Measurement of beauty production from dimuon events (and other heavy flavour results) at HERA

Achim Geiser, DESY Hamburg Achim.Geiser@desy.de

on behalf of the ZEUS collaboration

XXVIIth International Workshop on Deep Inelastic Scattering Torino, Italy, 9 April 2019

- Introduction
- Beauty tags at HERA
- Beauty from dimuons ZEUS-prel-18-006
- Reminder: combination of charm and beauty data in NC DIS
- Cross-reference: charm in CC DIS -> see talk J. Nam in WG1
- Conclusions

The HERA ep collider and experiments

Open beauty production in ep scattering

Dominant production process in ep-collisions: Boson-Gluon -Fusion

- Driven by gluons in the proton
- Relevant scales: $m_b \sim 5 \text{ GeV}$ $Q^2 \lesssim 1 \text{ GeV}^2 \rightarrow \gamma p$ $> \mathbf{1} \text{ GeV}^2 \rightarrow \text{DIS}$ p_T^b

multiscale problem

-> terms $[\alpha_s \ln (Q^2/m_b^2)]^n$, $[\alpha_s \ln (p_T^2/m_b^2)]^n$, etc. in perturbative expansion -> potentially large th. errors

Fixed Flavour Number Scheme (FFNS)

 $[\]mu^2 = m_b^2 + p_T^2$ (γp)

4.9.2019

no beauty in proton

- full kinematical treatment of beauty quark mass (multi-scale problem: Q^2 , p_T , m_b -> logs of ratios)
- no resummation of logs ⊗
- no extra matching ③ parameters

DIS 2019, A. Geiser

 $[\]mu^2 = Q^2 + 4m_b^2$ (DIS)

Beauty double-tagging

multi-tagged bb events

here: two muons

- tag both b´s
 → explicitly measure bb̄ correlations
- dimuon signature has low background
 - \rightarrow low muon p_T cuts
 - \rightarrow sensitive even to B mesons at the kinematic threshold (low p_T)

•almost full rapidity coverage (rear and forward muon chambers) \rightarrow directly measure total bb cross section without any additional cuts (DIS + γp)

Signal topologies: mass, charge

multi-tagged bb events

here: two muons

muons from different b's
 → like or unlike sign

 (secondary c decays or B⁰B⁰ mixing)
 opposite hemispheres
 high dimuon mass

suited to measure bb correlations

Signal topologies: mass, charge

multi-tagged bb events

Dimuon mass spectrum

ZEUS-prel-18-006

Muon p_T and η distributions

ZEUS-prel-18-006

nonisolated unlike sign muon pairs (low+high mass)

Total visible bb-> $\mu\mu$ +X cross section

ZEUS-prel-18-006

Visible cross section: using lumi + MC acceptance + corrections

- HERA I paper: JHEP02 (2009) 032 $\sigma_{vis} ep \rightarrow bbX \rightarrow \mu\mu X' = 55 \pm 7 \text{ (stat.)}^{+14}_{-15}$ (syst.) pb
- HERA II preliminary: ZEUS-prel-18-006 $\sigma_{vis} ep \rightarrow bbX \rightarrow \mu\mu X' = 43 \pm 3 \text{ (stat.)}^{+13}_{-11}$ (syst.) pb

NLO QCD (same as HERA I paper): $\sigma_{vis} ep \rightarrow bbX \rightarrow \mu\mu X' = 33^{+14}_{-8} (NLO)^{+5}_{-3} (frag+Br) pb$ scale $\mu^2 = \frac{1}{4}(m^2 + p_T^2)$ details see backup -> agreement within uncertainties

4.9.2019

DIS 2019, A. Geiser

Total beauty cross section in ep @ 318 GeV

ZEUS-prel-18-006

Total cross section: using MC cross section x scale factor + corrections

• HERA I paper: JHEP02 (2009) 032

 $\sigma_{b \text{ tot}} \text{ ep} \rightarrow \text{bbX} (318 \text{ GeV}) = 13.9 \pm 1.5 \text{ (stat.)} ^{+4.0}_{-4.3} \text{ (syst.) nb}$

- HERA II preliminary: **ZEUS-prel-18-006** $\sigma_{b \text{ tot}} \text{ ep} \rightarrow \text{bbX} (318 \text{ GeV}) = 11.4 \pm 0.8 \text{ (stat.)}^{+3.9}_{-2.9} \text{ (syst.) nb}$
- NLO QCD predictions (same as HERA I paper):FMNR+HVQDIS7.5 + 4.5 / 2.1 nbscale

scale
$$\mu^2 = \frac{1}{4}(m^2 + p_T^2 + Q^2)$$

for theory-inspired motivation of QCD scale choice see doi:10,3360/dis.2007.163

```
-> agreement within (large) uncertainties
only measurement of its kind so far
```

any chance to get NNLO prediction?

(exists for pp and (almost) for DIS)

Differential cross sections bb-> $\mu\mu$ +X

Good agreement with HERA I result, smaller data uncertainties. Shape of NLO prediction agrees well with data. Normalisation agreement better for reduced QCD scale (NNLO corrections, also to bb correlations, potentially large)

Differential cross sections bb-> $\mu\mu$ +X

ZEUS-prel-18-006

muon pseudorapidity

in general: similar conclusions as for muon p_T LO+PS MC describes shape slightly better than NLO

Differential cross sections bb->µµ+X

ZEUS-prel-18-006

 $\Delta \phi^{\mu\mu}$ for m^{µµ} > 3.25 GeV (µ's from different b's)

-> directly sensitive to bbbar correlations

Lower scale NLO prediction agrees better in both shape and normalisation

Differential cross sections bb->µµ+X

agrees with LO+PS MC, NLO prediction not calculated yet

ZEUS-prel-18-006

Beauty in photoproduction: summary

for theory-inspired motivation of QCD scale choice see doi:10.3360/dis.2007.163

double-tag measurements have tendency to come out higher than single tag

Deep Inelastic ep Scattering at HERA

Heavy flavour contributions to σ_r

DIS 2019, A. Geiser

QCD fit (DIS incl.+c+b): charm subset

arXiv:1804.01019

QCD fit (DIS incl.+c+b): beauty subset

DESY 19-054, arXiv:1904.03261

First ever collider measurement, large uncertainties already advertised in talk C. Glasman:

Sets the stage for future measurements at EIC/LHeC/... Details see dedicated talk J. Nam tomorrow in WG1 4.9.2019 DIS 2019, A. Geiser

Summary and conclusions

Beauty cross sections in ep collisions have been measured from dimuons dimuon tag covers full phase space -> allows extraction of total b cross section good agreement with earlier measurements total cross section somewhat larger than but in agreement with NLO QCD differential cross sections in muon p_T , η , $\Delta \phi$ and ΔR test bbbar correlations, agree very well with LO+PS MC shape NLO prediction: good agreement in shape normalisation agrees better with lower scale choice (motivated by theory) large NLO uncertainties (mainly b mass + QCD scale dependence) suggest significant NNLO corrections -> any chance for NNLO calculations soon? Other HERA heavy flavour results include H1+ZEUS charm and beauty data combination in DIS (presented in detail last year) and charm in CC by ZEUS (see dedicated talk J. Nam)

In general, 6 new ZEUS preliminaries and 2 new papers since last DIS (2 on HFL)
 -> ZEUS team is small, but alive and well, new collaborators and ideas welcome
 4.9.2019
 DIS 2019, A. Geiser
 22

Backup slides

Selection cuts and MC

data samples:

• HERA II, 03-07, L ~ 377 pb⁻¹

event selection:

- CAL $E_T > 8 \text{ GeV}$ ($\approx 2 \text{ m}_b$ missing neutrinos, proton remnant and DIS e cand. removed)
- cut on muon $E_T \frac{\text{fraction } (0.1 < p_T^{\mu\mu}/E_T < 0.7_{\text{high } m} / 0.5_{\text{low } m})$
- $|zvtx| < 30 \text{ cm}, \sqrt{(xvtx^2+yvtx^2)} < 3 \text{ cm}, \text{ muon } \vec{p}_T \text{ asym.} < 0.7, \Delta \eta^{\mu\mu} < 3, \text{ anti-cosmic cuts}$
- 'or' of muon, hadronic charm, and dijet triggers

muon selection:

- two muons, $m^{\mu\mu} > 1.5 \text{ GeV}$
- $\mathbf{p}_{\mathrm{T}}^{\mu} > 0.75 \text{ GeV}$ for high muon quality ≥ 5 , $\mathbf{p}_{\mathrm{T}}^{\mu} > 1.5 \text{ GeV}$ for low muon quality
- simplified for differential cross sections: $p_T^{\mu} > 1.5 \text{ GeV}$ for both muons

MC samples:

- beauty and charm: RAPGAP ($Q^2 > 1 \text{ GeV}^2$) and PYTHIA ($Q^2 < 1 \text{ GeV}^2$)
- J/ψ , ψ' , Upsilon, Bethe-Heitler, each DIS/ γp from various generators
- $J/\psi(p_T)$ and Upsilon (Q²) MCs reweighted to data distributions
- muon efficiency corrections applied (from independent data set)

Theoretical tools

identical to HERA I

FMNR Fixed order NLO in the massive mode (PHP regime) Mass of the b quark m = 4.75 GeV (4.5 - 5.0)

- Mass of the b quark $m_b = 4.75 \text{ GeV}$, (4.5 5.0)
- μ_R and μ_F: $μ^2 = m_b^2 + p_{Tb}^2$ (μ/2 2μ)
 Proton: CTEQ5M Photon: GRV-G-HO
- (PDF error << scale/mass error \rightarrow neglected)

For visible cross sections - identical procedure as for b->D*μ paper: **FMNR + Pythia**

A G and A E Nuncio Quiroz 2008 J. Phys.: Conf. Ser.110 022036

- In FMNR weighted events with positive and negative weights spanning over 8 orders of magnitude -> "naive" interface very inefficient, not practical
- Use weight range reduction (REDSTAT) to ~ 1 order of magnitude preserving NLO accuracy
 - events with large + and weights but similar topologies are "averaged"

QCD fit with x_{Bi} > 0.01 for inclusive data

charm and beauty mass floating

gluon at x < 0.01 inconsistent with inclusive fit

arXiv:1804.01019

FONLL-C fit of inclusive data

arXiv:1802.00064 (XFitter team): FONLL-C inclusive fit with and without NLLx resummation

personal remark:

FONLL-C inclusive fit with NLLx qualitatively consistent with FF charm + x > 0.01 inclusive fit (compare previous slide)

-> combine both worlds by applying NLLx to light flavours only in FF scheme?

Figure 3 The up valence PDF xu_v , the gluon PDF xg and the total singlet PDF $x\Sigma$ for the final fits with (NNLO+NLLx) and without (NNLO) $\ln(1/x)$ resummation.

beauty from inclusive dijets + vtx

use significance of secondary vertex

simultaneous fit of mirorred significance for three different mass ranges

NLO vs. LO + parton shower

