen from the �gures, both
MCs fail to describe the data at high values of the energy of the scattered electron as
well as at low values of y. The reweighting of one of these variables does not lead to
a good description of the other, since in the e-Σ reconstruction method they are not
directly correlated. To achieve a good description of the data in both variables, �rst
of all only the reweighting of the y distribution was performed, after that corrections
for the predicted energy of the scattered electron were made. These corrections
include SpaCal radius-dependent corrections to smear the energy resolution of the
MC. Apart from that a global −0.3% energy correction is applied to the MC. The
resulting distributions are shown in �gure 7.8, where the MC describes the data well
for all variables.

In this chapter it was shown that DIS control distributions are well described
by the MC simulations and thus the track qualities can be considered in the next
chapter. Total number of DIS events in the analysed phase space is about 6.8
millions. The photoproduction background is estimated in the analysis with a similar
phase space to be less than 0.2% [127].
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Figure 7.8: Control distributions for the DIS variables after the reweighting and energy smearing
procedure.
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Chapter 8

Tracks and Track selection

There are several types of track candidates available in the H1 reconstruction soft-
ware, see �gure 8.1 (left): the track measured only in central devices (CJC, CST,
z-chambers) - central tracks (C); the tracks measured only with FTD - forward tracks
(F); and combined tracks (K), measured in central and forward trackers. Further-
more, tracks can be reconstructed assuming their origin at the primary vertex (1)
or at the secondary vertex (2), see �gure 8.1 (right).

Figure 8.1: Di�erent track and vertex types in the H1 reconstruction procedure.

Since a track might be assigned to more than one type, double counting is pos-
sible. This issue can be resolved by the following procedure. First, only "good"
tracks are selected, which pass the default tracks cuts, so-called "Lee West track
selection". The cuts are di�erent for each track type and are listed in table 8.1. In
the second step the preference for one track type over the others for a selected track
is taken, thus the double counting is removed. The choice of the best track type is
discussed below.

All reconstructed data after the fourth level trigger but before the physics analy-
sis selection are stored in the lowest level of the storage system - ODS (Object Data
Store). The selected data are stored in the next level of the storage system (µODS
- Micro Object Data Store), which is smaller in size than the ODS and essentially
stores the �nal state information allowing a substantially faster event selection.

On µODS the following strategy for the selection of the best track hypothesis is
applied:
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Central tracks

pT > 0.07 GeV Track transverse momentum

|dca′ · sin(θ)| ≤ 2 cm
dca′- distance of closest approach of the

track in the rϕ plane to the primary vertex

Rstart ≤ 50 cm Start point of �rst hit

Rlength ≥ 10 cm for θ ≤ 150o

Radial distance between �rst and last hits
Rlength ≥ 5 cm for θ > 150o

NCJC hits ≥ 0 Number of hits in CJC

Combined tracks

pT > 0.12 GeV Track transverse momentum

p > 0.5 GeV Track momentum

10◦ < θ < 30◦ Track polar angle

|dca′| ≤ 5 cm
Distance of closest approach of the

track in the rϕ plane to the primary vertex

Rstart ≤ 50 cm Start point of �rst hit

NCJC hits ≥ 0 Number of hits in CJC

∆p
p

< 99999.9 Track momentum resolution

Fit χ2 < 50 χ2 of vertex �t

χ2
c−f < 50 χ2 of link between central and forward tracks

Forward tracks

pT > 0.12 GeV Track transverse momentum

p > 0.5 GeV Track momentum

6◦ < θ < 25◦ Track polar angle

Rstart ≤ 25 cm Start point of �rst hit

zlength ≥ 10 cm z distance between �rst and last hits

R0 ≤ 20 cm Radial distance of the track from the beamline

∆p
p

< 99999.9 Track momentum resolution

Fit χ2 < 25 χ2 of vertex �t

χ2 < 10 χ2 of track �t

Table 8.1: Cuts for the "good" central, combined and forward tracks (Lee West criteria).
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• if a central track passes the track selection, combined and forward tracks are
ignored, and the central track is used

• if the central track fails the track selection, the combined track is tried, if it
passes the combined track selection it is used

• if both the central and combined tracks fail the selections, the forward track
is tried and if that passes the selection then it is used

One of the reasons for such preference is the momentum resolution, which is getting
worse in the forward direction. Furthermore, if no special constraint on the track
vertices is made in an analysis, the tracks from the primary vertices are preferred
to tracks from secondary vertices. In this analysis the tracks only from primary
vertices have been considered.

In the next two sections, a study of the track qualities is presented. The central
tracks are taken from µODS. Combined and forward tracks are studied on ODS
level, since it was a �rst attempt to include these tracks into a H1 analysis after the
HERA upgrade and thus a very detailed study of basic track variable description,
track quality and modelling of overall e�ciency were needed.

8.1 Central Track Selection on µODS

In addition to the default "Lee West track selection" (see table 8.1) slightly harder
cuts were applied in order to provide a higher e�ciency of the track reconstruction:

• The transverse momentum, pT , is required to be larger than 0.15 GeV. Tracks
with lower momenta su�er from signi�cant scattering in the dead material
between the interaction point and the CJC. In addition, this cut ensures re-
construction in the region of the CJC with high e�ciency, where a track reaches
the outer CJC, which improves the reliability of the track reconstruction.

• Tracks are required to have a radial length, Rlength, (the radial distance between
the �rst and the last hit) larger than 10 cm independently of θ to avoid short
tracks and to ensure good momentum resolution. This cut is equivalent to the
restriction on the polar angle of the tracks.

• To exclude tracks originating from the electron due to showering in the material
in front of CJC1, the minimum angle of a track w.r.t. the scattered electron
has to be larger than 0.2 rad. In �gure 8.2 this angle is shown for all central
tracks (left) and for those which have transverse momentum in HCM frame
larger than 4 GeV (right). One clearly sees the peak at zero from showering
with photon conversions for high p∗T tracks.

The "Lee West track selection" together with the additional cuts listed above are
further referred to as "track selection" and are applied in all further distributions
where central tracks are used.

In �gure 8.3 (a) the central track multiplicity distribution is shown after event
and track selection. On average six central tracks are observed per event. As seen
from the plot, both MCs fail to describe the data and do not agree with each other.
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Figure 8.2: Angle of tracks w.r.t. the scattered electron: for all central tracks (left) and for those
which have transverse momentum in HCM frame larger than 4 GeV (right).

0

0.05

0.1

0.15

Data

DJANGOH

RAPGAP

a) Central tracks (before reweighting)

 track N

0 2 4 6 8 10 12 14 16 18 20

 M
C

/D
a
ta

0.5

1

1.5
0 2 4 6 8 10 12 14 16 18 20

0

0.05

0.1

0.15

Data

DJANGOH

RAPGAP

b) Central tracks (after reweighting)

 track N
0 2 4 6 8 10 12 14 16 18 20

 M
C

/D
at

a

0.5

1

1.5

Figure 8.3: Number of central tracks in the event before reweighting (a) and after reweighting
(b).

The MC distributions were thus reweighted to the data, and the result is presented
in �gure 8.3 (b). The reweighting is done using the procedure explained in the end
of section 7.3. The obtained event weight, evaluated as a function of multiplicity on
generated level, is applied for all further distributions. As one can see in the plot
still 10% di�erence in seen after the reweighting procedure, this is due to a non-ideal
�t function and to a not perfect correlation between multiplicity on reconstructed
level and multiplicity on generated level.

One more weight is applied for further track control distributions, which is related
to the di�erent probabilities of nuclear interactions in the detector material of pions
and kaons seen in data and MC. The MC shows less interactions of pions and kaons
in material between the beam line and CJC1 as well as between CJC1 and CJC2
than in data [128]. To take into account this di�erence the pion and kaon correction
functions were implemented in H1 software and were applied as a particle weight on
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Figure 8.4: Central track control plots for the number of hits in CJC, NCJC hits, (left) and for the
track length, Rlength, (right).

reconstruction level.

Figure 8.4 shows the control distributions for the number of hits in CJC, NCJC hits,
(left) and the track radial length Rlength (right). Two peaks in both distributions
represent the tracks which traverse only CJC1 (left peak) or both chambers (right
peak). The gap between them corresponds to the joint of CJC1 and CJC2. As seen
from the plot, both MCs predict a shift of the peak in the NCJC hits distribution
for the tracks which pass both chambers. This discrepancy is not so important for
the analysis since for "long" tracks the e�ciency and momentum resolution do not
depend so much on the number of hits.

Central track control distributions for the transverse momentum, pseudorapidity,
polar angle, and azimuthal angle are presented in �gure 8.5. All distributions are
normalised to the area. The peak in the θ distribution at θ ≈ 20◦ is typical for
central tracks due to the fact that the particle density at small angles, i.e. in the
forward region, is large. A satisfactory description is observed for all kinematical
quantities. A di�erence between data and MC is seen at low θ (high η) and at the
tail of the pT spectrum. To achieve a good description of the data, the predicted η
and pT distributions were reweighted to the data using the reweighting procedure
described above. The resulting distributions are shown in �gure 8.6.

8.2 Forward and Combined Tracks on ODS

One of the challenging task of this analysis was to reach the forward (towards the
proton remnant) direction to the maximum limit allowed by the detector tracking
system. Compared to the DGLAP scheme, more gluons with sizable transverse mo-
mentum are emitted near the proton direction. For this reason, charged particles
with high transverse momentum produced close to the proton direction, are consid-
ered to be especially sensitive to QCD dynamics at low x. This was a �rst attempt
to include forward and combined tracks into a H1 analysis after HERA upgrade.
Issues such as large amount of material in front of the FTD, worse pT resolution of
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Figure 8.5: Central track control plots for the transverse momentum, pT , pseudorapidity, η, polar
angle, θ and azimuthal angle, ϕ.
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the forward tracks compared to the central ones as well as the general problems of
reconstruction of forward going tracks make the measurement di�cult.

The HERA-II FTD track selection criteria used in the analysis are listed in
table 8.1. Some of these technical quality criteria of the tracks were optimised
particularly for the current analysis. The description of the forward and combined
track variables characterising the track quality, such as χ2 of track and vertex �t,
radial length, start point of �rst hit and etc., is shown in �gures 8.7 and 8.8. The
de�nition of these variables was introduced in table 8.1.

As seen from the plots, the MCs do not describe all quantities. Since for the
presented analysis the most important track variables are pT and θ, one especially
needs to calculate and understand the track �nding e�ciency as a function of these
variables. Almost all studies described in the next few sections are dedicated to the
understanding of the systematic uncertainties associated with the track reconstruc-
tion e�ciency.

8.2.1 E�ciency Study: Inclusive Sample

The main technical issue for the analysis extension is to control the modelling of
the forward tracker e�ciency by the MC and to de�ne a systematic uncertainty
associated with the track reconstruction e�ciency. The main problem of the FTD
was the ageing of the detector. The ageing reduced the likelihood of observing hits
in the detector, which consequently reduced the track �nding e�ciency. This e�ect
has to be well modeled in the MC, if it is used to correct the data from reconstructed
to generated level.

In the MC, one can de�ne the e�ciency using the original simulated track as the
"truth". This is impossible for data, but an independent detector can be used to
provide the control sample. The FST provides a good de�nition of true information,
as it has low noise and little dead material causing fake tracks, and it does not su�er
from the nuclear interactions problems that the CJC sees for forward going tracks.

For the e�ciency calculation, FST tracks are required to be in the acceptance of
the FTD and to have a momentum larger than 0.5 GeV, which is mainly to ensure
that the track has enough momentum to pass through the end-wall of the CJC
(which is approximately 0.5 X0 thick) and to be visible in the FTD. Then for such
a high momentum FST track, the FTD track closest in (θ, ϕ)-space is considered.
The matching criteria for the FST-FTD association are: ∆θ < 0.02, ∆ϕ < 0.1.

The forward track �nding e�ciency as a function of the track's polar angle is
shown in �gure 8.9 for di�erent running periods of 2006. At small angle (θ < 10◦) the
sharp drop in the e�ciency is seen, at higher angles the e�ciency is about 30−35%.
The value of absolute e�ciency strongly depends on the track selection and the
matching criteria for the FST-FTD association (for the current plots ∆θ < 0.02,
∆ϕ < 0.1 is taken). The degrading of the e�ciency with time is observed, which
shows the ageing of the chambers. As seen from the plot this e�ect is not modelled in
the MC. Here and in all further plots, only Djangoh is used to study the e�ciency,
since no model di�erence was observed. The reasonable description of the data which
observed in early 2006 was achieved by better estimation of the wire and module-
wise e�ciencies of the detector. In the end of 2006 running period the di�erence
between measured and modelled e�ciency raised quite signi�cantly. At high angles
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Figure 8.9: The measured and predicted track �nding e�ciency of FTD probed by FST tracks
for 12 di�erent run ranges.

the statistical uncertainty becomes larger due to the FST acceptance, which covers
a polar angular range of 7◦ < θ < 19◦. For higher θ the central tracks can be used as
a truth probe. The absolute e�ciency of the FTD in case of probing it by FST and
central tracks is not required to be identical (as the de�nition of e�ciency depends
on the track selection and matching criteria), but the level of agreement between
data and MC can be estimated. The idea is to derive a correction function for MC
in the whole angular range covered by FTD, thus using both FST and CJC tracks.

The ratio of the e�ciency measured in data over the one predicted by the MC
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Figure 8.10: The ratio of the measured e�ciency over the one predicted by the MC simulation
for 12 di�erent run ranges.

simulation is shown in �gure 8.10 for both samples, using FST and CJC tracks, and
for di�erent running periods. Since these ratios, as will be discussed later, are used
to derive the θ-dependent functions for rejection the necessary amount of tracks in
MC to describe the measured e�ciency (further referred to as "MC downgrading"),
the previous rough θ-independent MC downgrading by 5% has been removed here
to make a new �t of the shown distributions. It is seen that the di�erence rises up
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Figure 8.11: The ratio of the measured e�ciency over the one predicted by the MC simulation
using both FST and central tracks. The measurements are combined as explained in the text.

to 20% for the last runs of 2006. In the overlap region between FST and central
tracks the data over MC ratios agree within few present. These ratios were �tted
by a polynomial curve to derive a correction function for each running period. To
do that the two samples were combined in the following way: for θ < 15◦ the ratio
of e�ciencies obtained using FST tracks is used; for 15◦ ≤ θ < 20◦, the average
between two ratios (using FST and central tracks) is taken; for θ ≥ 20◦ the ratio
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of e�ciencies using central tracks is considered. The result of this combination
procedure together with the �tted curve is shown in �gure 8.11. The �t functions
were used to de�ne the necessary amount of tracks in MC which have to be rejected
to describe the measured e�ciency.

In �gure 8.12 the �nal FTD e�ciency probed by FST and CJC tracks is demon-
strated for all runs in 2006. The described above MC downgrading procedure leads
to a good description of the data for both samples, using FST and CJC tracks. The
vertical lines show the acceptable region in θ: in case of FST tracks the cut θ > 10◦

is applied to guarantee high enough e�ciency and for the central tracks θ > 15◦ is
required since for lower values of θ the statistics is poor.
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Figure 8.12: The measured e�ciency of FTD and the one predicted by the MC simulation as a
function of θ track probed by FST tracks (left) and by central tracks (right).

To estimate the systematic uncertainty, in �gure 8.13 the data and the MC e�-
ciencies are compared for other variables as the transverse momentum, the azimuthal
angle and the number of FST, NFST, tracks in the event. NFST is the average num-
ber of FST tracks in the event which are matched with FTD tracks. The e�ciency
as a function of ϕ shows the positive/negative asymmetry. In �gure 8.13 the MC
is shown before and after the reweighting procedure. After the reweigting all vari-
ables are described by the MC within 10%. The FTD e�ciency using central tracks
for the same three variables is shown on �gure 8.14. The same level of agreement
between data and MC of about 10% is observed.

The modeling of the e�ciency also improves the description of the kinematical
variables of the FTD tracks. In �gure 8.15 the transverse momentum and angular
distributions of forward tracks are shown. Djangoh provides a reasonable descrip-
tion of the data.
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Figure 8.13: The measured e�ciency of FTD probed by FST tracks and the one predicted by the
MC simulation as a function of transverse momentum (pT ), multiplicity of FST tracks (NFST) and
azimuthal angle (ϕ) before and after the MC downgrading.
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Figure 8.14: The measured e�ciency of FTD probed by CJC tracks and the one predicted by the
MC simulation as a function of pT , NCJC and ϕ.
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Figure 8.15: Distribution of transverse momentum (pT ), the pseudorapidity (η), the polar angle
(θ), and azimuthal angle (ϕ) for the forward tracks.
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Figure 8.16: Momentum resolution of the vertex �tted FTD tracks.

A good description of the data allows to use the MC to correct the data. To
include forward tracks, also the momentum resolution should be good to guarantee
high purity for each bin of the �nal measurements. The momentum and transverse
momentum resolutions of the FTD are shown in �gure 8.16. A good description of
the data by the MC is observed. The possibility of an inclusion of forward tracks in
the �nal measurements is discussed in section 9.2, where the purity in each bin of
the �nal measurement using forward tracks is presented.
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Figure 8.17: Momentum resolution of the combined tracks and its central part depending on the
polar angle, obtained from simulated data.

These distributions look di�erent if one looks in di�erent θ ranges. The best
achieved resolution for FTD is dpT /pT = 9% ⊕ 6.5% · pT /GeV in a region between
15 and 20 degrees.

A combined track in the H1 reconstruction software consists of a vertex-�tted cen-
tral track and a non-vertex-�tted forward track. To study combined tracks the same
techniques as for forwards tracks were used. It is more di�cult to draw conclusions
about the MC description of the combined tracks as well as their �nding e�ciency
since any discrepancy in the central or the forward tracker description will lead to
discrepancies in the combined tracks. Nevertheless, combined tracks will allow an
extension of the phase space and are preferred over forward tracks. A comparison
of the transverse momentum resolution of combined tracks and their central parts is
performed in �gure 8.17 for three di�erent θ intervals: 10◦ ≤ θ < 15◦, 15◦ ≤ θ < 20◦

and θ ≥ 20◦. The central tracks have slightly better resolution for θ ≥ 20◦ com-
pared to the combined tracks, but on µODS for such large θ no combined tracks
will be found, as central tracks are preferred to combined ones there. At low angles,
where the combined tracks are expected to contribute, the transverse momentum
resolution of combined tracks is slightly better compared to its central part.

To study the combined track �nding e�ciency the central tracks were used. They
cover the same θ range as combined ones and the inclusion of the FST tracks is not
needed. In addition, the usage of FST tracks will demand further control of the zvtx
distribution by MC, since in order for a track to go through the FST and the CJC
and the FTD, the acceptance will depend more strongly on zvtx, which will a�ect
the number of tracks for a given θ. The measured e�ciency of combined tracks and
the one predicted by the MC simulation as a function of θ, pT and ϕ are shown in
�gure 8.18. The MC describes the data within 10%.

Figure 8.19 shows the distribution of transverse momentum, the pseudorapidity,
the polar angle, and azimuthal angle for the combined tracks. A discrepancy between
data and MC is observed. The polar angle distribution is shifted for MC, and it
does not reproduce the azimuthal angle. The predicted distributions have to be
reweighted to the data on µODS, see section 8.3.
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Figure 8.18: The measured e�ciency of combined tracks probed by CJC tracks and the one
predicted by the MC simulation as a function of θ, pT and ϕ.
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Figure 8.19: Distributions of the transverse momentum (pT ), the pseudorapidity (η), the polar
angle (θ), and azimuthal angle (ϕ) for the combined tracks.
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8.2.2 E�ciency Study: K0
S Method

To draw conclusions about the description of the measured e�ciency by the MC and
to estimate the systematic uncertainty related to this, an independent method for
the e�ciency determination, which uses π mesons from K0

S decay is used. The idea
is to have a clean de�nition of "truth" in the data by using a track that is de�nitely
a physical track because it originated from a K0

S which can be reconstructed.

The channel K0
S → π+π− is used to reconstruct the K0

S because it has a high
rate and contains only charged particles in the �nal state. The pion candidates
are required to have tracks in the central detectors, with opposite charges and pass
the central track "Lee-West" selection (see table 8.1 for central tracks). The K0

S

meson has a long lifetime, which means it travels some distance before it decays. Its
vertex, displaced from the primary vertex, can be reconstructed and is referred to
as secondary vertex V 0. The number of hits for a track candidate is required to be
larger than 10, to ensure a good determination of dE/dx.

The requirements listed in table 8.2 are applied to select K0
S candidates.

K0
S cuts

Number of K0
S >0

Nr. of daughters =2

Decay length > 2 cm

pT (K0
S) > 0.5 GeV

χ2 of the �t of the daughter particles

to the secondary vertex < 5.4

∆dca > 0.5

Number of hits to determine dE/dx > 10

Table 8.2: Selection criteria for K0
S candidates.

Typical K0
S produced in the H1 detector have so small momenta that the both

pion candidates can not be detected in FTD, but only one of them. To isolate a
signal involving forward tracks one of the decay pions must leave hits at wide angles
in the CJC, corresponding to the FTD acceptance. For such a situation a harder cut
on the momentum (p > 0.5 GeV) has to be required in addition to the central track
"Lee-West" selection, in order to ensure that the tracks can pass through the CJC
end-wall material and be detected in the FTD. A track found in the FTD acceptance
has a shorter track in CJC, thus the cut on the number of hits to determine dE/dx
is modi�ed for this situation and is required to be larger than 5 for such "short"
tracks and larger than 15 for other daughter track.

The invariant mass, M , is calculated under the hypothesis of the π mass for both
negative and positive tracks according to:

M(π+π−) =
√

(Eπ+ + Eπ−)2 − (~pπ+ + ~pπ−)2 , (8.1)
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Figure 8.20: The (π+π−) invariant mass distributions for di�erent requirements on the central
tracks and di�erent track types as explained in the text.

where ~pπi is the momentum vector, Eπi =
√

~p2
πi + mπi the energy for negative

(i = −) or positive (i = +) charged pions; mπi is the pion mass [129].
The invariant mass distributions of the K0

S candidates reconstructed from the
K0

S → π+π− channel are shown in �gure 8.20. In �gure 8.20 (a) the invariant mass
distribution is shown for the case when both daughter pions are detected in CJC
without additional restriction for one of them to be in the FTD acceptance, while in
�gure 8.20 (b) one of the pions is required to have θ < 25◦ and p > 0.5 GeV to reach
the forward detector. As can be seen from �gure 8.20 (b) this requirement increases
the background contribution. The high momentum central track (with p > 0.5 GeV)
can be matched in (η, ϕ)-space with a forward track and thus can be used to con-
struct a combined track. The second daughter track which is not matched with
signals in FTD will be called the central track. One can form the (π+π−) invari-
ant mass not only between the central track and combined tracks (C+K), but also
between central track and central part of the combined track (C+C), or between
central track and forward part of the combined track (C+F), separately. These three
cases are illustrated in �gure 8.21. Such measurements provide a possibility to make

FTD CJC2

CJC1C+C

C+F

Combined track

Central part of combined track

Forward part of combined track

C+K

Figure 8.21: Three di�erent methods to form the (π+π−) invariant mass: C+C - central track
plus central part of the combined track, C+F- central track plus forward part of the combined
track, C+K - central plus combined tracks.
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Figure 8.22: The (π+π−) invariant mass distributions for di�erent requirements on the central
tracks and di�erent track types as explained in the text.

direct comparison of combined and central tracks, or of the forward and central parts
of the combined track. The decay width of K0

S re�ects the momentum resolution
of the particular tracks type. The C+C situation is shown in �gure 8.22 (a), C+K
- �gure 8.22 (b) and C+F - in �gure 8.22 (c). The C+C and C+K invariant mass
distributions have similar signal peak and width values. A comparison of the �t
parameters will be discussed below. The invariant mass distribution for the C+F
case shows approximately the correct position of the mass peak, but a wider sig-
nal width. Here not only angular matching to build the combined track, but also
matching in momentum (∆p < 0.2 GeV) is applied, which slightly improves the
signal-to-background ratio. In addition, the increased background is seen close to
the mass (π+π−) threshold.

A detailed comparison of invariant mass distributions for C+C and C+K samples
are shown in �gure 8.23. The distributions were �tted to extract the mass of the K0

S.
The �t function, ftot(π

+π−) was taken to be a sum of the signal and the background
functions:

ftot(π
+π−) = fsig(π

+π−) + fbgrd(π
+π−). (8.2)

A quadratic polynomial is used to describe the background and a Lorentz function
for the signal. The invariant mass distributions and their �t functions are shown
for the data (top plots in �gure 8.23) and for the MC (bottom plots in �gure 8.23).
The reconstructed K0

S mass is in agreement with the Particle Data Group value of
0.497648 ± 0.0022 GeV [129] for both samples. The width of the signal is slightly
wider in the C+C than in the C+K case. The vertical lines show ±2.5σ interval
around the peak, in these intervals the reconstructed π are taken for the determi-
nation of the forward and combined track �nding e�ciency.

The measured and the predicted e�ciency of the FTD using π from K0
S decays

is shown in �gure 8.24 as a function of the polar angle, θ, the transverse momentum,
pT , and the azimuthal angle, ϕ. The level of agreement between data and MC is
about 5−10%. The comparison with the FTD e�ciency obtained in subsection 8.2.1
using all CJC tracks can be made, see �gure 8.12 (right) and �gure 8.14. The similar
level of agreement between data and MC is seen there.

The e�ciencies of combined tracks using π from K0
S decay are presented in

�gure 8.25. The level of agreement between data and MC is about 5− 10%. Again,
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Figure 8.23: Comparison of invariant mass distributions for C+C and C+K samples in the data
(top) and in the MC (bottom).

the results might be compared to the inclusive sample where all CJC tracks were
used to study the e�ciency, see �gure 8.18.

The comparison of the e�ciency using the K0
S and the inclusive samples gives

consistent results showing agreement of data and MC within 10%. Thus this number
is taken as a systematic uncertainty.

Apart from the e�ciency studies, the K0
S method might be used to study the

probability of �nding more than one matched FTD-central track. An extra track
can originate in the material in front of FTD. The idea is to check how well the MC
describes this probability. For this purpose the isolated track that comes from the
K0

S decay is used and the number of matched FTD tracks is counted. Figure 8.26
shows how many FTD tracks were found within chosen matching criteria (∆η < 0.07,
∆ϕ < 0.25). As seen from the plot the probability of associating two FTD tracks
with a central one is small and is well described by the MC.
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Figure 8.24: The measured e�ciency of FTD using π from K0
S and the one predicted by the MC

simulation as a function of polar angle, θ, transverse momentum, pT , and azimuthal angle, ϕ.
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Figure 8.25: The measured e�ciency of combined tracks using π from K0
S and the one predicted

by the MC simulation as a function of polar angle, θ, transverse momentum, pT , and azimuthal
angle, ϕ.
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Figure 8.26: Number of tracks in the FTD associated with a single pion candidate in the central
tracking detector.

8.3 Forward and Combined Tracks on µODS

After the forward and combined track �nding e�ciency was studied and the corre-
sponding systematic uncertainty is derived, these tracks can be added to the HFS
on µODS, where the double counting of the tracks is resolved by a track's type pref-
erences, see beginning of chapter 8. To judge about the possibility to include these
tracks into the analysis, migration e�ects in each bin of the �nal measurement,
represented by the bin purity, have to be studied. The MC e�ciency downgrad-
ing which was performed in previous section decreases the purity for forward and
combined tracks. In the forward direction the migration e�ect is expected to be
larger compared to the central region due to the worse momentum resolution. In
section 9.2 a detailed study of the migration e�ects is presented, where it is shown
that only combined tracks can be considered in the present analysis. Due to this
reason in present section only control plots for combined tracks are presented, but
not for forward tracks.

Figure 8.27 shows the control distributions for combined tracks for the transverse
momentum, pseudorapidity, polar and azimuthal angles. The MC distribution of
the polar angle is slightly shifted in the forward direction with respect to the data.
The ϕ distribution shows positive/negative asymmetry, because of the dead regions
of the detector. To obtain a weight for MC, which �ts it to the data, a combined
sample of central and combined tracks has to be reweighted. The reweighting is
performed in η and pT . The resulting distributions of central and combined tracks
are shown in �gure 8.28. Obtained weights are also applied on the generated level.

In section 8.1 the multiplicity distribution of central tracks was discussed (�gure
8.3). The inclusion of combined tracks will slightly change this distribution. In
�gure 8.29 number of central and combined tracks in the event is shown after the
same reweighting was applied as for central tracks only. As seen from the plots, the
MCs describe the data within 10%.
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Figure 8.27: Distributions of the transverse momentum (pT ), the pseudorapidity (η), the polar
angle (θ), and azimuthal angle (ϕ) for the combined tracks on µODS before reweighting.
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Figure 8.28: Distributions of the transverse momentum (pT ), the pseudorapidity (η), the po-
lar angle (θ), and azimuthal angle (ϕ) for the combined and central tracks on µODS after the
reweighting in η and pT .
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Figure 8.29: Number of central and combined tracks in the event after reweighting.
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Chapter 9

Detector E�ects

In previous sections the control distributions for DIS events as well as for track-
ing variables were presented. Good overall agreement between data and MC was
achieved, and thus the models can be used to correct the data for detector accep-
tance, e�ciency and resolution e�ects. To do that the detector e�ects must be
studied in each bin of the �nal measurements.

In section 9.1 the observables, which are of interest for the analysis, are intro-
duced.

In section 9.2 a detailed study of purities is presented and the e�ect of including
forward and combined tracks is discussed.

In section 9.3 the factors used to correct for detector e�ects are presented.
In section 9.4 the systematic uncertainties of the measurement are presented.

9.1 Observables

The results are presented in the hadronic centre of mass system (HCM), i.e. in
the photon-proton rest frame (see section 4.2). The transverse momentum and
pseudorapidity of charged particles in the HCM frame are labeled as p∗T and η∗.

The event-normalised charged particle transverse momentum and rapidity dis-
tributions are de�ned as:

D(p∗T ) =
1

N

dn

dp∗T
, D(η∗) =

1

N

dn

dη∗
, (9.1)

where N is the total number of selected DIS events and dn is the total number of
charged particles with transverse momentum (pseudorapidity) in the interval dp∗T
(dη∗). Summing up all bins dp∗T (dη∗) we obtain: n

N
- the average multiplicity of

charged particles in the event.
The event-normalised transverse momentum spectra of charged particles are

measured in two pseudorapidity intervals: 0 < η∗ < 1.5 and 1.5 < η∗ < 4. A
two-dimensional plot of the boosted η∗ vs. η of the tracks in the laboratory frame
is shown in �gure 9.1. In this plot central and combined tracks are included. Two
horizontal lines show the regions under the investigation. A Feynman diagram with
a schematic representation of these pseudorapidity regions is shown in �gure 9.2.

In the region 1.5 < η∗ < 4, where the current fragmentation is strongly domi-
nating, the sensitivity to the hard scattering is expected. In the range 0 < η∗ < 1.5,
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Figure 9.1: The correlation between boosted pseudorapidity, η∗, and the pseudorapidity in the
laboratory frame ηlab. The white line indicates the mean of the two-dimensional distribution.
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Figure 9.2: Schematic representation of the two measured pseudorapidity regions, 0 < η∗ < 1.5
and 1.5 < η∗ < 4.

where the target fragmentation is also playing a role, the sensitivity to the parton
shower might be studied.

As seen from �gure 9.1, the interval of 1.5 < η∗ < 4 covers mostly the central
region of the detector and is called the "central region". The interval 0 < η∗ < 1.5
partly covers the forward region and is referred to as "forward region".

In addition, the transverse momentum spectra and pseudorapidity distributions
are measured in di�erent x and Q2 bins. The binning of the phase space is shown in
�gure 9.3 and the bin sizes are indicated on the plots and in table 9.1. The binning
was chosen to have approximately the same number of events in each bin.
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Figure 9.3: The binning of the phase space in the (x,Q2)-plane covered in the analysis.

Kin. bin x/10−3 Q2 / GeV2

0 0.10 - 10.0 5-100

1 0.10 - 0.24 5-10

2 0.24 - 0.50 5-10

3 0.50 - 2.00 5-10

4 0.20 - 0.52 10-20

5 0.52 - 1.10 10-20

6 1.10 - 3.70 10-20

7 0.40 - 1.70 20-100

8 1.70 - 10.0 20-100

Table 9.1: The kinematic bins.

9.2 Purity

The purity is a variable used to study e�ects of migration between individual bins of
the measurement. Let us consider some kinematic variable in a �xed bin and let Nrec

and Ngen∧rec be the numbers of the MC events reconstructed and both generated and
reconstructed in this bin, respectively. Here, the stable generated level is considered.
"Stable" means all particles with an average proper lifetime cτ larger than 10 mm.
The purity (P ) is de�ned as

P =
Ngen∧rec

Nrec
, (9.2)
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and shows the fraction of the events both generated and reconstructed in the bin
with respect to the total number of events reconstructed in this bin. For example,
a purity of 80% means that 80% of the events measured in the bin on the detector
level are also found in that same bin on the generated level, and 20% of the events
have migrated into that bin from other generated level bins. Such migrations might
originate from the following sources:

• migrations from outside the phase space Na;

• migration from neighbouring bins to a given bin Nb;

• other migration from inside the phase space Nc.

The purity might be rewritten explicitly showing these contributions:

P =
Ngen∧rec

Ngen∧rec + Na + Nb + Nc

, (9.3)

For the bin-by-bin correction method to be applicable, the purity should be
high, otherwise the method would not deliver a reliable result and may introduce
large biases, in which case a full unfolding procedure should be performed. As
discussed in [130] the "simple" bin-by-bin method has a sizable bias to the input
MC distribution, particularly if migrations from outside the analysis phase space
are large. An "improved" bin-by-bin method, where the migrations from outside of
the phase-space are subtracted, was introduced in [130].

A modi�ed purity (inside the analysis phase-space) is de�ned as:

P̃ =
Ngen∧rec

Ngen∧rec + Nb + Nc

, (9.4)

The way the "improved" bin-by-bin method modi�es the correction factor calcu-
lations and the statistical errors treatment is discussed in the next section. The
"improved" bin-by-bin correction procedure still su�ers from biases, but these can
be controlled by tuning bin sizes such that purities inside the analysis phase-space
are high. By H1 convention, the bin-by-bin method might be used for modi�ed
purity (further on referred to as purity) larger than 0.8.

The purities for the p∗T spectra in the interval of 0 < η∗ < 1.5 for the whole anal-
ysis phase space and in the di�erent (x, Q2)-bins are presented in �gures 9.4 and 9.5,
respectively. Since in the 0 < η∗ < 1.5 pseudorapidity region a contribution from
central and forward tracks is expected (see �gure 9.1), the purities are shown sepa-
rately for the central, combined and forward tracks as well as for their combinations:
central and combined tracks (in the plots labelled as `C and K tracks'); central, com-
bined and forward tracks (in the plots labelled as `C,K and tracks'). One should
remind that the selection of the best track hypothesis for a selected track is consid-
ered to avoid double counting (see beginning of chapter 8). Therefore in case `C,K
and tracks' central tracks are taken in preference to combined and forward tracks
and combined tracks are taken in preference to forward tracks. Shown distributions
were obtained using the Djangoh MC. As seen from the plots the forward tracks
have purity lower than 0.4 almost in all p∗T bins, and the combined track purity
is varying between 0.55 and 0.75. The purity of the combination of central tracks
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Figure 9.4: Purity as a function of the p∗T in 0 < η∗ < 1.5 range.
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Figure 9.5: Purity as a function of the p∗T in 0 < η∗ < 1.5 range for eight di�erent (x,Q2)-bins.
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Figure 9.7: Contribution of the combined tracks in each (x,Q2)-bins for the p∗T spectra in the
region 0 < η∗ < 1.5 (see �gure 9.5).

with combined ones or with the combined and forward tracks shows the possibility
of including these tracks in the measurements. If it is below 0.8 and no reasonable
rebinning can improve it, then we can not include these tracks in the measurements.
The p∗T bin size in �gures 9.4 and 9.5 was adjusted for the C+K sample to guaran-
tee purity to be higher than 0.8 in all p∗T bins and in all eight (x, Q2)-intervals. A
di�erent p∗T binning is used for the di�erent (x, Q2)-bins.

To see which value of x forward and combined tracks prefer, the x distribution of
these tracks together with central ones is shown in �gure 9.6. In �gure 9.6 (b) tracks
are required to have η∗ < 1.5. As seen from the plot, the forward and combined
tracks prefer larger x value, thus in the (x, Q2)-bins with larger x values, as bin 3 and
6 (the bin number is indicated in the top right corner in �gure 9.5), the contribution
of the forward tracks is maximal, and in order to achieve the purity larger than
0.8 even wider binnings have to be chosen. In particular, this means that for bins
2, 3, 5, 6, 8 only two to three bins in p∗T might be obtained. For the low-x bins 1, 4
and 7 the contribution of the forward tracks is not so high and the purity is not not
a�ected much by including forward or combined tracks. Based on these studies it
was decided not to include forward tracks in the p∗T distributions. The combined
tracks are successfully included in the analysis and their statistical contribution (in
percent) in each (x, Q2)-bin of �gure 9.5 is illustrated in �gure 9.7.
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Figure 9.8: Purity as a function of the central track p∗T in 1.5 < η∗ < 4 range.
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Figure 9.9: Purity as a function of p∗T in 1.5 < η∗ < 4 range.

Figures 9.8 and 9.9 show the purity as a function of p∗T in the 1.5 < η∗ < 4 region,
for the whole analysis phase space and in the di�erent (x, Q2)-bins, respectively.
Here, only central tracks are shown, since they are strongly dominant in that region,
see �gure 9.1.

A more narrow binning in p∗T was used compare to the forward region, due to
the better resolution. Purity is above 0.8 almost in all bins. Despite the fact that
in some p∗T bins it achieves only 0.75, those bins were still accepted.

Figure 9.10 shows the purity as a function of η∗ for p∗T < 1 GeV. In the HCM
frame the proton direction points to the left, so forward and combined tracks are
found for η∗ . 2. The contributions of central, combined and forward tracks are
shown separately in �gure 9.10. A rather wide binning was used to guarantee purities
of about 0.8 for the central tracks. The acceptable (high purity) region for the �nal
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Figure 9.10: Purity as a function of charged particle η∗ for p∗T < 1 GeV.

measurements is shown with two dashed vertical lines. As seen from the plots, in
the region 0 < η∗ < 1 purities for the central and combined tracks are similar. For
the more forward region, −0.5 < η∗ < 0, central tracks almost do not contribute,
but purities of the combined and forward tracks are too low to include this region
in the analysis. Including the forward tracks for the η∗ > 0 region will need an even
wider binning, which will lead to a decrease of the forward track fraction in such
wide bins due to the strong dominance of the central tracks. Due to that reason the
forward tracks are also not included in the η∗ distribution.

Figure 9.11 shows the purity as a function of η∗ for particles with transverse
momentum, p∗T > 1 GeV. A narrow binning was used due to higher purity compared
to the soft p∗T sample.

The purity as a function of η∗ for p∗T < 1 GeV and p∗T > 1 GeV for the whole
analysis phase space is shown in �gure 9.12. Only the �nal combination of central
and combined tracks is shown.
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Figure 9.11: Purity as a function of charged particle η∗ for p∗T > 1 GeV.
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9.3 Correction Factors

High purities in each bin of the measurements allow to use the bin-by-bin method
to correct the data. The correction factors, ci, are used to correct the data from the
reconstructed level to the stable non-radiative generated level. "Stable" means that
all the particles with an average proper lifetime cτ larger than 10 mm are considered
as stable (K0

S, Λ, Σ±, Ξ−, Ξ0, Ω−), since most of them will not decay before reaching
the detector. "Non-radiative" means that the e�ects of QED radiation are corrected
for.

The correction factor, ci, for bin i for a particular distribution is given by:

ci =
Dnonrad gen,i

Drec,i
,

where Dnonrad gen,i is the observable de�ned in equation 9.1 on the stable non-
radiative generated level, and Drec,i is the same observable in the same bin i but
on reconstructed level. Thus, the �nal event-normalised measurements have to be
multiplied bin-by-bin by these corrections:(ni

N

)data

→
(ni

N

)data

· ci , (9.5)

where ni is a number of charged particles observed in bin i and N is the number
of DIS events ful�lling the analysis selection criteria. The statistical uncertainty in
each bin of the measurement is calculated as:

δi,stat =

√
ni

N
· ci , (9.6)

As discussed in the previous section the "improved" bin-by-bin method was in-
troduced to subtract the migrations from outside the analysis phase space using
simulations and thus to reduce the bias to the input MC distribution. This leads to
a modi�cation of (9.5):(

ni − nout
i

N

)data

· c′i =

(
ni − nout

i

N

)data

· nnonrad gen,i

nrec,i − nout
rec,i

· Nrec

Nnonrad gen,i

,

where nout
i is number of charged particles from outside the analysis phase space.

This expression is equal to expression (9.5), since the fraction of the samples is
subtracted for the data is the same as for MC on reconstructed level:(

nout
i

ni

)data

=
nout
rec,i

nrec,i
. (9.7)

Assuming the relative statistical error on nout
i is small compared to that on ni the

the statistical error in each bin of the measurement is recalculated as:

δimproved
i,stat =

√
ni

N
· c′i , (9.8)

Thus the "improved" bin-by-bin method increases the statistical uncertainty in bin
i by a factor:

ci

c′i
=

nrec,i − nout
i

nrec,i
. (9.9)
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Figure 9.13: Correction factor as a function of p∗T
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Figure 9.14: Correction factor as a function of η∗

The correction factors for the transverse momentum distributions of charged
particles in the two pseudorapidity intervals 0 < η∗ < 1.5 and 1.5 < η∗ < 4 are
shown in �gure 9.13. The correction factors for rapidity distributions in case of soft,
p∗T < 1 GeV, and hard, p∗T > 1 GeV, particles are shown in �gure 9.14 separately for
Djangoh and Rapgap.

The value of correction factors strongly depends on η∗ and less on p∗T . In the
central region it is never larger than 1.5 or smaller than 0.95, where the largest
values are seen at high p∗T and large η∗. For the forward region it reaches a value of
2 at high p∗T mostly due to limited detector acceptance in that region.

A model dependence of the correction factors is observed at larger p∗T . In general
both models (Djangoh and Rapgap) agree within few percent, but the di�erence
rises up to 7% in the forward region.
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9.4 Systematic Uncertainties

The following sources of systematic uncertainties are considered for all measured
quantities.

• The systematic uncertainty on the SpaCal energy scale is ±1%. In order to
estimate the dependence of the measurements on this uncertainty, the energy
scale was changed within these limits and the in�uence on the �nal measure-
ments was calculated using Djangoh. This results in an average systematic
uncertainty of 0.4%

• The angular resolution of the SpaCal of 1 mrad leading to a systematic uncer-
tainty of about 0.1%.

• The hadronic energy scale uncertainty is known to a precision of 2%. Apart
from phase space calculations, which depend on E−Pz of hadronic �nal state,
it a�ects the boost to HCM frame calculation. This leads to an e�ect on the
measurements of about 0.3%.

• The systematic uncertainty arising from the model dependence of the data
correction is obtained as the arithmetic mean value of the correction factors
calculated using Rapgap and Djangoh:

∆model =
1

2

(
cRapgap − cDjangoh

)
.

The average resulting uncertainty on the measurements is about 1.7% (it varies
between 0.01% to 5%).

• The systematic uncertainty associated with the track reconstruction e�ciency
is estimated to be 1% [131] for the central tracks and 10% for the combined
tracks assumed to be constant over the pT and θ range of the tracks. This
results in uncertainties of typically 1.6%.

As was shown in subsection 8.2.1 the e�ciency of the combined tracks was
checked using all selected central tracks as well as using pions from K0

S decay
as a function of the transverse momentum and pseudorapidity. Consistent
results were obtained from both samples showing agreement of data and MC
within 10%.

The total systematic uncertainty is of the order of 2.4%. The resulting average
systematic uncertainty for di�erent measured observables is shown in table 9.2.
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Source of the errors 1
N

dn
dp∗T

cen 1
N

dn
dp∗T

fwd 1
N

dn
dη∗

soft 1
N

dn
dη∗

hard

Model dependence 1.2 % 2.3 % 1.1 % 1.9 %

Hadronic energy scale (± 2 %) 0.4 % 0.2 % 0.2 % 0.3 %

SPACAL em energy scale (± 1 %) 0.5 % 0.2 % 0.3 % 0.4 %

Scat. positron angle (± 1 mrad) 0.1 % 0.1 % 0.1 % 0.1 %

Tracking (1 % (cen);10 % (comb)) 1.0 % 1.4 % 2.0 % 1.8 %

Total error 1.7 % 2.7 % 2.5 % 2.4 %

Table 9.2: The source of the systematic uncertainties and their impacts on the following measured
observables: dp∗T spectra in 1.5 < η∗ < 4 range (labelled in the table as " 1

N
dn

dp∗T
cen"), dp∗T spectra

in 0 < η∗ < 1.5 range (labelled as " 1
N

dn
dp∗T

fwd"), η∗ spectra for the charged particles with p∗T < 1

GeV (labelled as " 1
N

dn
dη∗ soft") and η∗ spectra for the charged particles with p∗T > 1 GeV (labelled

as " 1
N

dn
dη∗ hard").
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Chapter 10

Results

The measurements of the charged particle transverse momentum and the pseudora-
pidity distributions, introduced in section 9.1, are presented. The results are shown
in �gures 10.1 to 10.22.

10.1 Transverse Momentum Distribution of Charged

Particles

In �gure 10.1 the p∗T spectra are shown for two di�erent eta ranges. The shape
of the measured p∗T distribution in the two pseudorapidity ranges is very similar.
The spectrum falls over more than four orders of magnitude from p∗T < 1 GeV to
p∗T ' 8 GeV. The statistical and systematic uncertainties are added in quadrature
and shown in the �gures. Since the uncertainties are small, they are only visible in
the ratio plots.

The measurements are compared to various Monte Carlo generators using dif-
ferent approaches to simulate the parton cascade and the hadronisation process. In
�gure 10.1 the measured p∗T spectra in the two pseudorapidity intervals are com-
pared to the DGLAP-based model Rapgap, to the CDM model Djangoh and
CCFM model Cascade. The DGLAP-based model undershoots the data at high
p∗T and predicts a much softer spectrum compared to the other models. Compar-
ing the predictions in the two pseudorapidity intervals, the strongest deviation of
the DGLAP model from the data is observed in the forward region, 0 < η∗ < 1.5.
Djangoh performs best among the models and provides an acceptable description
of the data in both pseudorapidity intervals. In contrast, Cascade is above the
data for almost the whole p∗T range.

In �gure 10.2 the measured p∗T spectra are compared to the Herwig++ and
Sherpa predictions. The Herwig++ with POWHEG correction is labelled in all
plots as `Herwig (Powheg)'. The Herwig++ with a matrix element correction based
on the approach of [132] is labelled in all plots as `Herwig'. Sherpa predictions
were obtained using both cluster and Lund string model for the hadronisation. At
soft p∗T all models, except the Sherpa (Lund), are above the data and at high p∗T all
models are below the data. This is a case for both forward and central regions. It
worth to mention, that Sherpa does not describe the measured F2 [133], this might
a�ect the description of presented in this thesis data. In addition, both Herwig++
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and Sherpa (cluster) do not describe the charged particle multiplicity.
In �gures 10.3 and 10.4 the transverse momentum spectra are shown for eight

di�erent x and Q2 bins, in the forward region with a linear and logarithmic scale of
the x-axis, respectively. In �gure 10.5 the p∗T spectra are shown for eight di�erent
x and Q2 bins in the central region. The bin sizes are indicated on the plots. For
the central region the virtuality Q2 in�uences the hardness of the p∗T spectrum,
where it is the relevant scale, while there is little in�uence in the forward region.
For easy comparison the ratios of the MC predictions over the data are shown
in �gures 10.6 and 10.7. The strongest deviation of the DGLAP model Rapgap
from the data is observed in the forward region and in the lowest x and Q2 bin.
The description becomes better at larger values of x and Q2. The same trend is
observed for the central region, but here the data description is better. The CDM
provides a reasonable description of the data over the full kinematic range for both
pseudorapidity regions, except in the lowest x and Q2 bin for the high p∗T tail, where
the prediction is above the data. Cascade describes the data in the lowest x and
Q2 bin and high p∗T but has too hard spectrum at high x and Q2.

In �gures 10.8 and 10.9 the measurements are compared to the Herwig++ and
Sherpa predictions in the forward and central regions, respectively. The ratio of the
Herwig++ and Sherpa predictions over the data are shown in �gure 10.10 for the
forward and in �gure 10.11 for the central region. In the forward region at lowest x
and Q2 bin all models are di�erent from each other and the best description of the
data is achieved by Sherpa (cluster), which however does not describe the data.
At higher values of x and Q2 the description of the data is better for all models.
In the central region at lowest x and Q2 bin and high p∗T all models are below the
data. At higher x and Q2 Herwig++ provides reasonable description of the data.
Comparing these results with predictions of earlier discussed Rapgap, Cascade
and Djangoh models, one can conclude that for small x and Q2 and for p∗T > 1
GeV the best description of the data is achieved by Djangoh and Cascade, at
high x and Q2 - by Djangoh, Rapgap and Herwig++.

At low p∗T the best description of the data is achieved by CDM, while Rapgap
is slightly above the data, and Cascade, Herwig++ and Sherpa (cluster) strongly
overshoot the data. Sherpa (Lund) is below the data at small x, but provides a
reasonable description of the data at high x. Soft p∗T region is expected to be mainly
driven by hadronisation e�ects and will be discussed below.
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Figure 10.1: Measured p∗T spectra of charged particles in the hadronic centre of mass system
(HCM) in two pseudorapidity intervals, 1.5 < η∗ < 4 (left) and 0 < η∗ < 1.5 (right), together
with Rapgap, Djangoh and Cascade Monte Carlo predictions.
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Figure 10.2: Measured p∗T spectra of charged particles in the hadronic centre of mass system
(HCM) in two pseudorapidity intervals, 1.5 < η∗ < 4 (left) and 0 < η∗ < 1.5 (right) together with
Herwig++ and Sherpa Monte Carlo predictions.
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Figure 10.3: Measured p∗T spectra of charged particles in the hadronic centre of mass system
(HCM) in 0 < η∗ < 1.5 range for eight intervals of Q2 and xBj together with Rapgap, Djangoh
and Cascade Monte Carlo predictions.
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Figure 10.4: Measured p∗T spectra of charged particles in the hadronic centre of mass system
(HCM) in 0 < η∗ < 1.5 range for eight intervals of Q2 and xBj together with Rapgap, Djangoh
and Cascade Monte Carlo predictions.
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Figure 10.5: Measured p∗T spectra of charged particles in the hadronic centre of mass system
(HCM) in 1.5 < η∗ < 4 range for eight intervals of Q2 and xBj together with Rapgap, Djangoh
and Cascade Monte Carlo predictions.
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Figure 10.6: The ratios of measured over predicted by Monte Carlo p∗T spectra of the charged
particles in the hadronic centre of mass system (HCM) in 0 < η∗ < 1.5 range for eight intervals
of Q2 and xBj .
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Figure 10.7: The ratios of measured over predicted by Monte Carlo p∗T spectra of the charged
particles in the hadronic centre of mass system (HCM) in 1.5 < η∗ < 4 range for eight intervals
of Q2 and xBj .
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Figure 10.8: Measured p∗T spectra of charged particles in the hadronic centre of mass system
(HCM) in 0 < η∗ < 1.5 range for eight intervals of Q2 and xBj together with Herwig++ and
Sherpa Monte Carlo predictions.
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Figure 10.9: Measured p∗T spectra of charged particles in the hadronic centre of mass system
(HCM) in 1.5 < η∗ < 4 range for eight intervals of Q2 and xBj together with Herwig++ and
Sherpa Monte Carlo predictions.
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Figure 10.10: The ratios of measured over predicted by Monte Carlo p∗T spectra of the charged
particles in the hadronic centre of mass system (HCM) in 0 < η∗ < 1.5 range for eight intervals
of Q2 and xBj .
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Figure 10.11: The ratios of measured over predicted by Monte Carlo p∗T spectra of the charged
particles in the hadronic centre of mass system (HCM) in 1.5 < η∗ < 4 range for eight intervals
of Q2 and xBj .
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10.2 Rapidity Distribution of Charged Particles

As argued in [26], hadronisation e�ects should be relevant only at small trans-
verse momenta, while hard parton radiation should manifest itself in the tail of
the p∗T distribution. To separate the e�ects of fragmentation and parton evolution
the normalised pseudorapidity distributions were measured for p∗T < 1 GeV and for
p∗T > 1 GeV, separately, as shown in �gure 10.12. In the soft p∗T region, the pseudora-
pidity distribution is plateau-like with about 1.7 charged particle per pseudorapidity
unit. In the hard p∗T region it becomes more peaked in the current region.

To check the sensitivity to hadronisation e�ects, the Rapgap prediction with de-
fault Pythia fragmentation parameters and with parameters tuned by ALEPH [84]
are shown in �gure 10.12. Signi�cant di�erences between these two parametrisation
are seen in the soft p∗T region, while for particles with large transverse momenta the
discrepancy is much smaller. Predictions from generators with di�erent approaches
for QCD radiation are shown in �gure 10.13. At both soft and large p∗T the best
description of the data is achieved by Djangoh.

In �gure 10.14 the Rapgap and Cascade predictions with Pythia fragmenta-
tion parameters tuned by ALEPH and by the Professor tuning tool (see section 3.2)
are compared. As one can see the predictions obtained with parameters tuned by
Professor (see table 10.1) give larger multiplicities at small p∗T compared to the
ALEPH tuning, and provide a worse description of the data. This is mostly due to

MSTJ(11) 5 fragm. function

PARJ(21) 0.325 σq

PARJ(41) 0.5 Lund a

PARJ(42) 0.6 Lund b

PARJ(47) 0.67 rb

PARJ(81) 0.29 Lambda

PARJ(82) 1.65 Parton shower cut-o�

Table 10.1: Professor tuned parameters.

the di�erent value of b parameter of the Lund symmetric fragmentation function, to
which the predictions are most sensitive. Increasing its value leads to a decreasing
multiplicity at soft p∗T . In the ALEPH tune b = 0.85 and in Professor b = 0.6.

The prediction of the Rapgap model presented in �gure 10.15 (left) illustrates
the sensitivity to the choice of PDF. In the soft p∗T region all NLO PDFs (HERA-
PDF1.0 [134], CTEQ6.6 [135], GRV98NLO [136]) show similar results and predict
softer spectra compared to calculations using CTEQ6L(LO) [81]. The best descrip-
tion of the data is achieved by the GRV98NLO and GRV98LO PDFs, but they
still do not describe the data well. At large p∗T di�erences between NLO PDFs are
observed and CTEQ6L(LO) is closer to the data than the other PDFs, however pre-
diction with CTEQ6L(LO) is still signi�cantly below the data. The sensitivity to
the uPDF in Cascade is shown in �gure 10.15 (right). At large p∗T the predictions
show di�erent shapes of the distribution. Set J2003-set2 [137] including non-singular
terms of the gluon splitting function is closer to data than other uPDFs.
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In �gure 10.16 (left) the measurements are compared to the Sherpa and Her-
wig++ predictions. In the soft p∗T region all models, except Sherpa (Lund), are
above the data. At large p∗T the best description of the data is achieved by Sherpa
with the cluster model, which is still below the data. Herwig++ strongly under-
shoots the data towards the proton direction. Almost no di�erence is seen between
the Herwig++ predictions with or without the POWHEG method. Figure 10.16
(right) illustrates the sensitivity to the choice of either LO PDF CTEQ6L or NLO
PDF CTEQ6.6 for Sherpa. The results with CTEQ6.6 show a softer multiplicity
compared to CTEQ6L(LO). In all further plots the Sherpa predictions are obtained
with CTEQ6L(LO).

The charged particle multiplicity as a function of pseudorapidity in eight di�erent
x and Q2 bins is shown in �gures 10.17 and 10.18 for p∗T < 1 GeV. The bin sizes
are indicated on the plots and in table 9.1. Djangoh provides a good description
of the data in all kinematical ranges, all other models, except the Sherpa (Lund),
are above the data independent of x and Q2. Sherpa (Lund) shows sensitivity to
x and Q2, it undershoots the data at low x and Q2 bins and provides a satisfactory
description of the data in the highest (x,Q2) bin.

The multiplicity of hard particles with p∗T > 1 GeV is shown in �gures 10.19
and 10.20 for the same x and Q2 bins. A surplus of hard particles in the data over
the DGLAP-like model at small x and away from the current region is observed.
The best description of the data is achieved by Djangoh. The plot clearly shows
the x, Q2 dependence of the data description by Cascade: the best description is
achieved at lowest x and Q2 values and becomes worse at higher values. Herwig++
and Sherpa (Lund) strongly undershoot the data at lowest x and Q2 values.

10.3 Monte Carlo Studies

The models with di�erent parton radiation scenarios (di�erent parton cascade) need
a di�erent tuning of hadronisation and parton cascade parameters. In the previous
section it was shown that the η∗ distribution for particles with p∗T > 1 GeV is well
described by Djangoh, while Rapgap slightly overshoots the measured spectra,
and Cascade predicts a much higher multiplicity. To understand the di�erence be-
tween the data and the Cascade predictions, some additional studies were made.
First, the sensitivity of the prediction to the Pythia parameters listed in table 3.3
were studied by varying them in the range given in the table, which was used by
Professor tool. The new set of parameters used for Cascade is shown in table 10.2.
No special tuning tool was used and parameters were roughly changed such that
Cascade can describe the data at soft transverse momenta. The resulting dis-
tributions are shown in �gure 10.21 (left). From these �ve tuned parameters the
Cascade prediction is mostly sensitive to the b parameter of the Lund symmetric
fragmentation function. The second largest e�ect is due to the variation of the par-
ton shower cut-o�, Q0. This parameter is denoted as the minimal invariant mass
cut-o� of the parton shower, below which partons are not assumed to radiate. The
result of a single variation of b and Q0 is demonstrated in �gure 10.21 (right). Here
only b (or Q0) were changed, while all other parameters are from the ALEPH tune.
This demonstrates that Cascade can be tuned to give a reasonable description of
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Parameter ALEPH tune New tune

σq (PARJ(21)) 0.382 0.43

Lund a (PARJ(41)) 0.437 0.4

Lund b (PARJ(42)) 0.85 2.35

Lambda (PARJ(81)) 0.23 0.35

Parton shower cut-o� (PARJ(82)) 1.54 3.0

Table 10.2: Tuned set of parameters used for Cascade studies.

the data in the soft p∗T region only by changing the b parameter (within the range
given by Professor tool), while other parameters do not in�uence much. In the hard
p∗T region new predictions show a strong excess of the particles compared to the
data.

Apart from CCFM evolution for the parton shower, Cascade is also interfaced
to the leading-log DGLAP parton shower. To check the e�ect of the di�erent parton
shower algorithms another Cascade prediction was obtained with the DGLAP
scenario and compared with Rapgap. The result is shown in �gure 10.22 and
illustrates that Cascade (DGLAP) is similar to the DGLAP-based Rapgap MC.
This demonstrates a strong e�ect of the CCFM evolution.
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Figure 10.12: Measured η∗ spectra in the hadronic centre of mass system (HCM) for the charged
particles with p∗T < 1 GeV (left) and with p∗T > 1 GeV (right) together with Rapgap predictions.
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Figure 10.13: Measured η∗ spectra in the hadronic centre of mass system (HCM) for the charged
particles with p∗T < 1 GeV (left) and with p∗T > 1 GeV (right) together with Rapgap, Djangoh
and Cascade Monte Carlo predictions with two di�erent tunings. The proton remnant direction
is to the left.
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Figure 10.14: Measured η∗ spectra in the hadronic centre of mass system (HCM) for the charged
particles with p∗T < 1 GeV (top) and with p∗T > 1 GeV (bottom) together with Rapgap, Djangoh
and Cascade Monte Carlo predictions with two di�erent tunings. The proton remnant direction
is to the left.
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Figure 10.15: Measured η∗ spectra in the hadronic centre of mass system (HCM) for the charged
particles with p∗T < 1 GeV (top) and with p∗T > 1 GeV (bottom) together with Rapgap and
Cascade predictions with di�erent PDF and uPDFs, respectively. The proton remnant direction
is to the left.
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Figure 10.16: Measured η∗ spectra in the hadronic centre of mass system (HCM) for the charged
particles with p∗T < 1 GeV (top) and with p∗T > 1 GeV (bottom) together with Herwig++ and
Sherpa Monte Carlo predictions. The proton remnant direction is to the left.

125



0

1

2

3

*η
d

 d
n

 
N1  

0 2 4
0

1

2

3 0.0001 < x  < 0.00024

2 < 10 GeV2 5  < Q

0 2 4

0.00024 < x  < 0.0005

2 < 10 GeV2 5  < Q

0 2 4

0.0005 < x < 0.002

2 < 10 GeV2 5  < Q

0

1

2

3

0 2 4
0

1

2

3 0.0002 < x  < 0.00052

2 < 20 GeV2 10 < Q

0 2 4

0.00052 < x  < 0.0011

2  < 20 GeV2 10 < Q

0 2 4

0.0011 < x < 0.0037

2 < 20 GeV2 10 < Q

0

1

2

3

0 2 4
0

1

2

3

2  < 100 GeV2 20 < Q

0.0004 < x  < 0.0017

0 2 4

2 < 100 GeV2 20 < Q

0.0017 < x < 0.01

0 2 4

Data

RAPGAP

DJANGOH

CASCADE

* < 1 GeV 
T

 p

0 2 4 00 2 4 0 2 4 6

* η 

Figure 10.17: Measured η∗ spectra in the hadronic centre of mass system (HCM) for the charged
particles with p∗T < 1 GeV for eight intervals of Q2 and xBj together with Rapgap, Djangoh
and Cascade Monte Carlo predictions. The proton remnant direction is to the left.
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Figure 10.18: Measured η∗ spectra in the hadronic centre of mass system (HCM) for the charged
particles with p∗T < 1 GeV for eight intervals of Q2 and xBj together with Herwig++ and Sherpa
Monte Carlo predictions. The proton remnant direction is to the left.
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Figure 10.19: Measured η∗ spectra in the hadronic centre of mass system (HCM) for the charged
particles with p∗T > 1 GeV for eight intervals of Q2 and xBj together with Rapgap, Djangoh
and Cascade Monte Carlo predictions. The proton remnant direction is to the left.
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Figure 10.20: Measured η∗ spectra in the hadronic centre of mass system (HCM) for the charged
particles with p∗T > 1 GeV for eight intervals of Q2 and xBj together with Herwig++ and Sherpa
Monte Carlo predictions. The proton remnant direction is to the left.
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Figure 10.21: Measured η∗ spectra in the hadronic centre of mass system (HCM) for the charged
particles with p∗T < 1 GeV (top) and with p∗T > 1 GeV (bottom) together withCascade prediction.
The proton remnant direction is to the left. Left plots show the Cascade predictions with
Pythia parameters tuned by ALEPH collaboration and with additionally tuned parameters listed
in table 10.2. Right plots show the Cascade predictions with separately tuned b parameter of the
Lund symmetric fragmentation function and the parton shower cut-o�, Q0
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Figure 10.22: Measured η∗ spectra in the hadronic centre of mass system (HCM) for the charged
particles with p∗T < 1 GeV (top) and with p∗T > 1 GeV (bottom) together with Cascade and
Rapgap prediction. The proton remnant direction is to the left. The Cascade predictions are
obtained with CCFM and DGLAP parton shower scenarios are labeled on the plots as Cascade
(ALEPH) and Cascade (ALEPH+DGLAP).
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Chapter 11

Conclusion

The normalised charged particle transverse momentum and pseudorapidity distri-
butions have been measured in ep collision in the virtual photon-proton centre of
mass frame (hadronic centre of mass frame) with the H1 detector in di�erent re-
gions of x and Q2. The region of small x is especially of big interest, since the
parton (gluon) density becomes very large but the theoretical predictions are in-
consistent in this region. The measured transverse momentum distributions o�er
the possibility for discrimination of the various underlying parton dynamics. For
these purposes the measured distributions are compared to the model distributions
obtained with the help of di�erent Monte Carlo generators, Rapgap, Djangoh,
Cascade, Herwig++ and Sherpa, based on di�erent QCD parton evolution ap-
proaches to simulate the parton cascades.

The high statistics of the data taken at HERA II and the substantial improve-
ment of the track reconstruction and calibration by H1 collaboration allowed to
measure charged particle distributions with much better precision compared to the
measurements performed by H1 collaboration in 1996.

One of the challenging task of this analysis was to reach the forward (towards the
proton remnant) direction to the maximum limit allowed by the tracking detector
system. This task was motivated by the enhanced sensitivity of the distributions
in this region to the various parton dynamics. The inclusion of the tracks recon-
structed from the combined hits in central and forward track detectors enlarged the
acceptance of the tracking compared to the case of only central track detector data
taken into account.

The measurements of the charged particle transverse momentum are performed
in two physically di�erent regions: the region of current fragmentation and the re-
gion, where the target fragmentation is seen. In the present analysis, it was shown
that in the forward pseudorapidity region, i.e. in the region, where the target frag-
mentation plays a role, the discrepancy between the measured transverse momen-
tum distributions and distributions obtained with the help of Monte Carlo generator
Rapgap, based on DGLAP model, is stronger in comparison with the central re-
gion, where the current fragmentation dominates. In the range of 2 < p∗T < 4 GeV
the di�erence between the data and the DGLAP-based model in the forward region
and for the lowest values of x and Q2 is at the level of 10 standard deviations. On
the contrary, the models with parton emissions unordered in transverse momentum,
such as CCFM and CDM, provide reasonable description of the data in this region.
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With increasing x and Q2, the predictions of the DGLAP model at high transverse
momenta become closer both to the data and to the predictions of the models beyond
DGLAP.

The measured transverse momentum distributions are also compared to pre-
dictions of the Monte Carlo generators Herwig++ and Sherpa widely used for
simulation of events at the LHC. It is demonstrated that none of them describes
the data at large transverse momenta and not too large x.

The comparison of the measured pseudorapidity distribution of charged particles
with the Monte Carlo generators shows that at small p∗T the hadronisation e�ects
are dominating, whereas at large p∗T the details of parton radiation mechanisms play
a signi�cant role.

The η∗ spectra were also used for studies of di�erent tuning parameters used in
the Monte Carlo generators. It is observed that the tuning currently used at H1 and
obtained by the ALEPH collaboration in order to properly describe the LEP data,
is better for the description of the data, presented in this thesis, than the latest
tuning based the LEP data and prepared for the LHC Monte Carlo generators with
the tuning tool Professor.

To understand better the observed discrepancy between CCFM-based model
Cascade and the data, some additional studies were performed. They showed that
the description of the pseudorapidity distributions of the charged particles with soft
p∗T can be improved, but it makes the Monte Carlo description of the pseudorapidity
distributions in the hard p∗T region worse.

The data presented in this thesis o�er the opportunity to test the Monte Carlo
generators used at LHC in description of HERA data. It is important not only to
observe deviations of the predictions from HERA data, but also to provide detailed
simulations.

Detailed study of parton dynamics at HERA, as presented in this thesis, illustrate
the importance of understanding the parton cascade, which will also play a crucial
role at LHC.
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Appendix A

DIS Kinematics in Sudakov and

Light-Cone Variables

At very high energies the interacting electron and proton can be considered as mass-
less particles, so that p2 = p2

e = 0. It is useful then to work with light-cone variables
instead of Cartesian coordinates of four-vectors. The light-cone variables are deter-
mined as follows

(p0, px, py, pz) → (p+, ~pT , p−) , p± ≡ p0 ± pz√
2

, (A.1)

~pT ≡ {px, py} ,

(p1, p2) = p+
1 p−2 + p−1 p+

2 − (~p1T , ~p2T ) →

p2 = 2p+p− − p2
T → p− =

p2 + p2
T

2p+
. (A.2)

By convention, although ~pT is composed from space-like vectors, it is considered
as 2-dimensional euclidean vector and hence p2

T is always positive. In what follows
instead of ~pT the simpli�ed notation pT is used.

The rapidity of a massless particle is de�ned as

η =
1

2
ln

p+

p−
→ p+ =

pT√
2
eη , p− =

pT√
2
e−η . (A.3)

De�ning the polar angle w.r.t. z axis

tan θ ≡ pT

pz

=
1

sinh η
,

one can express the rapidity via this angle

η = − ln tan
θ

2
. (A.4)

Also, the so-called Sudakov parametrisation is used often when there are two
�xed noncolinear light-cone momenta in the process, such as p and pe in our case.
Any four-vector can then be decomposed as

k = αp + βpe + pT , (A.5)
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where pT is perpendicular to the plane spanned between p and pe . The coe�cients
α and β in (A.5) are called Sudakov parameters an are equal to

α =
(k, pe)

(p, pe)
, β =

(k, p)

(p, pe)
. (A.6)

Note, that 2(p, pe) = s is squared total invariant mass of the ep system.
The Sudakov parametrisation of the virtual photon momentum is

q = −Q2

s
p + ype + qT .

II



Appendix B

Long Range Rapidity Correlations

In September 2010 the CMS collaboration published results on two-particle angular
correlations for charged particles emitted in proton-proton collisions at centre-of-
mass energies of 7 TeV [138]. Long-range azimuthal correlations for pseudorapidity
interval of 2 < ∆η < 4.8 were studied using two-dimensional ∆η −∆ϕ correlation
function di�erentially as a function of charged particle multiplicity and particle
transverse momentum. Here ∆η = |η1 − η2| and ∆ϕ = |ϕ1 − ϕ2| are the di�erences
in pseudorapidity and azimuthal angle between the two particles. It was observed
that in high multiplicity events (Ntrack ≥ 110), a pronounced structure arises in the
correlation function at the near side (∆ϕ ∼ 0). The e�ect is most evident in the
intermediate transverse momentum range of 1−3 GeV. This is the �rst observation of
such a long-range, near-side feature in two-particle correlation functions in hadron-
hadron collisions. The physical origin of this observation is not yet understood
and all available simulations show absence of the long-range azimuthal correlations,
independent of multiplicity and transverse momentum.

This interesting observation encouraged us to look at the similar correlations
in ep scattering at HERA, particularly in the phase space presented in this thesis:
5 < Q2 < 100 Gev2, 0.05 < y < 0.6, pT,track > 0.15 GeV and −2 < θtrack < 2.5.

To have a similarity with proton-proton collision the measurements are per-
formed in the hadronic centre of mass (HCM) system. Transverse momentum and
pseudorapidity of charged particles in the HCM frame are labeled as p∗T and η∗,
respectively. The two-dimensional correlation function is calculated as the ratio be-
tween the signal and the random background distributions (for the particles in the
same events ∆η∗ is randomly distributed between its minimal and maximal values
and ∆ϕ∗ is randomly distributed between 0 and π). The measurements are per-
formed di�erentially as a function of charged particle multiplicity and transverse
momentum. So high multiplicity events (Ntrack ≥ 110) at which CMS has observed
the long-range azimuthal correlation are not reachable at HERA, where the corre-
lations were studied for two thresholds: N ≡ Ntrack > 15 and N > 30. For higher
multiplicity events it is not possible to see any e�ect due to statistical �uctuations.

In �gure B.1 the two-particle angular correlations are shown for the following
requirements on the track multiplicity N : (a) - no requirement on N , (b)- events
with track multiplicity large that 15 are selected, (c) - events with N > 30. Here, no
p∗T requirement is applied. Only positive values of ∆η∗ are shown in the distributions,
since a reliable η∗ region for the central and combined tracks is 0 . η∗ . 5.
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Figure B.1: Measured two-particle correlation in HCM frame for all selected events (a), for events
with N > 15 (b) and for high multiplicity events with N > 30 (c).
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Figure B.2: Measured two-particle correlation in HCM frame with 1 < p∗T < 2 GeV for all selected
events (a), for events with N > 15 (b) and for high multiplicity events with N > 30 (c).
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Figure B.3: Measured two-particle correlation in HCM frame with 2 < p∗T < 3 GeV for all selected
events (a), for events with N > 15 (b) and for high multiplicity events with N > 30 (c).
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In �gures B.2 and B.3 the same correlations are shown for particles with 1 <
p∗T < 2 GeV and 2 < p∗T < 3 GeV, respectively.

A peak around ∆η∗ ≈ 0 and ∆ϕ∗ ≈ 0 indicates that particles close to each
other are correlated (particle within a single jet). The second broad elongated peak
around ∆ϕ∗ ≈ π corresponds to correlation of particles between back-to-back jets.
This broad ridge is much more pronounced at high p∗T . The region at ∆η∗ ≈ 0
and intermediate ∆ϕ∗ is dominated by particle emission from clusters with low
transverse momentum and thus is more pronounced at low p∗T . Nothing as long-
range at near-side azimuthal correlation is seen in the distributions. The Rapgap
and Djangoh Monte Carlo generators show distributions similar to what is seen in
the measurement: no long range correlations.
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Appendix C

List of Used Acronyms

BGF Boson Gluon Fusion
BFKL Balitskii-Fadin-Kuraev-Lipatov
BPC Backward Proportional Chamber
BST Backward Silicon Tracker
CC Charge Current
CCFM Catani-Ciafaloni-Fiorani-Marchesini
CDM Colour Dipole Model
CIP Central Inner Proportional Chamber
CJC Central Jet Chamber
COP Central Outer Proportional Chamber
COZ Central Outer z-Chamber
CST Central Silicon Tracker
CTD Central Track Detector
DESY Deutsches Elektronen-Synchrotron
DGLAP Dokshitzer-Gribov-Lipatov-Altarelli-Parisi
DIS Deep Inelastic Scattering
DLL Double Leading Logarithmic
DST Data Summary Tape
DST Data Summary Tape
ET Electron Tagger
FMD Forward Muon Detector
FST Forward Silicon Tracker
FTD Forward Track Detector
FTT Fast Track Trigger
HAT H1 Analysis Tag
HCM Hadronic Centre-of-mass
HEP High Energy Physics
HERA Hadron-Elektron-Ring-Anlage
HFS Hadronic Final State
IP Interaction Point
LAr Liquid Argon
LEP Large Electron-Positron Collider
LHC Large Hadron Collider
LO leading order

VII



MEPS Matrix element and parton showers
MODS Micro Object Data Store
NC Neutral Current
NNLO Next-to-next-to-leading order
NLO Next-to-leading order
ODS Object Data Store
µODS Micro Object Data Store
PETRA Positron-Elektron-Ring-Anlage
PDF Parton Distribution Function
POT Production Output Tape
QED Quantum Electrodynamics
QPM Quark Parton Model
QCD Quantum chromodynamics
QCDC Quantum Chromodynamic Compton
SpaCal Spaghetti Calorimeter
TC Tail Catcher
ToF Time-of-Flight
uPDF Unintegrated Parton Distribution Function
UV Ultra-violet
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