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1 Abstract

1 Abstract

The identification of isolated photons in electron proton collisions at HERA is hindered by the back-
ground of photons coming from the decay of neutral mesons as π0, η etc. The existing methods to
distinguish isolated and photons from decay work well for transverse energies in the range of 5 to
10 GeV. They use parameters like shape and dimension of the electromagnetic shower. In this bach-
elor thesis old and new separation parameters are analyzed on their separation power for transverse
energies up to 15 GeV.
The first step includes almost all known shower shape variables. A rough behavioral analysis of the
variables over the whole transverse energy range of 5 to 15 GeV leads to a first exclusion of very
low separation power variables. The remaining variables are introduced to an analysis tool, which
trains preselected methods, like Likelihood, with simulated data sets. The simulated data sets are
split in sets of single photon and double photon (from π0 decays) events which correspond to the
signal of isolated and background photons. With the so trained methods, real data are analyzed with
a second analysis tool. Also the single and double photon data sets are analyzed with the second tool
to become an idea of the quality of the trained methods.
Due to lack of statistics in the real data set, only the simulated data give a feedback of the sepa-
ration and method training quality for the higher transverse energy region. Nevertheless, satisfying
separation power is achieved in most of the kinematic region without spending a lot of time on fine
tuning on the training of the methods.
The results show, that the transverse radius of the shower has the most significant separation power.
Likewise, a good separation power shows up for the variables of the first layer of the electromagnetic
calorimeter as i.e. the cluster energy of only the first layer or the energy of the hottest cell in the
first layer.
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2 Theory

2 Theory

2.1 Physics processes at HERA

At HERA electrons or positrons are collided with protons. The pointlike electron or positron scatters
off the proton via the exchange of a spin one gauge boson of the electroweak interaction. In neutral
current (NC) processes a photon (γ) or and a Z0 boson1 is exchanged, whereas in charged current
(CC) the exchanged boson is a W±. In these scattering processes the proton usually dissolves. Figure
2.1 shows these processes.

Chapter 1

Theoretical framework

Prompt photon production as discussed in this report is a special case of ep scattering at HERA.
In this chapter the basic concepts of ep scattering are presented, in particular deep inelastic
scattering (DIS) and photo-production.

1.1 ep scattering

The main process studied at HERA is deep inelastic scattering (DIS) of electrons and protons. It
is shortly described here to define the relevant kinematics and the concept of structure functions.

1.1.1 Kinematics

e(k)

X

(k’)ν

               p (p)

e(k) e(k’)

X

γ , Z (Q  )

p (p)

 W (Q  )2 2

Figure 1.1: Diagrams of electron and proton scattering via photon and Z exchange for neutral
current interactions and W exchange for charged current interactions. The four-momentum
vectors of the particles are given in parentheses.

Figure 1.1 shows the DIS processes where an electron (e) interacts with a proton (p). In
neutral current (NC) interactions (e±p → e±X ) a neutral boson (γ,Z) is exchanged leading in

3

Figure 2.1: Diagrams of electron and proton scattering via photon and Z0 exchange for neutral
current interactions and W± exchange for charged current interactions. The four-momentum vectors
of the particles are given in parentheses ([8], p.3).

In neutral current processes (e±p
γ,Z0

→ e±X) the final state yields an electron and eventually a broken-

up proton (X) whereas in charged current processes (e±p
W±
→ ν±X) the final state yields a neutrino

(e−, W−) or antineutrino (e+, W+) and the eventually broken-up proton (X). For this thesis only
neutral current interaction and photon exchange are of interest.

2.2 DIS (Deep Inelastic Scattering) and photo-production

At HERA the scattering processes are divided into two classes depending on the virtuality Q2 of the
exchanged photon: deep inelastic scattering (Q2 > 0) and photo-production (Q2 ≈ 0). Table 2.1
shows the important differences.

1The Z0 is only exchanged at higher photon virtuality Q2 values. See i.e. [9].
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2 Theory

DIS Photo-production
Q2 > 0 ≈ 0
θ < 2π ≈ 2π
Effective coupling αs α = 1/137
Scattered e− Detectable Emerges through beam pipe.

About 30% are detected in a special
detector close to the beam pipe.

Exchanged γ No fluctuation Fluctuation to quarks, gluons or to
vector mesons possible∗.

γ production Prompt photons and bremsstrahlung Basically prompt photons
∗The concept of hadronic structure of photons was introduced by the Vector-Dominance-Model (VDM).

Table 2.1: DIS process vs. photo-production. Q2 = −q2 denotes the negative four-momentum
transfer squared carried by the photon and θ is the scattering angle of the electron with respect to
the direction of the incoming proton.

There are two subclasses in photo-production. In the direct process the exchanged photon couples
directly to the quarks of the proton (fig. 2.2). In the resolved process the photon fluctuates into a
hadronic state and a parton of the photon enters into the interaction (fig. 2.3). In this case there is
a photon remnant (similar to the remnant of the proton) which is not participating in the interaction.
The outgoing particles of the hard scattering process are normally quarks and gluons. In the strong
color field they undergo a process of fragmentation and hadronize to so called jets. The jets and
the proton remnant form the broken-up proton X seen in 2.1. Information about the parton of the
hard subprocess is therefore only indirectly accessible via the reconstruction of the jet kinematics.
In a process which is suppressed2 by 1/137, photons are emitted instead of gluons. These so called
prompt photons that are investigated in this thesis give a direct information on the internal scattering
process and the structure of the proton or the photon.

1.4. PHOTO-PRODUCTION AT HERA 10

fluctuates into a hadronic state as discussed in section 1.3 and a parton of the photon enters the
hard interaction (Fig. 1.9). In this case there is a photon remnant which is not participating in
the hard interaction, similar as in the case of the proton.
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Figure 1.8: Feynman graphs of direct di-jets photo-production events
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Figure 1.9: Feynman graphs of resolved di-jets photo-production events

Figure 2.2: Feynman graphs of direct di-jet photo-production events ([8], p.10).

2Processes without prompt photons go with αs = 1, the coupling constant of the strong interaction, whereas
processes with prompt photons only go with α = 1/137, the coupling constant of the electroweak interaction and
are therefore suppressed by a factor of ≈100.
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2 Theory

Figure 2.3: Feynman graphs of resolved di-jet photo-production events ([8], p.10).

2.3 Prompt photons

There are two processes of prompt photon production. The direct prompt photon process (fig. 2.4)
which gives insight into the parton structure of the proton and the resolved prompt photon process
(fig. 2.5) that gives also an insight to the parton content of the exchanged photon. A measurement
of these rare processes is hence directly sensitive to the gluon and quark content of the exchanged
photon and the parton structure of the proton.
The main experimental difficulty in the prompt photon measurement is the large background from
photons of the decay of neutral mesons, especially from π0 and η. These mesons originate from the
fragmentation of the quarks and gluons at high energies. The opening angle ϑ of the decay photons
of a meson is directly related to the meson energy (E ∝ ϑ, the angle between the two decay products)
so the decay photons have a very small opening angle at high energies and are reconstructed in only
a single electromagnetic cluster (see 5.1).

2.1. PROMPT PHOTON PRODUCTION IN γP REACTIONS 12

Prompt photon production is sensitive to the parton structure of the proton and due to the
resolved processes (see Fig. 2.2) also to the parton content of the photon. In particular it is
directly sensitive to the gluon content of the photon, however with the presently available inte-
grated luminosities this cannot seriously be constrained.

At HERA the gluon content of the photon can also be studied in the jet production analyses
(see Fig. 1.8, 1.9) and in J/ψ production analyses in the reactions γp→ jets X and γp→ J/ψX .
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Figure 2.1: Example of direct prompt photon processes at leading order. The photon couples
directly to a parton from the proton.
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Figure 2.2: Examples of resolved prompt photon processes at leading order. The photon is
resolved and a parton from the photon couples to a parton from the proton.

Figure 2.4: Example of direct prompt photon processes at leading order. The photon couples directly
to a parton from the proton ([8], p.12).

Figure 2.5: Examples of resolved prompt photon processes at leading order. The photon is resolved
and a parton from the photon couples to a parton from the proton ([8], p.12).
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3 HERA and the H1 detector

3 HERA and the H1 detector

Figure 3.1: A bird’s eye view of the DESY site and the surroundings [1].

The two accelerators HERA and PETRA at DESY (Deutsches Elektronen-Synchrotron) are shown in
figure 3.1 as dashed lines. HERA, with its circumference of 6.3 km is the biggest accelerator at DESY
and it is housed in a tunnel with an inner diameter of 5.2 m which is situated about 10-20 m under-
ground. In HERA, protons with a maximum energy of 920 GeV collide with electrons or positrons
with an energy of 27.5 GeV thereby providing a way to study the inner structure of protons.

The accelerator PETRA, with its circumference of 2.3 km, serves as a pre-accelerator of protons,
electrons and positrons for HERA. Moreover, PETRA provides synchrotron radiation (X-rays) for
research at the HASYLAB which is situated on the DESY site. The DESY site lies essentially within
the PETRA ring.
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3 HERA and the H1 detector

One of the four detectors at HERA is the H1 detector. The H1 detector was designed to provide clear
identification and precise measurement of electrons, muons and penetrating neutral particles together
with a good performance in the measurement of jets with high particle densities. The characteristics
of the particles detected with the H1 detector after an ep-collision provides access to the following
areas of current research:
- Structure functions of the proton, and of the diffractive exchange.
- Parton distributions of real and virtual photons.
- Tests of QCD in jet, photon and heavy-quark production.
- Tests of the electro-weak theory.
- Study of non-perturbative phenomena of strong interactions.
- Diffractive scattering and the mechanism of colour neutralization.
- Searches for new particles and new interactions.

This thesis could give a contribution especially to the first two topics.

3.1 Setup of the H1 detector

In the following, the detector is briefly discussed. A more detailed description of the H1 detector can
be found in [11].

The origin of the H1 coordinate system (fig. 3.2) is the nominal ep interaction point (vertex),
with the direction of the proton beam defining the positive z-axis (forward direction). Transverse
momenta are measured in the x - y plane. Polar (θ) and azimuthal (φ) angles are measured with
respect to this reference system. The pseudorapidity is defined to be η = −ln(tan(θ/2)).

4.2. THE H1 DETECTOR 27

to 27.5 GeV and the protons to 920 GeV (820 GeV before 1998). The center-of-mass energy of
320 GeV is one order of magnitude higher that reached at the previous electron-nucleon fixed
target experiments. The other colliding experiment ZEUS is located diametrically opposite to
H1. There are in addition two other experiments HERMES and HERA-B making use of only
one beam (fixed target experiments) . HERMES studies the collisions of polarized electrons on
polarized nucleons of a gaseous target and HERA-B uses proton-nucleon scattering mainly to
study B- physics.

Each beam is composed of a maximum of 210 particle bunches separated by 96 nanosec-
onds. The colliding proton and electron bunches are synchronized such that they collide within
the H1 and ZEUS detectors. Pilot bunches are electron or proton bunches without correspond-
ing partners in the opposite beam. Typically 10 pilot bunches are used to study the rate of
interactions of the beams with the residual gas in the beam-pipe (beam gas interactions) or with
the beam-pipe itself (beam wall interactions). The distribution of the interaction point or vertex
is determined by the bunch lengths and is approximately Gaussian with a width of about 11 cm.

4.2 The H1 detector

The H1 detector is composed of many detector elements with different purposes situated around
the interaction point of the colliding beams. It offers an almost 4π solid angle coverage, leaving
out the regions of the entering and outgoing beams. The detector shows a backward forward
asymmetry reflecting the different beam energies. A right handed set of Cartesian coordinates
(x,y,z) is defined. The positive z direction is given by the direction of the proton beam. The x
axis is directed toward the center of the HERA rings and the y axis points vertically upward.
The polar angle θ is the angle with respect to the z axis so that θ = 180◦ for an unscattered
electron (see Fig. 4.2)

θ φ

y

x
z

r

e direction

p direction

ring center

Figure 4.2: The definition of the Cartesian coordinate system (x,y,z) with respect to the e and
p beam directions.The corresponding spherical coordinate system (r,θ,φ) is also shown.

Figure 3.2: The definition of the Cartesian coordinate system (x, y, z) with respect to the e and p
beam directions. The corresponding spherical coordinate system (r,θ,φ) is also shown ([8], p.27).

In the central region (25◦< θ <165◦) the interaction region is surrounded by the central tracking sys-
tem, which consists of a silicon vertex detector, drift chambers and multi-wire proportional chambers,
all located within a solenoidal magnetic field of 1.16 T. The forward tracking detector (7◦< θ <25◦)

Page 6 of 33



3 HERA and the H1 detector

and the backward drift chamber (BDC, operated in 1999-2000) or backward proportional chambers
(BPC, for 2003-2007) measure tracks of charged particles at smaller and larger θ than the central
tracker, respectively. In each event the interaction vertex is reconstructed from the measured charged
tracks. The polar angle of the reconstructed particles is measured with respect to this vertex.
The liquid argon (LAr) sampling calorimeter which is also located within the magnet, surrounds the
tracking chambers. It covers the angle 4◦< θ <154◦ and will be described in detail in the next
chapter.
In the backward region 153◦< θ <178◦, the particle energies are measured by a lead-scintillating fibre
spaghetti calorimeter (SpaCal).
The luminosity is determined from the rate of the Bethe-Heitler process ep → epγ, measured using
a photon detector located close to the beam pipe at z = -103 m and a small angle calorimeter at
z = -33.9 m.

Figure 3.3: An isometric view of the H1 detector with its major detector components [2].

1. Beam pipe and beam magnets 9. Muon cambers
2. Central tracking chambers 10. Return yoke (instrumented iron
3. Forward tracking and Transition radiators with streamer tubes)
4. Electromagnetic Calorimeter (lead, liquidargon) 11. Myon-Toroid-Magnet
5. Hadronic Calorimeter (stainless steel, liquidargon) 12. Warm calorimeter (Spacal)
6. Superconducting coil (1.2T) 13. Plug calorimeter
7. Compensating magnet 14. Concrete screen
8. Helium cryogenics 15. Liquid Argon cryostat.
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3 HERA and the H1 detector

For this thesis only events with a photon detected in the electromagnetic, liquid argon (LAr) calorime-
ter (see pic. 3.3 No. 4) of the detector are of importance.

3.2 The LAr calorimeter

The liquid argon (LAr) sampling calorimeter surrounds the tracking chambers. It has an asymmetric
polar angle coverage of 4◦< θ <154◦ and full azimuthal acceptance. It consists of an inner elec-
tromagnetic section with lead absorbers and an outer hadronic section with steel absorbers (see fig.
3.4a). The calorimeter is divided into eight wheels along the beam axis, each of them segmented in φ
into eight modules (fig. 3.4b), separated by small regions of inactive material. The electromagnetic
and the hadronic sections are highly segmented in the transverse and the longitudinal direction with
about 44’000 cells in total. The granularity is larger in the electromagnetic part and increasing in
both sections in the forward part. For particles coming from the ep interaction region, the laterally
projected cell size in the electromagnetic part varies between 5×5 cm2 in the forward and at most
7×13 cm2 in the central region. The longitudinal segmentation in the different wheels varies from
three (central) to four (forward) layers in the electromagnetic and from four to six in the hadronic
section. The first electromagnetic layer has a thickness of about 3 to 6 radiation lengths for particles
coming from the interaction region.

4.2. THE H1 DETECTOR 31

1 m

Figure4.5: Wheelandcell structureof theLAr calorimeter.

1 m

Figure4.6: Octantandcell structureof theCB1wheelof theLAr calorimeter.

  7        6        5         4           3         2         1         0
Wheel

(a) Wheel and cell structure of the LAr e.m. (yellow) and
hadronic calorimeter ([8], p.31).

4.2. THE H1 DETECTOR 31

1 m

Figure4.5: Wheelandcell structureof theLAr calorimeter.

1 m

Figure4.6: Octantandcell structureof theCB1wheelof theLAr calorimeter.

  7        6        5         4           3         2         1         0
Wheel

(b) Octant and cell structure of the CB1 wheel
of the LAr e.m (yellow) and hadronic calorime-
ter ([8], p.31).

Figure 3.4: Structure of the LAr electromagnetic (yellow) and hadronic calorimeter. (a) Longitudinal
sectional drawing, (b) profile of a wheel.

The main reason for choosing a liquid argon technique for the detector are good stability and ease of
calibration, fine granularity for e/π separation and energy flow measurements as well as homogeneity
of response. Sophisticated electronics converts the deposited energy of an event in a detector cell
into an electric signal for further treatment. The demand on the electronics is enormous because
large energies may be deposited at short time intervals (96ns at Hera) into the detectors with large
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3 HERA and the H1 detector

capacities and long collection time, and the information has to be stored until the arrival of the trigger
signal (≈ 2.5µs). But also long time stability behavior is a big issue due to minimization of statistical
errors.
After collecting all data from the detector, a computer farm performs different processes on the data
as for example noise reduction, event reconstruction, corrections of dead material (derived by Monte
Carlo simulations) and clustering before saving and archiving the data. All saved data are available
to users.

3.3 Clustering

The clustering of neighboring cells is done in the event reconstruction. All cells passing the cell level
reconstruction are subject to clustering. The algorithms used are tuned such that the cells containing
energy depositions from an electromagnetic shower (more about e.m. showers see [6], p. 42) initiated
by a photon or electron are most probably merged into one cluster (fig. 3.5). Hadronic showers with
their larger spatial fluctuations are in general split into several clusters.
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Figure 3.5: Schematic drawing of the calorimeter response to a photon event. The figure shows a
two dimensional view (r − z plane) of the detector. The deposited energy magnitude Ei in a cell
is shown by the area of rectangles. One can also see, that a cluster does not need to contain all
activated cells. Some cells are too far away from the hottest cell and or have not enough energy
deposed.
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4 Monte Carlo simulations

4 Monte Carlo simulations

4.1 Data generation

To generate shower data for the analysis, events needed to be simulated and reconstructed with the H1
Monte Carlo (MC) simulation software H1SIM (Version: H1SIMREC90722) and the new version of
the integrated module H1FAST (see [2] for further details) by Katharina Müller. To simplify the data
analysis and to avoid the complex and problematic selection of events and photon clusters, only events
with exactly one generated particle (so called single particle events) are taken for the simulation. The
simulation of single particle events is easy and fast and allows the production of events in a large
number. For signal events, single photons with a flat distribution in polar angle θ, azimuthal angle φ
and transverse energy ET for all ET and all wheels are used. The background consists only of pions,
who provide the biggest part of the real background and suite therefore perfectly for this analysis. The
pions have the same flat distribution as the single photons. For an overall analysis also multi-photon
events from hadronic decays of other particles as i.e. η, ρ, K and (anti)neutrons should be taken
in account (see fig. 4.1). The simulated data with their corresponding ET and wheel numbers are
saved in files, which are after some compilation processed by the clustertool.C software (see section
7.1). In the clustertool.C, event data can be analyzed or separated identified by applying cuts on
ET and wheel number for further analysis.

23%

12%

13%

9%

16%

8%
8%

3%
3%

5%
87%

5%

Figure 4.1: Relative contribution of the relevant neutral hadrons to the background of photon-like
clusters before and after the standard cluster shape selection ([6], p.35).
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4 Monte Carlo simulations

4.2 Data variables

The following table 4.1 lists the most important and later on used variables from the MC data.

ECluster Cluster energy EHottestCell Hottest cell energy
EClusterL1 Cluster energy layer 1 EHottestCellL1 Hottest cell energy layer 1
ET Transverse energy EHotCore Hot core energy
ETL1 Transverse energy layer 1 EHotCoreL1 Hot core energy layer 1
θ Polar angle Wheelno Wheel number

Table 4.1: MC data variables.

4.2.1 Cluster energy ECluster

The cluster energy is provided by the H1 data class H1Cluster and is a summation of all activated
cell energies in the defined cluster.

4.2.2 Cluster energy in first e.m. LAr layer EClusterL1

The cluster energy in the first LAr layer is a summation of all activated cell energies of the first
electromagnetic LAr layer in the defined cluster. This energy should be slightly higher for multi-
photon events due to a higher conversion probability of the photons.

4.2.3 Transverse energy ET

The transverse cluster energy is the projection of the cluster energy perpendicular to the beam axis
and defined with the polar angle θ as

ET = EClsinθ (4.1)

4.2.4 Hottest cell energy EHottestCell

The energy of the hottest cell in the cluster is provided directly by the H1 data class H1Cluster.
The hottest cell contains the most deposited energy. Single photon events yield larger values than
multi-photon events.
For comparison of different events, the energy fraction of the hottest cell and the cluster is taken as
variable (see chapter 6.1).

4.2.5 Hottest cell energy in first layer EHottestCellL1

The energy of the hottest cell in the first layer in the cluster is determined through the analysis of all
activated cell energies in the first e.m. LAr layer. Since the conversion of multiple photons is more
probable than for single photons, the hottest cell in the first layer (EHotCellL1) or better its fraction
with the cluster energy is a good separation variable.
For comparison of different events, the energy fraction of the hottest cell in first e.m. layer and the
cluster is taken as variable (see chapter 6.1).
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4 Monte Carlo simulations

4.2.6 Hot core energy EHotCore

This variable is provided directly by the H1 data class H1Cluster. Starting from the most energetic
cell (hottest cell) the energy of the adjacent activated cells are added (4 cells for wheel 1 to 3, 8 cells
for wheel 4 and 5 and 12 cells for wheel 6 and 7) such that the energy in the hot core is maximized.
Single photon events yield larger values than multi-photon events.
For comparison of different events, the energy fraction of the hot core and the cluster is taken as
variable (see chapter 6.1).

4.2.7 Hot core energy in first layer EHotCoreL1

This variable is provided directly by the H1 data class H1Cluster. Starting from the most energetic
cell (hottest cell) in the first e.m. layer adjacent cells are added (4 cells for wheel 1 to 3, 8 cells for
wheel 4 and 5 and 12 cells for wheel 6 and 7) such that the energy in the hot core is maximized.
For comparison of different events, the energy fraction of the hot core in first e.m. layer and the
cluster is taken as variable (see chapter 6.1).
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5 Photon signal

5 Photon signal

5.1 Single versus multiple photons

As mentioned in chapter 2.3 single photons have to be identified and distinguished from a background
from decay of hadrons to multiple photons. The signal and background samples display slightly differ-
ent shapes in the detector (fig. 5.1) depending on their energy and on the wheel, they are detected.
These shapes can be described by so called shape variables (see chapter 6.1). The separation of these
two different event samples at higher energies (10 to 15 GeV) with a set of shape variables is the
subject of this thesis. 80 6 Photon Signal Extraction

a) b)

γ
π0

Figure 6.1: Schematic representation of the different shower profiles of clusters in-
duced by (a) single photons or (b) multiple photons. The black line indicates the
calorimeter surface.

6.1.1 Variables1508

The first three shower shape variables quantify the transverse1 dimension of the clusters1509

(transverse radius, kurtosis and symmetry), while the remaining three describe the com-1510

pactness (hot core fraction and hottest cell fraction) and the longitudinal shower profile1511

(first layer fraction).1512

In the description of the transverse dimension of the cluster, higher central transverse1513

moments of the cell distribution are employed, defined as1514

µT,k = 〈| �rT − 〈 �rT 〉|k〉, (6.1)

where �rT is the transverse projection of the cell vector and 〈 �rT 〉 = (
∑

i Ei �rT,i)/
∑

i Ei is1515

the energy weighted average of the transverse cell positions.1516

1. Transverse Radius RT

The transverse radius is defined as the square root of the second central transverse
moment

RT =
√

µT,2. (6.2)

Tight showers induced by single photons have small values of RT .1517

2. Transverse Kurtosis KT1518

The transverse kurtosis KT is defined as the ratio of the fourth and squared second1519

moment of the transverse energy distribution of cluster cells1520

KT =
µT,4

(µT,2)2
− 3. (6.3)

1In the context of the cluster shape analysis the transverse plane is defined as perpendicular to the
direction of the incoming particle.

Figure 5.1: Schematic representation of the different shower profiles of clusters induced by single
photons (left) and multiple photons (right). The black line indicates the calorimeter surface ([6],
p.80).

5.2 Example of a detection

The following figure 5.2 shows a typical event with an isolated photon in the H1 detector. The
total collision energy is

√
s = 318 GeV. At the left detector side 1© a part of the proton remnant

is detected. The biggest part of the remnant escapes through the beam pipe. On the right side
the scattered electron 2© is detected in the SpaCal. 3© shows the reconstructed track of the jet of
the parton which takes part in the scattering. The photon leaves no track in the tracking chambers
but has a narrow energy deposit in the LAr calorimeter 4©. No track is allowed to point to the
cluster 5© in order to reject charged particles. Furthermore the photon is required to be isolated
which significantly reduces the background from neutral hadrons and their decay products. Usually
the isolation criteria is based on the energy around the photon candidate (for more details see [6] and
[13]). 6© shows the vertex (collision point) reconstructed from the tracks.
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5 Photon signal

3

5

6

21

4

Figure 5.2: Sectional drawing of the H1 detector [10].
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6 Methods evaluation for event separation

As shown schematically in figure 5.1, single photons and multiple photons have different cluster
shapes. The multi-photon cluster is typically less compact, transversely wider and more asymmetric.
The shower is likely to start closer to the calorimeter surface, as the probability of conversion increases
with the number of incident photons. But with increasing energy the multi-photon event gets similar
to the single photon event due to a decreasing opening angle so the variables describing the cluster
shapes look pretty alike.
To become an idea of how the different shower variables look for a single photon or pion (double
photons, respectively) event, the most popular variables are plotted and compared. Table 6.1 lists
all these variables. For a more detailed understanding of the variables they are plotted separately

RT Transverse cluster radius
RL Longitudinal cluster dimension
Kurtosis K Weighted energy distribution
DHottestCells Distance between the two hottest cells
EHottestFrac Fraction of EHottestCell and ECluster

EHottestL1Frac Fraction of EHottestCellL1 and ECluster

EHotCoreFrac Fraction of EHotCore and ECluster

EHotCoreL1Frac Fraction of EHotCoreL1 and ECluster

Table 6.1: Examined shape variables before optimizing them to the significant ones.

for each wheel and in transverse energy steps of 2 GeV. Figures 7.1 to 7.6 show the variables for all
wheels at a transverse energy of 13-15 GeV. The variables θ and Wheelno (see table 4.1) provided
a verification of the cuts on the data. They are associated as following:

Wheel Polar angle θ
1 140◦ - 150◦

2 120◦ - 140◦

3 80◦ - 120◦

4 45◦ - 80◦

5 27◦ - 47◦

6 17◦ - 30◦

Table 6.2: Covert polar angle θ of each detector wheel. Note that there are no exact boundaries
since θ is smeared.

Out of these first plots the most significant and promising variables were picked out for further
treatment. The next chapter describes in more detail the most important shower variables. A
detailed description of the individual energy variables can be found in subsections 4.2.1 to 4.2.7.
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6 Methods evaluation for event separation

6.1 Shower variables

The description of the different shower (cluster) variables refer to figure 3.5. Some variables are
calculated with so called central transverse moments. The moments are defined as

µT,k =
〈
| ~rT − 〈 ~rT 〉|k

〉
(6.1)

where ~rT is the transverse projection of the cell vector to the particles trajectory and the energy
weighted average of the transverse cell positions is

〈 ~rT 〉 =

∑
i Ei ~rT,i∑

i Ei

, i : all cells of the cluster. (6.2)

The first and until now most promising variable is the transverse radius of the cluster (see also [6]).

6.1.1 Transverse radius RT

The transverse radius is defined as the square root of the second central transverse moment

RT =
√

µT,2 (6.3)

and describes in principal the transverse dimension of the cluster with respect to the particle trajectory.
Tight showers induced by single photons have small values of RT . Due to the limited transverse radius
for single as well as for multi-photon events the radius is cut at 6 cm, means that all events with a
larger RT are ignored.

6.1.2 Longitudinal dimension RL

The longitudinal dimension of the shower is defined similar to the transverse radius.

RL =
√

µL,2 (6.4)

The longitudinal radii of the activated cells rL are calculated with respect to the center of gravity
(COG) of the cluster. The longitudinal dimension is, as figure 5.1 shows, slightly larger for a multi-
photon event.
This variable was not yet used in shower shape analysis but makes a good figure in the first plotting
so it could as well be a good candidate for shower separation.

6.1.3 Kurtosis K

The kurtosis defines how strongly the energy distribution of the cluster is peaked. For a single photon
a gaussian distribution with K = 0 is expected. For a double photon event (i.e. π0 → γγ) two
superposed gaussian with K > 0 are expected (fig. 6.1). The transverse kurtosis is defined as

KT =
µT,4

(µT,2)2
− 3 (6.5)

where the −3 is just an offset on the x-axis. This variable has however no separation power at higher
energies and is therefore skipped for the analysis.
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6 Methods evaluation for event separation

(a) (b)

Figure 6.1: Kurtosis for: (a) single photon event with K = 0 and for (b) double photon event with
K > 0.

6.1.4 Hottest cell energy fraction EHottestFrac

The hottest cell fraction is defined as:

EHottestFrac =
EHottestCell

ECluster

(6.6)

It is sensitive to the compactness of the cluster.

6.1.5 Hottest cell energy fraction in first e.m. layer EHottestL1Frac

Same as EHottestFrac but instat of EHottestCell the energy of the hottest cell in the first electromagnetic
LAr layer is taken.

6.1.6 Hot core energy fraction EHotCoreFrac

The hot core energy fraction is defined as:

EHotCoreFrac =
EHotCore

ECluster

(6.7)

The fraction is sensitive to the compactness of the cluster. This variable is not that significant and
is therefore skipped for further analysis.

6.1.7 Hot core energy fraction in first e.m. layer EHotCoreL1Frac

Same as EHotCoreFrac but instat of EHotCore the energy of the hot core in the first electromagnetic
LAr layer is taken.
This variable is also not that significant and is therefore skipped for further analysis.

6.2 Variables selection

The following table 6.3 gives an overview of the shower shape variables which will be used further
and the expected (or predicted by the first plots, see fig. 7.1 to 7.6) attitudes at higher energies as
well as the expected separation quality.
As shown later in chapter 7, the separation qualities of the selected variables at higher energies differ
slightly from the expectations or do not even separate.
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6 Methods evaluation for event separation

Variable γ : γγ event Separation quality
RT Transverse cluster radius Smaller +++
RL Longitudinal cluster dimension Slightly smaller ++
EHottestFrac Fraction of EHottestCell and ECluster Smaller ++
EHottestL1Frac Fraction of EHottestCellL1 and ECluster Much smaller +++

Table 6.3: Selected shower shape variables and their predicted properties.

6.3 Multivariate data analysis tool TMVA

After choosing the best or promising shower shape variables the multivariate data analysis tool TMVA
[5] of ROOT1 imposed to be used for further analysis of simulated single particle (γ and π0 → γγ
events) and real detector data events (kindly provided by Krzysztof Nowak).

6.3.1 TMVA tools

The TMVA tool provides a very easy and fast way for data analysis with several methods like Fisher,
Likelihood, Neural Network Analysis etc. The analysis happens in two steps with the C++ scripts
TMV Analysis.C and TMV Application.C. Both scripts with explanations and examples can be
found on the web [5].

TMVAnalysis tool

The TMVAnalysis tool trains the selected methods (described in A.1) with separated signal (single
photon events) and background (double photon events) data. The tool produces for each method
and for each provided shower shape variable a weighting of signal and background. These weightings
will later be used on real data by the TMVApplication tool to build a discriminator and hence separate
single or isolated photon events from background.
To compare the signal-efficiency and background-rejection performance of the different methods, the
TMVAnalysis tool provides some tabulated benchmark values as well as smooth efficiency versus
background rejection curves (see fig. 7.7).
After playing a bit with the tool and getting experience, the methods Likelihood, Likelihood PCA,
Fisher, FDA MT, MLP and BDT are considered to be most significant.
A description of these methods can be found in the appendix A.1 and at [5].

TMVApplication tool

With the TMVApplication tool and the weighting files from the training with the TMVAnalysis
tool real data can be analysed on the provided shower shape variables. For a better or more precise
interpretation of the results, the tool runs separately over signal (single photons), background (double
photons) and real data. The first two runs are used to check the quality of the trained methods.

1The ROOT system provides a set of object oriented (OO) frameworks with all the functionality needed to handle
and analyse large amounts of data in a very efficient way. For more details see [4].
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7 Results

7.1 Input variables

The figures 7.1 to 7.6 show as an example for ET =13-15 GeV the shape variables fed into the
TMVAnalysis tool for training. These plots (and the corresponding data files) were created with a
separate tool (clustertool.C by A. Gadola, K. Müller, C. Schmitz), that reads the H1 data (real or
MC data), calculates the different shape variables as described in chapter 6.1 and fills the histograms
and data files used with the TMVAnalysis tool. With these histograms a first qualitative estimation
of the separation power of the different shower shape variables can be made. The data used are MC
simulations for single and double photon events created by K. Müller.

The longitudinal dimension Cl Rl shows very few separation power in these histograms. Never-
theless, this variable has an influence in the overall analysis as a comparison of the TMVApplication
output with and without the variable showed. For the transverse radius Cl Rt the higher tail of the
background on the right side of the histograms in figure 7.1 and 7.2 show as expected, that double
photon events yield larger transverse radii which gives a contribution to the separation power of this
variable. The separation of signal and background with this variable becomes better as approaching
the forward detector region (wheels 4 to 6). Especially for wheel 6, a good separation of signal
and background is possible since the background distribution extends to larger radii. For the energy
fraction in first e.m. layer Cl EHottestCellL1 the higher bin content for the signal at small energy
fractions for all wheels but wheel 6 gives a good separation power. Multi-photon events have more
probability to convert in the first e.m. layer and depose therefore more energy there. For wheel
6 this variable has hardly any separation power. The reason is, that most of the photons convert
before they reach the calorimeter in the forward region because there is a significant amount of dead
material from readout electronics, cables and the endwalls of the tracking detectors. In opposition to
the small energy deposition for single photons in the first e.m. layer, the variable Cl EHottestCell
shows a higher energy deposition for signal than for background. Even if the separation of signal
and background in this variable is not that significant for wheel 1 and 2, it is for the other wheels,
especially for wheel 6, where the before mentioned converted photons are detected.
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Figure 7.1: Shower shape variables of the MC files for single and double photon events at ET =13-
15 GeV for wheel 1.
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Figure 7.2: Shower shape variables of the MC files for single and double photon events at ET =13-
15 GeV for wheel 2.
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Figure 7.3: Shower shape variables of the MC files for single and double photon events at ET =13-
15 GeV for wheel 3.
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Figure 7.4: Shower shape variables of the MC files for single and double photon events at ET =13-
15 GeV for wheel 4.
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Figure 7.5: Shower shape variables of the MC files for single and double photon events at ET =13-
15 GeV for wheel 5.
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Figure 7.6: Shower shape variables of the MC files for single and double photon events at ET =13-
15 GeV for wheel 6.
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7.2 Methods efficiency

Figure 7.7 shows the background rejection versus signal efficiency for six different methods. All meth-
ods are remarkably comparable and have about 80% signal efficiency at 80% background rejection
for a transverse energy ET =5-7 GeV. For higher energies (ET =13-15 GeV) signal efficiency reaches
only about 37% at 80% background rejection but the fraction of background events decreases with
energy. In the following the results are only presented for the Likelihood method due to its popularity
and good understanding but also for its very good background rejection versus signal efficiency at
higher energies.
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Figure 7.7: Background rejection versus signal-efficiency for selected TMVA methods for wheel 4 and
ET =5-7 GeV (left) and 13-15 GeV (right). Desired are high values for both parameters.

7.3 Variable correlations

The correlation of the chosen shower shape variables (fig. 7.8) show as expected only a rather small
correlation between the transverse radius and the longitudinal dimension. All other variables seem to
have very little correlation what will later on show up in a high quality discriminator.
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Figure 7.8: Correlations between the different shower shape variables for wheel 4 and ET =13-15 GeV.
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7.4 Likelihood discriminator

The figures 7.10 and 7.11 show the Likelihood method with different binnings after passing the TM-
VApplication tool. Unfortunately real data were available only for wheels 1 to 3.
The distributions show that there is no distinct separation possible between signal and background
mostly because pions decay in two photons with very asymmetrical energies1 so that these photons
cannot be distinguished from single photons. Nevertheless background and single photons have a
different shape of the discriminator distribution. This allows to fit the fraction of photon and back-
ground events.

The Likelihood histograms show a good separation power for all wheels and all energy intervals
except for wheel 1 and 2. In these two wheels signal and background shape of the histograms are still
slightly different, so that a separation with a smaller probability is possible. Especially for the energy
region of 9 to 11 GeV, the signal separates not too badly in the right bins and has therefore a good
probability for correct identification of single photons. The worse separation power of wheel 1 and 2
can be explained by their granularity. An outstanding separation can be found in the forward wheels
4, 5 and 6 for the energy interval 9 to 13 GeV. There, signal and background peak very nicely and
the probability to identify single photons correctly is very high.
For a better conclusion, the used methods should be tuned better (mainly the number of neural knots
of the neural network could give a big impact to the results but needs longer simulation time).

Real data are shown in figures 7.10a to 7.10i only for illustration. For a conclusion about how
real data fit the MC data, signal and background data need to be weighted, summed and normalized.
To become an idea how real data fit with the selected variables, figure 7.12 shows a separation with
a good data set and well tuned methods which use very similar input variables as in this study (figure
7.9 shows schematically the analysis structure and the used variables). The plots show the likelihood
distribution for five wheels and six bins in transverse energies (5-15 GeV). The data is described
well in all bins by the sum of the signal for background and photons. The scaling factor for the
background and the signal is determined by the fit. The results show that the method works also for
high transverse energies where the separation power is poorer. These figures were kindly provided by
Krzysztof Nowak [7].

 HaQ meeting - 08/02/05 - Krzysztof Nowak 6

Signal extraction

� About 50% of the sample consists of background

� Using cluster shape based multivariate analysis to fit 
signal and background distributions

MVA:
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Range Search,
...
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Figure 7.9: Schematic structure of the ongoing analysis of K. Nowak. Source [7].

1 Eγ1 ∝ 1 + βcos(θCM )
Eγ2 ∝ 1− βcos(θCM )
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Figure 7.10: Likelihood discriminator (6 bins) of signal (full, blue), background (dashed, red) and
data (wheel 1 to 3 only).
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Figure 7.11: Likelihood discriminator (100 bins) of signal (full, blue) and background (dashed, red).
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Figure 7.12: Simulated versus real data. Columns=Wheel, rows=ET . Source [7].
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8 Conclusions

The results show that good separation power can be reached for single and double photon events
at high transverse energies for wheels in the forward region of the detector. It seems that the
selected shower shape variables RT , RL, EHottestFrac and EHottestL1Frac are well chosen. For a better
understanding of the influence of each variable, a continuing treatment of the topic is indispensable.
A fine tuning of the methods by grouping different variables and applying them to the analysis tools
in combination with larger data sets for signal, background and real data would surely increase the
quality of separation power. Furthermore other analysis methods (especially the MLP method) should
be taken into account for a more appropriate or more complete analysis at higher energies.
A next step would also be the calculation of a cross section that would give an even more precise
statement about separation power of different combinations of shower shape variables linked to
different analysis methods.
The results show with good credibility that future analysis should definitively make use of the energy
range above 10 GeV and the longitudinal dimension of the shower.
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A Appendix

A.1 Description of TMVA methods

A.1.1 Projective Likelihood (PDE Approach)

The method of maximum likelihood is among the most straightforward multivariate analyser ap-
proaches. We define the likelihood ratio, R, for an event by the ratio of the signal to the signal
plus background likelihoods. The individual likelihoods are products of the corresponding probability
densities of the discriminating input variables used. In practice, TMVA uses polynomial splines fitted
to histograms, or unbinned Gaussian kernel density estimators, to estimate the probability density
functions (PDF) obtained from the distributions of the training variables.
Likelihood responses are often strongly peaked at 0/1. The booking option ”TransformOutput” zooms
into these peaks (with no change in the performance) using an inverse sigmoid transformation.

A.1.2 Fisher and Mahalanobis Discriminants

In the method of Fisher discriminants event selection is performed in a transformed variable space with
zero linear correlations, by distinguishing the mean values of the signal and background distributions.
The linear discriminant analysis determines an axis in the (correlated) hyperspace of the input variables
such that, when projecting the output classes (signal and background) upon this axis, they are pushed
as far as possible away from each other, while events of a same class are confined in a close vicinity.
The linearity property of this method is reflected in the metric with which ”far apart” and ”close
vicinity” are determined: the covariance matrix of the discriminant variable space.
The classification of the events in signal and background classes relies on the following characteristics
(only): overall sample means for each input variable, class-specific sample means, and total covariance
matrix. The covariance matrix can be decomposed into the sum of a within- and a between-class class
matrix. They describe the dispersion of events relative to the means of their own class (within-class
matrix), and relative to the overall sample means (between-class matrix). The Fisher coefficients are
then given by the product of the difference vector of signal and background sample means and the
inverse within-class matrix.

A.1.3 Function Discriminant Analysis (FDA)

The common goal of all TMVA discriminators is to determine an optimal separating function in the
multivariate space represented by the input variables. The Fisher discriminant solves this analytically
for the linear case, while artificial neural networks, support vector machines or boosted decision trees
provide nonlinear approximations with – in principle – arbitrary precision if enough training statistics
is available and the chosen architecture is flexible enough.
The function discriminant analysis (FDA) provides an intermediate solution to the problem with the
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aim to solve relatively simple or partially nonlinear problems. The user provides the desired function
with adjustable parameters via the configuration option string, and FDA fits the parameters to it,
requiring the signal (background) function value to be as close as possible to 1 (0). Its advantage
over the more involved and automatic nonlinear discriminators is the simplicity and transparency of
the discrimination expression. A shortcoming is that FDA will underperform for involved problems
with complicated, phase space dependent nonlinear correlations.
The FDA performance depends on the complexity and fidelity of the user-defined discriminator func-
tion. As a general rule, it should be able to reproduce the discrimination power of any linear discrim-
inant analysis. To reach into the nonlinear domain, it is useful to inspect the correlation profiles of
the input variables, and add quadratic and higher polynomial terms between variables as necessary.
Comparison with more involved nonlinear classifiers can be used as a guide.

A.1.4 Artificial Neural Networks (Non-Linear Discriminant Analysis)

Three different ANN implementations are used in TMVA. The TMlpANN, implemented in ROOT, the
Clermont-Ferrand ANN (CFMlpANN), which has been translated from FORTRAN, and a new ANN
(MLP), which is very similar to the ROOT ANN, but can be trained significantly faster. All ANNs
belong to the class of Multilayer Perceptrons (MLP), which are feed-forward networks according to
the following propagation schema: The input layer contains as many neurons as input variables used

Figure A.1: [5].

in the MVA. The output layer contains a single neuron for the signal weight. In between the input
and output layers are a variable number of k hidden layers with arbitrary numbers of neurons. (While
the structure of the input and output layers is determined by the problem, the hidden layers can be
configured by the user through the option string of the method booking.)
As indicated in the sketch, all neuron inputs to a layer are linear combinations of the neuron output
of the previous layer. The transfer from input to output within a neuron is performed by means of an
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”activation function”. In general, the activation function of a neuron can be zero (deactivated), one
(linear), or non-linear. The above example uses a sigmoid activation function. The transfer function
of the output layer is usually linear. As a consequence: an ANN without hidden layer should give
identical discrimination power as a linear discriminant analysis (Fisher). In case of one hidden layer,
the ANN computes a linear combination of sigmoid.

A.1.5 Boosted Decision Trees

Boosted decision trees have been successfully used in High Energy Physics analysis for example by the
MiniBooNE experiment (Yang-Roe-Zhu, physics/0508045). In Boosted Decision Trees, the selection
is done on a majority vote on the result of several decision trees, which are all derived from the same
training sample by supplying different event weights during the training.
Decision trees: successive decision nodes are used to categorize the events out of the sample as
either signal or background. Each node uses only a single discriminating variable to decide if the
event is signal-like (”goes right”) or background-like (”goes left”). This forms a tree like structure
with ”baskets” at the end (leave nodes), and an event is classified as either signal or background
according to whether the basket where it ends up has been classified signal or background during
the training. Training of a decision tree is the process to define the ”cut criteria” for each node.
The training starts with the root node. Here one takes the full training event sample and selects the
variable and corresponding cut value that gives the best separation between signal and background
at this stage. Using this cut criterion, the sample is then divided into two subsamples, a signal-like
(right) and a background-like (left) sample. Two new nodes are then created for each of the two
sub-samples and they are constructed using the same mechanism as described for the root node.
The devision is stopped once a certain node has reached either a minimum number of events, or a
minimum or maximum signal purity. These leave nodes are then called ”signal” or ”background” if
they contain more signal respective background events from the training sample.
Boosting: the idea behind the boosting is, that signal events from the training sample, that end up
in a background node (and vice versa) are given a larger weight than events that are in the correct
leave node. This results in a re-weighed training event sample, with which then a new decision tree
can be developed. The boosting can be applied several times (typically 100-500 times) and one ends
up with a set of decision trees (a forest).
Bagging: In this particular variant of the Boosted Decision Trees the boosting is not done on the
basis of previous training results, but by a simple stochasitc re-sampling of the initial training event
sample.
Analysis: applying an individual decision tree to a test event results in a classification of the event as
either signal or background. For the boosted decision tree selection, an event is successively subjected
to the whole set of decision trees and depending on how often it is classified as signal, a ”likelihood”
estimator is constructed for the event being signal or background. The value of this estimator is the
one which is then used to select the events from an event sample, and the cut value on this estimator
defines the efficiency and purity of the selection.
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