Determination of the strong coupling constant $\alpha_s(m_z)$ **using H1 jet cross section measurements**

Daniel Britzger for the H1 Collaboration and NNLOJET Eur.Phys.J.C 77 (2017), 791 [arXiv:1709.07251] Eur.Phys.J.C 77 (2017), 215 [arXiv:1611.03421]

> α s workshop Trento, Italy 12.02.2019

 $\Delta p \cdot \Delta q \geqslant t$

Max-Planck-Institut für Physik (Werner-Heisenberg-Institut)

MAX-PLANCK-GESELLSCHAFT

Deep-inelastic *ep* **scattering at HERA**

Neutral current scattering (NC)

 $ep \rightarrow e'X$

$$
\overbrace{Q^2=-q^2=-(k-k^{\prime})^2}^{\text{Photon virtuality}}
$$

HERA *ep* **collider in Hamburg**

Data taking periods

- HERA I: 1994 2000
- HERA II: 2003 2007
- \sqrt{s} = 300 or 319 GeV

Jet production in DIS

Jets in DIS measured in Breit frame

- ep \rightarrow 2 jets
- Virtual boson collides 'head-on' with parton from proton
- Boson-gluon fusion dominant process QCD compton important only for high-p^T jets (high-*x*)

Jet measurement sensitive to *α s* and gluon density

H1 Experiment at HERA

- Precise Trackers
	- Silicon tracker; jet chambers; proportional chambers
- Calorimeters
	- Liquid Argon sampling calorimeter (em/had)
	- Scintillating fiber calorimeter

Jet energy scale calibration

- Overconstrained system in NC DIS: Jet calibration using NC DIS events
- Track and calorimeter information exploited ('particle flow') \rightarrow Important for Etrack \lt ~25 GeV
- Neural network (cluster classification) based in-situ jet calibration for data and MC

High experimental precision

- Electron measurement: $0.5 1\%$ scale uncertainty
- Jet energy scale: 1%

Inclusive jet cross cross sections

Inclusive jet cross sections

- \bullet dσ/dQ²dP_Tjet
- 300 GeV, HERA-I & HERA-II
- $low-Q^2$ (<100 GeV²) and high- Q^2 (>150 GeV²) regions

Consistency

- kt-algorithm, $R=1$
- $-1.0 < n < 2.5$
- P_T ranges from 4.5 to 50 GeV

α Daniel Britzger – H1 Jets 5 ^s workshop, Trento, Italy

Inclusive jet cross cross sections

α Daniel Britzger – H1 Jets 6 ^s workshop, Trento, Italy

Dijet cross section

Dijet definitions

- $< p_{\tau}$ greater than 5,7 or 8.5 GeV
- P_T jet greater 4, 5 or 7 GeV
- Asymmetric cuts on p_T ^{jet1} and p_T ^{jet2}
- M_{12} cut for two data sets

Dijet cross sections

- \cdot dσ/dQ²d<p_T>
- 300 GeV, HERA-I & HERA-II
- low- Q^2 and high- Q^2

Earlier studies

All inclusive jet and dijet data have been employed for α_s extractions previously

-> Data and uncertainties well-understood -> NNLO theory is new

α_s workshop, Trento, Italy **2020 12:20 Servest Properties 12:30 Servest Properties 20:30 Servest Properties 20:30**

α s determination in NLO from HERA-II data → Highest experimental precision

α s (M^Z) from HERA-II jet data at NLO

H1 HERA-II low- and high-Q2 data

- LOW-Q² jets (Eur. Phys. J.C 77 (2017) 21)
- high-Q² jets (Eur. Phys. J.C75 (2015) 2)

All normalised jet cross sections

- Normalised inclusive jet
- Normalised dijets
- Normalised three-jets
- Correlations of uncertainties are known
- Fit $\alpha_{\rm s}$ (M_z) in χ²-minimization procedur $_{\rm e}$

Results at NLO

• fit to all HERA-II data points

$$
\alpha_s(M_Z) = 0.1173 \text{ (4)_{exp}}(3)_{\text{PDF}} (7)_{\text{PDF}(\alpha_s)} (11)_{\text{PDFset}} (6)_{\text{had}} (^{+51}_{-43})_{\text{scale}}
$$

- Very high experimental precision
- **α**_s determination fully limited by **NLO** scale uncertainites Eur. Phys.J.C 77 (2017), 215

α s determination in NNLO from all H1 inclusive jet and dijet cross section data

DIS jet production in NNLO

A bit of history

- 1973 asymptotic freedom of QCD [PRL 30(1973) 1343 & 1346]
- 1993 NLO studies of DIS jet cross sections [Phys. Rev. D49 (1994) 3291]
- 2016 NNLO corrections for DIS jets [Phys. Rev. Lett. 117 (2016) 042001], [arXiv:1703.05977]

Antenna subtraction

- Cancellation of IR divergences with local subtraction terms
- Move IR divergences across different phase space multiplicities

α s -fit methodology

αs determined in χ² -minimisation

 \bullet $\;{\alpha}_{\rm s}({\rm m}_{\rm z})$ is a free parameter to theory prediction $\sigma_{\rm i}$

$$
\chi^2 = \sum_{i,j} \log \frac{S_i}{\sigma_i} (V_{\text{exp}} + V_{\text{had}} + V_{\text{PDF}})_{ij}^{-1} \log \frac{S_j}{\sigma_j}
$$

NNLO theory is sensitive to α^s (m^Z)

$$
\sigma_i = \sum_{n=1}^{\infty} \sum_{k=g,q,\overline{q}} \int dx \underbrace{f_k(x,\mu_F)}_{\blacktriangle} \widehat{\sigma}_{i,k}^{(n)}(x,\mu_R,\mu_F) \cdot c_{\text{had}}
$$

- α_s dependence of PDF is accounted for by using PDF at $μ_{F,0}$ = 20GeV and applying DGLAP
- \rightarrow Important for reliable uncertainty estimates!

Separate fits are performed to

- All inclusive jet data sets (137 data points)
- All *dijet data* sets (103 data points)
- All H1 jet data taken together (denoted as 'H1 jets')

Inclusive jets

αs in NNLO from individual data sets

- All fits with good x^2
- Data sets found to be consistent
- Consistency between low- and high- $Q²$

Fit to all inclusive jets data in NNLO

 $(0.1132\,(10)_{\rm exp}\,(5)_{\rm had}\,(4)_{\rm PDF}\,(4)_{\rm PDF\alpha_s}\,(2)_{\rm PDF set}\,(40)_{\rm scale}$

- $χ²/ndf = 134/133$
- High experimental precision
- Scale uncertainty is largest (theory) error

Fit with μ > 28GeV

(μ is a characteristic scale assigned to any data point)

$$
0.1152\,(20)_{\rm exp}\,(6)_{\rm had}\,(2)_{\rm PDF}\,(2)_{\rm PDF\alpha_s}\,(3)_{\rm PDF set}\,(26)_{\rm scale}
$$

- Reduced scale, but increased exp. uncertianty
- No significant dependence on μ cut

$$
\alpha_{\rm s}(m_{\rm Z}) = 0.1152\,(20)_{\rm exp}\,(27)_{\rm th}
$$

See backup slides for a summary of all numerical values

Dijets

Fits to individual dijet data sets

- All data sets with good χ^2
- Reasonable consistency of data sets found

Fit to all dijet data in NNLO

• χ^2 /ndf = 93.9/102 consistency of data sets

 $(0.1148(11)_{exp}(6)_{had}(5)_{PDF}(4)_{PDF\alpha_s}(4)_{PDFset}(40)_{scale}$

• Value consistent with inclusive jets

Fits to all dijets with μ > 28GeV

 $(0.1147 (24)_{exp} (5)_{had} (3)_{PDF} (2)_{PDF\alpha_s} (3)_{PDFset} (24)_{scale}$

• Reduced scale, but increased exp. uncertainty

$$
\alpha_{\rm s}(m_{\rm Z}) = 0.1147\,(24)_{\rm exp}\,(25)_{\rm th}
$$

Uncertainty budget

 $0.1152(20)_{exp}(6)_{had}(2)_{PDF}(2)_{PDF\alpha_s}(3)_{PDFset}(26)_{scale}$

Experimental uncertianty (exp)

• All exp. uncertainties (incl. all correlations)

hadronsiation uncertainty (had)

• Propagation of hadronisation uncertainties as published with the data: commonly: difference between two MC generators (Django,Rapgap,Sherpa)

PDF uncertainties

- 'PDF' uncertainty
- PDF $\alpha_{\rm s}$ uncertainty
- PDFset uncertainty
- PDF μ_0 uncertainty

Scale uncertainty

• Scale factors: 0.5 and 2

Next slides...

Scale uncertainty

Scale variations

- μ_R variation dominates
- Large scale factor cause large χ^2 values

Scale choices

- Scale uncertainty also covers different scale choices
- μ = 20GeV: fixed scale! \rightarrow no running, no DGLAP \rightarrow consistent results

α Daniel Britzger – H1 Jets 17 ^s workshop, Trento, Italy

H1jets fit to inclusive jet and dijet cross sections

H1 jets

Fit to inclusive jet and dijet together

- Stat. and experimental correlations are known
- χ^2 /ndf = 0.98 for 200 data points
- -> Inclusive jet and dijet data are consistent

 $(0.1143(9)_{exp}(6)_{had}(5)_{PDF}(5)_{PDF\alpha_s}(4)_{PDFset}(42)_{scale}$

H1 jets with μ > 28GeV

• 91 data points

 $0.1157(20)_{exp}(6)_{had}(3)_{PDF}(2)_{PDF\alpha_s}(3)_{PDFset}(27)_{scale}$

- Moderate $exp.$ precision (due to μ >28GeV)
- Scale uncertainty dominates
- PDF uncertainties negligible

Smallest theo. uncertainty for: μ > 42GeV

 $0.1168(22)_{exp}$ (7)_{had} (2)_{PDF} (2)_{PDF α_s} (5)_{PDFset} (17)_{scale}

Main result with: μ > 28GeV

 $\alpha_s(m_Z) = 0.1157(20)_{\rm exp}(29)_{\rm th}$

Study of total uncertainty

Scale uncertainties at various scales μ

- At low-*μ*: large scale uncertainties...
- $\bullet \;\; ...$ but also high sensitivity to $\alpha_{\rm s}(\rm m_{\rm Z})$

Fits imposing a cut on scale μ

• Repeat $\alpha_{\rm s}$ fits: successively cut away data below $μ_{\text{cut}}$

Cut on μ

- \bullet Scale uncertainty decreases with μ_{cut}
- Exp. uncertainty increases with μ_{cut}

Comparison of NNLO predictions with data

All H1 jet cross section data compared to NNLO predictions

- Inclusive jets
- **Dijets**

Overall good agreement

- NNLO describes all data very well
- Also justified by good x^2 values of the fits

Data points displayed vs. μ

- apply grouping/binning
- \rightarrow use for scale-dependent studies

Reminder: our scale choice

Scale dependence

- Perform fits to groups of data points at similar scale
- Assume running to be valid within the limited range covered by interval

H1 jets

- Good consistency with other data
- First determination using jet data in NNLO

Most precise determination of α^s (μR) in range between 7 and 90 GeV

• Measurement bridges the gap between low-scale $\alpha_{\rm s}$ determinations and LEP/LHC determinations

Alternative α s fitting approach

 'PDF+α s -fit' H1PDF2017

Alternative α s fit approach: 'PDF+α^s -fit'

Perform H1 alone PDF fit: H1PDF2017

- Use (all) H1 inclusive DIS data $(Q^2>10GeV^2)$
- Use (all) H1 normalised jet cross section data
- -> 1529 data points

Normalised jet cross sections

- Jet cross sections normalised to inclusive DIS
- Correlations of jets and inclusive DIS cancel

PDFs are parameterised as

$$
xf(x)|_{\mu_0} = f_A x^{f_B} (1-x)^{f_C} (1+f_D x + f_E x^2)
$$

• Similar to HERAPDF/H1PDF2012

Mind: all PDFs are commonly determined predominantly from (H1) inclusive DIS data *Cross section: ~ PDF* **⊗***σ*

$$
\sigma_i = \sum_{k=g,q,\overline{q}} \int dx f_k(x,\mu_\text{F}) \hat{\sigma}_{i,k}(x,\mu_\text{R},\mu_\text{F}) \cdot c_{\text{had},i}
$$

Inclusive NC & CC DIS

Normalised jets

Inner errors: exp. uncertianty Outer errors: total uncertainty

Results

αs determined in PDF+α^s -fit

$$
\Big|\; \alpha_{\rm s}(m_{\rm Z}) = 0.1142\,(11)_{\rm exp, had, PDF}\,(2)_{\rm mod}\,(2)_{\rm par}\,(26)_{\rm scale}
$$

- $χ$ ²/ndf ~ 1.01
- High experimental precision
- Scale uncertainty dominates: determined from simultaneous variation of all scales involved in calculation

Discussion / comparison

• Result consistent with our other determination

Our two main results are fairly distinct:

• PDF+ $\alpha_{\rm s}$ -fit mostly sensitive to jets at lower scale

• H1jets: *μ*>28 GeV

 $\alpha_{\rm s}(m_{\rm Z}) = 0.1142\,(28)_{\rm tot}$

α s and the gluon-PDF

H1PDF2017: PDF+α^s -fit

Correlation of α s and g

• Simultaneous determination of the gluon and α_s

Fit to inclusive DIS data alone

- no jet data
- Large correlation: α_s and gluon cannot be determined simultaenously from inclusive DIS data alone

Including jet data

• determination of $\alpha_{\rm s}$ and gluon feasible

Comparison with NNPDF3.1

- Error ellipses with similar correlation as individual NNPDF3.1 fits
- Uncertainty of gluon in H1PDF2017 somewhat competitive to NNPDF3.1...
- but alpha s is a free parameter !

PDF+α s -fit – H1PDF2017 [NNLO]

Result for PDFs

- Set of PDFs determined with high precision
- Precision is competitive with global PDF fitters ...despite $\alpha_{\rm s}$ is a <u>free parameter</u> to the fit:

H1PDF2017

- Gluon at lower *x*-values tends to be higher (than e.g. NNPDF3.1)
- Gluon very similar to NNPDF3.1sx, which includes low-x resummation (no low-Q2 data included in our H1 fit)

α Daniel Britzger – H1 Jets 27 ^s workshop, Trento, Italy

⇆

Possible future improvements

Possible future improvements in DIS

Inner errors: exp. only Outer errors: exp+theo.

DB, M. Klein, FCC Week '17 Berlin

New experiments: LHeC, FCC-eh

- incl. DIS:
	- LHeC: $0.1 0.2\%$ (exp) + 0.4% (N3LO)
- FCC-eh: 0.1% (exp) LHeC Study Group [arXiv:1206.2913] See also: M. Klein in 'Memory of G. Altarelli', Appendix 1 [arXiv:1802.04317]
- \bullet jets, jet shapes, \dots O(‰)

Old experiments (HERA)

- H1&ZEUS combination: w.i.p.
- Jets in photoproduction
- Jet shapes
	- Analysis of HERA-II data (H1,ZEUS)
	- new jet-shape observables
- F_2 measurement at high-x–low-Q²

Theory: present

- \bullet Incl. DIS: N3LO
- Event shapes: N3LO (J Currie et al, JHEP 1805 (2018) 209)
- Event shapes: N3LL (Kang et al. PoS DIS2015 (2015) 142)
- $NNLO+PS$ (Hoeche et al. Phys. Rev. D98 (2018), 114013)

Theory: future

- N3LO DGLAP (4-loop) (A Vogt et al., PoS LL2018 (2018) 050)
- three-jets in NNLO
- \bullet Jets: NNLO + approx.

Summary

All H1 jet data confronted with NNLO predictions

- NNLO provides improved description w.r.t. NLO
- Quantitative comparison of all data
- NNLO predictions studied in great detail

NNLO used for determination of α^s (m^Z)

- α_{s} -fit $\alpha_{\rm s}(m_{\rm Z}) = 0.1157\,(20)_{\rm exp}(6)_{\rm had}(3)_{\rm PDF}(2)_{\rm PDF\alpha_s}(3)_{\rm PDF set}(27)_{\rm scale}$
- α_s +PDF-fit $\alpha_s(m_Z) = 0.1142 (11)_{\text{exp,had,PDF}} (2)_{\text{mod}} (2)_{\text{par}} (26)_{\text{scale}}$
- High experimental and theoretical precision

NNLO predictions for jets are used for α^s (and PDF) fits for the first time

- Successful determination of gluon-density and $\alpha_{\rm s}(\text{m}_\text{z})$ simultaneously
- Competitive precision for $α_s(m_z)$ and PDFs
- H1PDF2017 available at LHAPDF

Fruitful collaboration of theoreticians and experimentalists (H1 & NNLOJET)

Scale dependence of NNLO cross sections

Simultaneous variation of μ_R and μ_F

At lower scales

- Significant NNLO k-factors
- NNLO with reduced scale dependence
- Inclusive jets with higher scale dependence than dijets

At higher scales

- NNLO with reduced scale dependence
- $\mu_{\text{\tiny{F}}}$ dependence very small

α s (m^Z) dependence of cross sections

α Daniel Britzger – H1 Jets 34 ^s workshop, Trento, Italy

α s **dependencies separately fitted**

Fits to

- Inclusive jet and dijet data fitted together
- Fits performed for different PDFs

Fits with two free α^s parameters

$$
\sigma_i = f(\overline{\alpha_s^f(m_Z)}) \otimes \hat{\sigma}_k(\overline{\alpha_s^{\hat{\sigma}}(m_Z)}) \cdot c_{\text{had}}
$$

Results

- Most sensitivity arises from matrix elements
- $\bullet\;$ Best-fit $\alpha_{\rm s}$ -values in PDF's and ME's are consistent
- Anti-correlation between $\alpha_{\rm s}^{\,\rm pDF}(m_{\rm z})$ and $\,\alpha_{\rm s}^{\,\rm r}(m_{\rm z})$

Summary of all α_s results

 $\alpha_s(m_z)$ values from H1 jet cross sections $\chi^2/n_{\rm dof}$ $\alpha_{\rm s}(m_{\rm Z})$ with uncertainties th Data $\tilde{\mu}_{\rm cut}$ tot Inclusive jets $300 \,\text{GeV}$ high- Q^2 $(43)_{\rm th}$ $2m_h$ $(0.1221(31)_{exp}(22)_{had}(5)_{PDF}(3)_{PDF\alpha_s}(4)_{PDFset}(36)_{scale}$ $(53)_{\rm tot}$ $6.5/15$ HERA-I low- Q^2 $(0.1093(17)_{exp}(8)_{had}(5)_{PDF}(5)_{PDF\alpha_s}(7)_{PDFset}(33)_{scale}$ $(35)_{\rm th}$ $(39)_{\text{tot}}$ $17.5/22$ $2m_h$ HERA-I high- Q^2 $2m_b$ $(0.1136(24)_{\rm exp}(9)_{\rm had}(6)_{\rm PDF}(4)_{\rm PDF\alpha_s}(4)_{\rm PDF set}(31)_{\rm scale}$ $(33)_{\rm th}$ $(41)_{\rm tot}$ $14.7/23$ HERA-II low- Q^2 $0.1187 (18)_{exp} (8)_{had} (4)_{PDF} (4)_{PDF\alpha_s} (3)_{PDFset} (45)_{scale}$ $(50)_{\rm tot}$ $2m_b$ $(46)_{\rm th}$ $29.6/40$ HERA-II high- Q^2 $(41)_{\rm tot}$ $42.5/29$ $2m_b$ $(0.1121(18)_{exp}(9)_{had}(5)_{PDF}(4)_{PDF\alpha_s}(2)_{PDFset}(35)_{scale}$ $(37)_{\rm th}$ **Dijets** $300 \,\text{GeV}$ high- Q^2 $2m_h$ $(0.1213(39)_{exp}(17)_{had}(5)_{PDF}(2)_{PDF\alpha_s}(3)_{PDFset}(31)_{scale}$ $(35)_{\text{th}}$ $(52)_{\rm tot}$ $13.6/15$ HERA-I low- Q^2 $2m_b$ $(0.1101(23)_{exp}(8)_{had}(5)_{PDF}(4)_{PDF\alpha_s}(5)_{PDFset}(36)_{scale}$ $(38)_{\rm th}$ $(45)_{\rm tot}$ $10.4/20$ HERA-II low- Q^2 $(0.1173\,(14)_{\rm exp}\,(9)_{\rm had}\,(5)_{\rm PDF}\,(5)_{\rm PDF}\alpha_{\rm s}\,(3)_{\rm PDF set}\,(44)_{\rm scale}$ $(45)_{\rm th}$ $(47)_{\rm tot}$ $17.4/41$ $2m_b$ HERA-II high- Q^2 $2m_h$ $(27)_{\rm th}$ $(34)_{\rm tot}$ $28.0/23$ $(0.1089(21)_{exp}(7)_{had}(5)_{PDF}(3)_{PDF\alpha_s}(3)_{PDFset}(25)_{scale}$ $0.1132\,(10)_{\rm exp}\,(5)_{\rm had}\,(4)_{\rm PDF}\,(4)_{\rm PDF\alpha_s}\,(2)_{\rm PDF set}\,(40)_{\rm scale}$ H1 inclusive jets $(40)_{\rm th}$ $(42)_{\rm tot}$ 134.0/133 $2m_h$ H1 inclusive jets $28\,\mathrm{GeV}$ $44.1/60$ $(0.1152\,(20)_{\rm exp}\,(6)_{\rm had}\,(2)_{\rm PDF}\,(2)_{\rm PDF\alpha_s}\,(3)_{\rm PDF set}\,(26)_{\rm scale}$ $(27)_{\rm th}$ $(33)_{\rm tot}$ H1 dijets $2m_h$ $(0.1148(11)_{exp}(6)_{had}(5)_{PDF}(4)_{PDF\alpha_s}(4)_{PDFset}(40)_{scale}$ $(41)_{\rm th}$ $(42)_{\rm tot}$ 93.9/102 H₁ dijets $28\,\mathrm{GeV}$ $0.1147(24)_{\rm exp}$ (5)_{had} (3)_{PDF} (2)_{PDF α_s} (3)_{PDFset} (24)_{scale} $(25)_{\rm th}$ $(35)_{\rm tot}$ $30.8/43$ $0.1143(9)_{exp}(6)_{had}(5)_{PDF}(5)_{PDF\alpha_s}(4)_{PDF set}(42)_{scale}$ H1 jets $(44)_{\rm tot}$ 195.0/199 $2m_h$ $(43)_{\rm th}$ H1 jets $28\,\mathrm{GeV}$ $(0.1157(20)_{exp}(6)_{had}(3)_{PDF}(2)_{PDF\alpha_s}(3)_{PDFset}(27)_{scale}$ $(28)_{\rm th}$ $(34)_{\rm tot}$ $63.2/90$ $(30)_{\rm tot}$ $42\,\mathrm{GeV}$ H₁ jets $0.1168(22)_{exp}(7)_{had}(2)_{PDF}(2)_{PDF\alpha_s}(5)_{PDFset}(17)_{scale}$ $(20)_{\rm th}$ 37.6/40 H1PDF2017 [NNLO] 1539.7/1516 $2m_b$ $(0.1142\,(11)_{\rm exp,NP,PDF}\,(2)_{\rm mod}\,(2)_{\rm par}\,(26)_{\rm scale}$ $(28)_{\rm tot}$

$\mu_{\rm R}$	Inclusive jets		Dijets		H ₁ jets	
$[\mathrm{GeV}]$	$\alpha_{\rm s}(m_{\rm Z})$	$\alpha_{\rm s}(\mu_{\rm R})$	$\alpha_{\rm s}(m_{\rm Z})$	$\alpha_{\rm s}(\mu_{\rm R})$	$\alpha_{\rm s}(m_{\rm Z})$	$\alpha_{\rm s}(\mu_{\rm R})$
7.4		$0.1148(13)(42)$ $0.1830(34)(114)$		$0.1182(28)(41)$ $0.1923(77)(116)$		$0.1147(13)(43)$ $0.1829(34)(114)$
10.1		$0.1136(17)(36)$ $0.1678(39)(81)$		$0.1169(14)(42)$ $0.1751(34)(99)$		$0.1148(14)(40)$ $0.1705(31)(91)$
13.3		$0.1147(15)(43)$ $0.1605(30)(88)$		$0.1131(18)(38)$ $0.1573(36)(76)$		$0.1144(15)(42)$ $0.1600(30)(86)$
17.2		$0.1130(15)(33)$ $0.1492(26)(59)$		$0.1104(19)(30)$ $0.1445(33)(53)$		$0.1127(15)(33)$ $0.1486(27)(59)$
20.1		$0.1136(17)(33)$ $0.1457(29)(56)$		$0.1116(22)(31)$ $0.1425(36)(52)$		$0.1134(17)(33)$ $0.1454(29)(55)$
24.5		$0.1173(17)(30)$ $0.1463(26)(48)$		$0.1147(23)(24)$ $0.1423(36)(38)$		$0.1171(17)(29)$ $0.1460(27)(46)$
29.3		$0.1084(36)(29)$ $0.1287(51)(41)$		$0.1163(34)(34)$ $0.1401(50)(50)$		$0.1134(30)(32)$ $0.1358(44)(46)$
36.0		$0.1153(32)(37)$ $0.1338(43)(50)$		$0.1135(37)(29)$ $0.1314(50)(39)$		$0.1146(30)(33)$ $0.1328(41)(44)$
49.0		$0.1170(22)(20)$ $0.1290(27)(25)$		$0.1127(31)(15)$ $0.1238(37)(18)$		$0.1169(23)(19)$ $0.1290(28)(24)$
77.5		$0.1111(55)(19)$ $0.1137(58)(20)$		$0.1074(84)(19)$ $0.1099(88)(20)$		$0.1113(55)(19)$ $0.1139(58)(20)$

Running of the strong coupling

Table 5: Values of the strong coupling constant $\alpha_s(\mu_R)$ and at the Z-boson mass, $\alpha_s(m_Z)$, obtained from fits to groups of data points with comparable values of μ_R . The first (second) uncertainty of each point corresponds to the experimental (theory) uncertainty. The theory uncertainties include PDF related uncertainties and the dominating scale uncertainty.

Scale dependence of α s fit

αs results as a function of scale factors

- Smooth results for studied scale variations
- $\mu_{\rm R}$ variation with more impact than $\mu_{\rm F}$

χ2 values

- somewhat a 'technical parameter' -> not intended to be a parabolas
- \bullet χ ² values increase for large scale factors -> large scale factors disvafored

Scale choice for α s fit

Study scales calculated from Q² and p_T

 $'p_{\tau}$ ' refers to: p_{τ} ^{jet} or $<\!\!p_{\tau}\!\!>$

αs results and χ2 values

- Spread of results covered by scale uncertainty
- \bullet X^2 values are similar for different choices -> NNLO with small 'scale dependence'

NLO matrix elements

- Large scale uncertainty
- Relevant dependence of result on scale choice
- Mainly larger X^2 values than NNLO
- Larger fluctuation of X^2 values than NNLO

NNLO with reduced scale dependence

Dependence on the PDF

PDF is an external input to NNLO calculation

PDF fitting groups differ

- choice of input data sets, PDF parameterisations, model parameters, fit methodology, etc...
- Though: different PDFs appear to be quite consistent

Choice of α^s for PDF determination

- \bullet α ^{PDF}_s(m_z) important input parameter to PDF fit
- Small correlation with fitted results

Our (main) α^s result

• almost independent on PDF assumptions

Scale dependence

Test running of strong coupling

- Perform fits to groups of data points at similar scale
- Assume running to be valid within the limited range covered by interval

Results

- All fits have good x^2
- Consistency of inclusive jets and dijets
- Consistency with expectation at all scales
- Scale uncertainty dominates at lower $μ$

