


Univerzita Karlova v Praze
Matematicko-fyzikálńı fakulta
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Abstract

The diffractive production of two jets in deep inelastic e±p scattering is
measured in the kinematic region of photon virtuality 4 < Q2 < 80 GeV2,
inelasticity 0.1 < y < 0.7, momentum fraction xIP < 0.03, proton ver-
tex momentum transfer |t| < 1 and mass of a dissociative baryonic system
MY < 1.6 GeV. Diffractive events are identified with the large rapidity gap
technique. Integrated and single differential cross sections are measured for
jets of transverse momenta p∗T1 > 5.5 GeV and p∗T2 > 4.0 GeV and pseudora-
pidities −3 < η∗1,2 < 0. The data were collected by the H1 experiment at the
HERA collider in years 2005-2007, corresponding to an integrated luminos-
ity of 283.7 pb−1. The measurements are compared with NLO predictions
based on the DGLAP parton evolution.
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Chapter 1

Introduction

In the past decades a theoretical framework describing interactions of all
known elementary particles has been developed. The Standard Model (SM)
of particle physics emerged in 1970s and nowadays it includes a unified
theory of electromagnetic and weak interactions as well as description of
strong interactions. The predictive power of SM has been manifested by
results of many experiments. High energy available at the Large Hadron
Collider (LHC) allows to explore the Higgs sector and confirm thus the
validity of SM completely. Theories going beyond SM face the challenge to
unify the electroweak and strong force or to explain phenomena like neutrino
oscillations or dark matter.

Dynamics of strong interactions, Quantum Chromo Dynamics (QCD),
is formulated by means of a non-abelian gauged field theory. In QCD, con-
stituent quarks of the additive quark model play role of basic interacting
fermions whereas the strong force carriers, gluons, are introduced in order
to meet the fundamental symmetry requirements. The non-abelian nature
of QCD reveals predictions of phenomena like the quark confinement or
vanishing of the strong force at small distances (asymptotic freedom). Ap-
plication of the perturbation theory is limited in QCD and consequently,
internal structure of hadrons ought to be parametrized by means of univer-
sal structure functions.

Structure of hadrons is experimentally well accessible in lepton-hadron
interactions where the scattered lepton provides the information for the
structure functions determination.

A class of processes where the scattering occurs at low momentum trans-
fer is known as diffraction. The applicability of the perturbation theory is
conditioned by introducing a color neutral exchange, pomeron, which has

1



CHAPTER 1. INTRODUCTION 2

partonic structure. Structure functions of the pomeron are defined in anal-
ogy to the nucleon structure functions. A significant fraction of the observed
cross section of the ep scattering at the HERA collider stems from the diffrac-
tive scattering [1, 2] and the collected data are suitable for the extraction
of the pomeron parton densities. Based on the measured pomeron struc-
ture, the production of particular diffractive final states, e.g. jet or charm
production, can be predicted within the uncertainties of the data.

Gluon content of the pomeron can be determined either from measure-
ments of scaling violations of the inclusive diffractive structure functions or
from a direct measurement of the cross section of gluon induced processes.
A typical diffractive process sensitive to the gluon density is the production
of two jets.

The next chapter gives a brief overview of the current understanding of
the hadronic structure in terms of QCD and the quark parton model. In
Chapter 3, the experimental facility of the HERA collider and H1 detector
is briefly described. The course of the presented analysis including the data
selection, monte carlo simulation and NLO calculation is described in detail
in Chapter 4. In Chapter 5, the measured cross section of the diffractive
dijet production is presented.



Chapter 2

Theoretical Overview

This chapter summarizes theoretical concepts that underlay the presented
measurements.

2.1 Deep Inelastic Scattering

Interactions observed at HERA are dominated by scattering of a lepton
(electron or positron) on a proton

l(k) + p(P ) → l′(k′) +X (2.1)

where k(k′) denotes the momentum of the incoming (out-coming) electron
(positron), P is the momentum of the incoming proton and X is an arbi-
trary hadronic final state. These interactions are divided into two classes
according to charge of a gauge boson exchanged between the lepton and the
proton:

• Neutral Current (NC) processes where γ or Z0 is exchanged and the
charge of the lepton is conserved l = l′

• Charged Current (CC) processes with W± exchange and l′ is different
from l by one unit of charge.

Only NC processes are studied in this work and the term electron denotes
either electron or positron in what follows. Energies available at HERA
are too low for the Z0 production hence the NC processes of interest are
mediated exclusively by the γ exchange.

3
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2.1.1 Kinematics

The kinematics of the electron-proton scattering can be described in terms
of the following Lorentz invariant variables:

s = (k + P )2 (2.2)

Q2 = − q2 = −(k − k′)2 (2.3)

x =
Q2

Pq
(2.4)

y =
qP

kP
=

Elab − E′

lab

Elab
(2.5)

W 2 = (q + P )2 (2.6)

where s is interpreted as the squared energy in the Central Mass System
(CMS) and Q2 as the squared momentum transfer from the incoming to
out-coming electron. Interpretation of x as the proton momentum fraction
carried by the struck parton is explained in section 2.1.3. The inelasticity y
measures the relative energy loss of the electron in the laboratory frame and
W 2 represents the squared invariant mass of the system X. Not all of the
introduced quantities are independent - any pair of Q2, x, y fully describes
the kinematics.

The electron-proton scattering is further classified based on the momen-
tum transfer Q2. Processes with the momentum transfer higher than the
proton mass, Q2 ≫ 1GeV2, are referred to as Deep Inelastic Scattering
(DIS) while the low momentum transfer scattering, Q2 ∼ 0, is referred to as
Photoproduction (PHP).

2.1.2 Cross Section of ep Scattering

Elastic scattering of electrons on point-like protons can be described to the
lowest order of perturbative QED by a one photon exchange diagram (Figure
2.1 a)). Denoting Mp the mass of the proton, the differential cross section
reads

dσ

dQ2
=

2πα2

Q4
[1 + (1− y)2 −

M2
p y

kP
] (2.7)

The above formula is valid for a lepton scattering on an arbitrary spin 1/2
point-like particle. The differential cross section of scattering of a lepton on
a point-like boson of mass MB has form

dσ

dQ2
=

2πα2

Q4
[1− y − M2

By

kP
] (2.8)
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(k)-e (k’)-e

γ

p(P) p(P’)

a)

(k)-e (k’)-e

γ

p(P) )
f

X(P

b)

Figure 2.1: Scattering of electron on point-like proton a). Scattering of
electron on realistic proton b).

In case of the real proton, the point-like coupling in the lower vertex in Figure
2.1 is replaced with a tensor that contains unknown functions reflecting the
internal structure of the proton. The fundamental requirements of Lorentz
invariance, gauge invariance, parity conservation and unitarity lead to the
cross section of the inelastic electron-proton scattering

d2σ

dQ2dx
=

2πα2

Q4x
[(1− y − M2

Pxy

s
)F2(x,Q

2) + y2xF1(x,Q
2)] (2.9)

where F1(x,Q
2), F2(x,Q

2) are structure functions of proton, sometimes also
referred to as electromagnetic formfactors of the proton.

2.1.3 Quark Parton Model

The basic assumption of the Quark Parton Model (QPM) is to view a proton
as a compound object consisting of point-like charged constituents - partons.
The cross section of ep scattering can be written as an incoherent sum of
cross sections of elastic electron-parton scattering.

The QPM is is formulated in the infinite momentum frame and assuming
the collision is deeply inelastic with Q2 ≫ M2

P . In this frame, parton trans-
verse momenta are negligible with respect to the proton momentum, hence
the parton fourmomentum can be expressed as p = ξP . The fraction ξ is
identified with the invariant x = Q2/Pq since the momentum conservation
law for the electron-parton scattering yields 2pq = Q2 (taking zero mass of
partons).

In the infinite momentum frame, relation 2.9 is left with one structure
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function only:
d2σ

dQ2dx
=

2πα2

Q4

F2(x,Q
2)

x
(2.10)

since y → 0 for s → ∞ at fixed Q2. The same limit for both 2.7 and 2.8
leads to

dσ

dQ2
=

4πα2e2p
Q4

(2.11)

where ep is charge of the target particle. The cross section of electron-parton
scattering does not depend on spin of partons in the infinite momentum
frame and the structure function can be written as

F2(x) = x
∑

e2i di(x) (2.12)

where probability densities di(x) express the probability of finding a parton
of type i with charge ei and proton momentum fraction x.

Spin of partons can be examined through the Callan-Gross relation [3],
which relates the structure functions F1 and F2

F2(x) = 2xF1(x) (2.13)

Inserting the Callan-Gross relation into 2.9 yields

d2σ

dQ2dx
=

2πα2

Q4x
[1 + (1− y)2]F2(x) (2.14)

If the Callan-Gross relation is valid the constituent partons ought to be spin
1/2 particles. This can be seen comparing the above expression with the
electron-fermion elastic scattering cross section 2.7. The experimental proof
of 2.14 confirms that partons are indeed 1/2 spin particles. It is than natural
to associate the partons with the constituent quarks of the additive quark
model. The distribution functions di(x) appearing in 2.12 are identified with
the quark and anti-quark probability distributions, qi(x) and q̄i(x), with i
indexing now the quark flavors:

F2(x) = x
∑

e2i (qi(x) + q̄i(x) (2.15)

The identification of partons with quarks is not straightforward since indi-
vidual integrals over qi, q̄i are divergent. Finite integrals can be achieved
for so called valence distributions defined as qval(x) = q(x)− q̄(x). Only the
valence distributions can be consistently identified with the quarks of the
additive model. The remaining distributions are known as sea quarks and
satisfy qsea(x) = q̄sea. The sea quarks originate from the gluon radiation
and qq̄ pairs production.
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2.2 Quantum Chromodynamics

QCD is the underlying gauge field theory of strong interactions. The gauge
transformation group is SU(3) and QCD is thus characterized as a non-
abelian theory. The basic interacting fermions of QCD are quarks which
are ascribed a new degree of freedom, known as color charge. Quarks thus
may exist in three different states, conventionally labeled as red, green and
blue. The intermediate bosons of QCD are gluons which are massless neutral
particles carrying color charge.

2.2.1 Renormalization

Besides the basic symmetry properties, the exact form of the QCD La-
grangian follows the requirement of renormalizability. Renormalization is a
procedure that redefines a gauge field theory, so that relevant predictions
can be achieved via perturbative calculations. The requirement of renor-
malizability is essential for any realistic theory.

Perturbative QCD (pQCD) assumes that any observable can be ex-
panded in powers of strong coupling αs with coefficients evaluated accord-
ing to corresponding Feynman diagrams. Higher order corrections contain
loops where momentum integration leads to infinite contributions. These
so called Ultra Violet (UV) divergences can be eliminated by transforming
mass, charge and fields acquiring thus a redefined theory where the infini-
ties are absorbed in the renormalized coupling αs. The original quantities
(before the renormalization) are referred to as bare mass, bare charge, etc.

There are several ways to achieve a renormalized theory; a renormaliza-
tion scheme refers to a particular choice of one of them. Modified minimal
subtraction (MS) [4] is a frequently used renormalization scheme based on
so called dimensional regularization [5]. A renormalization scale µr is in-
troduced in MS as an arbitrary parameter constraining the area where the
subtraction is performed. It is important for any physics observable R(µr)
not to be explicitly dependent from the arbitrary scale µr. This dependence
must be compensated by the αs dependence on µr (running αs) which is
expressed by the Renormalization Group Equation (RGE) [6]:

µ2
r(

∂R

∂µ2
r

+
∂αs

∂µ2
r

∂R

∂αs
) = 0 (2.16)

Writing down the above equation it is implicitly assumed that quarks are
massless and R(µr) is a dimensionless quantity. The explicit dependence of
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αs on µ2
r follows from the RGE and can be obtained through the expansion

µr
dαs

dµr
= −αs

∞
∑

n=0

βn

(αs

4π

)n+1
(2.17)

where coefficients βn are known for n < 4 and the first two of them can be
expressed in terms of number of quark flavors (nf ) and colors (nc):

β0 =
11nc − 2nf

6
(2.18)

β1 =
51nc − 19nf

22nc − 4nf
(2.19)

The solution of 2.17 up to the order O(α2
s) takes form

αs(µr) =
4π

β0ln(µ2
r/Λ

2)
[1− 2β1

β2
0

ln(ln(µ2
r/Λ

2))

ln(µ2
r/Λ

2)
] (2.20)

where Λ is introduced as a free parameter of the theory and has to be
determined from measurements. the value of Λ can be enumerated from
the measured value of αs(M

2
Z) = 0.118, with MZ being the mass of the Z

boson. The parameter Λ constrains the applicability of the pQCD. Taking
into account that αs → ∞ for µr → Λ, the perturbation expansion can be
readily applied only for µr ≫ Λ. The growth of αs at small scales (i.e. large
distances) leads to the concept of confinement. Although the perturbative
approach breaks down at these scales, lattice QCD explains the confinement
as a consequence of non-linearities of the SU(3) gauge fields [7]. On the
other hand, the large scales limit αs → 0 as µr → ∞ justifies the assumption
of quasi-free quarks in the original QPM. The vanishing of the couplant at
large scales, referred to as asymptotic freedom, is a general property of non-
abelian gauge theories.

2.2.2 Factorization Theorem

The UV divergences can be absorbed in the running couplant αs in course
of the renormalization procedure but there still remains a class of diver-
gences stemming from collinear parton emissions. These divergences can be
factored out of the hard scattering cross-section and absorbed into parton
distribution functions (PDF) fi(ξ, µ

2
f , αs(µr)). The factorization theorem in

DIS can be written as [8]

σ(x,Q2) =
∑

i=q,q̄,g

∫ 1

x

dξ

ξ
fi(ξ, µ

2
f , αs(µr))σ̂i(

x

ξ
,
Q2

µ2
r

,
µ2
r

µ2
f

, αs(µr)) (2.21)
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with σ̂i being the partonic cross section calculable in pQCD. PDFs are de-
pendent on the factorization scale µf and renormalization scheme through
αs and the straightforward probability interpretation is no more possible as
for their bare counterparts 2.12. However, the PDF are scale independent
in the leading order (LO) and fi(x)dx stands for probability to find a parton
type i in the momentum fraction interval (x, x+ dx).

Partons emitted with momentum below the factorization scale µf are
treated as a part of PDF. The factorization scale µf thus has a meaning of
a threshold above which the pQCD is applicable.

2.2.3 Evolution of Parton Distributions

PDFs acquire additional dependence on factorization scale µf as a conse-
quence of non-perturbative long distance effects originating from the initial
state of bounded partons. The physics interpretation stipulates the require-
ment that parton densities, summed in all orders of pQCD, are µf indepen-
dent. The finite order PDF µf dependence thus cannot be arbitrary but
obeys analogous restriction as expressed in RGE 2.16. The corresponding
differential equation solution is available in various approximations rely-
ing on neglecting certain type of terms in perturbation expansions. The
approximation neglecting the logarithmic terms leads to a set of integro-
differential equations referred to as Dokshitzer, Gribov, Lipatov, Altarelli,
Parisi (DGLAP) evolution equations [9, 10, 11]:

dfq(x, µ
2
f )

d lnµ2
f

=
αs(µr)

2π

∫ 1

x

dy

y
[Pqq(

x

y
)fq(y, µ

2
f ) + Pqg(

x

y
)fg(y, µ

2
f )] (2.22)

dfg(x, µ
2
f )

d lnµ2
f

=
αs(µr)

2π

∫ 1

x

dy

y
[Pgg(

x

y
)fg(y, µ

2
f ) + Pgq(

x

y
)fg(y, µ

2
f )] (2.23)

Splitting functions Pij(z) describe the probability that a parton of type i
and momentum fraction z radiates another parton of type j carrying the
momentum fraction (1 − z). An expansion of the splitting functions in
powers of αs(µr) with coefficients calculable in pQCD can be written

Pij(z, αs) =

∞
∑

n=0

(αs

2π

)n
P

(n−1)
ij (z) (2.24)
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The splitting functions are known up to NNLO, e.g. O(α2
s). In the LO, they

take form

P 0
qq(z) =

4

3

1 + z2

1− z
(2.25)

P 0
qg(z) =

1

2
(z2 + (1− z2)) (2.26)

P 0
gg(z) = 6(

z

1 − z
+

1− z

z
+ z(1− z)) (2.27)

P 0
gq(z) =

4

3

1 + (1− z)2

z
(2.28)

The vertexes corresponding to individual LO splitting functions are sketched

a) b) c) d)

Figure 2.2: Feynman diagrams corresponding to splitting functions Pqq a),
Pqg b), Pgq c) and Pgg d).

in Figure 2.2. Given an initial value fi(x, µ
2
f0), the DGLAP equations thus

allow to determine the parton density at any scale µf . The parton density
evolves via a subsequent emission of partons from the struck parton. The
radiated partons are ordered in their longitudinal momenta x1 > x2 > ... >
xn = x and strongly ordered in their transverse momenta kT1 ≪ kT2 ≪ ... ≪
kTn = µ2

f . Figure 2.3 shows a diagram corresponding to gluon emission, so
called gluon ladder. A particular choice of the factorization scale µf has to
be done for the purpose of the experimental PDF determination. Concerning
general DIS, the choice µ2

f = Q2 provides a hard enough scale.

2.2.4 Hadronization

Only colorless hadrons have been observed so far in nature, which coincides
well with the phenomenon of confinement. Final state partons are converted
into observable hadrons as distances between them increase. This process is
known as hadronization. Due to the low scales involved, the hadronization
is a non-perturbative effect and relevant predictions cannot be calculated
from the first principles. Various phenomenological models are used instead
[12].
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(k)-e (k’)-e

γ

   x

 i+1
 ,ki+1x

 i
 ,kix

 2
 ,k2x

 1
 ,k1x

p

Figure 2.3: Parton density evolution in the DGLAP picture - a gluon ladder
diagram.

2.3 Diffraction

The term diffractive scattering is, in general, related to elastic hadron-
hadron scattering. Low scales of these soft processes do not allow for appli-
cation of the pQCD and phenomenological approach is necessary.

2.3.1 Regge Model and Pomeron

A two body interaction a + b → c + d was originally modeled as a One
Pion Exchange (OPE). However, there are processes, for which the OPE
collides with the quantum number conservation laws. For example a πp
elastic scattering can not be realized through the pion exchange due to
the G-parity conservation. The OPE applicability is further restricted by
Froissart bound on the cross section σ [14]

σ ≤ π

m2
π

ln2 s (2.29)

where s = (pa + pb)
2 is the central mass energy squared. This bound is

violated if the exchanged meson spin is higher than one and the OPE is
thus not suitable to describe high energy behavior of the cross section.
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Figure 2Figure 2

Figure 2.4: Chew-Frautschi plot - low mass meson states orbital momentum
J versus mass squared [13].

A theory formulated by Tullio Regge [15, 16] describes the interaction
as an exchange not only a single meson but rather a whole multitude of
mesons called Regge trajectories or Reggeons. The Regge trajectories can be
illustrated in J,M2 plane where meson states of different angular momentum
J and mass M are situated at the same line (Figure 2.4). In the region
of high energies and low scattering angles (so called Regge limit), s ≪ t,
the transition amplitude A(s, t) is found to be a sum of contributions from
different trajectories [17]

A(s, t) =
∑

i

β2
i (t)s

αi(t)ξ((αi(t))) (2.30)

where t = (pa − pb)
2 is the energy transfer from a to b and ξ((αi(t)) is so

called Regge signature. Trajectories are linear α(t) = α′t+α(0), where α(0)
is the intercept of the trajectory. Assuming Reggeon exchange only, the
differential cross section following from 2.30 can be parametrized as

dσ

dt
= (βa(t)βb(t))

2
( s

s0

)2(α(0)+α′t−1)
(2.31)

where s0 refers to the hadronic scale and functions β(t) = βa(t)βb(t) are
related to form factors of hadrons entering the interaction. The hadronic
scale is mostly taken at s0 ∼ 1GeV2 and parametrization βa(t) ∝ eat is
widely used. The total cross section for the elastic scattering reads

σtot = βa(0)βb(0)s
α(0)−1 (2.32)
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Experimental data indicate α(0) > 1 as the cross section increases with the
central mass energy s, while α(0) < 0.6 holds for all known meson trajecto-
ries. It is assumed that another term in 2.30, referred to as pomeron tra-
jectory, plays role at higher energies. Although there are no known hadrons
related to the pomeron trajectory, the relevant states carry vacuum quantum
numbers (C = P = +1) and are being explored within the lattice QCD [18].
The assumption of the pomeron exchange leads to the Donnachie-Landshoff
parametrization of the cross section

σtot = AsαIP (0)−1 +BsαR(0)−1 (2.33)

where αIP (αIR) is the pomeron (Regge) trajectory intercept. The parameter
A is fixed for both ab and āb reactions due to the photon-like coupling of
the pomeron to quarks. The above parametrization fits accurately the total
cross section of pp and p̄p interactions in the range from

√
s = 5GeV to√

s = 1800GeV as illustrated in Figure 2.5. The pomeron trajectory was
originally introduced by Gribov [19].

Figure 2.5: Comparison of total cross section of pp and p̄p interactions with
Donnachie-Landshoff parametrization [13].

2.3.2 Diffraction in DIS

Diffractive DIS (DDIS) refers to processes ep → XY where final states X
and Y are significantly separated in rapidity. This rapidity gap stems from
an exchange of a colorless object - a color exchange would diminish any
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Figure 2.6: Schematic diagram of diffractive scattering in DIS.

clear difference in rapidity due to the strong force long-range behavior. The
exchanged object is identified as pomeron.

The pomeron exchange kinematics is described by

xIP =
q.(P − pY )

q.P
(2.34)

which is interpreted as a longitudinal momentum fraction carried by pomeron
with respect to the initial proton. Concerning a resolved pomeron model
(ascribing the pomeron internal structure) the quantity

β =
x

xIP
=

Q2

2q.(P − pY )
(2.35)

has the meaning of a longitudinal momentum fraction of the struck parton
with respect to the pomeron. In analogy with 2.10, a diffractive structure
function FD

2 is introduced and the cross section for the diffractive scattering
reads

d5σ

dxIPdβdQ2dMY dt
=

4πα2
em

β2Q2

(

1− y +
y2

2(1 +RD(5))

)

F
D(5)
2 (2.36)

where RD(5) denotes the ratio of longitudinal and transverse photon cross
sections. The dependence on MY and t is integrated over and the structure
function thus depends on three variables:

dσ

dxIPdβdQ2
=

4πα2
em

β2Q2

(

1− y +
y2

2

)

F
D(3)
2 (xIP , β,Q

2) (2.37)
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The ratio RD is neglected in this analysis.

2.3.3 QCD Factorization and Pomeron Flux

The factorization theorem discussed in section 2.2.2 is essential for extract-
ing universal parton densities in inclusive DIS. In this analogy, DDIS cross
section is written as a convolution of the hard scattering cross section σ̂ and
the Diffractive Parton Densities (DPDF) fD

i (x,Q2, xIP , t)

σ =
∑

i

fD
i (x,Q2, xIP , t)⊗ σ̂(x,Q2) (2.38)

The QCD factorization in diffractive DIS interactions was proved by Collins
[20]. Further more, DPDFs are reducible according to Regge factorization.
Besides normalization, the DPDFs are independent from xIP and t and can
be expressed in terms of β = x/xIP and Q2

fD
i (x,Q2, xIP , t) = fIP/p(xIP , t).fi/IP (β,Q

2) (2.39)

where fIP/p denotes the pomeron flux and fi/IP the pomeron parton density.
The pomeron flux is interpreted as a probability to find a pomeron at certain
xIP and t within the proton. In analogy with PDFs, the pomeron parton
density has the meaning of probability to find a parton i within the pomeron
and it is evolved according to DGLAP equations in DIS (Q2 > 4GeV2).
Regge factorization is an assumption which was experimentally confirmed.

The DPDFs can be obtained from a DGLAP fit to the measured struc-
ture function FD

2 . Figure 2.7 shows DPDF for quarks and gluon as functions
of the momentum fraction β as measured by H1 Collaboration [21].

2.3.4 Diffractive Jet Production in DIS

Measurement of cross section of inclusive diffractive scattering, allows to
extract quark parton densities with a high accuracy. The gluon density is
accessible through the measurement of scaling violations (Q2 dependence of
quark DPDF) but resulting uncertainties are considerably high, especially at
the high relative momentum transfer β. Shortcomings of the gluon density
extraction from the inclusive data can be avoided by a particular selection
of the final state X ensuring thus a struck parton to be a gluon.

Productions of dijets in DDIS is dominated by Boson Gluon Fusion
(BGF) as illustrated in Figure 2.8. Relevant quantity for the description
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Diffractive scattering at HERA
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Figure 2.7: Diffractive parton distributions DGLAP fits to the H1 FD
2 data.

Momentum fraction β is denoted as z. [21].

of kinematics is a longitudinal relative momentum of the gluon with respect
to the pomeron:

zIP =
q.v

q(P − pY )
=

x

xIP
(2.40)

where v denotes a four-momentum of the gluon. The diffractive dijet cross
section is then expressed in terms of the parton densities fi/IP (zIP , µf ) and
the pomeron flux fIP (xIP ) convoluted with the hard scattering matrix ele-
ments.

Since the transverse momentum of the scattered electron is significant
in DIS, the photon-proton axis does not coincide with the beam axis. The
jets are reconstructed in γp center of mass system. In this frame, the jets
are ordered in their transverse momenta p∗T i and jets with the highest and
the second highest momentum are called the leading and subleading jet
respectively. The transverse momentum of the leading jet p∗T1 provides a
threshold for the cross section factorization validity hence the factorization
scale is chosen to be µ2 = p∗2T1 +Q2.

The scattering angle of particles θ, measured with respect to the positive
z-axis, is not invariant under the Lorentz boost along the z-axis. The boost
invariant rapidity y is introduced:

y =
1

2
ln

E + pz
E − pz

(2.41)

In the limit of high energy, E ≈ |p|, the rapidity y is approximated by
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Figure 2.8: Schematic diagram of diffractive dijet production.

pseudorapidity η:

η = − ln
(

tan
θ

2

)

(2.42)

Jet Algorithm

A jet algorithm or a jet finder refers to a procedure of clustering objects,
so called protojets, into collimated sprays of particles, jets. The protojets
can be partons, hadrons or jets stemming from intermediate steps of the
jet finding. The jet cross section calculated in pQCD must be infrared and
collinear safe [22]. Jet finders that meet these requirements combine the
protojets based on distance measures

dij = min(k2pT i, k
2p
Tj)

∆2
ij

R2
(2.43)

di = k2pT i (2.44)

where kT i denotes the transverse momentum of a protojet i and ∆2
ij =

(φi−φj)
2+(ηi− ηj)

2 with φi and ηi being the azimuthal angle and pseudo-
rapidity of the protojet i respectively. The parameter p relates the geometri-
cal distance ∆ij to the distance in the transverse momenta of the protojets.
The choice p = 1 corresponds to the longitudinally invariant kT -algorithm
[22, 23], p = 0 is used within the Cambridge/Aachen algorithm [24] and
p = −1 corresponds to the anti-kT algorithm [25]. The parameter R is
related to a different class of jet algorithms which make use of momentum
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flow within a cone of radius R [26]. The kT -algorithm with R = 1 is used in
this analysis. The clustering is performed iteratively, each iteration proceeds
in three steps

• The distance dij is evaluated for each pair of protojets, as well as the
beam distance di for each protojet.

• The minimum dmin among all dij and di is found. If dmin = di the pro-
tojet i is concerned as a jet and does not entry the algorithm anymore.
If dmin = dij the protojets i, j are combined in a single protojet.

• The first step is repeated until there are no protojets left.

The combination of two protojets can be defined in several manners, the
pT -recombination scheme [27] is used in this analysis.

2.4 Monte Carlo Generators

Monte Carlo (MC) generators are programs producing high energy physics
events. They allow to generate a variety of final states given the initial con-
figuration of beam particles. A MC generator implements a certain physics
model and the final states production proceeds according to relevant matrix
elements.

DIS events production, both inclusive and diffractive, is implemented in
the RAPGAP MC program [28]. RAPGAP generates the DIS events based
on the LO hard scattering matrix elements which include both BGF and
QCD Compton (QCDC) processes mediated by either the γ or Z0 exchange.
The parton showers are treated according to the DGLAP equations. The
hadronization is implemented in the same way as in the PYTHIA generator
[29], e.g. the Lund string fragmentation model is used. The HERACLES
program [30] is interfaced within RAPGAP and provides the simulation of
the initial and final state QED radiation as well as the vacuum polarization
and virtual corrections to the lepton vertex.

2.5 NLO Calculations

The NLO calculations used in this work make use of the Catani-Seymour
dipole subtraction method [31]. This method is implemented in the nlo-
jet++ program, which is a c++ program providing LO and NLO calcula-
tions of the multi-jet production cross section [32].
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The nlojet++ is accommodated for the calculation of the diffractive
cross section. The electron-proton scattering is effectively replaced with
the electron-pomeron scattering by the downscale of the proton energy by
factor xIP . The calculations are performed for central values of intervals
(xIP , xIP + dxIP ) and the total cross section is than obtained by integrating
over the desired xIP range. The cross section for every xIP interval is weighted
by the relevant pomeron flux and the pomeron parton densities are taken
instead of the proton PDFs. This method relays on the Regge factorization
as well as the QCD theoretical conclusions.
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HERA and H1 Detector

3.1 HERA Accelerator

The Hadron Elektron Ring Anlage (HERA) [33] is an electron-proton col-
lider located at Deutsches Elektronen Synchrotron (DESY) laboratories in
Hamburg. The accelerator operated in years 1992-2007 and delivered the
integrated luminosity of ∼ 500 pb−1 to each of the two major experiments
H1 and ZEUS.

A tunnel situated from 10 to 20 m beneath the surface houses the main
storage rings for protons and electrons. The rings consist of four straight sec-
tions, each 360 m long, and four circular sections of radius 790 m. The total
main circuit accelerating path reaches about 6.3 km. The proton beam-pipe
is equipped with high performance superconducting magnets (B ∼ 4.5 T)
operating at temperature of 4.2 K while the electron beam-pipe makes use
of ordinary magnets. Besides the two collider experiments H1 and ZEUS the
HERA collider also provides the high energy beams for the two fixed target
experiments HERA-B and HERMES. The schematic view of the accelerator
facilities is shown in Figure 3.1.

The main ring injection energies for protons (40 GeV) and electrons
(14 GeV) are reached in a smaller storage ring called Positron Elektron
Ring Anlage (PETRA). PETRA ring is pre-staged with a system of smaller
storage rings, linear accelerators and synchrotrons.

The final energy of the proton and electron beam is 920 and 27.6 GeV
respectively, which provides the total center of mass energy of ∼ 320 GeV.
The main ring stores about 220 bunches of particles. Each bunch contains
∼ 1011 particles obeying Gaussian density distribution with σ = 11 cm. The
distance between individual bunches is 28.8 m resulting in 10.4 MHz bunch

20
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Figure 3.1: Schematic view of the HERA storage rings and the adjacent
accelerating facilities. Locations of the two collider experiments H1 and
ZEUS as well as the fixed target experiments HERMES and HERA-B are
sketched.

crossing rate.
In years 1992-2000, during so called HERA-I running period, the pro-

ton beam energy was 820 GeV and the total integrated luminosity reached
140 pb−1. The HERA-II running period refers to the data taking in years
2003-2007 when the collider was operated with the 920 GeV proton beam
and the higher luminosity was achieved by the stronger beam focusing. Dur-
ing the HERA-II period the total integrated luminosity of almost 400 pb−1

was collected.

3.2 H1 Detector

H1 detector is a large acceptance particle detector located in the experimen-
tal hall North. Various subdetectors mostly arranged in cylindrical layers
around the beam pipe cover the most of the solid angle around the nom-
inal interaction point. The laboratory reference frame is chosen to be a
right handed coordinate system with the origin at the interaction point, the
+z direction defined along the proton beam direction and the +x direc-
tion pointing towards the center of the HERA ring. It is common to use a
spherical coordinate system (r, θ, φ) where θ = 0 and θ = π corresponds to
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the proton (forward) and electron (backward) direction respectively. The
forward region of the H1 detector deals with high multiplicity states due to
the higher energy of the proton beam and therefore is massively segmented.
The backward region is designed for the scattered electron detection. A
schematic drawing of the H1 detector and its main subdetectors is shown in
Figure 3.2.
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Figure 3.2: Schematic view of the H1 detector and its main subdetectors.

Detailed technical information on the H1 experiment can be found in
[34, 35]. The components of the H1 detector that are directly involved in
this analysis are briefly described in the following.
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Figure 3.3: The side view of the LAr calorimeter (a) and the radial view of
a single wheel (b). The electromagnetic and hadronic sections are displayed
in green and orange color respectively.

3.2.1 Calorimetry

Liquid Argon Calorimeter

The Liquid Argon Calorimeter (LAr) is a high granularity non-compensating
calorimeter covering the the polar angle of 3.8◦ < θ < 155◦. Overall 44000
cells are situated inside a cryostat vessel filled with the active medium, the
liquid argon. The LAr calorimeter is segmented into eight wheels (octants)
along the z-axis. The inner (outer) layers of the wheels serve as the electro-
magnetic (hadronic) part of the calorimeter (see Figure 3.3). The electro-
magnetic part is equipped with 2.3 mm thick lead absorbers and its total size
corresponds to 20-30 radiation lengths while the hadronic part is equipped
with 16 mm stainless steel absorbers reaching 5-8 interaction lengths. The
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energy resolution is σem(E)/E = 0.12/
√

E[GeV]⊕ 0.01 for electromagnetic
showers and σhad(E)/E = 0.50/

√

E[GeV]⊕ 0.02 for hadronic showers. The
response to a hadronic shower is reduced by 30% compared to an electromag-
netic shower of the same energy and the hadronic energy is accommodated
within the offline reconstruction. The LAr calorimeter allows to detect high
energy jets, electrons and muons, as well as neutral particles.

Backward Lead Scintillator Calorimeter

Figure 3.4: Side view of the backward part of the H1 detector.

The backward lead scintillator calorimeter, mostly referred to as ’spaghetti’
calorimeter (SPACAL), covers the backward region 153◦ < θ < 173◦. The
location of SPACAL within the H1 detector is depicted in Figure 3.4.
SPACAL is a non-compensating calorimeter consisting of electromagnetic
and hadronic part, both equipped with lead absorbers and bunches of scin-
tillation fibers (see Figure 3.5). SPACAL is designed for the high precision
measurement of the scattered electron in DIS. The electromagnetic part
corresponds to 28 radiation lengths while the hadronic part corresponds to
1 interaction length only. Both parts reach 2.2 interaction lengths in to-
tal and SPACAL is thus not feasible to detect jets. The energy resolution
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Figure 3.5: Sketch of a single SPACAL module.

is σem(E)/E = 0.07/
√

E[GeV] ⊕ 0.01 for the electromagnetic section and
σhad(E)/E = 0.50/

√

E[GeV]⊕ 0.02 for the hadronic section.

PLUG Calorimeter

The PLUG calorimeter covers the forward region within 0.6◦ < θ < 3.5◦

enlarging thus the acceptance of the LAr calorimeter down to the beam-pipe.
The absorber material is copper arranged in nine plates along the beam-pipe.
The resolution of the PLUG calorimeter is σhad(E)/E = 1.50/

√

E[GeV].

3.2.2 Tracking

The H1 tracking system is divided into the Central Track Detector (CTD)
and the Forward Track Detector (FTD). The longitudinal view of the H1
tracking system is depicted in Figure 3.6.

Central Track Detector

CTD comprises drift and proportional chambers as well as silicon trackers.
The radial cross section of the CTD is sketched in Figure 3.7.

Two massive Central Jet Chambers (CJC1, CJC2) cover the scattering
angle in range of 15◦ < θ < 165◦. The both chambers consist of anode wires
stretched parallel to the beam pipe, while the drift cells are ordered within
30◦ in the radial direction. This configuration ensures that the ionization
electrons drift perpendicularly to the radial direction due to the presence
of the 1.15 T magnetic field. The single hit resolution in the rφ plane is
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Figure 3.6: Side view of the H1 tracking system.

σrφ ∼ 170 µm while the z coordinate is measured with the resolution of
σz ∼ 2.2 cm.

The z resolution is further improved by the Central Inner and Outer
(CIZ and COZ) drift chambers. The CIZ resp. COZ are mounted on the
inner resp. outer side of CJC1. The CJCs are supplemented with two thin
Multiwire Proportional Chambers (MWPC), the Central Inner and Outer
Proportional Chamber (CIP and COP). Both CIP and COP provide the
information for the first trigger level (see section 3.2.4) since their response
time is shorter than the time between the successive bunch collisions.

The momentum resolution of σ(p)/p2 < 0.01 GeV−1 is achieved due to
the combined information of CJCs, CIZ and COZ.

The tracking system relays further on three silicon trackers, the For-
ward, Central and Backward Silicon Trackers (FST, CST and BST). CST
surrounds the nominal interaction point and is mounted at distance of 5 cm
from the beam-pipe. The aim of CST is to provide precise vertex infor-
mation including secondary vertexes from heavy flavor decays. CST single
hit resolution is 12 µm in the rφ plane and 22 µm in the z-direction. The
CST angular coverage is 30◦ < θ < 150◦. BST extends this coverage to
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Figure 3.7: Front view of the H1 tracking system.

165◦ < θ < 176◦ and serves mainly to improve the scattered electron iden-
tification while FST covers the forward region with 7◦ < θ < 19◦.

Forward Track Detector

The Forward Track Detector (FTD) extends the geometric acceptance of
the tracking system to 5◦ < θ < 25◦. FTD consist of three modules each
comprising planar and radial drift chambers. The typical FTD momentum
resolution is σ(p)/p2 ∼ 0.1 GeV−1.

3.2.3 Forward Detectors

Forward Muon Detector

The Forward Muon Detector (FMD) consists of six double layered drift
chambers and a toroidal magnet (see Figure 3.8). Two chambers are de-
signed to measure the azimuthal angle φ and the remaining four to measure
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Figure 3.8: Side view of the forward muon detector (a). Front view of a
single octagonal layer (b). A hit pair produced in a double-layer (c).

the polar angle θ with the acceptance in range 3◦ < θ < 18◦. Due to the
presence of the toroidal magnet, FMD is feasible for momentum reconstruc-
tion from 5 to 500 GeV.

Forward Tagger System

The Forward Tagger System (FTS) is designed to detect particles stemming
from the proton remnant. FTS consist of four scintillator layers mounted at
26, 28, 53 and 92 m distance from the nominal interaction point. Individual
layers surround the beampipe and comprise four counters each. There is one
scintillator per counter for 26 and 28 m layers, while the counters for layers
at 53 and 92 m consist of two scintillators.
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3.2.4 Trigger System

Although the bunch crossing rate at HERA reaches 10.4 MHz, not every
collision produces an event of physics interest. The H1 trigger system is
designed to distinguish between signals originating from the ep interaction
and the detector activity caused by events classified as the background. The
main background sources are synchrotron radiation of the electron beam,
stray protons hitting surrounding materials, protons interacting with the
beam-pipe gas, beam halo muons and cosmic ray muons. The trigger deci-
sion is done subsequently at four stages. The architecture of the H1 trigger
system is schematically depicted in Figure 3.9.

Figure 3.9: Schematic drawing of the H1 trigger system.

The trigger level one (L1) collects information from nine trigger systems
that correspond to particular subdetectors. Information from a set of 256
trigger elements (TE) is buffered in pipelines synchronously to HERA clock
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at frequency of 10.4 MHz. The L1 latency time of ∼ 2 µs constrains the min-
imum pipeline length which ensures that every bunch crossing is subjected
to the L1 decision. The TE are read by Central Trigger Logic (CTL) where
they are combined into 128 subtriggers. Most subtriggers are dedicated to
particular physics processes while some of them serve for monitoring of indi-
vidual subdetectors and physics triggers. The CTL decides to keep an event
if at least one subtrigger condition is fulfilled. If the event is rejected the
pipelines are overwritten without imposing the dead time. If the event is
accepted the readout is stopped and and the event is submitted to higher
trigger levels. The original bunch crossing rate is scaled down to ∼ 1 kHz
at this trigger stage.

The second trigger level (L2) depends on the information delivered by
the L1 and relays on two independent trigger systems, the neural network
(L2NN) and the topological trigger (L2TT). L2NN [36] consists of 13 neural
networks working in parallel and was introduced to improve the trigger
system performance after the luminosity upgrade. L2TT incorporates up
to 16 trigger elements that combine topological information from various
subdetectors. The L2 decision is available within 20 µs.

The third trigger level (L3) decision is based on the Fast Track Trigger
(FTT) [37, 38]. This trigger system is capable to reconstruct decays of
particle resonances making use of the L2 tracks. The L3 system involves a
farm of commercial processors with a real time operating system. The L3
latency time is about 100 µs.

At the last trigger level (L4), the final decision whether to keep or down-
scale the event is done. Events that passed the lower level triggers are
checked again with higher precision, which results in further event reduc-
tion by ∼ 50 %. The L4 trigger is not synchronized with the HERA clock
and the calculations are performed by means of an independent processor
farm. The events are recorded for offline analyses to a Data Summary Tape
(DST) with a frequency of few Hz.

3.2.5 Luminosity System

Measurement of luminosity at HERA makes use of the Bethe-Heitler process
ep → epγ, for which the cross section σ is calculable in QED. The integrated
luminosity L =

∫

Ldt is determined from the number of events N

N = σL (3.1)

The instantaneous luminosity L is given by the measured event rate of the
Bethe-Heitler process. The H1 luminosity system consists of two detectors
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Figure 3.10: The H1 luminosity system.

mounted close to the beam-pipe in sufficient distance from the interaction
point. Outgoing electrons are tagged by an Electron Tagger (ET) at z =
−40 m while photons are measured in an Photon Detector (PD) at z =
−102 m. The scheme of the luminosity system is depicted in Figure 3.10.

3.2.6 Detector Simulation

The H1 detector response is simulated by means of dedicated software,
H1SIM, which is based on GEANT3 [39] algorithm. H1SIM implements
the detector geometry, particle interactions with the material as well as
tracking. Test beam measurements with detector prototypes together with
instant monitoring of the full detector response provide the verification and
further tuning of the simulation. The output of the H1SIM has the same
form as the real ep data and both MC and data events are reconstructed by
the same program, H1REC.
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Data and Monte Carlo

4.1 Analyzed Data

The measurement of the dijet cross section in NC DDIS presented in this
work makes use of the data collected during the HERA II period. The data
taking at H1 was realized in time intervals with stable experimental condi-
tions called runs. A run can be classified either as good, medium or poor
based on the overall detector performance, background and beam conditions.
Only good and medium runs with the minimum luminosity of 0.2 pb−1 are
analyzed in this measurement. The quality of a run is further ensured by
demanding specific sub-detectors to be in operation and fully read out. Only
runs where the LAr calorimeter, CJCs, CIP, ToF and luminosity system are
operational are accepted. The luminosity is recorded per each run and is
corrected offline since the information from the luminosity system is not im-
mediately available during the data taking. The total integrated luminosity
of 281pb−1 of the analyzed sample corresponds to the sum of luminosities
of individual selected runs. The run range and luminosity for data collected
in years 2006-2007 are summarized in Table 4.1

4.2 Monte Carlo

A set of MC samples with underlying processes expected in data is produced
in desired phase space. MC is utilized to translate the measured event rate
into the cross section at level of stable hadrons and for statistical subtraction
of a background. Another set is produced without the detector simulation
and is used to quantify the QED radiation and hadronization effects.

32
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Period Lepton Run range L[pb−1]

2005 e− 401617-436893 104.58

2006 e− 444307-466997 51.57

2006 e+ 468531-492541 81.87

2007 e+ 492559-500611 45.69

HERA 2 401617-500611 283.71

Table 4.1: Overview of the selected run periods and the total integrated
luminosities.

4.2.1 Overview of MC Samples

The Signal MC sample is generated with the RAPGAP31 program. The
NC DDIS events are produced according to relevant QCD matrix elements
calculated to the first order of the perturbation expansion. The contribution
from higher orders are modeled by means of hadronic showers. The partic-
ular model used by RAPGAP refers to Leading Logarithm Parton Shower
(LLPS) approach []. As a DPDF input for the MC calculations, values given
by the H1 2006 Fit B [] are used. The Lund string model is employed to
describe the fragmentation of partons into detectable hadrons. Both BGF
and QCDC processes realized via the pomeron exchange are generated with
either light quarks or charm in the final state. The Reggeon exchange is only
considered with light quarks in the final state, since the charm contribution
is not discernible at the xIP range of interest.

The contribution of events with the scattered proton found in low mass
dissociation state is included in the signal MC as well. The set of dissociative
samples is produced with RAPGAP in the same manner as for the elastic
scattering. Possible dissociative Reggeon contribution is neglected.

In low Q2, resolved pomeron processes may play role. Additional sig-
nal MC sample is produced with RAPGAP utilizing the resolved pomeron
model.

Each of the discussed MC samples is generated in three distinct sets cor-
responding to run periods of the data taking and to the appropriate lepton
type. The electron samples are submitted to the detector simulation sepa-
rately for periods 2005 and 2006 while the positron samples are simulated
for the period 2006/2007.

The main source of background events is the non-diffractive DIS jet pro-
duction. A fraction of events with a measured rapidity gap in HFS may
still stem from inclusive processes. Additionally, the effectivity of detecting
diffractive events based on rapidity gap identification is limited. A RAP-
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Purpose Process Events Luminosity [pb−1]

Signal uds, pomeron 5× 106 4177.5

Signal charm, pomeron 5× 106 6127.7

Signal light quarks, reggeon 5× 106 17610.0

Signal uds, pomeron, prot. dissociation 5× 106 4603.5

Signal charm, pomeron, prot. dissociation 5× 106 6114.8

Signal resolved pomeron 5× 106 4177.5

Background DIS jet production 1× 107 212.5

Table 4.2: Overview of MC samples.

GAP31 MC sample simulating inclusive DIS jet production is taken into
account as a background contribution.

The QED radiation corrections are determined based on a radiative and
non-radiative RAPGAP samples that are generated under the same con-
ditions as the signal sample but with larger statistics. The hadronization
corrections are determined making use of samples without QED radiation
that differ in modeling of parton showers. Another set utilizing Color Dipole
Model (CDM) of parton showers is used in course of the hadronization effects
evaluation.

An overview of the MC samples that model the signal and background
contributions is shown in Table 4.2.

4.2.2 Detector, Hadron and Parton Level

Calculation of kinematic variables can be performed at three different stages
for a set of MC events which passed the detector simulation.

• Detector level refers to the kinematic reconstruction based on directly
detected objects (tracks, energy clusters). Assuming a proper detec-
tor simulation, the relevant variable calculation and event selection
criteria can be uniquely applied in both data and MC. Kinematic dis-
tributions at the detector level of MC are thus directly comparable to
the distributions measured in data.

• Hadron level refers to kinematic variables defined in terms of stable
hadrons which emerge as products of hadronization.

• Parton level refers to kinematic variables evaluated based on four-
momenta of partons, leptons and intermediate bosons that take part in
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the hard scattering. Quantities calculated at the parton level and their
relation to the hadron level serve for investigation of hadronization
effects.

4.3 Reconstruction of Kinematics

The kinematic variables introduced in Chapter 2 are reconstructed based
on the measurement of the scattered electron and the Hadronic Final State
(HFS). The DIS kinematics reconstruction makes use of the electron-Σ
method [40], which provides an accurate resolution of the kinematic vari-
ables in the desired kinematic range of DIS processes [41]. The squared
momentum transfer Q2 is calculated from the scattered electron informa-
tion in the e-Σ method:

Q2
e = EeE

′

e(1 + cos θe) (4.1)

where Ee ≈ 27.6 GeV is the energy of the beam electron while E′
e and θe

denote the energy and polar angle of the scattered electron. The reconstruc-
tion of the inelasticity y includes the information from the HFS measurement
through a variable yh defined as

yh =

∑

i(Ei − pz,i)

2Ee
(4.2)

The summation runs over all HFS objects with energy Ei and momentum
component Pz,i. Within the e-Σ method, the y is reconstructed in the fol-
lowing way:

yeΣ =
Q2

e

xΣs
(4.3)

xΣ =
Q2

Σ

yΣ · s (4.4)

Q2
Σ =

E2
e · sin2 θe
1− yΣ

(4.5)

yΣ =
2yh · E′

e

2yh · E′
e + Ee · (1− cos θe)

(4.6)

where s denotes the center of mass energy of the electron-proton system.
The photon-proton center of mass energy W 2 is reconstructed as

W 2 = y · s−Q2 (4.7)
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The longitudinal fraction of the proton momentum carried by the pomeron
is evaluated using the invariant mass MX of the system X

xIP =
Q2 +M2

X

Q2 +W 2
(4.8)

M2
X = f(ηmax)

∑

i

P 2
i (4.9)

where the sum counts fourmomenta Pi of all HFS objects and f(ηmax) is a
factor depending from LAr cluster rapidity and is introduced in order to im-
prove the detector resolution. At the hadron level, the defining relation 2.34
is used for the calculation of xIP , since the relevant fourmomenta are known
based on the MC generator information. The fraction of the pomeron mo-
mentum carried by the parton entering the hard scattering is reconstructed
by means of the invariant mass of the two jets M12 as

zIP =
Q2 +M2

12

Q2 +M2
X

(4.10)

The energy carried by the jet system relative to the total energy of HFS is
reconstructed as follows:

xγ =

∑

jet(E
∗
i − P ∗

z,i)
∑

HFS(E
∗

i − P ∗

z,i)
(4.11)

The above formula holds exclusively in the γ∗-proton rest frame in case of
DIS.

Correspondence between the level of stable hadrons and detector level is
discussed in Section 4.6.

4.4 Event Selection

4.4.1 NC DIS Selection

Trigger Selection

The online triggering of events containing the scattered electron is performed
by means of the subtrigger S61. The S61 decision is accomplished making use
of information from SPACAL and CJC. The energy deposit in SPACAL of at
least 9 GeV is required together with at least one CJC track with a minimum
transverse momentum of 900 MeV. The track condition is validated by
means of FTT. S61 accepts the events at level L4 with a prescale of ∼ 1,
which is valid in the range of the photon virtuality under investigation.
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Vertex Requirement

The precise information on the ep interaction position is of vital importance
for a proper event kinematics reconstruction. The direction of the scattered
electron is required to be reconstructed with respect to the actual vertex
position. The coordinates of the interaction vertex are determined with
the track chambers CJC1 and CJC2. Although the designed interaction
point lays in the center of the detector, the real vertex position is Gaussian-
smeared around z = 0 with σ ∼ 10 cm. A cut of |zvtx| < 35 cm ensures the
event originates from the ep interaction.

Electron Identification

The scattered electron is reconstructed based on the information from the
SPACAL calorimeter. The radial and azimuthal angle of the scattered elec-
tron θe and φe are reconstructed regarding the vertex position and the actual
beam position. Given the measured position of the SPACAL cluster xclus,
yclus, zclus and the position of the interaction vertex xvtx, yvtx, zvtx, the
scattering angles of the electron are given by

tan θ =

√

(xclus − xvtx)2 + (yclus − yvtx)2

zclus − zvtx
(4.12)

tanφ =
yclus − yvtx
zclus − zvtx

(4.13)

The scattering angles corrected for the actual position of the beam are re-
constructed as

cos θe = sx sin θ cosφ+ sy sin θ sinφ+ sz cos θe (4.14)

tanφe =
yvtx − y0 − y′zclus
xvtx − x0 − x′zclus

(4.15)

where x0, y0 denote the beam position at z = 0 while x′, y′ denote the beam
direction in the xy plane. The coordinates of the beam direction vector ~s
are given as

sx =
x′

√

x′2 + y′2 + 1
, sy =

y′
√

x′2 + y′2 + 1
, sz =

1
√

x′2 + y′2 + 1
(4.16)

In order to ensure the whole cluster is contained in the SPACAL volume
the distance of the cluster from the beam axis in the rφ plane rSPACAL
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is constrained to 18 < rSPACAL < 74 cm. The cluster-beam distance is
evaluated at z = −160 cm as

rSPACAL = tan θe(−160 − zvtx) (4.17)

Since hadrons can be often misidentified as electrons the fraction of the
energy of the cluster deposited in the hadronic part of the calorimeter is
constrained by Ehad/Etot < 15% where Etot denotes the total energy of the
cluster. A typical hadronic shower is broader than an electromagnetic one
hence the probability of a hadron faking an electron is further reduced by a
cut applied on the energy weighted radius of the cluster rlog < 4 cm. The
information from the individual cells contained in the cluster is accounted
for in the following way:

rlog =

∑

i dr max(0, 4.8 + log Ei

Eclus
)

∑

i max(0, 4.8 + log Ei

Eclus

)
(4.18)

The sum runs over all cells within the cluster and dr denotes the radial
distance between the position of a cell (xi, yi) and the cluster barycentre

dr =
√

(xi − xbar)2 + yi − ybar)2 (4.19)

The barycentre xbar is introduced as

xbar =

∑

i xi max(0, 4.8 + log Ei

Eclus

)
∑

imax(0, 4.8 + log Ei

Eclus
)

(4.20)

and ybary is defined analogously. Electrons that belong to jets can also be
misidentified as the scattered electron. Therefore energy deposited in a cone
of radius R2 = (∆η)2 + (∆φ)2 in the ηφ space is considered. The electron
is isolated by requiring Econe/Etot < 5% where Econe denotes the energy
deposited in the hadronic section of the calorimeter within the cone. If
there is more than one identified electron satisfying the above criteria the
electron with the highest transverse momentum is accepted as the scattered
electron. The electron selection cuts are summarized in Table 4.4. Details
on the electron identification can be found in [].

Background Rejection

A fraction of the measured NC DIS signal originate in the QED Compton
(QEDC) scattering (ep → epγ). A QEDC event is identified requiring at
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Cut Value Description

Nelmag ≥ 2 Nr. of electromagnetic particles in SPACAL calorimeter

E1 > 4 GeV Energy of Candidates
E2 > 4 GeV
E1 + E2 > 18 GeV
− cos(φ1 − φ2) > 0.95 Acoplanarity

Table 4.3: Selection criteria for QED Compton scattering events.

Cut Purpose

|zvtx| < 35 cm Interaction Vertex

35 < E − pz < 75 GeV DIS Energy and Momentum Conservation

4 < Q2 < 80 GeV2 DIS Phase Space
0.1 < y < 0.7

Ee > 9.5 GeV Electron Energy

rlog < 4 cm Electromagnetic/Hadronic Cluster Separation
Econe/Etot < 5%

18 < rSPACAL < 74 cm SPACAL Acceptance

Anti-QEDC Rejection of QED Compton Scattering

Table 4.4: NC DIS event selection criteria.

least two electromagnetic particles that are oriented in the opposite φ di-
rection and correspond thus to the final state photon and electron. The
selection criteria, based on which QEDC events are identified and rejected,
are summarized in Table 4.3.

The photoproduction processes occur at very low scattering angles where
the scattered electron typically escapes undetected. A HFS particle (e.g.
pion) can leave energy deposit in SPACAL and mimic thus NC DIS event
signal. Besides the cuts improving the accuracy of the electromagnetic and
hadronic cluster separation (constrain on rlog and Ehad/Etot), the photopro-
duction background is further rejected making use of energy and momentum
conservation. In a DIS event, the energy and longitudinal momentum is
conserved according to E − pz =

∑

i(Ei − pz,i) = 2Ee ∼ 55 GeV with the
sum counting all HFS objects and the scattered electron. A restriction of
35 < E − pz < 75 GeV is required for the NC DIS selection.
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4.4.2 Selection of DDIS Dijet Events

Diffractive Selection

The Large Rapidity Gap (LRG) selection of diffractive events relays on the
presence of the characteristic gap in rapidities of the HFS objects that clearly
separates the system X and Y . The most forward LAr cluster with energy
above the noise threshold (800 MeV) is required to occur at a maximum
rapidity of ηmax < 3.2. Further, events causing activity in the forward
region are refused based on the information from FMD, FTS and PLUG
calorimeter.

FMD is sensitive to particles stemming from interactions of proton dis-
sociation products with material of the beam pipe. The proton dissociation
events are suppressed by demanding no activity in FMD. Only events with
at most one hit pair in the first two layers and at most two hit pairs in
the first three layers are accepted. The remaining three FMD layers located
behind the toroid are not used in the selection due to higher noise.

The FTS located at z = 28 m is feasible to detect hadrons which originate
in proton dissociation and occur at very high rapidity. In the LRG selection,
events with no hits in FTS are accepted.

Energy measured in the PLUG calorimeter, that covers the region be-
tween LAr and FMD, is restricted by cut EPLUG < 3 GeV ensuring thus
there is no activity above the noise threshold.

Since the events at large xIP mostly originate in non-diffractive DIS pro-
cesses the restriction of xIP < 0.03 is required in addition.

The LRG selection cuts are summarized in Table 4.5.

Cut Value Description

ηmax < 3.2 Forward activity in LAr

xIP < 0.03 Diffraction Phase Space

NFMD
1+2 ≤ 1 Hit pairs in the first 2 FMD layers

NFMD
1+2+3 ≤ 2 Hit pairs in the first 3 FMD layers

NFTS
28 Hits in the FTS 28 m station

EPLUG < 3 GeV Energy in PLUG

Table 4.5: LRG selection cuts.
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Jet Selection

Jets are reconstructed by means of the kT algorithm in the photon-proton
(γ∗p) center of mass system. The boost vector corresponding to the virtual
photon is obtained from the reconstructed fourmomentum of the scattered
electron. The boost transformation includes a rotation around the γ∗p axis
so that the scattered electron trajectory lays in the z − x plane in the γ∗p
frame, i.e. φ∗

e = 0. The leading and subleading jet transverse momenta have
to fulfill p∗T,1 > 5.5 GeV and p∗T,2 > 4.0 GeV respectively. The asymmetric
cut on the transverse momenta follows the assumptions necessary for the
fixed order QCD prediction calculation. The geometric acceptance of the
LAr calorimeter imposes restriction on the jet pseudorapidity in the labora-
tory frame −1 < η1,2 < 2. Events with at least two jets that meet the above
criteria are selected. The criteria for selecting a dijet event are summarized
in Table 4.6.

Cut Value Description

Njet ≥ 2 Jet multiplicity

p∗T,1 > 5.5 GeV Minimum transverse momentum in γ∗p

p∗T,2 > 4.0 GeV

−1.0 < η1.2 < 2.0 Pseudorapidity in lab. frame

Table 4.6: Dijet selection cuts.

4.5 Trigger Efficiency

The trigger efficiency is determined based on the Analysis Sample (AS),
which is selected by the investigated trigger, and the Reference Sample (RS),
which is selected by triggers that are independent from the investigated
trigger. Denoting N(RS) the number of events in the reference sample and
N(AS ∧RS) the number of events in both samples, the trigger efficiency is
given by

εTrig =
N(AS ∧RS)

N(RS)
(4.21)

The trigger efficiency of S61 is studied separately for the SPACAL and
FTT condition.
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Figure 4.1: S61 SPACAL condition trigger efficiency as a function of
SPACAL cluster coordinates after the fiducial cuts (a) and the Fermi func-
tion fit (b). The data belong to the run period 2005e−.

4.5.1 S61 SPACAL Trigger Efficiency

The inclusive DIS data sample, that serves as the analysis sample for the
SPACAL S61 efficiency εSpacTrig determination, is selected by means of cuts
defined in Table 4.4. The monitoring sample is selected within the same
kinematic cuts but requiring any subtrigger independent from S61 to be set.

The SPACAL fiducial cuts defined in Table 4.4 are a priori unknown
and are determined by a scan of the SPACAL S61 efficiency as a function
of SPACAL cluster coordinates εSpacTrig (x, y). The regions of low trigger effi-
ciency that correspond to improperly working SPACAL cells are excluded
by requiring εSpacTrig (x, y) > 96% (see Figure 4.1 (a)). Furthermore, the ǫSpacTrig

is expected to decrease with the energy of the scattered electron in the re-
gion Ee < 11 GeV. On the other hand, in order to ensure sufficiently large
statistics for the measurement of the cross section up to y < 0.7, the cut
on the scattered electron energy ought to be at least Ee > 9.5 GeV. The
decrease in the trigger efficiency is described by the Fermi function

εSpacTrig (Ee) =
a

exp(b− Ee)/c+ 1
(4.22)

where a, b and c are parameters to be fitted. The inefficiency of the SPACAL
part of S61 trigger is corrected for by reweighting the events in data by factor
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of 1/εSpacTrig (Ee) obtained from the Fermi function fit to the trigger efficiency
measured down to Ee > 7.0 GeV (see Figure 4.1). Figure 4.2 illustrates
the trigger efficiency, where the analysis sample is corrected for by the Fermi
function fit. The trigger efficiency remains above 99% after the correction
for all analyzed run periods.

4.5.2 S61 FTT Trigger Efficiency

The correction of the measured event rate to the FTT S61 efficiency ǫFTT
Trig

relays on the MC and is included in the unfolding of the cross section to
the hadron level. The FTT trigger element should be therefore simulated in
accordance with the efficiency observed in data. The MC analysis sample is
selected by requiring the FTT trigger element to be set while the reference
sample includes all events that passed the kinematics cuts. Both MC samples
consist of a sum of the diffractive and non-diffractive sample normalized by
factors derived in Section 4.7.1. The monitor subtrigger S0 is used for the
run period 2005e−. The subtrigger S0 depends on the FTT condition for
run periods 2006e−, 2006e+ and 2007e+, hence the subtrigger S1 is chosen
as the monitoring trigger. The comparison of the data and MC FTT trigger
efficiency for in Figure 4.3. The difference between the data trigger efficiency
and the MC FTT emulation can be covered within 1/% which is propagated
into the systematic error of the measurement.

4.6 Detector Effects in MC

The reconstruction efficiency and finite resolution of the detector put limita-
tions on direct interpretation of the measured event rates as a cross section
at the level of stable hadrons. The relevant correction of the measured
spectra, often referred to as the unfolding of the data to the hadron level,
is performed statistically by applying an appropriate correction factor to
the each bin of the studied distribution. Besides a good description of the
measured data by the MC simulation, this method is also sensitive to mi-
grations between hadron and detector level quantities. A binning that leads
to a meaningful differential cross section measurement has to be chosen re-
garding the hadron-detector resolution and correlation. The correlation and
resolution, which is defined as Rrec/Rgen for an observable R, are studied
within the full analysis cuts defined in Table 4.5.
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Figure 4.2: Trigger efficiency of the SPACAL component of S61 as a function
of scattered electron energy Ee, Q

2 and y displayed separately for 2005 e−,
2006 e− and 2006/2007 e+ run periods. The analysis sample is reweighted
with the inverse of the fitted Fermi function.
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Figure 4.3: Trigger efficiency of the FTT part of subtrigger 61 as a function
of track multiplicity, transverse momentum of the leading jet and difference
in jets pseudorapidity. Comparison of data and MC FTT emulation for run
periods 2005e−. (a,b,c), 2006e− (d,e,f) and 2006/2007e+ (g,h,i).
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Figure 4.4: Hadron-detector resolution of MX before the correction (a).
Mean value of the MX resolution as a function of ηmax (b). The MX reso-
lution after the correction (c).

4.6.1 Correction of Resolution

The HFS can not be fully reconstructed due to the limited acceptance of
the detector. As it can be seen in Figure 4.4 (a), approximately 10% of the
HFS energy is lost at the reconstructed level compared to the model pre-
diction at the hadron level. Hence an additional correction is applied to the
reconstructed MX for both data and MC. The mean value of the resolution
M rec

X /Mgen
X shows a non-trivial dependence on ηmax. Figure 4.4 (b) dis-

plays the mean values < Mgen
X /M rec

X > obtained with a Gaussian fit in each
bin of ηmax with error bars corresponding to the errors of the fitted mean
value. The relevant correction is than determined based on a polynomial
fit to the < Mgen

X /M rec
X > (ηmax) dependence. The resolution improving

factor appearing in the reconstruction formula 4.9 is than identified with
< Mgen

X /M rec
X > (ηmax). The resolution of the corrected MX is shown in

Figure 4.4 (c).

4.6.2 Correlation between Detector and Hadron Level

Correlation between hadron and detector quantities and corresponding res-
olution are displayed in Figures 4.5 and 4.6.

The DIS quantities Q2 and y calculated within the e − Σ method show
overall a very good resolution. The smearing in transverse momenta of the
jets is a consequence of particle flow algorithm limitations and the finite
calorimeter granularity. The central value of the resolution of zIP is shifted
towards reconstructed values by ∼ 5%.
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As a consequence of the smearing of jet energy, the leading jet at the
reconstructed level may correspond to the subleading jet at the hadron level
and vice versa. Hence the correlation and resolution of the jet azimuthal
angle and pseudorapitidy are studied requiring the closest distance in the η, φ
metrics between the hadron and detector level jets. Given a reconstructed
jet with ηrec and φrec, its hadron level counterpart is chosen demanding
min(∆1,∆2), where ∆i =

√

(ηrec − ηgeni )2 + (φrec − φgen
i )2.

4.7 Comparison of Data and MC

4.7.1 Normalization of Background

The normalization of the background MC, which quantitatively describes
the migration from xhadIP > 0.2 into the measured phase space, is determined
based on the inclusive DIS dijet sample, i.e. the cuts defined in Tables
4.4 and 4.5 are applied. The normalization is obtained making use of the
log(xIP ) distribution. The diffractive contribution is normalized to the data
in the low xIP region where the non-diffractive contribution is negligible. The
normalization of the sum of the diffractive and non-diffractive contribution
is fixed to the normalization of the data in the region around the xIP cut.
The normalization of the background sample based on the luminosity thus
has to be scaled by factor of Cbgr = 0.8. Figure 4.7 shows the ηmax and
log(xIP ) distributions after the normalization of MC samples.

4.7.2 Reweighting of MC

Accurate modeling of the data is further achieved by reweighting the hadron
level spectra of the signal MC. In order to determine a reweighting function
that is applied to hadron level quantities, a correlation matrix A between
the hadron and detector level is considered. A weight value wi in each bin
i of the relevant distribution is obtained by requiring wi = A−1

ij dj , so that
the distribution in data di is described by MC.

A precise MC simulation of the interaction point position is of vital
importance for the event kinematics reconstruction. As a consequence of
the longitudinal size of the beam bunches (∼ 2 cm and ∼ 13 cm for electron
and proton beam respectively), the vertex of the ep interaction is randomly
distributed around the nominal interaction point (z = 0). Under the stable
beam conditions, this distribution is approximately Gaussian. On the other
hand, the MC zvtx distribution, as simulated within the H1SIMREC, is a
Gaussian distribution with a mean < zvtx = 0 > and a width σ = 13 cm.
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Figure 4.5: Correlations between detector and hadron level.
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Figure 4.6: Detector resolution with respect to the hadron level.
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Figure 4.7: Comparison of DIS dijet data and a sum of the diffractive and
non-diffractive MC. The relative MC normalization is determined based on
the distribution of log(xIP ) (a) and is applied to the distribution of ηmax (b).

The shape of the zvtx distribution in data is modeled by means of
reweighting of the MC events. The reweighting function is determined from
the hadron-detector correlation matrix filled applying the full set of analysis
cuts defined in Tables 4.4 - 4.6. The resulting set of weights wi for each bin
of zgenvtx is intercepted with a spline that is applied as the actual reweighting
function.

The MC generator evaluates the QCD matrix elements up to the LO
order while possible contributions from higher orders are modeled by means
of initial and final state parton showers. The imprecision in the higher order
QCD radiation treatment is projected not only to the overall MC normal-
ization (the predicted cross section in MC is ∼ 10% lower than in data) but
also to the topology of the final state objects. While the transverse momenta
of the jets agree well with the measured distributions the pseudorapidity of
both jets shows significant deviation from data. The simulated MC events
are therefore reweighted regarding the topology of the two jets as well as of
the overall HFS, for which the variable xγ is particularly suitable.

The reweighting function applied on xgenγ is obtained in the same manner
as for the zvtx reweighting.

The MC zIP distribution reweighted in xγ still shows disagreement with
data, hence an additional reweighting in zIP is performed. However, the
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Figure 4.8: Comparison of data to the MC simulation in distributions
that are significantly affected by the reweighting. Both the original and
reweighted signal MC samples are displayed.

reweighting in xγ and zIP appears not to be independent, the effects of
both reweightings tend to cancel each other. In order to avoid a two di-
mensional reweighting and related technical complications (the correlation
matrix would be replaced by a four dimensional object), the reweighting
functions are determined iteratively. A sample, to which the reweighting
function w(xγ , zIP ) = w1(xγ) × w1(zIP ) is applied, is used again to deter-
mine a reweighting function w2(xγ), etc. The reweighting functions become
stable (close to one) after three iterations. The reweighting function mod-
eling the jet and HFS topology in data reads

w(xγ , zIP ) =

3
∏

i=1

wi(xγ)× wi(zIP ) (4.23)

The effect of the reweighting in zvtx, xγ and zIP is illustrated in Figure 4.8.
Improvement in description of the jet psedorapidity is significant.

As the RAPGAP MC generator involves the particular fit to DPDF (H1
2006 Fit B) in its cross section calculation, the DDIS data are not accurately
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reproduced especially in the low Q2 (the extracted DPDF is extrapolated
into this region). Hence a three dimensional weight wDPDF (Q

2, β, xBjorken),
that has been determined within the H1 collaboration [42], is used.

The overall reweighting function applied on signal MC events thus pro-
vides with correction for the zvtx simulation, shortcomings of the parton
showers approach and indiscrepancy between the diffractive RAPGAP and
the DPDF fit:

w = wDPDF × w(xγ , zIP )× w(zvtx) (4.24)

The reweighted MC sample provides with satisfactory description of studied
distributions.

4.7.3 Control Plots

In the following, the detail comparison of data distributions to the detector
level MC distributions, so called control plots, are given.

Figure 4.9 shows the spectra related to the electron identification. The
perfect description of the electron related quantities ensures reliable recon-
struction of the boost vector, which is crucial for the jet finding in the γp
frame.

Figure 4.10 displays a set of control plots derived from the jet quantities.
Precise description of the jet transverse momenta distribution is expected
even without reweighting while description of ∆η and < η > is less accurate
despite the full reweighting is applied. The zIP distribution is described
precisely due to the reweighting.

A set of control plots related to the diffractive quantities is shown in
Figure 4.11. Lack of accuracy in the forward detector response simulation
is apparent.

The description of data by MC is adequate in general, except for the
jet rapidity related variables, where disagreement exceeding the statistical
errors of data occurs. This remaining inaccuracy is propagated to the sys-
tematic error of the measurement.

4.7.4 Energy Flow

Accuracy of the simulation of the detector response to jets can be tested by
exploring the average energy flow per event of individual tracks as well as
of combined track-cluster objects (particle candidates) that form HFS. The
energy flow of particles surrounding a jet is studied as well.
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Figure 4.9: Comparison of MC simulation to data for quantities related to
the scattered electron identification.
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Figure 4.10: Comparison of MC simulation to data for jet quantities.
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Figure 4.11: Comparison of MC simulation to data for diffractive quantities.

Figure 4.12 shows the transverse energy flow as a function of η∗ of tracks
and particle candidates together with the energy flow along the z axis. The
values measured in data are in adequate agreement with the simulation.

A jet profile in η, resp. φ, is defined as the transverse energy flow of par-
ticle candidates that fulfill |φ∗

jet−φ∗
part| < 1 rad, resp. |η∗jet−η∗part| < 1. The

profiles of the leading and subleading jets measured in data are adequately
reproduced by the MC simulation which is demonstrated in Figure 4.13.

The precise agreement between data and MC at the level of the forward
energy flow is partially a consequence of the reweighting.
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Figure 4.12: Energy flow of combined HFS objects and tracks in transverse
direction and along the z-axis as a function of pseudorapidity. Data are
compared to the reweighted signal MC.
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part.



Chapter 5

Cross Section Measurement

The measurement of cross section of diffractive dijet production in NC DIS is
presented in this chapter. The results are confronted with the NLO pQCD
predictions and with diffractive dijet cross sections determined in similar
measurements.

The phase space for the dijet production accessible with H1 detector,
referred to as visible range, is defined by the following constrain of kinematic
variables:

4 < Q2 < 80 GeV2, 0.1 < y < 0.7 (5.1)

xIP < 0.03, |t| < 1, MY < 1.6 GeV (5.2)

p∗T1 > 5.5 GeV, p∗T1 > 4.0 GeV (5.3)

− 3 < η∗1,2 < 0 (5.4)

The cross section is measured deferentially as a function of Q2, y, xIP , p
∗

T1,
p∗T2, zIP and ∆η∗ = |η∗1−η∗2 | and zIP . The event rate N

i
data in bin i is unfolded

to the hadron level cross section and corrected for the QED radiation effects
according to

dσ

dX
=

N i
data −N i

bgr

L.Ai
Ci
QED

1

∆i
X

(5.5)

where N i
bgr stands for number of background events determined by the MC

simulation, Ai for the acceptance in bin i and Ci
QED for the QED radiation

effect correction factor. L denotes the integrated luminosity of the whole
data sample and ∆i

X denotes the width of the bin i. The number of observed
events N i

data is corrected for the trigger efficiency related to the S61 SPACAL
condition while the trigger efficiency related to the S61 FTT condition is

58
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accounted for in the acceptance (see Section 4.5). The corrections applied
to data are described in more detail in following sections.

5.1 QED Radiation Corrections

The initial and final state QED radiation effects may influence the measure-
ment of the cross section in several ways. Emission of a real photon affects
the reconstruction of the basic kinematic variables, especially Q2. Further,
the reconstruction of the boost vector including the radiated photon could
add another transverse component with respect to the photon-proton axis
faking thus an underlying QCD process. If a photon is radiated with rela-
tively high transverse momenta it can be identified as a part of the HFS and
included in the jet finding increasing thus the jet production rate. Besides
the real photon emission, another effects occur due to virtual corrections
which lead to running αem with an impact on the cross section as a function
of Q2 in order of few percent.

The effects of the QED radiation are modeled by means of HERACLES
which is interfaced to RAPGAP MC generator. HERACLES is capable of
modeling emission of real photons from either initial or final state electron
as well as the eγe′ vertex correction. The effects leading to the running
αem, i.e. vacuum polarization and self-energy diagrams, are not part of
HERACLES but are included in RAPGAP itself being thus accounted for
in the acceptance.

Each measured bin i is corrected for QED radiation effect by factor
Ci
QED given as

Ci
QED =

σi
non−rad

σi
rad

(5.6)

with σi
rad being the cross section calculated with HERACLES interface and

σi
non−rad the cross section calculated omitting the QED effects.
The radiative corrections enhance the measured cross section by factor

of ∼ 5% on average. The relevant correction factors are shown in Figure
5.1

5.2 Corrections for Detector effects

The detector smearing of the underlying physics distributions is corrected for
by means of the bin-by-bin method as indicated in equation (5.5). In case of
the bin-by-bin correction, the precise reproduction of kinematic distributions
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Figure 5.1: QED radiation correction factors.
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in data by the MC simulation is of vital importance as well as adequate
understanding of migrations between bins. The former requirement is met
through the reweighting of the MC cross sections discussed in Section 4.7.2
while the latter one relays on the plausible simulation of detector effects
and resolution. Besides the detector resolution, studied in Section 4.6, the
migration effects are investigated in greater detail in terms of purity and
stability. The following event rates are taken into account for quantifying
the migrations:

• Nrec is the number of events reconstructed in bin i.

• Ngen is the number of events generated in bin i.

• Nstay is the number of events reconstructed and generated in bin i.

• Nin is the number of events reconstructed in bin i but generated in
another bin of the phase space.

• Nout is the number of events generated in bin i but reconstructed in
another bin of the phase space.

• Ngain is the number of events reconstructed in bin i but not generated
in the phase space.

• Nlost is the number of events generated in bin i but not reconstructed
in the phase space.

The introduced quantities are obviously related as

Nrec = Nstay +Nin +Ngain (5.7)

Ngen = Nstay +Nout +Nlost (5.8)

The acceptance A, purity P and stability S for each measured bin are then
defined as follows:

A =
Nrec

Ngen
(5.9)

P =
Nstay

Nrec
(5.10)

S =
Nstay

(Ngen −Nlost)
(5.11)

Acceptance takes into account reconstruction effects as well as detector effi-
ciency since it relates the number of events reconstructed in a particular bin
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to the number of events generated in the bin. Purity expresses the probabil-
ity of an event generated in a particular bin to be reconstructed in the same
bin. Stability quantifies the fraction of events generated and reconstructed
in the same bin to the number of events generated in this bin and recon-
structed within the visible phase space. The events that are reconstructed
outside the visible phase space are not included in the stability definition
since they are already treated within the acceptance.

The values of purity, stability and acceptance in the binning chosen for
the measurement are shown in Figure 5.2. The total purity is at level of
45 % and the total acceptance of 80 %. The purity remains stable and
confidentially high for Q2 and y distributions, while it shows rather strong
dependence for variables calculated directly from HFS and jets, which is
expected due to the poor resolution of the relevant variables. The acceptance
in the lowest Q2 bin is very low. The decrease can be connected with a flow
of events from the region bellow the Q2 cut into the first bin. This can
be cured by involving a more sophisticated unfolding procedure, based on
a least square fit with Tikhonov regularization [43], than the bin by bin
correction used here.

5.3 Hadronization Corrections

In order to compare the measured cross section to the NLO pQCD predic-
tion, which is calculated at level of partons, the effect of hadronization has
to be accounted for.

The relevant correction factors are calculated making use of the dedi-
cated MC samples which employs different models of parton showers. The
hadronization corrections can be readily applied only if the correspondence
between the parton and hadron level quantities is accurate. Figure 5.3
resp. 5.4 shows the parton to hadron level correlation resp. resolution for
the quantities of interest. The variables calculated from the measurement of
the scattered electron are insensitive to the hadronization effects. The mass
of HFS MX remains same on both levels due to momentum conservation
therefore the effect on the xIP distribution is significantly low. On the other
hand, the jet finding accounts for all objects contained in the HFS, which
is different on the parton resp. hadron level. The correspondence between
variables derived from the jet measurement, e.g. zIP is consequently less
accurate. However, the resolution of 15% still allows for reliable correction
of the partonic cross section to the hadron level.

Although the signal MC involves the LLPS approach to the parton show-
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Figure 5.2: Acceptance, purity and stability.

ers, the hadronization corrections are additionally studied with a sample
involving another approach, the Color Dipole Model (CDM) (see Section
4.2.1). The cross section calculated with either parton showers model should
agree with the cross section calculated by means of nlojet++, for which the
parton level of RAPGAP is reweighted to the nlojet++ calculation in zIP .
The agreement after the reweighting is illustrated in Figure 5.5.

The hadronization correction factor Ci
had in a bin i is determined as a

fraction the cross section on the hadron level σi
had to the cross section on

the parton level σi
part:

Ci
had =

σi
had

σi
part

(5.12)
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Figure 5.3: Correlation between parton and hadron quantities.

The actual correction factor is then taken as an average value of the fac-
tors calculated with two different parton shower models Ci

had = (CiLLPS
had +

CiCDM
had )/2. The uncertainty on the correction factors is considered as the

maximum difference between the two parton showers models and the central
value

∆Ci
had = max(|CiLLPS

had − Ci
had|, |CiCDM

had − Ci
had|) (5.13)

The hadronization corrections for both parton shower models as well as the
central values are shown in Figure 5.6. The correction enhances the total
parton level cross section by 10%. The average value of the uncertainty of
the correction factors is ∼ 9%.

5.4 Uncertainties of Measurement

The uncertainty of the cross section determination is dominated by the ex-
perimental systematic error due to the relatively large number (∼ 103) of
reconstructed dijet events. Sources of systematic uncertainty given by the
detector limitations as well as by the model dependence of the measurement
are considered.
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Figure 5.4: Resolution between parton and hadron quantities.

5.4.1 Detector Systematic Uncertainties

The intrinsic resolution and calibration of the detector impose imprecision
in basic kinematics reconstruction (electron and HFS). The corresponding
bias on the measured cross section is explored via variation of the relevant
quantities on the detector level of the MC simulation.

The precision of the scattered electron energy measurement is ∼ 2%
which turns into ∼ 1% error of the total cross section determination.

The angle of the scattered electron is experimentally determined with
precision of 1mrad. Variation of the electron angle is translated into the
error of ∼ 1% on the total cross section.

In general, a measurement requiring jets in the final state is, sensitive to
the energy measurement of HFS. The H1 detector allows for separation of
electromagnetic and hadronic showers followed by reconstruction and cali-
bration of single HFS object within the precision of 2% in the energy scale.
The uncertainty of the HFS energy determination is thus regarded by vary-
ing energy of each object contained in HFS by ±2%. The resulting error
of 4% on the total cross section measurement is the dominating detector
systematic error.
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Figure 5.5: The Rapgap MC on the parton level compared to the NLO QCD
prediction. The MC cross section is reweighted to NLO in zIP .

The uncertainties originating in the electron and HFS measurement im-
precision are treated as uncorrelated, e.i. evaluated for each measured bin
separately. The efficiency of the trigger S61 and the precision of the lu-
minosity measurement introduces source of the correlated uncertainties as
they are expected to be independent from a particular kinematic variable.
The trigger efficiency related to the SPACAL, resp. FTT, condition of the
S61 subtrigger introduces the error of 1%, resp. 2% on the normalization of
the cross section. The experimental error of the luminosity determination,
which is 2.5% for the selected data sample, is accounted for as the additional
uncertainty on the normalization.
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Figure 5.6: Hadronization correction factors.
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The total cross section determination is biased with the error of 6% due
to the detector restraint.

5.4.2 Model Systematic Uncertainties

Besides the uncertainties imposed by the experimental precision, the cross
section measurement is also biased by the limitations of the involved model
as well as the detector simulation.

The error of the translation of the measured event rate to the hadron level
cross section is accounted for by varying the shapes of the distributions p∗T1,
Q2, xIP , β, t, |∆η|, xγ and zIP within the statistical errors of the data. The
Q2 distribution is reweighted by log±0.2(Q2), the xIP distribution by x±0.05

IP ,
the β distribution by β±0.01(1− β)±0.01, the p∗T1 distribution by p∗±0.4

T1 and
∆η distribution by (1.5 + ∆η)±0.5. The slope of the t distribution is varied
within the error of the fitted value [44], for which the weight of form e±t is
applied. Since the MC is accommodated to the data by reweighting in xγ and
zIP , the additional uncertainty is studied by reweighting by x±0.15

γ and z±0.15
IP

The values of uncertainty corresponding to the shape variations are listed
in Table 5.1. The total uncertainty stemming from the detector to hadron
level transition, calculated as a square sum of the individual contributions,
is 4%.

The effective selection of the diffractive events in data by the LRG
method requires an accurate MC simulation of the forward energy flow.
The accuracy of the simulation is studied by direct tagging of the elastically
scattered proton in the H1 detector. Whereas the RAPGAP simulation is
found to agree with data within 30% [45], the events lying in the phase
space given by ( 5.1- 5.4) but rejected by the LRG criteria defined in Table
4.5 are reweighted by factor of ±30%. The LRG selection inefficiency is thus
propagated into the uncertainty of 7%.

An additional source of the model uncertainty is related to possible mi-
grations of non-diffractive events into the measured xIP range. Hence the
normalization of the background MC sample is varied by 50%, which affects
the total cross section by less than 0.5%.

The overall systematic uncertainty stemming from the model inaccuracy
is 9%. The description of the kinematic distributions in data within the
model originated errors is illustrated in Figure 5.7.
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Figure 5.7: Comparison of kinematic distributions in data and reweighted
RAPGAP. The model systematic errors are displayed as the shadow band
around MC values. The non diffractive background is statistically sub-
tracted from the data.

5.4.3 Statistical uncertainty

The statistical uncertainty enters the measurement as a consequence of a
finite number of events determining the relevant quantities and is given
as the first momentum of Poisson distribution, i.e. counting N events is
biased with the error of

√
N . Although the MC samples are populated with

statistics ∼ 10 times higher than data the statistical error of the MC can
not be safely neglected especially in some particular bins. Moreover, the
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Varied Distribution Weight Function Error

p∗T1 p∗±0.4
T1

3.1 %

t e±t 2.6 %

∆η∗ (1.5 + ∆η)±0.5 2.0 %

Q2 log±0.2(Q2) 1.1 %

zIP z±0.15
IP

2.0 %

xγ x±0.15
γ

0.6 %

β β±0.01(1− β)±0.01 0.5 %

xIP x±0.05
IP

0.6 %

Total 9.1 %

Table 5.1: Overview of systematic uncertainties of the unfolding of data to
the hadron level.

migration between bins may cause additional rise in statistical error. The
acceptance can be expressed as a function of uncorrelated quantities Nstay,
Nin, Nout and Nlost, which are directly related to the migrations, combining
the equations 5.7 and 5.8. The statistical error of MC is evaluated as the
uncertainty on the acceptance according to

σ2
A = (

∂A

∂Nstay
)2σ2

stay + ... (5.14)

and is added to the statistical error of the data in quadrature.

5.4.4 Summary of uncertainties

The model uncertainties, including the LRG selection inefficiency, are at
level of 9 % and represent the dominant contribution to the error of the
measurement. The detector induced uncertainties contribute at level of 2.8%
while the statistical uncertainty of 1 % is relatively small. The integrated
cross section determination is biased with the total experimental error
of 11 %.
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5.5 Results

The integrated cross section of the DDIS dijet production measured in the
phase space given by ( 5.1) is determined to be

σ(ep → e′XdijetY ) = 63.4 ± 0.7 (stat) ± 6.7 (sys) pb (5.15)

The above value represents the cross section at the level of stable hadrons
corrected for QED radiation effects and the trigger efficiency.

5.5.1 Comparison to NLO Calculations

Figures 5.8 and 5.9 show comparison of the single differential diffractive
dijet cross section measured as a function of Q2, y, xIP , p

∗

T1, p
∗

T2, ∆η∗ and
zIP to the NLO QCD predictions.

The NLO QCD cross sections are calculated by means of the nlojet++
program which is adjusted to diffractive processes as described in Section
2.5. The effects of hadronization are accounted for by application of the
hadronization correction factors derived in Section 5.3. The uncertainty
of the prediction is given by variation of the chosen scale µ2 = Q2+ <
p∗T > in range from µ2/4 to 4µ2 resulting in the average uncertainty of
∼ 35%. Additional source of the uncertainty is introduced due to the errors
of the PDF fit parameters. The resulting uncertainty on the integrated cross
section is at level of ∼ 40%. The scale and PDF uncertainties are added
in square. The uncertainty of the hadronization correction factors, which
is on average ∼ 8%, is propagated to the total NLO prediction uncertainty
in every bin of the measurement. The combined uncertainty is displayed in
Figures 5.8 and 5.9. as an error band around the central value.

The total cross section of the diffractive dijet production in DIS calcu-
lated in NLO QCD is

σpart
ep→qq̄ = 51.3+18.3

−11.5 (scale)± 10.3 (fit) pb (5.16)

The total cross section with the hadronization correction applied yields

σhad
ep→qq̄ = 56.2+20.3

−12.9 (scale)± 11.3 (fit)± 2.8 (had.) pb (5.17)

The value predicted utilizing the H1 2006 Fit B underestimates the total
cross section measured at hadron level by about 12%, however, the difference
does not exceed the scale and PDF uncertainty of the prediction.

The differential cross section measured as a function of Q2 shows satis-
factory agreement with the NLO prediction except of the lowest bin where
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Figure 5.8: Comparison of the data to the NLO QCD predictions based
on H1 2006 Fit B and corrected for the hadronization effects. The inner
error bars of the data points represent the statistical errors and the outer
error bars represent the systematic and statistical errors added in quadra-
ture. The inner band around the NLO QCD predicted values represents the
hadronization error, the broader band represent the DPDF fit uncertainty
with hadronization error propagated and the outer band represent the total
uncertainty of the prediction. The lower part of each plot displays the ratio
of measured values to the predictions.



CHAPTER 5. CROSS SECTION MEASUREMENT 73

Data
 Had⊗NLO 

Unc. Had
 Fit⊕Unc. Had 

 Fit⊕ Theor ⊕Unc. Had 

 [GeV]*
T 1p

6 7 8 9 10 11 12 13

 [p
b/

G
eV

]
* T
 1

/d
p

σd

1

10

210

 [GeV]*

T 1
p

6 8 10 12

R

0
1
2  [GeV]*

T 2p
4 6 8 10 12 14

 [p
b/

G
eV

]
* T
 2

/d
p

σd
1

10

210

 [GeV]*

T 2
p

4 6 8 10 12 14

R

0
1
2

|*|
0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8

| [
pb

]
* η

∆
/d

|
σd 20

40

60

|*η∆|
0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8

R

0
1
2

Figure 5.9: Comparison of the data to the NLO QCD predictions based
on H1 2006 Fit B and corrected for the hadronization effects. The inner
error bars of the data points represent the statistical errors and the outer
error bars represent the systematic and statistical errors added in quadra-
ture. The inner band around the NLO QCD predicted values represents the
hadronization error, the broader band represent the DPDF fit uncertainty
with hadronization error propagated and the outer band represent the total
uncertainty of the prediction. The lower part of each plot displays the ratio
of measured values to the predictions.
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the predicted value is slightly lower than the data. The differential measure-
ment in y is in excellent coincidence with the prediction for y <∼ 0.45 while
for higher y, the NLO calculation underestimates the measured data. The
shapes of the xIP and pT1 differential cross sections are well described by
the NLO calculation. A good agreement between the NLO calculation and
the measurement can be also observed in the pT2 single differential measure-
ment. The cross section measured differentially in zIP is properly described
by the NLO calculation. One should take into account that in the region of
zIP > 0.8, the H1 2006 Fit B is not determined from inclusive measurements
and is extrapolated in that region.

In general, the measured differential cross sections are in good agreement
with the NLO QCD prediction.

5.5.2 Comparison with Other Measurements

The measured cross sections are further compared to results of similar mea-
surements - first to the measurement of dijet production involving HERA I
data with the LRG method of selection of diffractive events and second to
the measurement involving the HERA II data with the direct proton tagging
via the Forward Proton Spectrometer (FPS).

LRG Analysis of HERA I Data

The cross section of the diffractive dijet production determined using HERA
I data [46] is

σep→qq̄ = 52 ± 1 (stat.) +7
−5 (syst.) pb (5.18)

which is lower than the presented value (5.15) but is in agreement within
uncertainties of both measurements. Figures 5.10 and 5.11 show the differ-
ential cross section compared to the values given in [46]. The shapes of the
distributions agree rather well, although a small difference of about ∼ 15%
in normalization is observed.

FPS Analysis of HERA II data

The dijet production in diffractive NC DIS is also studied in [47], where
diffractive events are reconstructed making use of direct leading proton de-
tection by means of FPS.

Figure 5.12 displays the comparison of the dijet differential cross section
as a function of log(xIP ) measured with the leading proton method [47] to
the values obtained by means of the LRG method [46]. Additionally, the
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Figure 5.10: Comparison of the current measurement (black points) with
the measurement performed with the HERA I data [46] (red points) in
variables log(xIP ) and y. The inner error bars of the data points represent
the statistical errors and the outer error bars represent the systematic and
statistical errors added in quadrature. The NLO QCD predictions based on
H1 2006 FitB and corrected for the hadronization effects are also depicted;
the error band represents the total theory uncertainty of the prediction. In
the lower part of each plot, the ratio of the data to the NLO prediction is
displayed for the current measurement (black points) and for the HERA I
analysis (red points).
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Figure 5.11: Comparison of the current measurement (black points) with
the measurement performed with the HERA I data [46] (red points) in
variables p∗T1, zIP and ∆η∗. The inner error bars of the data points represent
the statistical errors and the outer error bars represent the systematic and
statistical errors added in quadrature. The NLO QCD predictions based on
H1 2006 FitB and corrected for the hadronization effects are also depicted;
the error band represents the total theory uncertainty of the prediction. In
the lower part of each plot, the ratio of the data to the NLO prediction is
displayed for the current measurement (black points) and for the HERA I
analysis (red points).
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results of this analysis are depicted. The both cross sections determined
within the LRG method are scaled down by factor of 1.2, since the leading
proton reconstruction technique excludes events with a low mass dissociative
system. The difference between the direct tagging of the leading proton and
the LRG selection is measured to be 20 % [48] in terms of the hadron level
cross section.
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Figure 5.12: Diffractive dijet differential cross section as a function of
log(xIP ) compared with the HERA I dijet data measured by the LRG tech-
nique [46] and with the HERA II dijet data measured using FPS [47]. In
the right plot, comparison of the LRG data obtained in this analysis to the
FPS data is given in the same binning in the first two bins.

The results presented in the current measurement differ from the HERA I
analysis mainly in high xIP region. One should take in mind that the system
of forward detectors changed in the HERA II period in comparison with
HERA I. The leading proton analysis relays fully on the FPS information
and is independent from the forward detector information. The presented
dijet differential cross section in log(xIP ) shows rather better agreement with
the FPS measurement from the HERA II run period than the analysis of
the HERA I data [46].
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Conclusion

Dijet production in e±p neutral current scattering is investigated in the
kinematic range 4 < Q2 < 80 GeV2, 0.1 < y < 0.7 , xIP < 0.03, |t| < 1,
MY < 1.6 GeV, p∗T1 > 5.5 GeV, p∗T2 > 4.0 GeV and −3 < η∗1,2 < 0. The

cross section is measured deferentially as a function of Q2, y, xIP , p
∗

T1, p
∗

T2,
∆η∗ and zIP . The integrated cross section at the level of stable hadrons is
determined to be

σ(ep → e′XdijetY ) = 63.4 ± 0.7 (stat) ± 6.6 (sys) pb (6.1)

The experimental results are compared to the NLO QCD predictions which
are evaluated with the nlojet++ program operated in diffractive regime.
The NLO pQCD calculation involving the H1 Fit 2006 B underestimates
the measured cross section by about ∼ 12%. However, such difference re-
mains within the experimental errors and the uncertainties of the perturba-
tive calculations. Single differential cross sections are found to be in plau-
sible agreement with the NLO QCD prediction. The coincidence between
the measured and predicted values of the both integrated and differential
cross sections supports the QCD factorization theorem in diffractive DIS
processes.

The measured cross sections are further compared to the results of an
earlier analysis which studied the dijet production in data collected in years
1999-2000 (period HERA I). The total cross section determined with the
HERA I data [46] is lower but agrees with the presented measurement
within the experimental uncertainties. The main difference occurs in high
xIP region that could be biased with a relatively high systematic error in case
of the LRG identification of diffraction. It is supported by the fact that the
differential dijet cross section in xIP agrees rather well with the differential

78
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dijet cross section measured for HERA II data where the diffractive events
are recognized via the direct proton tagging [47].

The NC DDIS dijet production is measured with unprecedentedly high
statistics and provides the input for possibly more precise determination of
the diffractive gluon density.
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[29] S. Mrenna et al. T. Sjöstrand. PYTHIA 6.4 physics and manual. JHEP
2006, 026, 2006.

[30] H. Spiesberger et al. A. Kwiatkowski. HERACLES: an event genera-
tor for ep interactions at HERA energies including radiative processes.
Comput. Phys. Commun. 69, 155–172, 1992.

[31] M.H. Seymour S. Catani. A General algorithm for calculating jet cross-
sections in NLO QCD. Nucl.Phys. B485 291–419, 1997.

[32] Z. Nagy and Z. Trocsanyi. Multijet Cross Sections in Deep Inelastic
Scattering at Next-to-Leading Order. Phys. Rev. Lett. 87, 82001, 2001.

[33] B. H. Wiik et al. HERA, A Proposal for a Large Electron Proton
Colliding Beam Facility at DESY. DESY-HERA 81/10, 1981.

[34] I. Abt et al. The H1 detector at HERA. Nucl. Instr. and Meth. A 386,
310–347, 1997.

[35] I. Abt et al. The Tracking, calorimeter and muon detectors of the H1
experiment at HERA. Nucl. Instr. and Meth. A 386, 348–396, 1997.

[36] B. Denby et al. C. Kiesling. The h1 neural network trigger project.
Advanced computing and analysis techniques in physics research 583,
36–44, 2001.
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