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Abstract

New experimental data on charged particle multiplicity distributions are presented, cov-
ering the kinematic ranges in momentum transfer 5 < Q2 < 100 GeV2 and inelasticity
0.0375 < y < 0.6. The data were recorded with the H1 experiment at the HERA collider
in positron-proton collisions at a centre-of-mass energy of 320 GeV. Charged particles are
counted with transverse momenta PT > 150 MeV and pseudorapidity −1.6 < η

lab
< 1.6

in the laboratory frame, corresponding to high acceptance in the current hemisphere of
the hadronic centre-of-mass frame. Charged particle multiplicities are reported on a two-
dimensional grid of Q2, y and on a three-dimensional grid of Q2, y, η. The observable
is the probability P (N) to observe N particles in the given η region. The data are con-
fronted with predictions from Monte Carlo generators, and with a simplistic model based
on quantum entanglement and strict parton-hadron duality.



1 Introduction

In the parton model [1–3] formulated by Bjorken, Feymann, and Gribov, the bounded quarks
and gluons of a nucleon are viewed as “quasi-free” particles by an external hard probe in the
infinite momentum frame. The parton that participates in the hard interaction with the probe,
e.g., the virtual photon, is expected to be causally disconnected from the rest of the nucleon.
On the other hand, the parton and the rest of the nucleon have to form a colour-singlet state due
to colour confinement. In order to further understand the role of colour confinement in high
energy collisions, it has been suggested [4, 5] that the quantum entanglement of partons could
be an important probe to the underlying mechanism of confinement.

In recent years, the idea of considering quantum entanglement in high energy collisions
have been realized and many interesting results have been found both theoretically [5–8] and
experimentally [9, 10]. For example, in a study by Tu et al [10] based on data at the Large
Hadron Collider (LHC), the entropy of charged particles produced in proton-proton (pp) colli-
sions is found to have a strong correlation to the entanglement entropy predicted by the gluon
density [5], which shows a first indication of quantum entanglement of partons inside of proton.
However, in high energy pp collisions, there are other phenomena that might play an important
role in particle productions, e.g., Multiple Parton Interaction (MPI), Colour Reconnection (CR),
and etc. Therefore, the entanglement of partons can be investigated in electron-proton (ep) deep
inelastic scattering (DIS) events with better-defined theoretical interpretations.

In high energy epDIS process, the hard interaction between the virtual photon and the parton
defines a transverse spatial domain by a size of 1/Q within the target proton, whereQ is defined
by the virtuality of the photon. The collision separates the target proton into a probed region
and a proton remnant, denoted by region A and B, respectively. In the parton model where the
collinear factorization is assumed, region A andB are expected to be causally disconnected and
therefore have no correlation. However, if partons in region A and B are entangled quantum
mechanically, the entanglement entropy of A and B would be identical, e.g., SA = SB. Based
on Refs. [5, 10], the entanglement entropy in DIS was found to have a simple relation with the
gluon density xG(x,Q2) in the low-x limit as, Sparton = ln [xG(x)]1. This was inspired by a
well known result for the entanglement entropy in (1 + 1) conformal field theory [5, 11–13],
where the length of the studied region in the context of DIS is (1/mx)2 which is closely related
to parton distributions. In addition, it is suggested [5] that the proportionality is expected to be
valid between the final-state hadron entropy, Shadron, and the initial-state parton entropy, Sparton,
due to the “parton liberation” [14] and ”local parton-hadron duality (LPHD)” [15] pictures.
Therefore, the entanglement entropy SA (equivalent to notation SEE) can be revealed by the
final-state hadron entropy, e.g.,

Sparton = ln [xG(x)] = Shadron = −
∑

P (N) lnP (N). (1)

where P (N) is the charged particle multiplicity distribution.

Similar multiplicity measurements have been done at HERA and at the LHC [16–25]. How-
ever these measurements in ep DIS were not precise towards the high multiplicity tail nor in

1Hereafter the Q2 dependence of gluon density is dropped for simplicity, denoted as xG(x)
2In the target rest frame, m is the proton rest mass, (1/mx) ∼ (1/x)
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the form of double-differential bins in x and Q2 in order to be mapped to the parton distribu-
tion function, which are both important in testing quantum entanglement proposed by Ref [10].
Thus, measuring multiplicity distributions in ep DIS with more statistics in kinematic bins of
x and Q2 are strongly motivated. The relation in Eq. 1 can be explicitly verified using the ep
DIS data within measurable phase spaces.

Despite the new idea of relating final-state hadron multiplicity to the entanglement entropy
of partons, charged particle production has been extensively studied in high energy collisions
over many decades, from electron-positron (e+e−) scattering to heavy ion collisions. For re-
views, see Refs. [26–29] and the references therein. On the one hand, the exact particle produc-
tion mechanism and quantitative prediction of multiplicity distributions are not yet completely
understood in hadron (nucleus) collider experiments due to the complicated substructure of nu-
cleon and parton fragmentation. For example, no first-principle calculation can describe the
multiplicity distributions at the LHC in pp collisions, and no phenomenology model can repro-
duce those distributions without significant tuning [30]. On the other hand, the measurement
of entanglement entropy of partons via final-state hadron might provide a new perspective to
particle productions without directly considering fragmentation. For instance, the entangle-
ment entropy in high energy collisions implies a natural upper limit on the particle multiplicity
density [5], similar to the prediction from the theory of Color Glass Condense with gluon satu-
ration [31].

2 Result

2.1 Multiplicity distributions

The charged particle multiplicity distributions in ep DIS at
√
s = 319 GeV are measured be-

tween |η
lab
| < 1.6 in the lab frame, shown in Fig. 1. Different Q2 and y bins are shown in

different panels, where the Q2 ranges between 5 to 100 GeV2 and y is between 0.0375 to 0.6.
The P (N) distributions are fully unfolded, where the statistical uncertainty is denoted by the
error bar and the systematic uncertainty is represented by the shaded box. The data are com-
pared with generated truth level of the MC generators of DJANGOH, RAPGAP, and PYTHIA
8.

From Fig. 2 to Fig. 5, the charged particle multiplicity distributions P (N) inQ2 bins (5, 10),
(10, 20), (20, 40), and (40, 100) GeV2 are presented, respectively. In each figure, the P (N)
distributions are shown differentially in bins of y (identical binning as in Fig. 1), and in bins
of η

lab
. The η

lab
bins are presented between −1.2 < η

lab
< 0.2, −0.5 < η

lab
< 0.9, and

0.2 < η
lab
< 1.6 in the lab frame.

In Fig. 6, the multiplicity distributions, P (N), is measured in the pseudorapidity range
0 < η∗ < 4.0 in the HCM frame. To minimize the extrapolation in multiplicity, an additional
requirement of |η

lab
| < 1.6 and p

T,lab
> 150 MeV/c in the lab frame is imposed. This re-

quirement is the same for all HCM measurements hereafter. The predictions of DJANGOH,
RAPGAP, and PYTHIA 8 are compared with data, shown as dotted lines. Similar dependences
on y and Q2 are found, similar to the results measured in the lab frame. The MC descriptions of
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data are generally better in the HCM frame than in the lab frame, where the RAPGAP generator
is found to have the best agreement with the data among all presented MC models.

In order to further study the multiplicity distribution, the KNO function Ψ(z) is measured as
a function z = N/〈N〉 in different Q2 bins, shown in Fig. 7. Different data points correspond
to different bins in W (or 〈y〉) in the HCM frame between 0 < η∗ < 4. KNO scaling has
been observed over the measured Q2 and W range. Similar measurements were done both at
PETRA and HERA experiments at DESY and Large Electron Positron (LEP) experiments [20,
21, 32–34], where a similar conclusion that the KNO scaling was observed as to the current
measurement.

2.2 Moments of multiplicity distributions

In Fig. 8, the mean multiplicity 〈Nch〉 as a function of W using particles with transverse mo-
mentum p

T,lab
> 150 MeV/c within pseudorapidity range |η

lab
| < 1.6 in the lab frame (left) and

0 < η∗ < 4.0 in the HCM frame (right), are shown. The corresponding 〈y〉 value in each bin
are drawn on the top axis of each figure. The prediction obtained with the MC event generator
RAPGAP is compared with data denoted by the lines. Other MC models have been compared
and generally with poorer description of the data than with RAPGAP, thus not shown.

Similarly, in Fig. 9, second moments of multiplicity distributions, the variance, are shown
as a function of W using particles with transverse momentum p

T,lab
> 150 MeV/c within

pseudorapidity range |η
lab
| < 1.6 in the lab frame (left) and 0 < η∗ < 4.0 in the HCM frame

(right). All measured Q2 bins are presented and indicated in the legend.

2.3 Entropy

It is recently suggested by Refs. [5,10] that the Boltzmann entropy of final-state particles can be
calculated based on the charged particle multiplicity distributions, which might indicate a deep
connection to the entanglement entropy of gluons at low-x. In Fig. 10, the Boltzmann entropy
of final-state hadron, Shadron, is studied as a function of 〈x〉 in different Q2 bins. The total
uncertainty is indicated by the error bar, where the statistical and systematic uncertainty are
added in quadrature. For each different 〈x〉 (or y) bin, the selected pseudorapidity window in
the lab frame is used for measuring the multiplicity, e.g., −1.2 < η

lab
< 0.2 at 〈x〉 ∼ 3× 10−4,

−0.5 < η
lab
< 0.9 at 〈x〉 ∼ 7 × 10−4, and −0.2 < η

lab
< 1.6 at 〈x〉 ∼ 1.3 × 10−3. Similar to

the observable studied in Ref. [10], the varying η
lab

range is intended for matching the rapidity
of the scattered quark from the DIS process in a leading order picture, which is closely related
to the region A introduced earlier. The same observable is studied using MC event generator
RAPGAP, which qualitatively agrees with the data at each measured Q2 bin. On the other hand,
the predictions from entanglement entropy based on the gluon density xG(x) are also shown for
comparison at various of Q2 values, indicated by the open markers with coloured bands. The
couloured bands indicate the systematic uncertainty suggested as given by the parton density at
the 95% confidence level. The Parton Distribution Function (PDF) set is HERAPDF 2.0 at the
leading order.
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Taking one step further, it is possible to measure the Boltzmann entropy of particles from the
current fragmentation hemisphere with 4 units of pseudorapidity coverage, shown in Fig. 11.
Unfortunately, only very limited access to the target fragmentation region is possible in H1
experiment, and therefore, not presented. In Fig. 11, the hadron entropy based on multiplicity
distributions are studied as a function of 〈x〉 in different Q2 bins within a fixed pseudorapidity
range 0 < η∗ < 4.0 in the HCM frame. The MC model RAPGAP are shown with lines, where
the predictions from entanglement entropy based on gluon densities are shown in open markers
with coloured bands, identical to that in Fig. 10.

3 Summary

The charged particle multiplicity distributions, P (N), in deep inelastic scattering events at√
s = 319 GeV using the H1 detector at HERA are measured. The total integrated luminosity

used in this analysis is around 136 pb−1, recorded by the H1 detector between 2006 and 2007
in positions scattering off protons. The P (N) distributions are measured in bins of Q2 , y, and
pseudorapidity η, both in the lab and the HCM frames. The results are generally found to be
consistent with Monte Carlo (MC) event generators at low multiplicity, while they are signif-
icantly different at the high multiplicity tail in all measured kinematic bins. Furthermore, the
MC generators tend to describe better the high Q2 and low y events, while poorly for low Q2

and high y events. This is a strong indication of underestimating important physics process
and contributions at high multiplicity, low-x, and low-Q2 regions, in the event generator. The
Boltzmann entropy based on multiplicity distributions are found to be not consistent with the
prediction from entanglement entropy of gluons, while further theoretical calculations of entan-
glement entropy with Q2 evolution including sea partons is needed for a proper comparison to
the measured data.
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Figure 1: The charged particle multiplicity distributions, P (N), are shown as a function of N
particles at

√
s = 319 GeV ep collisions for particles within pseudorapidity range |η

lab
| < 1.6.

Different panels correspond to different Q2 and y bins, indicated by the legends in the figure.
The MC particle level multiplicity distributions from DJANGOH, RAPGAP, and PYTHIA 8,
are also shown for comparison. The statistical uncertainty is denoted by the error bars. The
systematic uncertainty is shown with the shaded box. For intervals wider than one unit in
multiplicity, the quantity P (N)/∆N is shown. Along the horizontal axis, the data are drawn at
the geometrical bin center.
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Figure 2: The charged particle multiplicity distributions, P (N), are shown as a function of
N particles at

√
s = 319 GeV ep collisions for events with 5 < Q2 < 10 GeV2. Different

panels correspond to different η
lab

and y bins, indicated by the legends in the figure. The MC
particle level multiplicity distributions from DJANGOH, RAPGAP, and PYTHIA 8, are also
shown for comparison. The statistical uncertainty is denoted by the error bars. The systematic
uncertainty is shown with the shaded box. For intervals wider than one unit in multiplicity, the
quantity P (N)/∆N is shown. Along the horizontal axis, the data are drawn at the geometrical
bin center.
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Figure 3: The charged particle multiplicity distributions, P (N), are shown as a function of
N particles at

√
s = 319 GeV ep collisions for events with 10 < Q2 < 20 GeV2. Different

panels correspond to different η
lab

and y bins, indicated by the legends in the figure. The MC
particle level multiplicity distributions from DJANGOH, RAPGAP, and PYTHIA 8, are also
shown for comparison. The statistical uncertainty is denoted by the error bars. The systematic
uncertainty is shown with the shaded box. For intervals wider than one unit in multiplicity, the
quantity P (N)/∆N is shown. Along the horizontal axis, the data are drawn at the geometrical
bin center.
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Figure 4: The charged particle multiplicity distributions, P (N), are shown as a function of
N particles at

√
s = 319 GeV ep collisions for events with 20 < Q2 < 40 GeV2. Different

panels correspond to different η
lab

and y bins, indicated by the legends in the figure. The MC
particle level multiplicity distributions from DJANGOH, RAPGAP, and PYTHIA 8, are also
shown for comparison. The statistical uncertainty is denoted by the error bars. The systematic
uncertainty is shown with the shaded box. For intervals wider than one unit in multiplicity, the
quantity P (N)/∆N is shown. Along the horizontal axis, the data are drawn at the geometrical
bin center.
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Figure 5: The charged particle multiplicity distributions, P (N), are shown as a function of
N particles at

√
s = 319 GeV ep collisions for events with 40 < Q2 < 100 GeV2. Different

panels correspond to different η
lab

and y bins, indicated by the legends in the figure. The MC
particle level multiplicity distributions from DJANGOH, RAPGAP, and PYTHIA 8, are also
shown for comparison. The statistical uncertainty is denoted by the error bars. The systematic
uncertainty is shown with the shaded box. For intervals wider than one unit in multiplicity, the
quantity P (N)/∆N is shown. Along the horizontal axis, the data are drawn at the geometrical
bin center.
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Figure 6: The charged particle multiplicity distributions, P (N), are shown as a function of N
particles at

√
s = 319 GeV ep collisions for particles produced within pseudorapidity range 0 <

η∗ < 4.0 in the HCM frame. Different panels correspond to different Q2 and y bins, indicated
by the legends in the figure. The MC particle level multiplicity distributions from DJANGOH,
RAPGAP, and PYTHIA 8, are also shown for comparison. The statistical uncertainty is denoted
by the error bars. The systematic uncertainty is shown with the shaded box. For intervals wider
than one unit in multiplicity, the quantity P (N)/∆N is shown. Along the horizontal axis, the
data are drawn at the geometrical bin center.
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Figure 7: The KNO function, Ψ(z), are shown as a function of z at
√
s = 319 GeV in ep

collisions for particles with transverse momentum p
T,lab

> 150 MeV/c produced within pseu-
dorapidity range 0 < η∗ < 4.0 in the HCM frame. Different panels correspond to different
Q2 bins, where different y (or 〈W 〉) bins indicated by the legends in the figure. The statistical
uncertainty is denoted by the error bars. The systematic uncertainty is shown with the shaded
band.
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Figure 8: The mean multiplicity, 〈Nch〉, is shown as a function of W at
√
s = 319 GeV ep

collisions for particles with transverse momentum p
T,lab

> 150 MeV/c within pseudorapidity
range |η

lab
| < 1.6 in the lab frame (left) and 0 < η∗ < 4.0 in the HCM frame (right). The 〈y〉

is also indicated by the top axis for each measured bin. The MC models are denoted by dashed
lines. The total uncertainty is represented by the error bar.
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Figure 9: The second moment, variance, is shown as a function of W at
√
s = 319 GeV ep

collisions for particles with transverse momentum p
T,lab

> 150 MeV/c within pseudorapidity
range |η

lab
| < 1.6 in the lab frame (left) and 0 < η∗ < 4.0 in the HCM frame (right). The 〈y〉 is

also indicated by the top axis. The statistical uncertainty is denoted by the error bar.
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Figure 10: The Boltzmann entropy based on the multiplicity distributions, is shown as
a function of 〈x〉 at

√
s = 319 GeV ep collisions for particles with transverse momentum

p
T,lab

> 150 MeV/c within pseudorapidity ranges −1.2 < η
lab

< 0.2 (〈x〉 ∼ 3 × 10−4),
−0.5 < η

lab
< 0.9 (〈x〉 ∼ 7×10−4), and−0.2 < η

lab
< 1.6 (〈x〉 ∼ 1.3×10−3) in the lab frame

with different Q2 ranges. The MC models are denoted by dashed lines. The total uncertainty is
represented by the error bar. The theoretical predictions of entanglement entropy based on the
gluon density xG(x) are also presented at different Q2 indicated by the legends. The PDF set is
HERAPDF 2.0 at the leading order.
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Figure 11: The Boltzmann entropy based on the multiplicity distributions, is shown as
a function of 〈x〉 at

√
s = 319 GeV ep collisions for particles with transverse momentum

p
T,lab

> 150 MeV/c within pseudorapidity range 0 < η∗ < 4.0 in the HCM frame with different
Q2 ranges. The MC models are denoted by dashed lines. The total uncertainty is represented by
the error bar. The theoretical predictions of entanglement entropy based on the gluon density
xG(x) are also presented at different Q2 indicated by the legends. The PDF set is HERAPDF
2.0 at the leading order.
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