Determination of the strong coupling constant α_s(m_z) using H1 jet cross section measurements

Daniel Britzger for the H1 Collaboration and NNLOJET Eur.Phys.J.C 77 (2017), 791 [arXiv:1709.07251] Eur.Phys.J.C 77 (2017), 215 [arXiv:1611.03421]

> α_s workshop Trento, Italy 12.02.2019

Ap. Ag≥±t

Max-Planck-Institut für Physik (Werner-Heisenberg-Institut)

MAX-PLANCK-GESELLSCHAFT

Deep-inelastic *ep* **scattering at HERA**

Neutral current scattering (NC)

 $ep \rightarrow e'X$

Photon virtuality
$$Q^2 = -q^2 = -(k-k')^2$$

HERA ep collider in Hamburg

Data taking periods

- HERA I: 1994 2000
- HERA II: 2003 2007
- √s = 300 or 319 GeV

Jet production in DIS

Jets in DIS measured in Breit frame

- ep -> 2jets
- Virtual boson collides 'head-on' with parton from proton
- Boson-gluon fusion dominant process
 QCD compton important only for high-p_T jets (high-x)

Jet measurement sensitive to α_{s} and gluon density

H1 Experiment at HERA

- Precise Trackers
 - Silicon tracker; jet chambers; proportional chambers
- Calorimeters
 - Liquid Argon sampling calorimeter (em/had)
 Scintillating fiber calorimeter

Jet energy scale calibration

- Overconstrained system in NC DIS: Jet calibration using NC DIS events
- Track and calorimeter information exploited ('particle flow') → Important for E^{track} < ~25 GeV
- Neural network (cluster classification) based in-situ jet calibration for data and MC

High experimental precision

- Electron measurement: 0.5 1% scale uncertainty
- Jet energy scale: 1%

Inclusive jet cross cross sections

Inclusive jet cross sections

- $d\sigma/dQ^2dP_T^{jet}$
- 300 GeV, HERA-I & HERA-II
- low-Q² (<100 GeV²) and high-Q² (>150 GeV²) regions

Consistency

- kt-algorithm, R=1
- -1.0 < η < 2.5
- P_{T} ranges from 4.5 to 50 GeV

Inclusive iet cross cross sections

 α_{α} workshop, Trento, Italy

NLO ⊗ c^{had} ⊗ c^e

20 30

 $\langle \mathsf{P}_{\mathsf{T}} \rangle_{3} [\text{GeV}]$

 $\langle \mathsf{P}_{\mathsf{T}} \rangle_2 [\text{GeV}]$

Eur.Phys.J.C75 (2015) 2 arXiv:1611.03421

NLOJet++ with fastNLO MSTW2008, cr. = 0.118

HERA-II low-Q²

150 < Q² < 200 GeV² (i=16) □ 400 < Q² < 700 GeV² (i=1)

• 200 < Q² < 270 GeV² (= 11) ▲ 700 < Q² < 5000 GeV² (= 0)

HI HERA-I

NLO @ hadr. con WNLO @ hadr. o NNI O R hadr o

Dijet cross section

Dijet definitions

- $< p_T >$ greater than 5,7 or 8.5 GeV
- P_{τ} jet greater 4, 5 or 7 GeV
- Asymmetric cuts on $p_{\mathsf{T}}{}^{\mathsf{jet1}}$ and $p_{\mathsf{T}}{}^{\mathsf{jet2}}$
- M₁₂ cut for two data sets

Dijet cross sections

- $d\sigma/dQ^2d < p_T >$
- 300 GeV, HERA-I & HERA-II
- low-Q² and high-Q²

Earlier studies

All inclusive jet and dijet data have been employed for α_s extractions previously

-> Data and uncertainties well-understood -> NNLO theory is new

$\begin{array}{l} \alpha_{s} \mbox{ determination in NLO} \\ from \mbox{ HERA-II data} \\ \rightarrow \mbox{ Highest experimental precision} \end{array}$

$\alpha_{s}(M_{z})$ from HERA-II jet data at NLO

H1 HERA-II low- and high-Q² data

- Low-Q² jets (Eur.Phys.J.C 77 (2017) 21)
- high-Q² jets (Eur.Phys.J.C75 (2015) 2)

All normalised jet cross sections

- Normalised inclusive jet
- Normalised dijets
- Normalised three-jets
- Correlations of uncertainties are known
- Fit $\alpha_s(M_Z)$ in χ^2 -minimization procedure

Results at NLO

• fit to all HERA-II data points

$$\alpha_s(M_Z) = 0.1173 (4)_{\text{exp}} (3)_{\text{PDF}} (7)_{\text{PDF}(\alpha_s)} (11)_{\text{PDFset}} (6)_{\text{had}} (^{+51}_{-43})_{\text{scale}}$$

- Very high experimental precision
- α_s determination fully limited by NLO scale uncertainites

α_s determination in NNLO from all H1 inclusive jet and dijet cross section data

DIS jet production in NNLO

A bit of history

- 1973 asymptotic freedom of QCD [PRL 30(1973) 1343 & 1346]
- 1993 NLO studies of DIS jet cross sections [Phys. Rev. D49 (1994) 3291]
- 2016 NNLO corrections for DIS jets [Phys. Rev. Lett. 117 (2016) 042001], [arXiv:1703.05977]

Antenna subtraction

- Cancellation of IR divergences
 with local subtraction terms
- Move IR divergences across different phase space multiplicities

α_{s} -fit methodology

α_s determined in χ_2 -minimisation

- $\alpha_s(m_z)$ is a free parameter to theory prediction σ_i

$$\chi^2 = \sum_{i,j} \log \frac{\varsigma_i}{\sigma_i} (V_{\text{exp}} + V_{\text{had}} + V_{\text{PDF}})_{ij}^{-1} \log \frac{\varsigma_j}{\sigma_j}$$

NNLO theory is sensitive to $\alpha_s(m_z)$

$$\sigma_i = \sum_{n=1}^{\infty} \sum_{k=g,q,\overline{q}} \int dx f_k(x,\mu_F) \hat{\sigma}_{i,k}^{(n)}(x,\mu_R,\mu_F) \cdot c_{\text{had}}$$

- α_s dependence of PDF is accounted for by using PDF at $\mu_{F,0} = 20$ GeV and applying DGLAP
- \rightarrow Important for reliable uncertainty estimates!

Separate fits are performed to

- All inclusive jet data sets (137 data points)
- All dijet data sets (103 data points)
- All H1 jet data taken together (denoted as 'H1 jets')

Inclusive jets

α_s in NNLO from individual data sets

- All fits with good χ^{2}
- Data sets found to be consistent
- Consistency between low- and high-Q²

Fit to all inclusive jets data in NNLO

 $(0.1132 (10)_{\exp} (5)_{had} (4)_{PDF} (4)_{PDF\alpha_s} (2)_{PDFset} (40)_{scale})$

- χ^2 /ndf = 134/133
- High experimental precision
- Scale uncertainty is largest (theory) error

Fit with $\mu > 28 \text{GeV}$

(μ is a characteristic scale assigned to any data point)

 $0.1152(20)_{\exp}(6)_{had}(2)_{PDF}(2)_{PDF\alpha_{s}}(3)_{PDFset}(26)_{scale}$

- Reduced scale, but increased exp. uncertianty
- No significant dependence on μ cut

$$\alpha_{\rm s}(m_{\rm Z}) = 0.1152 \,(20)_{\rm exp} \,(27)_{\rm th}$$

See backup slides for a summary of all numerical values

Dijets

Fits to individual dijet data sets

- All data sets with good χ^2
- Reasonable consistency of data sets found

Fit to all dijet data in NNLO

 χ²/ndf = 93.9/102: consistency of data sets

 $(0.1148 (11)_{\exp} (6)_{had} (5)_{PDF} (4)_{PDF\alpha_s} (4)_{PDFset} (40)_{scale})$

• Value consistent with inclusive jets

Fits to all dijets with $\mu > 28 \text{GeV}$

 $(0.1147 (24)_{\exp} (5)_{had} (3)_{PDF} (2)_{PDF\alpha_s} (3)_{PDFset} (24)_{scale})$

• Reduced scale, but increased exp. uncertainty

$$\alpha_{\rm s}(m_{\rm Z}) = 0.1147 \, (24)_{\rm exp} \, (25)_{\rm th}$$

Uncertainty budget

 $0.1152(20)_{\exp}(6)_{had}(2)_{PDF}(2)_{PDF\alpha_s}(3)_{PDFset}(26)_{scale}$

Experimental uncertianty (exp)

All exp. uncertainties (incl. all correlations)

hadronsiation uncertainty (had)

 Propagation of hadronisation uncertainties as published with the data: commonly: difference between two MC generators (Django,Rapgap,Sherpa)

PDF uncertainties

- 'PDF' uncertainty
- $PDF\alpha_s$ uncertainty
- PDFset uncertainty
- PDFµ₀ uncertainty

Scale uncertainty

• Scale factors: 0.5 and 2

Next slides...

PDF related uncertainties

PDFset

Scale uncertainty

Scale variations

- μ_R variation dominates
- Large scale factor cause large χ^2 values

Scale choices

- Scale uncertainty also covers different scale choices
- µ = 20GeV: fixed scale!

 \rightarrow no running, no DGLAP \rightarrow consistent results

 α_s workshop, Trento, Italy

Daniel Britzger – H1 Jets

H1jets fit to inclusive jet and dijet cross sections

H1 jets

Fit to inclusive jet and dijet together

- Stat. and experimental correlations are known
- $\chi^2/ndf = 0.98$ for 200 data points -> Inclusive jet and dijet data are consistent

 $0.1143(9)_{\exp}(6)_{had}(5)_{PDF}(5)_{PDF\alpha_{s}}(4)_{PDFset}(42)_{scale}$

H1 jets with $\mu > 28 GeV$

• 91 data points

 $0.1157(20)_{\text{exp}}(6)_{\text{had}}(3)_{\text{PDF}}(2)_{\text{PDF}\alpha_{s}}(3)_{\text{PDFset}}(27)_{\text{scale}}$

- Moderate exp. precision (due to µ>28GeV)
- Scale uncertainty dominates
- PDF uncertainties negligible

Smallest theo. uncertainty for: $\mu > 42 GeV$

 $0.1168(22)_{\exp}(7)_{had}(2)_{PDF}(2)_{PDF\alpha_{s}}(5)_{PDFset}(17)_{scale}$

Main result with: $\mu > 28 GeV$

 $\alpha_{\rm s}(m_{\rm Z}) = 0.1157 \, (20)_{\rm exp} \, (29)_{\rm th}$

Study of total uncertainty

Scale uncertainties at various scales µ

- At low-μ: large scale uncertainties...
- ... but also high sensitivity to $\alpha_s(m_z)$

Fits imposing a cut on scale μ

• Repeat α_s fits: successively cut away data below μ_{cut}

Cut on μ

- Scale uncertainty decreases with $\mu_{
 m cut}$
- Exp. uncertainty increases with $\mu_{\rm cut}$

Comparison of NNLO predictions with data

All H1 jet cross section data compared to NNLO predictions

- Inclusive jets
- Dijets

Overall good agreement

- NNLO describes all data very well
- Also justified by good χ^2 values of the fits

Data points displayed vs. μ

- apply grouping/binning
- \rightarrow use for scale-dependent studies

Reminder: our scale choice

Scale dependence

- Perform fits to <u>groups of data points</u> at similar scale
- Assume running to be valid within the limited range covered by interval

H1 jets

- · Good consistency with other data
- First determination using jet data in NNLO

Most precise determination of $\alpha_s(\mu_R)$ in range between 7 and 90 GeV

- Measurement bridges the gap between low-scale $\alpha_{\rm s}$ determinations and LEP/LHC determinations

Alternative α_s fitting approach

'PDF+α_s-fit' H1PDF2017

Alternative α_s fit approach: 'PDF+ α_s -fit'

Perform H1 alone PDF fit: H1PDF2017

- Use (all) H1 inclusive DIS data (Q2>10GeV2)
- Use (all) H1 normalised jet cross section data
- -> 1529 data points

Normalised jet cross sections

- Jet cross sections normalised to inclusive DIS
- Correlations of jets and inclusive DIS cancel

PDFs are parameterised as

$$xf(x)|_{\mu_0} = f_A x^{f_B} (1-x)^{f_C} (1+f_D x + f_E x^2)$$

• Similar to HERAPDF/H1PDF2012

Mind: all PDFs are commonly determined predominantly from (H1) inclusive DIS data

Cross section: ~ PDF $\otimes \sigma$

$$\sigma_{i} = \sum_{k=g,q,\overline{q}} \int dx f_{k}(x,\mu_{\rm F}) \hat{\sigma}_{i,k}(x,\mu_{\rm R},\mu_{\rm F}) \cdot c_{{\rm had},i}$$

Inclusive NC & CC DIS

Data set	Lepton	\sqrt{s}	Q^2 range	NC cross	CC cross	Lepton beam
[ref.]	type	[GeV]	$[{\rm GeV}^2]$	sections	sections	polarisation
Combined low- Q^2 [64]	e^+	301,319	$(0.5) \ 12 - 150$	\checkmark	_	_
Combined low- E_p [64]	e^+	$225,\!252$	(1.5) 12 - 90	\checkmark	—	_
94-97[61]	e^+	301	150 - 30000	\checkmark	\checkmark	_
98-99[62,63]	e^-	319	150 - 30000	\checkmark	\checkmark	_
99 - 00 [63]	e^+	319	150 - 30000	\checkmark	\checkmark	_
HERA-II [65]	e^+	319	120 - 30000	\checkmark	\checkmark	\checkmark
HERA-II $[65]$	e^-	319	120-50000	\checkmark	\checkmark	\checkmark

Normalised jets

				(
Data set	Q^2 domain	Inclusive	Dijets	Normalised	Normalised	Stat. corr.
[ref.]		jets		inclusive jets	dijets	between samples
$300 {\rm GeV} [17]$	$high-Q^2$	\checkmark	\checkmark	-	_	_
HERA-I [23]	low- Q^2	\checkmark	\checkmark	-	_	—
HERA-I [21]	$high-Q^2$	\checkmark	_	\checkmark	—	-
HERA-II [15]	$low-Q^2$	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
HERA-II $[15, 24]$	$high-Q^2$	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
					/	1

Inner errors: exp. uncertianty Outer errors: total uncertainty

Results

α_{s} determined in PDF+ α_{s} -fit

 $\alpha_{\rm s}(m_{\rm Z}) = 0.1142 \,(11)_{\rm exp,had,PDF} \,(2)_{\rm mod} \,(2)_{\rm par} \,(26)_{\rm scale}$

- χ²/ndf ~ 1.01
- High experimental precision
- Scale uncertainty dominates: determined from simultaneous variation of all scales involved in calculation

Discussion / comparison

• Result consistent with our other determination

Our two main results are fairly distinct:

- PDF+ α_s -fit mostly sensitive to jets at lower scale
- H1jets: μ>28 GeV

 $\alpha_{\rm s}(m_{\rm Z}) = 0.1142\,(28)_{\rm tot}$

$\boldsymbol{\alpha}_{_{\!S}}$ and the gluon-PDF

H1PDF2017: PDF+α_s-fit

- Simultaneous determination of the gluon and $\alpha_{\rm s}$

Fit to inclusive DIS data alone

- no jet data
- Large correlation: α_s and gluon cannot be determined simultaenously from inclusive DIS data alone

Including jet data

- determination of α_{s} and gluon feasible

Comparison with NNPDF3.1

- Error ellipses with similar correlation as individual NNPDF3.1 fits
- Uncertainty of gluon in H1PDF2017 somewhat competitive to NNPDF3.1...
- but alpha_s is a free parameter !

 $xg(x=0.010, \mu_{F} = 20 \text{ GeV})$

PDF+\alpha_s-fit – H1PDF2017 [NNLO]

Result for PDFs

- Set of PDFs determined with high precision
- Precision is competitive with global PDF fitters ...despite α_s is a <u>free parameter</u> to the fit:

H1PDF2017

- Gluon at lower *x*-values tends to be higher (than e.g. NNPDF3.1)
- Gluon very similar to NNPDF3.1sx, which includes low-x resummation (no low-Q² data included in our H1 fit)

 α_{s} workshop, Trento, Italy

¥

Possible future improvements

Possible future improvements in DIS

Inner errors: exp. only Outer errors: exp+theo.

DB, M. Klein, FCC Week '17 Berlin

New experiments: LHeC, FCC-eh

- incl. DIS:
 - LHeC: 0.1-0.2% (exp) + 0.4%(N3LO)
- FCC-eh: 0.1% (exp) LHeC Study Group [arXiv:1206.2913] See also: M. Klein in 'Memory of G. Altarelli', Appendix 1 [arXiv:1802.04317]
- jets, jet shapes, ... O(‰)

Old experiments (HERA)

- H1&ZEUS combination: w.i.p.
- Jets in photoproduction
- Jet shapes
 - Analysis of HERA-II data (H1,ZEUS)
 - new jet-shape observables
- F₂ measurement at high-x-low-Q²

Theory: present

- Incl. DIS: N3LO
- Event shapes: N3LO (J Currie et al, JHEP 1805 (2018) 209)
- Event shapes: N3LL (Kang et al. PoS DIS2015 (2015) 142)
- NNLO+PS (Hoeche et al. Phys.Rev. D98 (2018), 114013)

Theory: future

- N3LO DGLAP (4-loop) (A Vogt et al., PoS LL2018 (2018) 050)
- three-jets in NNLO
- Jets: NNLO + approx.

Summary

All H1 jet data confronted with NNLO predictions

- NNLO provides improved description w.r.t. NLO
- Quantitative comparison of all data
- NNLO predictions studied in great detail

NNLO used for determination of $\alpha_s(m_z)$

- $\alpha_{\rm s}$ -fit $\alpha_{\rm s}(m_{\rm Z}) = 0.1157 \, (20)_{\rm exp} \, (6)_{\rm had} \, (3)_{\rm PDF} \, (2)_{\rm PDF\alpha_{\rm s}} \, (3)_{\rm PDFset} \, (27)_{\rm scale}$
- α_{s} +PDF-fit $\alpha_{s}(m_{Z}) = 0.1142 \,(11)_{exp,had,PDF} \,(2)_{mod} \,(2)_{par} \,(26)_{scale}$
- High experimental and theoretical precision

NNLO predictions for jets are used for α_s (and PDF) fits for the first time

- Successful determination of gluon-density and $\alpha_s(m_z)$ simultaneously
- Competitive precision for $\alpha_s(m_z)$ and PDFs
- H1PDF2017 available at LHAPDF

Fruitful collaboration of theoreticians and experimentalists (H1 & NNLOJET)

Scale dependence of NNLO cross sections

Simultaneous variation of μ_R and μ_F

At lower scales

- Significant NNLO k-factors
- NNLO with reduced scale dependence
- Inclusive jets with higher scale dependence than dijets

At higher scales

- NNLO with reduced scale dependence
- μ_F dependence very small

$\alpha_s(m_z)$ dependence of cross sections

α_{s} workshop, Trento, Italy

α_{s} dependencies separately fitted

Fits to

- Inclusive jet and dijet data fitted together
- Fits performed for different PDFs

Fits with two free α_s parameters

$$\sigma_i = f(\alpha_{\rm s}^f(m_Z)) \otimes \hat{\sigma}_k(\alpha_{\rm s}^{\hat{\sigma}}(m_Z)) \cdot c_{\rm had}$$

Results

- Most sensitivity arises from matrix elements
- Best-fit α_s -values in PDF's and ME's are consistent
- Anti-correlation between $\alpha_s^{PDF}(m_z)$ and $\alpha_s^{\Gamma}(m_z)$

Summary of all α_s results

 $\alpha_{\rm s}(m_{\rm Z})$ values from H1 jet cross sections $ilde{\mu}_{ ext{cut}}$ $\alpha_{\rm s}(m_{\rm Z})$ with uncertainties \mathbf{th} $\chi^2/n_{
m dof}$ Data tot **Inclusive** jets $300 \,\mathrm{GeV}$ high- Q^2 $2m_b$ $0.1221(31)_{exp}(22)_{had}(5)_{PDF}(3)_{PDF\alpha_s}(4)_{PDFset}(36)_{scale}$ $(43)_{th}$ $(53)_{tot}$ 6.5/15 $(35)_{th}$ HERA-I low- Q^2 $2m_b$ $0.1093 (17)_{\exp} (8)_{had} (5)_{PDF} (5)_{PDF\alpha_s} (7)_{PDFset} (33)_{scale}$ $(39)_{tot}$ 17.5/22HERA-I high- Q^2 $2m_b$ $0.1136(24)_{exp}(9)_{had}(6)_{PDF}(4)_{PDF\alpha_s}(4)_{PDFset}(31)_{scale}$ $(33)_{\rm th}$ $(41)_{tot}$ 14.7/23HERA-II low- Q^2 29.6/40 $2m_b$ $0.1187(18)_{exp}(8)_{had}(4)_{PDF}(4)_{PDF\alpha_s}(3)_{PDFset}(45)_{scale}$ $(46)_{\rm th}$ $(50)_{tot}$ HERA-II high- Q^2 $(37)_{\rm th}$ $(41)_{tot}$ 42.5/29 $2m_b$ $0.1121(18)_{exp}(9)_{had}(5)_{PDF}(4)_{PDF\alpha_s}(2)_{PDFset}(35)_{scale}$ Dijets $300 \,\mathrm{GeV}$ high- Q^2 $0.1213(39)_{exp}(17)_{had}(5)_{PDF}(2)_{PDF\alpha_s}(3)_{PDFset}(31)_{scale}$ $2m_b$ $(35)_{th}$ $(52)_{tot}$ 13.6/15HERA-I low- Q^2 $2m_{\rm h}$ $0.1101(23)_{exp}(8)_{had}(5)_{PDF}(4)_{PDF\alpha_s}(5)_{PDFset}(36)_{scale}$ $(38)_{\rm th}$ $(45)_{tot}$ 10.4/20HERA-II low- Q^2 $(47)_{tot}$ $2m_b$ $0.1173 (14)_{exp} (9)_{had} (5)_{PDF} (5)_{PDF\alpha_s} (3)_{PDFset} (44)_{scale}$ $(45)_{\rm th}$ 17.4/41HERA-II high- Q^2 $0.1089 (21)_{exp} (7)_{had} (5)_{PDF} (3)_{PDF\alpha_s} (3)_{PDFset} (25)_{scale}$ $(27)_{\rm th}$ $(34)_{tot}$ 28.0/23 $2m_{\rm h}$ H1 inclusive jets $0.1132(10)_{exp}(5)_{had}(4)_{PDF}(4)_{PDF\alpha_s}(2)_{PDFset}(40)_{scale}$ $(40)_{\rm th}$ $(42)_{tot}$ 134.0/133 $2m_b$ H1 inclusive jets $28\,{
m GeV}$ $0.1152(20)_{exp}(6)_{had}(2)_{PDF}(2)_{PDF\alpha_s}(3)_{PDFset}(26)_{scale}$ $(27)_{\rm th}$ $(33)_{tot}$ 44.1/60H1 dijets $2m_b$ $0.1148 (11)_{\exp} (6)_{had} (5)_{PDF} (4)_{PDF\alpha_s} (4)_{PDFset} (40)_{scale}$ $(41)_{th}$ $(42)_{tot}$ 93.9/102H1 dijets $28\,\mathrm{GeV}$ 30.8/43 $0.1147(24)_{\exp}(5)_{had}(3)_{PDF}(2)_{PDF\alpha_s}(3)_{PDFset}(24)_{scale}$ $(25)_{\rm th}$ $(35)_{tot}$ H1 jets $0.1143(9)_{exp}(6)_{had}(5)_{PDF}(5)_{PDF\alpha_s}(4)_{PDFset}(42)_{scale}$ $(44)_{tot}$ 195.0/199 $2m_b$ $(43)_{th}$ H1 jets $28\,\mathrm{GeV}$ 63.2/90 $0.1157(20)_{\text{exp}}(6)_{\text{had}}(3)_{\text{PDF}}(2)_{\text{PDF}\alpha_{s}}(3)_{\text{PDFset}}(27)_{\text{scale}}$ $(28)_{\rm th}$ $(34)_{tot}$ $42\,\mathrm{GeV}$ $0.1168(22)_{\exp}(7)_{had}(2)_{PDF}(2)_{PDF\alpha_{s}}(5)_{PDFset}(17)_{scale}$ $(30)_{tot}$ 37.6/40H1 jets $(20)_{\rm th}$ H1PDF2017 [NNLO] $(28)_{tot}$ 1539.7/1516 $2m_b$ $0.1142(11)_{exp,NP,PDF}(2)_{mod}(2)_{par}(26)_{scale}$

$\mu_{ m R}$	Inclusive jets		Di	jets	H1 jets	
[GeV]	$lpha_{ m s}(m_{ m Z})$	$lpha_{ m s}(\mu_{ m R})$	$lpha_{ m s}(m_{ m Z})$	$lpha_{ m s}(\mu_{ m R})$	$lpha_{ m s}(m_{ m Z})$	$lpha_{ m s}(\mu_{ m R})$
7.4	0.1148(13)(42)	0.1830(34)(114)	0.1182(28)(41)	0.1923(77)(116)	0.1147(13)(43)	0.1829(34)(114)
10.1	0.1136(17)(36)	0.1678(39)(81)	0.1169(14)(42)	0.1751(34)(99)	0.1148(14)(40)	0.1705(31)(91)
13.3	0.1147(15)(43)	0.1605(30)(88)	0.1131(18)(38)	0.1573(36)(76)	0.1144(15)(42)	0.1600(30)(86)
17.2	0.1130(15)(33)	0.1492(26)(59)	0.1104(19)(30)	0.1445(33)(53)	0.1127(15)(33)	0.1486(27)(59)
20.1	0.1136(17)(33)	0.1457(29)(56)	0.1116(22)(31)	0.1425(36)(52)	0.1134(17)(33)	0.1454(29)(55)
24.5	0.1173(17)(30)	0.1463(26)(48)	0.1147(23)(24)	0.1423(36)(38)	0.1171(17)(29)	0.1460(27)(46)
29.3	0.1084(36)(29)	0.1287(51)(41)	0.1163(34)(34)	0.1401(50)(50)	0.1134(30)(32)	0.1358(44)(46)
36.0	0.1153(32)(37)	0.1338(43)(50)	0.1135(37)(29)	0.1314(50)(39)	0.1146(30)(33)	0.1328(41)(44)
49.0	0.1170(22)(20)	0.1290(27)(25)	0.1127(31)(15)	0.1238(37)(18)	0.1169(23)(19)	0.1290(28)(24)
77.5	0.1111(55)(19)	0.1137(58)(20)	0.1074(84)(19)	0.1099(88)(20)	0.1113(55)(19)	0.1139(58)(20)

Running of the strong coupling

Table 5: Values of the strong coupling constant $\alpha_s(\mu_R)$ and at the Z-boson mass, $\alpha_s(m_Z)$, obtained from fits to groups of data points with comparable values of μ_R . The first (second) uncertainty of each point corresponds to the experimental (theory) uncertainty. The theory uncertainties include PDF related uncertainties and the dominating scale uncertainty.

Scale dependence of α_{s} fit

α_s results as a function of scale factors

- Smooth results for studied scale variations
- μ_R variation with more impact than μ_F

χ² values

- somewhat a 'technical parameter' -> not intended to be a parabolas
- χ^2 values increase for large scale factors -> large scale factors disvafored

Scale choice for $\alpha_{_{\! S}}$ fit

Study scales calculated from Q^2 and p_T

' p_{τ} ' refers to: p_{τ}^{jet} or $< p_{\tau} >$

α_s results and χ^2 values

- Spread of results covered by scale uncertainty
- χ² values are similar for different choices
 -> NNLO with small 'scale dependence'

NLO matrix elements

- Large scale uncertainty
- Relevant dependence of result on scale choice
- Mainly larger χ^2 values than NNLO
- Larger fluctuation of χ^2 values than NNLO

NNLO with reduced scale dependence

Dependence on the PDF

PDF is an external input to NNLO calculation

PDF fitting groups differ

- choice of input data sets, PDF parameterisations, model parameters, fit methodology, etc...
- Though: different PDFs appear to be quite consistent

Choice of α_s for PDF determination

- $\alpha_{PDF}(m_z)$ important input parameter to PDF fit
- Small correlation with fitted results

Our (main) α_s result

almost independent on PDF assumptions

Scale dependence

Test running of strong coupling

- Perform fits to <u>groups of data points</u> at similar scale
- Assume running to be valid within the limited range covered by interval

Results

- All fits have good χ^2
- Consistency of inclusive jets and dijets
- Consistency with expectation at all scales
- Scale uncertainty dominates at lower μ

